WO1999038177A1 - Materiau electrode metallique, condensateur utilisant ledit materiau et procede de fabrication associe - Google Patents

Materiau electrode metallique, condensateur utilisant ledit materiau et procede de fabrication associe Download PDF

Info

Publication number
WO1999038177A1
WO1999038177A1 PCT/JP1999/000228 JP9900228W WO9938177A1 WO 1999038177 A1 WO1999038177 A1 WO 1999038177A1 JP 9900228 W JP9900228 W JP 9900228W WO 9938177 A1 WO9938177 A1 WO 9938177A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
carbon
electrode
capacity
valve metal
Prior art date
Application number
PCT/JP1999/000228
Other languages
English (en)
French (fr)
Inventor
Seiji Nonaka
Masakazu Tanahashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to KR10-1999-7008730A priority Critical patent/KR100380925B1/ko
Priority to AU20740/99A priority patent/AU733738B2/en
Priority to EP99901135A priority patent/EP0989571B1/en
Priority to DE69935767T priority patent/DE69935767T2/de
Publication of WO1999038177A1 publication Critical patent/WO1999038177A1/ja
Priority to US09/679,308 priority patent/US6808845B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrode metal material for an electric component used in contact with an electrolytic solution such as a battery and a capacitor, particularly to a capacitor using the same, and a method of manufacturing the same.
  • the electric double-layer capacity is a large-capacity capacity that can be charged up to about 3 V, and is used as a backup power supply for microcomputers, memory devices, and other devices.
  • a pair of polarizable electrodes or a double layer electrode is arranged to face each other through an insulating separator, and an electrolyte is impregnated between the electrodes.
  • the electrode is formed by forming an activated carbon layer on the surface of an electrode metal material of a valve metal which also serves as a support and a current collector.
  • Some electric double layer capacities use an organic solution-based electrolytic solution obtained by adding an electrolyte such as tetraethylammonium salt to an organic solvent such as propylene carbonate.
  • Examples of the conventional electric double layer capacity using an organic solution-based electrolyte include a type in which a pair of electric double layer electrodes are wound in a container and housed in a container, and a pair of electric double layer electrodes. Are laminated, all of which are disclosed in US Pat. No. 5,150,283.
  • an etched aluminum foil having a thickness of 20 to 50 / m is used for the electrode metal material 1, and the activated carbon powder is used for the electric double layer electrode 3.
  • a paste is obtained from a mixed powder obtained by mixing a desired binder and a conductive agent, and a coating film is formed on the metal foil from the paste, and an activated carbon layer 30 containing activated carbon as a main component (that is, a polarizable electrode) ) Is used.
  • a pair of electric double-layer electrodes 3 and 3 has a lead 6 on the electrode metal material 1, respectively. These electrodes 3 and 3 are wound so as to face each other via a separator 5.
  • the electric double layer electrode is impregnated with the electrolyte into the activated carbon layer 30 and the separator 5 by vacuuming in the electrolyte, inserted into the aluminum case 70, and the opening 7 is sealed with the packing 8 Have been.
  • propylene carbonate has been used as an organic solvent for an electrolytic solution
  • tetraethylammonium salt has been used for an electrolyte.
  • the button-type electric double-layer capacity is schematically shown in Figs. 9 and 10.
  • the activated carbon layer 30 is joined to the disc-shaped sheet 1 of valve metal material to form a pair of double-layer electrodes. 3 is formed and arranged so as to face each other through an insulating separator 5 and housed in a two-piece metal container.
  • each valve metal material sheet is joined to the inner surface side of the lower bottom part 60 and the upper lid part 61 of the metal container, and the lower bottom part and the upper lid part are insulative at the periphery.
  • the container is filled with a non-aqueous electrolytic solution so as to fill the double-layer electrode and the activated carbon layer.
  • a non-aqueous electrolyte for example, a solution in which tetraethylammonium perchlorate is added to propylene carbonate is used as described above.
  • An electrolytic capacity is known as a capacity using a non-aqueous electrolyte.
  • a dielectric film is formed by chemical conversion of the valve metal foil, and on the cathode side, the valve metal foil is used as it is, and the two electrodes are usually wound in a coil shape with the two electrodes facing each other. Is sealed in a container in the presence of
  • valve metal sheet or foil that forms the polarizable electrode film has a natural oxide film unique to the valve metal material that composes the electrode structure during handling.
  • Fig. 6 schematically shows the structure of the electrode using this technique.A thin insulating oxide film 4 is often formed at the interface between the aluminum foil 1 as the valve metal material and the polarizable electrode 3. Was.
  • the above non-aqueous electrolyte contains a small amount of water and oxygen, but during use of the capacitor, the valve metal material constituting the electrode structure reacts with the water in the electrolyte, The metal surface was oxidized. Therefore, the electric double layer capacity using this kind of metal will gradually become equivalent series resistance (ESR), In some cases, the internal resistance increased and the capacitance also decreased.
  • ESR equivalent series resistance
  • the electrolytic capacity using a non-aqueous electrolytic solution is characterized in that the anode has a dielectric insulating layer formed by anodic oxidation on a valve metal such as aluminum, and the cathode, which is in direct contact with the electrolytic solution, is made of aluminum or the like. Valve metal is used. In this case, an oxidized film is formed on the surface of the metal as the cathode by the oxidization caused by moisture in the electrolytic solution, thereby increasing the internal resistance of the capacitor. Had a similar problem. Disclosure of the invention
  • an object of the present invention is to provide a valve metal material capable of forming an electrode used in contact with a non-aqueous electrolyte in a capacitor and reducing the internal resistance of the capacitor.
  • the purpose is to do.
  • Another object of the present invention is to provide a method for producing a valve metal material capable of reducing the internal resistance of a capacitor as described above by forming an electrode used in contact with a non-aqueous electrolyte. .
  • Another object of the present invention is to provide a capacity capable of suppressing a change in resistance associated with a metal material constituting an electrode used in contact with a non-aqueous electrolyte and reducing internal resistance. .
  • a further object of the present invention is to provide a method for manufacturing a capacitor capable of suppressing a change in resistance associated with an electrode metal material constituting an electrode used in contact with a non-aqueous electrolyte and reducing internal resistance. Is what you do.
  • the electrode metal material of the present invention is formed from a valve metal material containing carbon particles on its surface, and constitutes an electrode.
  • the carbon particles of the carbon-containing metal material ensure the electrical connection between the electrode metal material and the conductor (including the electrolyte) that comes into contact with the electrode metal material.
  • the carbon-containing metal material is composed of a valve metal material and a number of carbon particles fixed in the surface of the valve metal material and exposed to the surface.
  • the present invention slightly extrudes the carbon particles so as to expose them on the surface of the valve metal material to enhance the conductivity and adhesion with the conductor to be contacted.
  • the electrode metal material of the present invention is used for an electrode structure used in contact with a non-aqueous electrolyte.
  • a carbon-containing valve metal material may itself be an electrode that comes into contact with an electrolyte, or an activated carbon layer formed by coating on the surface of a carbon-containing valve metal material. That is, a polarizable electrode may be provided.
  • the former corresponds to the cathode of the electrolytic capacity
  • the latter corresponds to the double-layer electrode of the electric double-layer capacity.
  • the electrolytic capacity carbon particles exposed in the surface of the carbon material that comes into contact with the electrolytic solution directly contact the electrolytic solution to ensure conductivity between the metallic material and the electrolytic solution.
  • the carbon-containing valve metal material allows the carbon particles exposed in the surface of the electric double layer capacity to come into direct contact with the activated carbon layer, thus allowing the metallic material to be activated by the activated carbon layer. Ensure conductivity. In any case, even if the carbon-containing valve metal material comes into contact with the electrolytic solution and its metallic surface is oxidized by moisture contained in the electrolytic solution, the above-mentioned conductivity hardly changes.
  • valve metal material of the present invention a material in which the large number of force particles are fixed to the surface of the valve metal material so as to project on the surface is employed. For this reason, it is preferable that the surface of the valve metal material is removed to such an extent that the carbon particles protrude. As a result, the unevenness on the surface of the valve metal material ensures conductivity with the activated carbon layer, and at the same time, enhances the adhesive strength with the activated carbon layer.
  • the metal surface of the valve metal material is coated with a passivation film, whereby the metal surface of the valve metal material loses conductivity, but is stably oxidized by contact with the electrolyte. It is possible to prevent carbon dioxide particles and to secure stable conductivity over a long period of time.
  • valve metal material of the present invention can be formed into a sheet.
  • sheet includes plates, sheets, films and foils.
  • valve metal material other thin-walled molded products having a desired shape may be used.
  • Sheets and other molded articles contain carbon particles on at least one side.
  • the molded article may contain carbon particles on both sides.
  • the valve metal material for an electrode of the present invention is achieved by injecting a large number of carbon particles into a metal surface. Pressing by means of a die or rolling by means of a roller is used for the press-fitting of pressure particles.
  • a process for semi-dissolving the valve metal powder material in a mixed state with carbon is provided, and pressurized to form a dense metal mass. Since the metal lump contains carbon particles dispersed therein, the metal lump is forged or rolled to be formed into a molded article having a desired shape, and thereafter, the carbon particles are exposed on the surface of the molded article.
  • FIG. 1 is a schematic cross-sectional view showing an example of a carbon-containing valve metal material in which carbon particles according to the present invention are fixed to the surface of a valve metal sheet.
  • FIG. 2 is a schematic sectional view showing another example of the carbon-containing valve metal material according to the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of a valve metal material containing carbon according to the present invention.
  • FIG. 4 is a schematic cross-sectional view showing an example of a carbon-containing valve metal material in which carbon particles are fixed to both surfaces of a valve metal sheet according to the present invention.
  • FIG. 5 is a schematic partial cross-sectional view of a double-layer electrode used for an electric double-layer capacity using a carbon-containing valve metal material according to the present invention.
  • FIG. 6 shows a schematic partial cross-sectional view of a double-layer electrode used in a conventional electric double-layer capacity.
  • FIG. 7 is a schematic partially cutaway perspective view of a wound electric double layer capacity.
  • FIG. 8 is a schematic partial cross-sectional view of a double-layer electrode used for a button-type electric double-layer capacitor using a carbon-containing valve metal material according to the present invention.
  • FIG. 9 is a schematic cross-sectional view of a button-type wound electric double layer capacity.
  • FIG. 10 is a schematic partially cutaway perspective view of a button-type wound electric double layer capacity.
  • the valve metal material for an electrode of the present invention contains carbon particles on the surface of the valve metal material.
  • the valve metal includes a metal that forms a passivation on the surface.
  • metals such as tantalum, aluminum, titanium, niobium, zirconium, bismuth, silicon, and hafnium can be used.
  • alloys containing these elements and producing valve action such as titanium-based alloys containing boron and tin, titanium-based alloys containing chromium and vanadium, titanium-based alloys containing palladium and antimony, and titanium Selected from aluminum-based alloys containing Most preferred is aluminum, especially high-purity aluminum.
  • the electrode metal material is formed into a molded body having a desired thickness, for example, a sheet.
  • the thickness of the sheet depends on the type of capacity and the type of electrode, but is in the range of 10 / m to 5 mm.
  • a metal foil having a thickness of 50 to 500 ⁇ m is preferably used for the winding type electric double layer capacity and the electrolytic capacitor to ensure flexibility and the number of turns.
  • the thickness must be increased to secure these strengths. For example, it is preferable to have a thickness of about 0.5 to 3.0 mm.
  • the above thin valve metal may be clad on a base metal plate for securing strength, and carbon particles may be contained in the clad valve metal.
  • a base metal a metal or alloy having high corrosion resistance, for example, nickel or stainless steel can be used.
  • the other carbon particles conductive carbon particles such as graphite and carbon black are used.
  • acetylene black can be used for bonbon black.
  • the carbon particles may be activated carbon particles.
  • the vitreous grains have a particle size of 0.01 to 50 ⁇ m, and particularly a range of 0.1 to 10 ⁇ m.
  • the carbon particles can also have one of granular, granular, and fibrous shapes.
  • the particle diameter of the above fibrous carbon particles of 0.1 to 5 refers to the fiber length.
  • the content of carbon particles is suitably 5 to 90%, which is the area occupation ratio of carbon to the entire surface of the valve metal material. If the carbon occupancy is less than 5%, it may be difficult to reduce the contact resistance on the surface sufficiently. It is preferable that the occupancy of the carbon is high, but if the occupancy of the carbon exceeds 90%, it becomes difficult to stably support the carbon particles pressed into the valve metal surface by the press-in method.
  • the car The surface occupation ratio of the bon is preferably in the range of 20 to 75%, and particularly preferably in the range of 30 to 60%.
  • the valve metal material has a rough surface.
  • the carbon particles protrude slightly from the surface of the metal.
  • the protrusion of the carbon particles can be obtained by electrolytic etching in an acidic aqueous solution. Exposure of a large number of carbon particles can increase the contact frequency of the activated carbon layer for forming the electric double layer electrode, and can firmly fix the activated carbon layer by the anchor effect.
  • FIG. 1 shows a pressure-bonded metal material 1 in which substantially granular force-bonded particles 2 are pressed into one surface of a sheet-shaped valve metal material 10.
  • This diagram schematically shows an example in which the carbon particles 2 are partially embedded in the surface of the metal material and the rest protrudes.
  • FIG. 2 is a similar view, but conceptually shows a state in which the carbon particles 2 are crushed and all are buried in the surface of the metal material.
  • the carbon press-fitting metal material 1 still has the surface of the carbon particles exposed on the surface of the metal material, and can be used to secure conductivity. Such a condition would occur when relatively soft carbon particles were pressed strongly.
  • FIG. 3 shows that the carbon press-fitting metal material 1 shown in FIG. 2 was subjected to electrolytic etching to remove the metallic surface 11, and as a result, carbon particles were projected.
  • FIG. 4 shows that carbon particles pressed into both sides of a sheet of valve metal material are formed to protrude by etching.
  • the rough surface may be a surface on which the entire surface of the carbon-containing metal material is blasted. Blasting can provide direct surface roughening of the valve metal material and exposure of carbon particles, firmly anchoring the activated carbon layer and reducing contact resistance.
  • the carbon-containing metal material preferably has a passivation film formed on the surface of the metal material (for example, see the metallic surface 11 in FIGS. 3 and 4).
  • the passivation prevents oxidation or corrosion of the surface of the valve metal material even if moisture is present in the electrolyte during use as an electrode, without affecting the conductivity due to the presence of carbon particles. Further, the electrode can be further stabilized.
  • the passivation only needs to be thick enough to withstand the working voltage of the capacity.
  • a 2.5-3.5 V rated electric double layer capacity has a skin corresponding to a withstand voltage of 4-5 V.
  • the film thickness may be sufficient.
  • the valve metal material has a passivation thickness of 6 OA or more.
  • a mixture of valve metal powder and carbon powder is heated and pressurized in a container so that a lump of valve metal lump contains carbon powder.
  • the method further includes a step of plastically processing the carbon-containing valve metal mass produced in this process into a valve metal material having a desired shape.
  • hot or cold forging or rolling can be used to obtain a sheet or other molded product having a desired thickness.
  • the second method includes a force-bon powder-containing process in which force is applied to carbon powder dispersed on the surface of the valve metal material to thereby force-force particles into the surface of the valve metal.
  • the carbon particle-containing step can be performed by a pressing method using a mold for press-fitting carbon particles onto the surface of the valve metal material.
  • the mold may be a rigid flat plate or the like.
  • the carbon particle-containing step may be performed by a rolling method using a roller that press-fits force-grain particles onto the surface of the valve metal material. In either case, the carbon particles can be pressed and fixed onto the surface of the valve metal material.
  • the step of containing carbon particles may also serve as a step of performing press or step forming from a valve metal blank into a molded article having a desired shape. That is, in this case, the above-described step of containing carbon particles is performed in a step of hot or cold working of the bulk material of the valve metal. This process involves forging or rolling, hot or cold, to press down the valve metal material and simultaneously press the carbon grains into the forged or rolled surface.
  • the manufacturing method includes a step of exposing the carbon particles to the surface by electrolytic etching in an acidic aqueous solution after the step of containing the carbon particles.
  • the carbon particles exposed on the surface protrude from the surface, become roughened, and are slightly buried under the surface.
  • the exposed carbon particles can be exposed on the surface. Exposure of a large number of carbon particles increases the contact frequency of the activated carbon layer for the electric double layer electrode configuration, and can firmly fix the activated carbon layer by the anchor effect.
  • the manufacturing method includes a step of exposing the carbon particles to the surface by performing a blast treatment after the step of containing the carbon particles. Also in this method, direct surface roughening by the plast and exposure of the carbon particles can be realized.
  • the manufacturing method preferably includes a step of forming a passivation film on the metallic surface of the metal material after the step of exposing the carbon particles.
  • a method is used in which the carbon material containing carbon is oxidized by heating in an oxidizing atmosphere, for example, in air. Another method is to anodize the carbon-containing metal material.
  • the passivation thickness may be, for example, a film thickness corresponding to a withstand voltage of 4 to 5 V in an electric double layer capacity rated at 2.5 to 3.5 V.
  • the valve metal material has a passivation thickness of 6 OA or more.
  • the capacity of the present invention includes an electric double layer capacity and an electrolytic capacity, both of which use a non-aqueous electrolytic solution and are used when a valve metal material is used in contact with the electrolytic solution. is there.
  • a winding type capacity is schematically shown in Fig.7.
  • a flexible electric double layer electrode is used, which is composed of a thin valve metal foil as a valve metal and an activated carbon layer adhered to both sides of the foil.
  • a large number of carbon particles are fixed so as to be exposed on the surface and are in contact with the activated carbon layer.
  • the pair of electric double-layer electrodes is wound around a separator and is impregnated with a non-aqueous electrolyte solution, sealed in a container, and sealed with an electric double-layer capacitor.
  • a non-aqueous electrolyte solution sealed in a container, and sealed with an electric double-layer capacitor.
  • the electrolyte an organic solvent containing no water and a salt that can be dissolved and dissolved in such a solvent are used.
  • a solution in which propylene carbonate is used as a solvent and tetraethylammonium perchlorate is added as an electrolyte is used.
  • the activated carbon layer is formed into a thin film by applying the activated carbon powder into a paste and applying it on a valve metal foil.
  • the paste for this is, for example, activated carbon powder, if necessary, conductive carbon powder, and a suitable binder, for example, cellulose, fluororesin Is kneaded with water and other solvents.
  • a suitable binder for example, cellulose, fluororesin Is kneaded with water and other solvents.
  • Leads are connected to the pair of electric double layer electrodes, respectively, and a coil is obtained by winding the separator with the separator sandwiched between the electrodes.
  • a suitable material having a low insulating property and water permeability such as a woven or non-woven glass fiber fabric, is used.
  • the coil composed of the electric double layer electrode and the separator is impregnated with an electrolytic solution, charged into a bottomed metal container, and the opening is sealed with a sealing material.
  • the lead penetrates through the seal material and is led out.
  • the button-type electric double layer capacity is shown in FIG. 9 and FIG. 10, and the activated carbon layer 30 is bonded to the disc-shaped sheet 10 of the valve metal material of the present invention via the adhesive layer 9.
  • a pair of double-layer electrodes 3 are formed.
  • the two double-layer electrodes 3 are arranged so as to face each other via an insulating separator 5, and are housed inside a pair of metal containers 60 and 61.
  • the two double-layer electrodes 3 and 3 each have a sheet 1010 of valve metal material joined to the inner surface side of the lower bottom portion 60 and the upper lid portion 61 of the metal container, and the lower bottom portion and the upper lid portion At the periphery thereof, they are joined to each other in a watertight manner by an insulating ring packing 69, and the inside of the container is filled with a non-aqueous electrolyte so as to fill the double-layer electrode and the activated carbon layer.
  • a non-aqueous electrolyte for example, a solution in which propylene carbonate is used as a solvent and tetraethylammonium perchlorate is added as an electrolyte is used.
  • the button-type electric double layer capacity double layer electrode 3 is shown in Figure 8. However, a sheet of activated carbon particles or activated carbon fibers is used for the activated carbon layer 30, that is, the polarized electrode 30.
  • the activated carbon layer 30 is prepared in the form of a paste using activated carbon powder, a solvent, and a suitable binder, and contains activated carbon particles by forming a thin film from the paste and drying and solidifying the thin film. It is a sheet.
  • the activated carbon fiber sheet for example, a fiber activated in the carbonization process of a phenolic resin fiber or the like is used as the activated carbon fiber.
  • the fabric is woven from activated carbon fibers into sheets.
  • the double-layer electrode 3 is assembled by punching and forming the above-mentioned activated carbon particle sheet or activated carbon fiber sheet into a sheet piece having a desired shape, and joining the sheet to the carbon-containing side of the valve metal material sheet. Normally, the joining is made with an organic adhesive 9 having conductivity.
  • the conductive adhesive firmly bonds both the sheet such as the activated carbon fiber and the valve metal material sheet. Further, the adhesive 9 electrically couples the carbon particles on the valve metal material side and some of the fibers or particles on the activated carbon side. The carbon particles 2 on the valve metal material side ensure the conductivity of the double-layer electrode 3 via the adhesive layer 9 and reduce the internal resistance as a capacity as a power supply.
  • the present invention also includes a non-aqueous electrolytic capacity using a sheet of a valve metal material for a cathode.
  • Electrolytic capacity uses a valve metal sheet with a very thin insulating high dielectric layer on the surface as the anode, and a valve metal sheet with carbon particles on the surface as the cathode. Both the P-electrode and cathode sheets are wound or accumulated face-to-face, housed in a container, and immersed in the electrolyte in the container.
  • the electrolytic solution of this electrolytic capacity is adjusted, for example, by adding an appropriate inorganic or organic salt to an ethylene glycol-based solvent. Even if a small amount of water is present in the electrolytic solution, the valve metal material By simply oxidizing the metallic surface of the carbon particles, the carbon particles can be brought into contact with the electrolyte to ensure conduction. Therefore, the possibility that the capacity of the electrolytic capacity decreases or the internal resistance increases even after long-term use is extremely low.
  • valve metal a high-purity aluminum foil with a thickness of 20 / m and a fore-grade of 9 was used.
  • the electrode metal material is acetylene black with an average particle size of 2 ⁇ m uniformly dispersed on the surface of the metal foil in an amount of 50% by weight per unit area of the surface, based on the weight of the metal foil. It was manufactured by applying a linear pressure of 100 kg / cm in the direction perpendicular to the foil surface, and as a result, a carbon-embedded metal foil having a large number of carbon particles injected into the aluminum foil surface was obtained.
  • acetylene black having an average particle size of 2 / m is uniformly dispersed on the surface of a high-purity aluminum foil with a thickness of 20 m and a fore-class of 9 by an amount of 50% in a weight ratio.
  • a linear pressure of 100 kgZcm in the vertical direction of the foil surface with a rolling roller a large number of carbon particles were pressed into the aluminum foil surface.
  • the metal foil embedded in the carbon fiber was electrolytically etched in a nitric acid-based etchant, exposing the metal foil on the surface.
  • Valve metal material likewise, a 20 m thick, fore-dispersed phenolic resin-based activated carbon with a particle size of 10 / m in a weight ratio of 2 ⁇ % on the surface of a ninth-grade high-purity aluminum-etched foil. Then, a large number of carbon particles were pressed into the aluminum foil surface by applying a pressure of 1 0 kg / cm in the direction perpendicular to the foil surface by a rolling roller. Thereafter, the carbon-embedded metal foil was subjected to a blast treatment to expose the carbon particles to the surface.
  • the carbon-embedded metal foils for the electrodes of Examples 1-3 were provided for assembling electric double layer capacitors.
  • An activated carbon-containing paste was applied to the carbon-embedded metal foil to form a double-layer electrode.
  • the paste consists of phenolic resin-based activated carbon powder with a particle size of 5 ⁇ m, and ammonium salt of carboxymethylcellulose.
  • an aluminum lead 6 was attached to the double-layered electrode, and the two double-layered electrodes were arranged so as to face each other via the separator 5, and then wound to obtain a coil.
  • the coil was immersed in an electrolyte obtained by adding 0.5 mol of tetraethylammonium perchlorate to propylene carbonate, and the electrolyte was evacuated so that the electrolyte was separated from the double-layer electrode 3 and the separator. Impregnated. After that, it was inserted into aluminum case 7 and sealed with packing to obtain an electric double layer capacity.
  • the valve metal material was formed by injecting carbon particles into the surface in the same manner as in Example 1.
  • the valve metal material was electrolytically etched in a nitric acid-based etchant to expose the carbon particles on the surface, and then oxidized in air at 400 ° C for 2 minutes.
  • An active carbon layer was formed on the surface of the valve metal material in the same manner as in Example 1 to form a double-layer electrode, and an electric double-layer capacity was obtained.
  • valve metal material was blasted from a 20 / m-thick aluminum foil to which phenol resin-based activated carbon with a particle size of 10 ⁇ m was uniformly added to expose the carbon on the surface.
  • a paste was applied to the foil of the valve metal material to form a double layer electrode.
  • the paste is made from a phenolic resin-based activated carbon powder having a particle size of 5 zm, a mixed powder obtained by mixing ammonium salt of carboxymethyl cellulose and acetylene black in a weight ratio of 10: 1.2: 2. It was prepared by adding 3 times the amount of methanol and 5 times the amount of water by weight and kneading. The electrode metal material foil was dipped in this paste for 15 seconds to form a paste film on the metal foil 1.
  • valve metal material is made of a 20- ⁇ m-thick aluminum foil to which a phenolic resin-based activated carbon having a particle size of 10 m is uniformly applied, and is subjected to a plast treatment to form a surface. The carbon has been exposed. Further, the valve metal material was oxidized in the atmosphere at 400 ° C. for 2 minutes.
  • a paste was applied to the resulting foil of carbon-containing valve metal material to form a double layer electrode.
  • the paste is made from a mixed powder obtained by mixing phenolic resin-based activated carbon fiber, carboxymethylcellulose ammonium salt and acetylene black in a weight ratio of 10: 1.2: 2, which is cut to 5 m in the long chain direction. It was prepared by adding 3 times by volume of methanol and 5 times by volume of water to the mixed powder and kneading. An electrode metal material foil was dipped in this paste for 15 seconds to form a paste film on the metal foil 1.
  • valve metal material in the same manner as in Example 1, an aluminum foil having a thickness of 20 m to which phenol resin-based activated carbon having a particle size of 10 ⁇ m was uniformly added was used.
  • the mixed powder for the paste was prepared by mixing a phenol tree S-type activated carbon fiber, carboxymethylcellulose ammonium salt and acetylene black cut into 5 ⁇ m in the long chain direction in a weight ratio of 10: 1.2: 2. A mixture was used. To this mixed powder, a three-fold amount of methanol and a five-fold amount of water are added by weight to prepare a slurry-like mixed solution. Then, the current collector 1 is immersed in the mixed solution for 15 seconds to form a polarizable electrode 3 on the current collector 1. Then, it is dried in air at 180 ° C for 1 hour, and cut into two pieces of 25 mm x 400 mm to obtain one set of electrode bodies. An electric double layer capacity was obtained in the same manner as in the above example.
  • the foil of the electrode metal material used was a high purity aluminum foil with a thickness of 20 / m and a fore ninth grade without containing carbon particles.
  • This valve metal material was immersed in an aqueous solution containing 1.0N hydrochloric acid, 6.0N sulfuric acid, and 4.ON phosphoric acid, and then etched by applying a direct current with an aluminum foil as a positive electrode. In the same way as the above, the electric double layer capacity was set.
  • AC and AESR in Table 1 show the rates of change of C and ESR after 3000 hours under the above conditions for the initial C and ESR, respectively.
  • the electric double layer capacity using the carbon-containing valve metal material of the example has a larger capacitance and a smaller ESR than that of the comparative example. This is achieved by using an electrode foil to which a force is applied. This is because carbon is exposed on the surface, and conduction can be maintained at the interface between the electrode foil and the polarizable electrode. Furthermore, from this table, it is found that the surface of the carbon-containing valve metal material is roughened by etching or blasting, and in particular, it is oxidized and passivated to obtain the capacitance and ESR. Is found to have a higher temporal stability.
  • the electrode metal material of the present invention is used for an electrode structure of a capacitor that comes into contact with a non-aqueous electrolyte.
  • the electrode metal material is used. Electrical connection with a carbon electrode member such as activated carbon to which the material is joined or an electrolytic solution is secured, and a stable electrode structure can be provided. Even if this electrode metal material is used in the presence of water in the electrolyte, the electrode function does not deteriorate.
  • the electrode metal material can be solidified in the surface so that the carbon particles are exposed on the surface of the valve metal material, and together with the electrical connection, the adhesion to the electrode member is enhanced. be able to.
  • the electrode metal material of the present invention can be used as a double-layer electrode of an electric double-layer capacity by forming an activated carbon layer thereon, and can exhibit a low internal resistance and a large capacitance.
  • this electrode metal material is used as a cathode of an electrolytic capacitor in contact with a non-aqueous electrolytic solution, and can form a cathode having stable conductivity for a long period of time. With a low internal resistance of the electrolytic capacitor, In addition, a large capacitance can be exhibited.
  • the electrode metal material of the present invention can be produced in the fields of metal industry and electronic component materials, and can be used as an electrode material for electric double layer capacity and electrolytic capacity. Furthermore, the capacity of the present invention can be widely manufactured and provided as electronic components in the field of electronic component materials, and can be used in a wide range of various electronic devices.

Description

明 細 書 電極金属材料、 これを利用したキャパシ夕及びそれらの製造方法 技術分野
この発明は、 電池やキャパシ夕など、 電解液と接触的に使用される電気部品用 の電極金属材料、 特にこれを利用したキャパシ夕、 及びこれらの製造方法に関す 。
背景技術
電解液と接触して使用される電気部品においては、 例えば、 現在、 電気二重層 キャパシ夕ゃ電解コンデンサがある。 電気二重層キャパシ夕は、 3 V程度までの 充電が可能な大容量キャパシ夕として、 マイクロコンピュー夕、 メモリ素子、 夕 イマ一などに使用されているバックアツプ用電源としての利用がある。
電気二重層キャパシ夕は、 一般には、 一対の分極性電極、 ないし二重層電極、 が絶縁性セパレー夕を介して対面されて配置され、 電極間には電解液が含浸され ている。 電極は、 支持体と集電体を兼ねた弁金属の電極金属材料の表面に活性炭 層を形成することによって構成されている。
電気二重層キャパシ夕には、 プロピレンカーボネートなどの有機溶媒にテトラ ェチルアンモニゥム塩などの電解質を添カ卩した有機溶液系の電解液を用いたもの がある。従来の有機溶液系の電解液を利用した電気二重層キャパシ夕の例につい ては、 容器内に一対の電気二重層電極が捲回されて容器に収容される型と、 一対 の電気二重層電極が積層される型とがあり、 何れも米国特許 U S P 5 1 5 0 2 8 3号に開示されている。
捲回型においては、 図 7において、 電極金属材料 1には、 厚さ 2 0〜5 0 /m のエッチングされたアルミニウム箔が用いられ、 また、 電気二重層電極 3につい ては、 活性炭粉末に所望の結合剤及び導電剤を混合した混合粉末からペース卜が 得られ、 ペーストから上記金属箔上に塗膜が成形されて、 活性炭を主成分とした 活性炭素層 3 0 (即ち、 分極性電極) が用いられる。
一対の電気二重層電極 3、 3には、 電極金属材料 1にはそれぞれリード 6が取 り付けられ、 これらの電極 3、 3はセパレ一夕 5を介して対面するように捲回さ れる。 電気二重層電極は、 電解液の中で真空引きにより電解液を活性炭素層 3 0 とセパレ一夕 5とに含浸させ、 アルミニウムケース 7 0に挿入し、 パヅキン 8を 用いて開口部 7がシールされている。 この電気二重層キャパシ夕は、 電解液には、 例えば、 有機溶媒としてプロピレンカーボネートと、 また、 電解質には、 テトラ ェチルアンモニゥム塩とが利用されてきた。
さらに、 ボタン型の電気二重層キャパシ夕は、 図 9及び図 1 0に概要を示すが、 弁金属材料のディスク状シート 1には、 活性炭素層 3 0が接合されて、 一対の二 重層電極 3が形成され、 絶縁性のセパレ一夕 5を介して対面するように配置され、 2つ合わせの金属容器内に収容される。 2つの二重層電極は、 それぞれの弁金属 材料シートが、 金属容器の下底部 6 0と上蓋部 6 1との内面側に接合され、 下底 部と上蓋部は、 その周縁部で、 絶縁性のリングパヅキン 6 9により水密的に互い に接合され、 容器内は、 非水性の電解液が、 二重層電極及び活性炭素層に充足す るように充填されている。 非水性の電解液は、 例えば、 上記と同様に、 プロピレ ンカーボネートにテトラエチルアンモニゥムパ一クロレイ トを添加した溶液が利 用されている。
非水性の電解液を使用するキャパシ夕には、 電解キャパシ夕が知られている。 陽極は、 弁金属の箔の化成処理により誘電体皮膜が形成され、 陰極側は、 弁金属 の箔がそのまま使用されて、 通常、 両電極が対面状態で、 コイル状に捲回され、 電解液の共存下で、 容器中に密閉されている。
従来の電気二重層キャパシ夕では、 分極性電極を膜形成する弁金属のシートな いし箔には、 取り扱い中に、 電極構造を構成する弁金属材料固有の自然酸化被膜 が存在するため、 これを利用して電極構造を構成すると、 図 6に模式的に示すが、 薄い絶縁性の酸化皮膜 4が弁金属材料であるアルミニウム箔 1と分極性電極 3と の界面に形成されていることが多かった。
また、 上記の非水系電解液は、 わずかであるが、 水分と酸素を含むもので、 キ ャパシ夕の使用中に、 電極構造を構成する弁金属材料が電解液中の水分と反応し て、 金属の表面が酸化されていた。 このため、 この種の金属を用いた電気二重層 キャパシ夕は、 長期に使用すると、 次第に等価直列抵抗 (E S R ) 、 即ち、 電源 の内部抵抗が大きくなり、 また、 静電容量も小さくなることがあった。
このような電極の金属部の酸化による問題は、 上記のボタン型の電気二重層キ ャパシ夕においても同様に生じていた。
さらに、 非水系電解液を使用する電解キャパシ夕は、 陽極にはアルミニウムな どの弁金属上に陽極酸化により形成された誘電体絶縁層を備え、 電解液と直接接 触する陰極にもアルミニウムなどの弁金属が使用されるが、 この場合には、 陰極 である金属の表面に、 電解液中の水分に起因する酸ィ匕により酸ィ匕皮膜を生じ、 こ れによるキャパシ夕の内部抵抗の上昇という同様の問題を生じていた。 発明の開示
本発明の目的は、 以上の問題に鑑み、 キャパシ夕内で非水系電解液と接触状態 で使用される電極を構成し得て、 且つ、 キャパシ夕の内部抵抗を小さくし得る弁 金属材料を提供することを目的とする。
本発明の別の目的は、 非水系電解液と接触状態で使用される電極を構成して、 上記のようなキャパシ夕の内部抵抗を小さくし得る弁金属材料の製造方法を提供 するものである。
本発明の別の目的は、 非水系電解液と接触状態で使用される電極を構成する金 属材料に関連した抵抗変化を抑制して、 内部抵抗を小さくし得るキャパシ夕を提 供するものである。
本発明の更なる目的は、 非水系電解液と接触状態で使用される電極を構成する 電極金属材料に関連した抵抗変化を抑制して、 内部抵抗を小さくし得るキャパシ 夕を製造する方法を提供するものである。
本発明の電極金属材料は、 表面にカーボン粒子を含有した弁金属材料から形成 され、 電極を構成する。 カーボン含有金属材料のカーボン粒子が、 電極金属材料 とこれに接触すべき導電体 (電解液も含む) との電気的接続を確保する。
力一ボン含有金属材料は、 詳しくは、 弁金属材料と、 弁金属材料の表面内に固 定され且つ表面に露出する多数のカーボン粒と、 から成る。 本発明は、 特に、 力 一ボン粒を弁金属材料の表面上に露出するように、 わずかに、 突出させ、 接触す ベき導電体との導電性と接着性を高める。 本発明の電極金属材料は、 非水系電解液と接触的に使用される電極構造に使用 される。 このような力一ボン含有弁金属材料は、 それ自体が、 電解液に接触する 電極であってもよいし、 また、 カーボン含有弁金属材料の表面上に皮膜されて形 成された活性炭素層、 即ち、 分極性電極を有してもよい。 前者は、 電解キャパシ 夕の陰極に対応して、 後者は電気二重層キャパシ夕の二重層電極に相当する。 力一ボン含有金属材料は、 電解キャパシ夕内では、 表面内に露出するカーボン 粒子が、 電解液に直接接触して、 金属材料と電解液との導電性を確保する。 力一 ボン含有弁金属材料は、 電気二重層キャパシ夕内では、 その表面内に露出する力 一ボン粒子が、 活性炭素層に直接接触することを可能にして、 金属材料と活性炭 素層との導電性を確保する。 何れの場合も、 カーボン含有弁金属材料は、 電解液 に接触して、 その金属性表面が、 電解液中の含有水分などにより酸化されても、 上記の導電性に変化がほとんど生じない。
詳しくは、 本発明の弁金属材料は、 該多数の力一ボン粒が弁金属材料の表面上 に突出するように表面内に固結されたものが採用される。 このために、 弁金属材 料の表面が、 カーボン粒子が突出する程度に削除されたものが好ましい。 これに より、 弁金属材料の表面上の凹凸形状が、 活性炭素層との導電性を確保し、 同時 に、 活性炭素層との接着力を強化する。
更に、 詳しくは、 弁金属材料の該金属表面は不動態皮膜により被覆されて、 こ れにより、 弁金属材料の金属性表面は導電性を失うが、 安定して電解液と接触に よる酸化を防止し、 且つ、 炭素粒子による安定した導電性を長期にわたり確保す ることができる。
本発明の弁金属材料は、 シートに成形され得る。 ここに、 シートの語は、 プレ —卜、 シート、 フィルム及び箔を含むものとする。 弁金属材料は、 所望形状の薄 肉の他の成形品も利用される。
シートその他の成形品は、 その少なくとも片面にカーボン粒子を含有する。 成 形品の両面にカーボン粒子を含有してもよい。
本発明の電極用の弁金属材料は、 金属表面に多数のカーボン粒子を圧入するこ とにより達成される。 力一ボン粒子の圧入には、 金型によるプレス又はローラに よるローリングが採用される。 本発明の電極用の弁金属材料の製造方法おいては、 弁金属の粉末原料をカーボンと混合状態で、 半溶解する過程を設け、 加圧して緻 密な金属塊とする。 金属塊には、 内部に分散されたカーボン粒子を含むので、 こ れを鍛造ないし圧延して所望形状の成形品に成形され、 後に、 成形品の表面に力 一ボン粒子が露出させられる。 図面の簡単な説明
本発明を以下の図面を参照して使用際に述べる。
図 1は、 本発明によるカーボン粒子を弁金属シート表面に固着させたカーボン 含有弁金属材料の一例を示す模式的断面図を示す。
図 2は、 本発明によるカーボン含有弁金属材料の他の例を示す模式的断面図を 示す。
図 3は、 本発明による力一ボン含有弁金属材料の他の例を示す模式的断面図を 示す。
図 4は、 本発明により、 弁金属シートの両面にカーボン粒子を固着させたカー ボン含有弁金属材料の例を示す模式的断面図を示す。
図 5は、 本発明によるカーボン含有弁金属材料を利用した電気二重層キャパシ 夕に使用される二重層電極の模式的な部分断面図を示す。
図 6は、 従来の電気二重層キャパシ夕に使用された二重層電極の模式的な部分 断面図を示す。
図 7は、 捲回型電気二重層キャパシ夕の模式的な部分切欠き斜視図を示す。 図 8は、 本発明によるカーボン含有弁金属材料を利用したボタン型電気二重層 キャパシ夕に使用される二重層電極の模式的な部分断面図を示す。
図 9は、 ボタン型捲回型電気二重層キャパシ夕の模式的な断面図を示す。 図 1 0は、 ボタン型捲回型電気二重層キャパシ夕の模式的な部分切欠き斜視 図を示す。 発明を実施するための最良の形態
本発明の電極用の弁金属材料は、 上述のように、 弁金属材料の表面上にカーボ ン粒子を含有させたものであるが、 弁金属には、 表面の不動態を形成する金属か ら選ばれ、 例えば、 タンタル、 アルミニウム、 チタン、 ニオブ、 ジルコニウム、 ビスマス、 ケィ素、 ハフニウムなどの金属が利用できる。 また、 これらの元素を 含んで弁作用を生じる合金、 例えば、 ホウ素とすずとを含むチタン系合金、 クロ ムとバナジウムとを含むチタン系合金、 パラジウムとアンチモンとを含むチタン 系合金、 及び、 チタンを含むアルミニウム系合金の中から選ばれる。 最も好まし いのは、 アルミニウム、 特に、 高純度アルミニウムである。
電極金属材料は、 所望厚みの成形体、 例えば、 シートに成形されている。 シ一 トの厚みは、 キャパシ夕の種類により、 また電極の種類に依存するが、 1 0 /m 〜 5 mmの範囲が採用される。 一般に捲回型の電気二重層キャパシ夕と電解キヤ パシ夕には、 可撓性と捲回数の確保のために厚み 5 0〜5 0 0〃mの金属箔が好 ましく利用される。 他方、 ボタン型など、 電気二重層キャパシ夕においては、 弁 金属材料は、 それが容器の壁部、 底部などの一部を兼ねるときは、 これらの強度 を確保するために、 厚みを大きくして、 例えば、 0 . 5 0〜3 . 0 mm程度の厚 みを有するのが好ましい。
尤も、 強度を確保する基材金属プレートに上記の薄い弁金属がクラッドされ、 カーボン粒子がクラッド弁金属に含有されてもよい。 このような基材金属には、 耐食性の大きい金属又は合金、 例えば、 ニヅケル、 ステンレス鋼が利用できる。 他方の力一ボン粒子は、 グラフアイ ト、 カーボンブラック等の導電性カーボン の粒子が利用される。 力一ボンブラックには、 一例として、 アセチレンブラック が利用できる。 さらに、 カーボン粒子は、 活性炭の粒子でもよい。
力一ボン粒は、 0 . 0 1〜5 0〃mの粒径を有することが望ましく、 特に、 0 . 1〜 1 0〃mの範囲がよい。 カーボン粒には、 また、 粒状、 顆粒状、 繊維状のう ちの 1つの形状を有することができる。 繊維状カーボン粒は、 上記の 0 . 1〜5 の粒径とは、 繊維長を言うものとする。
カーボン粒子の含有量は、 弁金属材料の表面全体に占めるカーボンの面積占有 率で、 5〜9 0 %であるのが適当である。 カーボンの占有率が 5 %未満では、 十 分に表面での接触抵抗を下げることは困難かも知れない。 力一ボンの占有率は高 いほうが好ましいが、 力一ボンの占有率 9 0 %を超えると、 圧入法で弁金属表面 に圧入されたカーボン粒子を安定に担持するのが困難になる。 好ましくは、 カー ボンの表面占有率は、 2 0〜7 5 %、 特に、 3 0〜6 0 %の範囲がよい。
前記弁金属材料は、 粗い表面であるのが好ましい。 特に、 金属の表面よりわず かに、 カーボン粒が突出されているのが好ましい。 カーボン粒子の突出は、 酸性 水溶液中で電解ェツチングすることにより得られる。 多数のカーボン粒の露出は、 電気二重層電極構成のための活性炭層の接触頻度を高めることができ、 さらに、 アンカ一効果により活性炭層を強固に定着することができる。
図 1には、 シート状の弁金属材料 1 0の片面にほぼ粒状の力一ボン粒子 2が圧 入された力一ボン圧入金属材料 1を示している。 この図は、 カーボン粒子 2は、 金属材料の表面に一部が埋め込まれ、 残りが突出している例を模式的に示してい る。
図 2は、 同様の図であるが、 カーボン粒子 2は、 潰されて、 全部が金属材料の 表面に埋められている状態を観念的に示している。 カーボン圧入金属材料 1は、 しかしなお、 カーボン粒子の表面が、 金属材料の表面に露出していて、 導電性の 確保に利用できる。 このような状態は、 比較的軟質のカーボン粒子を強く押圧し た場合に生じるであろう。
図 3は、 上記の図 2に示すカーボン圧入金属材料 1を、 電解エッチングにより 金属性表面 1 1を削除して、 結果として、 力一ボン粒子を突出させたことを示し ている。 図 4は、 弁金属材料のシートの両面に圧入したカーボン粒子をエツチン グ処理により突出して形成させたことを示している。
さらに、 粗い表面は、 カーボン含有金属材料の表面全体がブラストされた表面 でもよい。 ブラストは、 弁金属材料の直接の粗面化と、 力一ボン粒子の露出を実 現することができ、 活性炭層を強固に定着し、 接触抵抗を低下させる。
カーボン含有金属材料は、 その金属材料の表面 (例えば、 図 3と図 4の金属性 表面 1 1、 参照) に不動態皮膜が形成されているのが好ましい。 不動態は、 電極 としての使用中に、 電解液中の水分が存在しても、 弁金属材料の表面の酸化ない し腐食を防止し、 カーボン粒子の存在による導電性には影響を与えることなく、 電極の一層の安定化を図ることができる。
不動態は、 そのキャパシ夕の使用電圧に耐える厚みがあればよく、 例えば、 定 格 2 . 5〜3 . 5 Vの電気二重層キャパシ夕では、 4〜5 Vの耐圧に対応する皮 膜厚みでよい。 この場合、 弁金属材料は、 6 O A以上の不動態厚みが備えられる c 多数のカーボン粒を少なくとも表面内に含む弁金属材料からなる電極金属材料 を製造するためには、 いくつかの方法が採用される。
第 1の方法は、 弁金属粉末とカーボン粉末との混合物を容器中で加熱加圧する ことによって塊状の弁金属塊に力一ボン粉末を含有させるものである。 この方法 は、 さらに、 この過程で製造された炭素含有弁金属塊を、 所望形状の弁金属材料 に塑性加工する過程とを含む。 塑性加工の過程は、 熱間又は冷間での鍛造や圧延 が利用されることでき、 所望の厚みのシートその他の成形品を得る。
第 2の方法は、 弁金属材料の表面上に分散させたカーボン粉末に加圧すること により、 弁金属表面中に力一ボン粒を圧入させる力一ボン粉末含有過程を含む。 上記カーボン粒含有過程は、 弁金属材料の表面上にカーボン粒を圧入する金型 によるプレス法によることもできる。 金型は、 硬質な平板などでもよい。
また、 上記カーボン粒含有過程が、 弁金属材料の表面上に力一ボン粒を圧入す るローラによる転動法によることもできる。 両方法のいずれでも、 カーボン粒子 は、 弁金属材料の表面上に圧入されて、 固定されることができる。
この第 2の方法において、 所望厚みの弁金属材料のシートの表面にカーボン粒 子の圧入が成される。 上記カーボン粒含有過程は、 金属材料表面上に垂直方向に
0 . 5〜: L 0 0 0 O k g/ c m 2の面圧を加えることによって、 実施できる。 こ の圧力は、 弁金属の表面での硬さ、 カーボン粒子の硬さに依存して決められる。 また、 このカーボン粒含有過程過程が、 弁金属のブランクから所望形状の成形 品にプレス又は段造の成形加工する過程を兼ねてもよい。 即ち、 この場合は、 上 記のカーボン粒含有過程が、 弁金属の塊状材料の熱間又は冷間加工の工程で行わ れる。 この過程は、 熱間又は冷間で、 鍛造又は圧延して、 弁金属材料を圧下する 際に、 同時に、 カーボン粒を鍛造面又は圧延面に圧入させる。
本発明の製造方法は、 カーボン粒圧入過程の後に、 さらに、 前記弁金属表面を 粗面化されるのが好ましい。 そのために、 望ましくは、 製造方法は、 カーボン粒 含有過程の後に、 酸性水溶液中で電解エッチングすることにより該表面にカーボ ン粒を露出させる過程を含む。 この処理により、 表面上に露出していた力一ボン 粒子は、 表面から突出して且つ、 粗面化し、 さらに、 表面下にわずかに埋没して いた炭素粒子を表面上に露出させることができる。 多数のカーボン粒の露出は、 電気二重層電極構成のための活性炭層の接触頻度を高めかつ、 アンカー効果によ り活性炭層を強固に定着することができる。
製造方法が、 力一ボン粒含有過程の後に、 更に、 ブラスト処理を行うことによ り表面にカーボン粒子を露出させる過程を含む。 この方法においても、 プラスト による直接の粗面化と、 カーボン粒子の露出を実現することができる。
製造方法は、 上記の力一ボン粒露出過程の後に、 金属材料の金属性表面に不動 態皮膜を形成する過程を含むのが好ましい。 皮膜の形成は、 力一ボン含有金属材 料を酸化性雰囲気で、 例えば、 空気中で加熱して酸化させる方法が利用される。 他の方法は、 カーボン含有金属材料を陽極酸化させる方法である。 不動態厚みは、 例えば、 定格 2 . 5〜3 . 5 Vの電気二重層キャパシ夕では、 4〜5 Vの耐圧に 対応する皮膜厚みでよい。 この場合、 弁金属材料は、 6 O A以上の不動態厚みを 備えられる。
本発明のキャパシ夕には、 電気二重層キャパシ夕と電解キャパシ夕を含むが、 何れも、 非水系の電解液を使用し、 弁金属材料が電解液に接触して使用されるキ ャパシ夕である。
電気二重層キャパシ夕においては、 捲回型のキャパシ夕が、 図 7に概要で示さ れている。 捲回型のキャパシ夕には、 可撓性の電気二重層電極が使用され、 この 電極は、 弁金属として薄い弁金属箔とこの箔の両面に接着された活性炭素層とか ら構成される。 箔の表面には、 多数の炭素粒子が表面に露出するように固着され、 活性炭素層と接触している。
一対の電気二重層電極は、 セパレ一夕を間に挟んで、 捲回されて、 非水系の電 解液により含浸された状態で、 容器内に密封されて、 電気二重層型のキャパシ夕 を構成する。 電解液には、 水を含まない有機溶剤と、 このような溶剤に溶けて解 離し得る塩が利用される。 例えば、 プロピレンカーボネートを溶媒にして、 電解 質としてテトラェチルアンモニゥムパークロレイ トを添加した溶液が挙げられる。 活性炭素層は、 活性炭素粉末をペースト状にして弁金属箔上に適用して薄膜に 形成されている。 このためのペーストは、 例えば、 活性炭素粉末と、 必要により 導電性カーボン粉末と、 適当なバインダー、 例えば、 セルロース、 フッ素系樹脂 などの混合物を水その他の溶剤と共に混練して得られる。 塗着されたペースト膜 は、 その弁金属箔とともに、 適当に乾燥され、 加熱されて、 バインダーを硬化さ せて、 定着されて、 電気二重層電極を得る。
一対の電気二重層電極は、 それぞれリードが接続され、 更に、 セパレー夕を電 極間に挟んで、 捲回されて、 コイルを得る。 セパレ一夕には、 例えば、 ガラス繊 維の織布ないし不織布など、 絶縁性で且つ通水性の薄い適当な材料が利用される。 電気二重層電極とセパレ一夕とから成るコイルには、 電解液が含浸され、 有底 の金属容器に装入され、 開口部がシ一ル材によりシールされる。 リードは、 シ一 ル材を貫通して外部に導出される。
上記の電極構造により、 図 5に示すように、 電気二重層キャパシ夕の電極金属 材料 1の箔状の金属材料 1 0と分極性電極 3との界面に存在する薄い絶縁皮膜 4 が存在しても、 電極箔 1 0から露出する力一ボン粒子 2の表面には酸ィ匕被膜がで きないので、 力ーボン粒子によりところどころでカーボン粒子 2による電気的導 通を保つことができる。 その結果、 電気二重層キャパシ夕の等価直列抵抗 (E S R ) が小さくなり、 また、 導通箇所が増加することにより、 静電容量も大きくな る。
ボタン型の電気二重層キャパシ夕は、 図 9及び図 1 0に示されるが、 本発明の 弁金属材料のディスク状シート 1 0には、 活性炭素層 3 0が接着層 9を介して接 合されて、 一対の二重層電極 3が形成されている。 2つの二重層電極 3は、 絶縁 性のセパレ一夕 5を介して対面するように配置され、 2つ合わせの金属容器 6 0、 6 1の内部に収容されている。
2つの二重層電極 3、 3は、 それぞれの弁金属材料のシート 1 0 1 0が、 金属 容器の下底部 6 0と上蓋部 6 1との内面側に接合され、 下底部と上蓋部は、 その 周縁部で、 絶縁性のリングパッキン 6 9により水密的に互いに接合され、 容器内 は、 非水性の電解液が、 二重層電極及び活性炭素層に充足するように充填されて いる。 非水性の電解液は、 例えば、 上記と同様に、 プロピレンカーボネートを溶 媒にして、 電解質としてテトラエチルアンモニゥムパ一クロレイ 卜が添加された 溶液が利用される。
このボタン型の電気二重層キャパシ夕の二重層電極 3が、 図 8に示されている が、 活性炭素層 3 0、 即ち、 分極性電極 3 0には、 活性炭素粒子や活性炭素繊維 のシートが利用される。
例えば、 活性炭素層 3 0は、 活性炭素粉末と溶媒と適当なバインダによりべ一 スト状に調製され、 このペース卜から薄膜を形成してこれを乾燥固化することに より、 活性炭素粒子を含むシートとされる。
活性炭素繊維のシ一卜については、 活性炭素繊維には、 例えば、 フエノール系 樹脂繊維の炭化過程で活性化された繊維などが利用される。 活性炭素繊維から布 が織られて、 シートにされる。
二重層電極 3は、 上記の活性炭粒シート又は、 活性炭素繊維シートが、 所望形 状のシート片に打ち抜き成形され、 弁金属材料シートのカーボン含有側に接合さ れて、 組み立てられる。 通常は、 接合は、 導電性を有する有機接着剤 9でなされ る。
導電性接着剤は、 化学的に活性炭素繊維などのシ一トと弁金属材料シ一トとの 両者を強固に接合する。 さらに、 この接着剤 9は、 弁金属材料側の炭素粒子と活 性炭素側の繊維ないし粒子の一部とを電気的に結合する。 弁金属材料側の炭素粒 子 2は、 接着剤層 9を介して、 二重層電極 3での導電性を確保して、 電源として のキャパシ夕としての内部抵抗を低下させる。
本発明は、 また、 陰極に弁金属材料のシートを利用した非水系電解キャパシ夕 が含まれる。 電解キャパシ夕は、 陽極として、 表面に絶縁性の非常に薄い高誘電 体層を備えた弁金属シートを利用し、 陰極として、 表面に力一ボン粒子を含有し た弁金属シートを利用する。 P易極と陰極の両シ一トは、 対面しながら捲回または 集積されて、 容器中に収容され、 容器内の電解液に浸潰されている。
この電解キャパシ夕の電解液が、 例えば、 エチレングリコ一ル系の溶剤に適当 な無機塩ないし有機塩を加えて調整されるが、 電解液中に少量の水が存在しても、 弁金属材料の金属性表面が酸化されるだけで、 炭素粒子は電解液と接触して導通 を確保することができる。 従って、 長期使用によっても電解キャパシ夕の容量が 低下したり内部抵抗が増加する可能性は極めて少なくなる。 実施例.
[実施例 1 ]
弁金属として、 厚さ 20 /m、 フォア— 9級の高純度アルミ箔が使用された。 電極金属材料は、 金属箔の表面に平均粒径 2〃mのアセチレンブラックを表面の 単位面積当たり、 金属箔に対する重量比で、 50%の量で、 均一に分散され、 次 いで、 圧延ローラによって箔表面鉛直の方向に 100kg/ cmの線圧力を加え ることによって製造され、 これにより、 アルミ箔表面に多数のカーボン粒子が圧 入されたカーボン埋込み金属箔が得られた。
[実施例 2]
電極金属材料は、 同様に、 厚さ 20〃m、 フォア一 9級の高純度アルミ箔の表 面に平均粒径 2 /mのアセチレンブラックを同様に重量比で 50 %量均一に分散 させ、 圧延ローラによって箔表面鉛直の方向に 100 kgZcmの線圧力を加え ることにより、 製造され、 アルミ箔表面に多数のカーボン粒子が圧入された。 そ の後、 この力一ボン埋込み金属箔は、 硝酸系のエッチング液中で電解エッチング されて、 表面に力一ボンを露出させた。
[実施例 3]
弁金属材料、 同様に、 厚さ 20 m、 フォア— 9級の高純度アルミニウムのェ ツチド箔の表面に粒径 10 /mのフエノール樹脂系活性炭を重量比で 2◦%の量 で均一に分散され、 圧延ローラによって箔表面鉛直の方向に 1◦ 0 kg/cmの 圧力を加えることによりアルミ箔表面に多数のカーボン粒子を圧入させた。 その 後、 このカーボン埋め込み金属箔は、 ブラスト処理を行い表面に力一ボン粒子を 露出させた。
これらの実施例 1〜3の電極用のカーボン埋め込み金属箔は、 電気二重層キヤ パシ夕の組み立てに提供された。 二重層電極を形成するために、 カーボン埋め込 み金属箔には、 活性炭素含有ペース卜が塗着された。 ペーストは、 粒径 5〃mの フエノール樹脂系の活性炭粉末、 カルボキシメチルセルロースのアンモニゥム塩
(C6H905CH2C02NH4) n 及びアセチレンブラックを 10 : 1. 2 : 2の重量比に混合した混合粉末から、 この混合粉末に対して重量比で 3倍量 のメタノールと 5倍量の水とを加えて混練することによって、 調製された c 金属材料の箔がこのペース卜に 15秒間浸されて、 金属箔 1上にペース卜の皮膜 を形成した。 その後、 空気中 100°Cで 1時間乾燥されて、 活性炭素層 (分極性 電極) が形成されて、 次いで、 25mmx 400mmの寸法に 2枚に切断して 二重層電極を 1組得た。
続いて、 二重層電極にアルミニウムリード 6が取り付けられ、 2枚の二重層電 極が、 セパレー夕 5を介して対面するように配置し、 次いで、 捲回されて、 コィ ルを得た。 コイルは、 プロピレンカーボネートにテトラェチルアンモニゥムパ一 クロレイ トを 0. 5 mo 1/1添加した電解液に浸潰され、 真空引きすることに より、 電解液が二重層電極 3及びセパレー夕 5に含浸された。 その後、 アルミ二 ゥムケース 7に挿入し、 パヅキンを用いて封口し、 電気二重層キャパシ夕が得ら れた。
[実施例 4]
弁金属材料は、 実施例 1と同様にして表面に炭素粒子を圧入して形成された。 弁金属材料は、 硝酸系のエッチング液中で電解的にエッチングされて、 表面に力 —ボン粒子が露出され、 次いで、 大気中で 400°C、 2分間の酸化処理された。 弁金属材料は、 実施例 1と同様にして、 活性炭素層がその表面に形成されて、 二重層電極とし、 電気二重層キャパシ夕を得た。
[実施例 5]
弁金属材料は、 実施例 3と同様にして、 粒径 10〃mのフエノール樹脂系活性 炭を均一に加えた厚さ 20/ mのアルミ箔を、 ブラスト処理を行い表面にカーボ ンを露出させた。
二重層電極を形成するために、 弁金属材料の箔にぺ一ストが塗着された。 ぺー ストは、 粒径 5 zmのフエノール樹脂系の活性炭粉末、 カルボキシメチルセル口 —スのアンモニゥム塩及びアセチレンブラックを 10 : 1. 2 : 2の重量比に混 合した混合粉末から、 この混合粉末に対して重量比で 3倍量のメタノールと 5倍 量の水とを加えて混練することによって、 調製された。 電極金属材料箔がこのべ —ストに 15秒間浸されて、 金属箔 1上にペース卜の皮膜を形成した。 その後、 空気中 180°Cで 1時間乾燥されて、 活性炭素層 (分極性電極) が形成されて、 次いで、 25mmx 400mmの寸法に 2枚に切断して二重層電極を 1組得た。 二重層電極は、 続いて、 上記実施例と同様にして、 電気二重層キャパシ夕の組み 立てに使用された。
[実施例 6 ]
弁金属材料は、 実施例 3と同様にして、 粒径 1 0 mのフヱノール樹脂系活性 炭を均一に加えた厚さ 2 0〃mのアルミニウム箔が利用して、 プラスト処理を行 い表面にカーボンが露出された。 さらに、 この弁金属材料は、 大気中で 4 0 0 °C、 2分間の酸化処理された。
二重層電極を形成するために、 得られたカーボン含有弁金属材料の箔にペース 卜が塗着された。 ペーストは、 長鎖方向に 5〃mに切断したフヱノール樹脂系の 活性炭繊維、 カルボキシメチルセルロースのアンモニゥム塩及びアセチレンブラ ックを 1 0 : 1 . 2 : 2の重量比に混合した混合粉末から、 この混合粉末に対し て重量比で 3倍量のメ夕ノールと 5倍量の水とを加えて混練することによって、 調製された。 電極金属材料箔がこのペーストに 1 5秒間浸されて、 金属箔 1上に ペース卜の皮膜を形成した。 その後、 空気中 1 8 0 °Cで 1時間乾燥されて、 活性 炭素層が形成されて、 次いで、 2 5 mm x 4 0 O mmの寸法に 2枚に切断して 二重層電極を 1組得た。 続いて、 上記実施例と同様にして、 電気二重層キャパシ 夕を得た。
[実施例 7 ]
弁金属材料は、 実施例 1と同様にして、 粒径 1 0〃mのフエノール樹脂系活性 炭を均一に加えた厚さ 2 0 mのアルミ箔が使用された。
ペース卜のための混合粉末は、 長鎖方向に 5〃mに切断したフエノール樹 S旨系 の活性炭繊維、 カルボキシメチルセルロースのアンモニゥム塩及びアセチレンブ ラックを 1 0 : 1 . 2 : 2の重量比に混合したものが用いられた。 この混合粉末 に対して重量比で 3倍量のメタノールと 5倍量の水とを加えてスラリー状の混合 溶液を調整する。 そして、 集電体 1をこの混合溶液に 1 5秒間浸して、 集電体 1 上に分極性電極 3を製膜する。 その後、 空気中 1 8 0 °Cで 1時間乾燥し、 2 5 m m x 4 0 0 mmに 2枚切断して電極体を 1組得る。 上記実施例と同様にして、 電気二重層キャパシ夕が得られた。
[比較例] 電極金属材料の箔は、 力一ボン粒子を含有しないで、 厚さ 20 /m、 フォア一 9級の高純度アルミニウム箔が使用された。 この弁金属材料は、 塩酸 1. 0N、 硫酸 6. 0N、 およびりん酸を 4. ON添加した水溶液に浸潰された後、 アルミ 箔を正極にして直流を印加してエッチングされ、 実施例 1と同様にして、 電気二 重層キャパシ夕とされた。
これら実施例及び比較例のキャパシ夕が、 2. 5 V定電圧で充電 1時間充電さ れた。 次いで、 キャパシ夕は、 10 OmA定電流で放電され、 静電容量および E SRを測定した。 さらに、 キャパシ夕は、 75°C恒温槽中で 2. 8V定電圧で充 電された状態で、 3000時間保持されたあと、 10 OmA定電流で放電され、 同様にして静電容量 Cと等価直列抵抗 E S Rが測定された。 その結果を表 1に示 した。
Figure imgf000017_0001
表 1中の ACと AESRとは、 初期 Cと E SRに対する上記条件下での 300 0時間後の Cと E SRの変化率をそれぞれ示している。
表 1から明らかなように、 実施例のカーボン含有弁金属材料を用いた電気二重 層キャパシ夕は、 比較例のものより静電容量が大きく、 ESRが小さくなること が理解される。 これは、 力一ボンを加えた電極箔を用いることにより、 電極箔表 面にカーボンが露出し、 電極箔と分極性電極と間の界面に導通を保つことが可能 になるためである。 さらに、 この表からは、 カーボン含有弁金属材料の表面に、 エッチングまたはブラスティング処理を施して粗面ィ匕すこと、 特に、 酸化処理を して不動態化することにより、 静電容量と E S Rの時間的安定性が高くなること が見出される。
本発明の電極金属材料は、 非水系電解液に接触するキャパシ夕の電極構造に使 用されるものであるが、 弁金属材料の表面に多数のカーボン粒を少なくとも表面 内に含むので、 電極金属材料が接合される活性炭素などの炭素電極部材ないしは 電解液との電気的接続が確保され、 安定した電極構造を提供することができる。 この電極金属材料は、 電解液中の水分の存在化で使用されても、 電極機能の劣化 が生じない。
さらに、 電極金属材料は、 該カーボン粒が弁金属材料の表面上に露出するよう に表面内に固結されることができ、 電気的接続と共に、 電極部材との接着の強ィ匕 をもはかることができる。
また、 電極金属材料は、 弁金属材料の該表面は不動態皮膜により被覆されてお れば、 特に、 長期安定的に、 電極部材ゃ電解液に対する大きな導電性が確保でき る。 本発明の電極金属材料は、 活性炭素層が被着形成されて、 電気二重層キャパ シ夕の二重層電極として利用でき、 低内部抵抗で、 且つ大きな静電容量を発現す ることができる。
またこの電極金属材料は、 非水系電解液に接触して、 電解キャパシ夕の陰極と して利用され、 長期にわたって安定した導電性を有する陰極を構成でき、 電解キ ャパシ夕の低内部抵抗で、 且つ大きな静電容量を発現することができる。 産業上の利用の可能性
本発明の電極金属材料は、 金属工業や電子部品材料の分野で製造することがで き、 電気二重層キャパシ夕及び電解キャパシ夕の電極材料として利用することが できる。 さらに、 本発明のキャパシ夕は、 電子部品材料の分野で、 電子部品とし て、 広く製造して提供することができ、 さらに、 各種の電子機器に広い範囲に利 用することができる。

Claims

請 求 の 範 囲
I . 非水系電解液に接触する電極構造に使用される電極金属材料において、 電極金属材料が、 弁金属材料と該弁金属材料の表面内に固定され且つ表面に露 出する多数の力一ボン粒とから成るカーボン含有金属材料であることを特徴とす る電極金属材料。
2 . 該カーボン粒が弁金属材料の表面上に露出するように突出していること を特徴とする請求の範囲 1の電極金属材料
3 . カーボン含有金属材料の金属表面が、 不動態皮膜により被覆されている 請求の範囲 1の電極金属材料。
4 . 電極金属材料に活性炭素層が被着形成されて、 電気二重層キャパシ夕の 二重層電極が構成される請求の範囲 1に記載の電極金属材料。
5 . 電極金属材料が、 非水系電解液に接触する電解キャパシ夕の陰極である 請求の範囲 1に記載の電極金属材料。
6 . 電極金属材料が、 薄肉のシート形状を有する請求の範囲 1ないし 5何れ かに記載の電極金属材料。
7 . 弁金属材料が、 タンタル、 アルミニウム、 チタン、 ニオブ、 ジルコニゥ ム、 ビスマス、 ケィ素、 ハフニウム、 ホウ素とすずとを含むチタン系合金、 クロ ムとバナジウムとを含むチタン系合金、 パラジウムとアンチモンとを含むチタン 系合金、 及び、 チタンを含むアルミニウム系合金の中から選ばれた何れか一種で あることを特徴とする請求の範囲 1ないし 5何れかに記載の電極金属材料。
8 . カーボン粒が、 グラフアイ ト又はカーボンブラック等の導電性カーボン から成ることを特徴とする請求の範囲 1ないし 5何れかに記載の電極金属材料。
9 . 前記力一ボン粒が、 活性炭から成ることを特徴とする請求の範囲 1ない し 5何れかに記載の電極金属材料。
1 0 . 前記力一ボン粒が、 0 . 0 1〜5 O Aimの粒径を有することを特徴と する請求の範囲 1ないし 5何れかに記載の電極金属材料。
I I . 前記カーボン粒が、 粒状、 顆粒状、 繊維状のうちの 1つの形状を有す ることを特徴とする請求の範囲 1ないし 5何れかに記載の電極金属材料。
1 2 . 弁金属材料と該弁金属材料の表面に少なくとも表面内に含み且つ表面 に露出する多数のカーボン粒とから成るカーボン含有金属材料である電極金属材 料を製造する方法であって、
該方法が、 弁金属粉末とカーボン粉末との混合物を容器中で加熱して加圧する ことによって塊状の弁金属材料にカーボン粉末を含有させる過程と、
得られた弁金属塊を所望形状に成形して、 カーボン含有金属材料とする過程と、 を含むことを特徴とする電極金属材料の製造方法。
1 3 . 多数の力一ボン粒を少なくとも表面内に含む弁金属材料からなる力一 ボン含有金属材料である電極金属材料の製造する方法であって、
その方法が、 弁金属材料の表面上に分散させた力一ボン粉末に加圧することに よって、 弁金属材料表面中にカーボン粒を圧入させて、 力一ボン含有金属材料と する力一ボン埋め込み過程を含むことを特徴とする電極金属材料の製造方法。
1 4 . 上記カーボン埋め込み過程が、 金型により力一ボン粒を圧入するプレ ス法を利用する請求の範囲 1 3に記載の電極金属材料の製造方法。
1 5 . 上記カーボン埋め込み過程が、 ローラによりカーボン粒を圧入する転 動法を利用する請求の範囲 1 3に記載の電極金属材料の製造方法。
1 6 . 上記の力一ボン埋め込み過程が、 弁金属材料の成形のための熱間又は 冷間加工の工程で実施されることを特徴とする請求の範囲 1 3ないし 1 5何れか に記載の電極金属材料の製造方法。
1 7 . 方法が、 さらに、 前記力一ボン含有金属材料を粗面化する過程を含む ことを特徴とする請求の範囲 1 2ないし 1 5に記載の電極金属材料の製造方法。
1 8 . 製造方法が、 力一ボン含有金属材料を、 さらに、 酸性水溶液中で電解 エッチングすることにより該表面に力一ボン粒を露出させる過程を含むことを特 徴とする請求の範囲 1 2ないし 1 5に記載の電極金属材料の製造方法。
1 9 . 方法が、 さらに、 カーボン含有金属材料を、 ブラスト処理を行うこと により表面に力一ボン粒を露出させる過程を含むことを特徴とする請求の範囲 1
2ないし 1 5に記載の電極金属材料の製造方法。
2 0 . 方法が、 カーボン粒露出過程の後に、 さらに、 カーボン含有金属材料 の金属性表面に不動態皮膜を形成する過程を含む請求の範囲 1 8に記載の電極金 属材料の製造方法。
2 1 . 弁金属材料が、 タンタル、 アルミニウム、 チタン、 ニオブ、 ジルコ二 ゥム、 ビスマス、 ケィ素、 ハフニウム、 ホウ素とすずとを含むチタン系合金、 ク ロムとバナジウムとを含むチタン系合金、 パラジウムとアンチモンとを含むチタ ン系合金、 及び、 チタンを含むアルミニウム系合金の中から選ばれた何れか一種 であることを特徴とする請求の範囲 1 2ないし 1 5何れかに記載の電極金属材料 の製造方法。
2 2 . カーボン粒が、 グラフアイ ト、 力一ボンブラック等の導電性カーボン から成ることを特徴とする請求の範囲 1 2ないし 1 5何れかに記載の電極金属材 料の製造方法。
2 3 . 前記力一ボン粒が、 活性炭から成ることを特徴とする請求の範囲 1 2 ないし 1 5何れかに記載の金属材料の製造方法。
2 4 . 前記カーボン粒が、 0 . 0 1〜5 0 /mの粒径を有することを特徴と する請求の範囲 1 2ないし 1 5記載の金属材料の製造方法。
2 5 . 前記カーボン粒が、 粒状、 顆粒状、 繊維状のうちの 1つの形状を有す ることを特徴とする請求の範囲 1 2ないし 1 5の電極金属材料の製造方法。
2 6 . 1対の電極とこれらに接触する非水系電解液とから成るキャパシ夕に おいて、
少なくともいずれかの電極が、 電極金属材料を含み、 該電極金属材料が、 弁金 属材料と該弁金属材料の表面内に含まれ且つ表面に露出する多数のカーボン粒子 とから成るカーボン含有金属材料であることを特徴とするキャパシ夕。
2 7 . 上記キャパシ夕が電気二重層キャパシ夕であり、 上記 1対の電極が、 上記のカーボン含有金属材料と当該金属材料の表面上に該カ一ボン粒と接触して 形成された活性炭素層とから成る電気二重層電極であることを特徴とする請求の 範囲 2 6に記載のキャパシ夕。
2 8 . 上記の弁金属材料が可撓性のシートであり、 一対の電気二重層電極が、 セパレ一夕を介装して相対面して捲回され、 且つ、 容器内に密封収容されて、 捲 回型電気二重層キャパシ夕とした請求の範囲 2 7に記載のキャパシ夕。
2 9 . 一対の電気二重層電極の活性炭素層同士がセパレ一夕を介して容器に 収容され、 各弁金属材料が、 互いに絶縁的に接合された容器の対応金属底部に接 続されて、 ボタン型電気二重層キャパシ夕とした請求の範囲 2 7に記載のキャパ シ夕。
3 0 . 上記弁金属材料が、 上記容器の金属底部にクラッドされて一体化され た請求の範囲 2 9に記載のキャパシ夕。
3 1 . 上記のキャパシ夕が電解キャパシ夕であって、 上記の電極金属材料を 陰極とし、 他方の電極金属材料が誘電体絶縁皮膜を備えて陽極とした請求の範囲 2 6に記載のキャパシ夕。
3 2 . 弁金属材料が、 タンタル、 アルミニウム、 チタン、 ニオブ、 ジルコ二 ゥム、 ビスマス、 ケィ素、 ハフニウム、 ホウ素とすずとを含むチタン系合金、 ク ロムとバナジウムとを含むチタン系合金、 パラジウムとアンチモンとを含むチタ ン系合金、 及び、 チタンを含むアルミニウム系合金の中から選ばれた何れか一種 であることを特徴とする請求の範囲 2 6ないし 3 1何れかに記載のキャパシ夕。
3 3 , カーボン粒が、 グラフアイ ト、 力一ボンブラック等の導電性カーボン から成ることを特徴とする請求の範囲 2 6ないし 3 1何れかに記載のキャパシ夕。
3 4 . 前記カーボン粒が、 活性炭から成ることを特徴とする請求の範囲 2 6 ないし 3 1何れかに記載のキャパシ夕。
3 5 . 前記力一ボン粒が、 0 . 0 1〜5 0〃mの粒径を有することを特徴と する請求の範囲 2 6ないし 3 1記載のキャパシ夕。
3 6 . 前記力一ボン粒が、 粒状、 顆粒状、 繊維状のうちの 1つの形状を有す ることを特徴とする請求の範囲 2 6ないし 3 1のキャパシ夕。
3 7 . 弁金属金属材料の金属性表面に不動態皮膜が形成されている請求の範 囲 2 6ないし 3 1に記載のキャパシ夕。
3 8 . 弁金属材料の表面上に形成された活性炭素層から成る一対の電気二重 層電極と、 両電気二重層電極を分離するセパレ一夕と、 電解液とからなる電気二 重層キャパシ夕の製造方法であって、
該方法が、 弁金属材料の表面に多数の力一ボン粒を少なくとも表面内に含み且 つ表面に露出する力一ボン含有金属材料を形成する過程と、
カーボン含有金属材料の表面に活性炭を含むペーストを適用する過程と、 ペースト塗膜を乾燥固化して、 電気二重層電極とする過程とを含むことを特徴 とするキャパシ夕の製造方法。
3 9 . 該方法が、 炭素粒子を含む力一ボン含有金属材料を形成する過程後に、 さらに、 該金属材料に酸水溶液中で電解ェヅチングをして力一ボン粒子を金属材 料の表面上に露出させる過程を含む請求の範囲 3 8に記載のキャパシ夕の製造方 法。
4 0 . 電極金属材料の表面に形成した活性炭素層を有する一対の電気二重層 電極が、 一対の活性炭素層同士をセパレー夕を介して重積して容器に収容され、 各電極金属材料が、 互いに絶縁的に接合された容器の対応金属底部に接続されて 成るボタン型電気二重層キャパシ夕の製造方法であって、
該方法が、 電極金属材料として、 弁金属材料の少なくとも表面内に多数の力一 ボン粒を含み且つ該表面に露出する力一ボン含有金属材料を形成する過程と、 弁金属材料の表面に活性炭素層を適用して、 電気二重層電極とする過程とを含 むことを特徴とするキャパシ夕の製造方法。
4 1 . 上記の方法は、 予め上記弁金属材料が上記容器の金属底部にクラッド されて一体化する過程を含む請求の範囲 4 0に記載の電気二重層キャパシ夕の製 造方法。
4 2 . 表面に誘電体絶縁皮膜を備えた弁金属材料の陽極と、 弁金属材料から 成る陰極とが、 非水系電解液中で、 対面して配置される電解キャパシ夕の製造方 法であって、
該方法が、 弁金属材料の少なくとも表面に多数のカーボン粒を含み且つ該表面 から露出するカーボン含有金属材料を形成する過程を含み、 該カーボン含有金属 材料を陰極用の電極金属材料とすることを特徴とする電解キャパシ夕の製造方法。
4 3 . カーボン含有金属材料を形成する過程が、 弁金属材料の表面上に分散 させた力一ボン粉末に加圧することによって、 弁金属材料表面中にカーボン粒を 圧入させて、 カーボン含有金属材料とするカーボン埋め込み過程を含むことを特 徴とする請求の範囲 3 8、 4 0又は 4 2に記載のキャパシ夕の製造方法。
4 4 . 上記カーボン埋め込み過程が、 金型によりカーボン粒を圧入するプレ ス法を利用する請求の範囲 4 3に記載のキャパシ夕の製造方法。
4 5 . 上記力一ボン埋め込み過程が、 ローラによりカーボン粒を圧入する転 動法を利用する請求の範囲 4 3に記載のキャパシ夕の製造方法。
4 6 . 上記の力一ボン埋め込み過程が、 弁金属材料の成形のための熱間又は 冷間加工の工程で実施されることを特徴とする請求の範囲 4 4又は 4 5に記載の キャパシ夕の製造方法。
4 7 . 方法が、 さらに、 前記力一ボン含有金属材料を粗面化する過程を含む ことを特徴とする請求の範囲 4 3に記載の電極金属材料の製造方法。
4 8 . 方法が、 力一ボン含有金属材料を、 さらに、 酸性水溶液中で電解ェヅ チングすることにより該表面に力一ボン粒を露出させる過程を含むことを特徴と する請求の範囲 4 3に記載の電極金属材料の製造方法。
4 9 . 方法が、 さらに、 カーボン含有金属材料を、 ブラスト処理を行うこと により表面にカーボン粒を露出させる過程を含むことを特徴とする請求の範囲 4 4ないし 4 6の何れかに記載の電極金属材料の製造方法。
5 0 . 方法が、 力一ボン粒露出過程の後に、 さらに、 カーボン含有金属材料 の金属性表面に不動態皮膜を形成する過程を含む請求の範囲 4 8に記載の電極金 属材料の製造方法。
5 1 . 弁金属材料が、 タンタル、 アルミニウム、 チタン、 ニオブ、 ジルコ二 ゥム、 ビスマス、 ケィ素、 ハフニウム、 ホウ素とすずとを含むチタン系合金、 ク ロムとバナジウムとを含むチタン系合金、 パラジウムとアンチモンとを含むチタ ン系合金、 及び、 チタンを含むアルミニウム系合金の中から選ばれた何れか一種 であることを特徴とする請求の範囲 4 4ないし 4 6何れかに記載の電極金属材料 の製造方法。
5 2 . カーボン粒が、 グラフアイ ト、 カーボンブラヅク等の導電性カーボン から成ることを特徴とする請求の範囲 4 4ないし 4 6何れかに記載の電極金属材 料の製造方法。
PCT/JP1999/000228 1998-01-23 1999-01-22 Materiau electrode metallique, condensateur utilisant ledit materiau et procede de fabrication associe WO1999038177A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR10-1999-7008730A KR100380925B1 (ko) 1998-01-23 1999-01-22 전극 금속재료, 이것을 이용한 캐패시터 및 이들의 제조방법
AU20740/99A AU733738B2 (en) 1998-01-23 1999-01-22 Metal electrode material, capacitor using metal electrode material, and method of manufacture
EP99901135A EP0989571B1 (en) 1998-01-23 1999-01-22 Metal electrode material, capacitor using metal electrode material, and method of manufacture
DE69935767T DE69935767T2 (de) 1998-01-23 1999-01-22 Metallisches elektrodenmaterial, dieses verwendender kondensator und herstellungsverfahren
US09/679,308 US6808845B1 (en) 1998-01-23 2000-10-06 Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1107898 1998-01-23
JP1107798 1998-01-23
JP10/11078 1998-01-23
JP10/11077 1998-01-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US38168099A A-371-Of-International 1998-01-23 1999-09-23
US09/679,308 Continuation-In-Part US6808845B1 (en) 1998-01-23 2000-10-06 Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery

Publications (1)

Publication Number Publication Date
WO1999038177A1 true WO1999038177A1 (fr) 1999-07-29

Family

ID=26346464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000228 WO1999038177A1 (fr) 1998-01-23 1999-01-22 Materiau electrode metallique, condensateur utilisant ledit materiau et procede de fabrication associe

Country Status (5)

Country Link
EP (1) EP0989571B1 (ja)
KR (1) KR100380925B1 (ja)
AU (1) AU733738B2 (ja)
DE (1) DE69935767T2 (ja)
WO (1) WO1999038177A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071606A1 (en) * 2004-01-24 2005-08-04 Kin Fai Kam Activity reminder smart card
WO2010032462A1 (ja) * 2008-09-18 2010-03-25 パナソニック株式会社 キャパシタおよびその製造方法
US8405955B2 (en) 2010-03-16 2013-03-26 Corning Incorporated High performance electrodes for EDLCS

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627252B1 (en) * 2000-05-12 2003-09-30 Maxwell Electronic Components, Inc. Electrochemical double layer capacitor having carbon powder electrodes
DE10114185B4 (de) * 2001-03-23 2010-07-08 Epcos Ag Verfahren zur Herstellung einer Schichtelektrode für elektrochemische Bauelemente und Schichtelektrode
KR20030002582A (ko) * 2001-06-29 2003-01-09 주식회사 두리메탈 체크밸브
WO2003096450A1 (en) * 2002-05-09 2003-11-20 Itochu Corporation Current collecting structure, electrode structure and method for producing them
KR20030094428A (ko) * 2002-06-04 2003-12-12 삼성전자주식회사 반도체 소자의 커패시터 형성방법
US7791860B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Particle based electrodes and methods of making same
US7352558B2 (en) 2003-07-09 2008-04-01 Maxwell Technologies, Inc. Dry particle based capacitor and methods of making same
US7920371B2 (en) 2003-09-12 2011-04-05 Maxwell Technologies, Inc. Electrical energy storage devices with separator between electrodes and methods for fabricating the devices
WO2005069321A1 (ja) * 2004-01-19 2005-07-28 Matsushita Electric Industrial Co., Ltd. 電気二重層キャパシタ及びその製造方法とこれを用いた電子機器
US7090946B2 (en) 2004-02-19 2006-08-15 Maxwell Technologies, Inc. Composite electrode and method for fabricating same
US7440258B2 (en) 2005-03-14 2008-10-21 Maxwell Technologies, Inc. Thermal interconnects for coupling energy storage devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226466A (en) * 1975-08-25 1977-02-28 Hitachi Condenser Electrolytic capacitor
JPS60235419A (ja) * 1984-05-08 1985-11-22 エルナ−株式会社 電気二重層キヤパシタ
JPS649611A (en) * 1987-07-01 1989-01-12 Matsushita Electric Ind Co Ltd Electric double-layer capacitor
JPH02186615A (ja) * 1989-01-13 1990-07-20 Nec Corp 電気二重層コンデンサ及びその製造方法
JPH0373426U (ja) * 1989-11-20 1991-07-24
JPH06342739A (ja) * 1993-05-31 1994-12-13 Matsushita Electric Ind Co Ltd 電気二重層キャパシタおよびその製造方法
JPH07320987A (ja) * 1994-05-27 1995-12-08 Fuji Elelctrochem Co Ltd 電極構造
JPH09134726A (ja) * 1995-11-07 1997-05-20 Ngk Insulators Ltd 電気化学素子の集電体、電気化学素子および電気化学素子の集電体の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134708A (ja) * 1987-11-19 1989-05-26 Mitsubishi Electric Corp 磁気記録装置の磁気媒体読出し信号擬似波形作成回路
DE69128805T2 (de) * 1990-03-29 1998-05-14 Matsushita Electric Ind Co Ltd Elektrolytischer Doppelschichtkondensator und Verfahren zu seiner Herstellung
JP3219928B2 (ja) * 1994-02-10 2001-10-15 日本電池株式会社 非水電解質二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226466A (en) * 1975-08-25 1977-02-28 Hitachi Condenser Electrolytic capacitor
JPS60235419A (ja) * 1984-05-08 1985-11-22 エルナ−株式会社 電気二重層キヤパシタ
JPS649611A (en) * 1987-07-01 1989-01-12 Matsushita Electric Ind Co Ltd Electric double-layer capacitor
JPH02186615A (ja) * 1989-01-13 1990-07-20 Nec Corp 電気二重層コンデンサ及びその製造方法
JPH0373426U (ja) * 1989-11-20 1991-07-24
JPH06342739A (ja) * 1993-05-31 1994-12-13 Matsushita Electric Ind Co Ltd 電気二重層キャパシタおよびその製造方法
JPH07320987A (ja) * 1994-05-27 1995-12-08 Fuji Elelctrochem Co Ltd 電極構造
JPH09134726A (ja) * 1995-11-07 1997-05-20 Ngk Insulators Ltd 電気化学素子の集電体、電気化学素子および電気化学素子の集電体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0989571A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071606A1 (en) * 2004-01-24 2005-08-04 Kin Fai Kam Activity reminder smart card
GB2426081A (en) * 2004-01-24 2006-11-15 Kin Fai Kam Activity reminder smart card
GB2426081B (en) * 2004-01-24 2008-09-17 Kin Fai Kam Activity reminder smart card
WO2010032462A1 (ja) * 2008-09-18 2010-03-25 パナソニック株式会社 キャパシタおよびその製造方法
US8705226B2 (en) 2008-09-18 2014-04-22 Panasonic Corporation Capacitor having a characterized electrode and method for manufacturing same
JP5906374B2 (ja) * 2008-09-18 2016-04-20 パナソニックIpマネジメント株式会社 キャパシタおよびその製造方法
US8405955B2 (en) 2010-03-16 2013-03-26 Corning Incorporated High performance electrodes for EDLCS

Also Published As

Publication number Publication date
DE69935767T2 (de) 2008-01-31
DE69935767D1 (de) 2007-05-24
AU733738B2 (en) 2001-05-24
EP0989571A1 (en) 2000-03-29
EP0989571A4 (en) 2003-05-02
KR20010005662A (ko) 2001-01-15
EP0989571B1 (en) 2007-04-11
KR100380925B1 (ko) 2003-04-21
AU2074099A (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US6493210B2 (en) Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery
US6808845B1 (en) Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery
US6413282B1 (en) Electrolytic capacitor and method for manufacturing the same
WO1999038177A1 (fr) Materiau electrode metallique, condensateur utilisant ledit materiau et procede de fabrication associe
US20060256506A1 (en) Solid electrolyte capacitor and process for producing same
JPH0380517A (ja) 電気二重層コンデンサ
JP3467200B2 (ja) 電極金属材料、これを利用したキャパシタ及びそれらの製造方法
JP2003133183A (ja) 固体電解コンデンサおよびその製造方法
JPH0963905A (ja) 電気二重層キャパシタおよびその製造方法
JP4919225B2 (ja) 電気二重層キャパシタ用電極
US7049679B2 (en) Capacitor and production method therefor
JPH11219861A (ja) 電解コンデンサおよびその製造方法
JP2009071300A (ja) 固体電解コンデンサ
JP2001297952A (ja) 電極金属材料の製造方法、及び電極金属材料を用いたキャパシタの製造方法
CN103632847B (zh) 一种轴向模压钽电容器及其制造方法
JPH06342739A (ja) 電気二重層キャパシタおよびその製造方法
JP2007095772A (ja) 電気二重層キャパシタ
JP4748726B2 (ja) 固体電解コンデンサ
JP2001035752A (ja) 固体電解コンデンサ
JP2000068160A (ja) Ta固体電解コンデンサおよびその製造方法
JP3416076B2 (ja) 電解コンデンサの製造方法
WO2024090392A1 (ja) 電解コンデンサおよびその製造方法
JP2008205190A (ja) 固体電解コンデンサおよびその製造方法
JPS6355204B2 (ja)
JP2002260968A (ja) 積層型アルミ固体電解コンデンサおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 20740/99

Country of ref document: AU

Ref document number: 1019997008730

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09381680

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999901135

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999901135

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997008730

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 20740/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1019997008730

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999901135

Country of ref document: EP