WO1999036210A1 - Schichtverbundwerkstoff für gleitelemente und verfahren zu seiner herstellung - Google Patents

Schichtverbundwerkstoff für gleitelemente und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO1999036210A1
WO1999036210A1 PCT/DE1998/003483 DE9803483W WO9936210A1 WO 1999036210 A1 WO1999036210 A1 WO 1999036210A1 DE 9803483 W DE9803483 W DE 9803483W WO 9936210 A1 WO9936210 A1 WO 9936210A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
copper
layered composite
bearing
alloy
Prior art date
Application number
PCT/DE1998/003483
Other languages
English (en)
French (fr)
Inventor
Gerd Andler
Original Assignee
Federal Mogul Wiesbaden Gmbh Co.Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7854543&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999036210(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR10-1999-7008131A priority Critical patent/KR100538977B1/ko
Priority to AT0901798A priority patent/AT411229B/de
Priority to BR9808259-0A priority patent/BR9808259A/pt
Priority to SK1183-99A priority patent/SK284335B6/sk
Priority to JP53662199A priority patent/JP2001516285A/ja
Application filed by Federal Mogul Wiesbaden Gmbh Co.Kg filed Critical Federal Mogul Wiesbaden Gmbh Co.Kg
Priority to PL98335583A priority patent/PL187646B1/pl
Priority to US09/367,132 priority patent/US6273972B1/en
Priority to DE59808162T priority patent/DE59808162D1/de
Priority to AT98964365T priority patent/ATE238863T1/de
Priority to EP98964365A priority patent/EP0966333B2/de
Publication of WO1999036210A1 publication Critical patent/WO1999036210A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/08Casting in, on, or around objects which form part of the product for building-up linings or coverings, e.g. of anti-frictional metal
    • B22D19/085Casting in, on, or around objects which form part of the product for building-up linings or coverings, e.g. of anti-frictional metal of anti-frictional metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S384/00Bearings
    • Y10S384/90Cooling or heating
    • Y10S384/912Metallic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the invention relates to a method for producing a layered composite material for sliding elements, such as bearing shells or bearing bushes, in which a bearing alloy is applied to a carrier material, in particular made of steel, by means of a continuous strip casting process on the carrier material.
  • the invention also relates to a layered composite material according to the features of the preamble of patent claim 6.
  • bearings are used to absorb and transmit forces, both axial and radial forces between components that move relative to each other. This means that bearings are required for almost all rotating and pivoting movements. Bearings are therefore an indispensable machine element in all machines and units, and thus in particular in internal combustion engines.
  • the composite material must be able to withstand the highest loads, it must have a high level of corrosion resistance at temperatures up to 200 ° C in an aggressive environment (material heavily stressed by oil additives, combustion residues in the oil and severe contamination of the oil as a result longer maintenance intervals) and it must be inexpensive to manufacture.
  • EP 0 681 114 describes a layered composite material consisting of steel with a slide bearing material made of a wrought copper-zinc alloy, as is used as a bearing bushing or thrust washer material. This composite is manufactured using roll cladding. A subsequent heat treatment after plating increases the bond strength between steel and bearing metal as a result of diffusion processes.
  • the manufacture of this composite system is a roll-clad method.
  • mechanical adhesion occurs as a result of interlocking the surfaces of the two materials.
  • Subsequent diffusion annealing strengthens this bond, but does not lead to a positive connection or even a metallurgical one Binding, as is the case with watering, i.e. the contact of a liquid phase with a solid phase.
  • DE-OS 25 48 941 describes a method for producing strand-like, metallic objects, in which several layers of the same material are applied. Accordingly, several pouring vessels are provided. The respective layer, which is formed on the belt at the pouring point, is continuously removed and cooled in each case. Appropriate cooling devices are provided under the belt for this purpose.
  • a method for strip casting of lead bronze in which the steel strip is heated to a temperature of approximately 1100 ° C. in order to prevent the strip from warping.
  • the tape is previously formed into a U-shaped profile with angled edges. After pouring and cooling the tape, about which no statements are made, the tape is milled to the desired thickness and then wound up.
  • the object of the invention is, based on DE-OS 25 48 941, to provide a method and a layered composite material which is suitable for bearing points with mixed friction, which is corrosion-resistant and cold-formable and which can withstand the highest loads.
  • the task is solved by a process in which the carrier material is preheated to a temperature of 1000 ° C to 1100 ° C, and a lead-free bearing alloy based on copper-zinc or copper-aluminum with a temperature of 1000 and which forms heterogeneously ° C to 1250 ° C is poured, the layered composite material being cooled within 2 to 4 minutes from the casting temperature of the bearing alloy to below 100 ° C.
  • the layered composite material is preferably cooled from the casting temperature of the bearing alloy to its solidification temperature within the first 30 seconds.
  • the “homogeneous” materials consist of an ⁇ mixed crystal and, in addition to good sliding properties, also have good cold formability.
  • the “heterogeneous” alloys favored by their multi-phase structure, have higher wear resistance, but poorer cold formability.
  • the binding zone at the transition to steel has sufficient ductility, i.e. the formation of brittle phases at the steel / bearing metal transition was avoided. This was the prerequisite for further processing of the layer composite as a strip by forming processes such as rolling or roll bending e.g. to manufacture a socket.
  • the bearing alloy is a copper-aluminum alloy
  • the bearing alloy after the bearing alloy has been applied and after the cooling process preferably carried out an annealing treatment at 600 ° C to 750 ° C for 4 to 10 hours.
  • the layered composite material is advantageously annealed accordingly at a temperature of 400 ° C. to 550 ° C. for 4 to 10 hours.
  • the configuration of the bond zone can be influenced via the thickness ratio.
  • the layered composite material for bearing shells or bearing bushes is characterized in that the bearing alloy is lead-free and is based on copper-zinc or copper-aluminum and has a heterogeneous structure, whereby there is a metallurgical bond zone between the bearing alloy and the carrier material, which contains 80 to 95% iron , usual impurities and the rest copper and is cubic crystallized.
  • a metallurgical bond zone is a bond zone that is formed as a result of diffusion processes, e.g. Forms elements of the cast alloy into the solid carrier material as a clearly recognizable intermediate layer. Most often, this binding zone is a mixed crystal or intermetallic phase of both materials.
  • the high iron content comes from the steel carrier material, while the copper content is provided by the bearing alloy.
  • small amounts of the other alloy components can also be contained. This metallurgical bond zone ensures a high one Adhesive strength and high resilience of the entire layered composite.
  • the thickness of the bond zone is preferably in the range from 5 to 50 ⁇ m.
  • the heterogeneous structure of the bearing alloy would be disadvantageous with regard to the cold formability of the material. However, it has surprisingly been found that the heterogeneous structure is not disadvantageous if there is a balanced relationship between the - and
  • the -.- phases occur at high temperatures and must, in order to ensure good formability, i.a. be converted into the ⁇ phase.
  • the conversion of the / 3 phases can be controlled by the cooling after the pouring, but from the economic point of view cooling as quickly as possible would be desirable. It has been found that cooling to 100 ° C. within 2 to 4 minutes is suitable for establishing a ratio of the a to j3 phases of 1.5 to 3.0.
  • the layered composite material with such an ⁇ to ⁇ ratio combines good tribological properties with good formability as well as good corrosion properties and high resilience.
  • the subsequent annealing process can further increase the ratio of the ⁇ to (3 phases to up to 6, which has a favorable effect on the forming properties.
  • the layered composite material is preferably used for sliding elements, such as sliding bearings or bushings, with a thickness of the carrier material of less than 10 mm.
  • the copper-zinc alloy can have the following composition, for example:
  • compositions of a copper-aluminum alloy are as follows:
  • the layered composite material can additionally have a ternary layer, for example made of PbSnCu, or a tin flash as the running-in layer.
  • Fig. 2a u. 2b two micrographs of a layered composite material with a bearing alloy made of CuZn40Al in the as-cast state and
  • Fig. 3 is a bar graph of the bond strength of the
  • FIG. 1 A micrograph of this layered composite material in the as-cast state can be seen in FIG. 1.
  • the carrier material made of steel 1 there is a thin bonding zone 2 which has 88% iron and 6% copper, the remaining constituents consisting of the remaining alloy constituents.
  • the bearing alloy 3 which has a heterogeneous dendritic structure, is located on the bonding zone 2, the light areas representing the - phase, - and - phases being present in the bearing alloy 3 in a ratio of 2.6.
  • Figs. 2a and 2b are micrographs of the layered composite material with the bearing alloy made of CuZn40A12 in the cast state. There is also a between the steel support layer 1 'and the bearing material 3' Binding zone 2 ', which has 81% iron and 8% copper, the remaining constituents consisting of the remaining alloy constituents.
  • This material also shows a heterogeneous structural

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Laminated Bodies (AREA)
  • Lubricants (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Es wird ein Schichtverbundwerkstoff und ein Verfahren zu seiner Herstellung beschrieben, der für Lagerstellen geeignet ist, bei dem Mischreibung gegeben ist und der korrosionsbeständig und kalt umformbar ist sowie höchsten Belastungen standhält. Das Verfahren sieht vor, daß der Trägerwerkstoff auf eine Temperatur von 1000 °C bis 1100 °C vorgewärmt wird, daß eine sich heterogen ausbildende, bleifreie Lagerlegierung auf Kupfer-Zink- oder Kupfer-Aluminium-Basis mit einer Temperatur von 1000 °C bis 1250 °C aufgegossen wird und daß der Schichtbverbundwerkstoff innerhalb von 2 bis 4 Minuten von Gießtemperatur der Lagerlegierung auf 100 °C abgekühlt wird. Zwischen der Lagerlegierung (3) und dem Trägerwerkstoff (1) ist eine metallurgische Bindungszone (2) vorhanden, die 80-95 % Eisen, übliche Verunreinigungen und als Rest Kupfer aufweist sowie kubisch kristallisiert ist.

Description

Schichtverbundwerkstoff für Gleitelemente und Verfahren zu seiner Herstellung
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung eines Schichtverbundwerkstoffes für Gleitelemente, wie Lagerschalen oder Lagerbuchsen, bei dem auf ein Trägermaterial, insbesondere aus Stahl, eine Lagerlegierung mittels eines kontinuierlichen Bandbegießprozesses auf das Trägermaterial aufgebracht wird. Die Erfindung bezieht sich auch auf einen Schichtverbundwerkstoff gemäß den Merkmalen des Oberbegriffs des Patentanspruchs 6.
Allgemein dienen Lagerungen der Aufnahme und Weiterleitung von Kräften, und zwar sowohl der axialen wie auch radialen Kräfte zwischen sich relativ zueinander bewegenden Bauteilen. Dies bedeutet, daß für fast alle umlaufenden Drehbewegungen und Schwenkbewegungen Lager erforderlich sind. Lager sind somit ein in allen Maschinen und Aggregaten und damit insbesondere in Verbrennungsmotoren ein unverzichtbares Maschinenelement.
Betrachtet man bei modernen Verbrennungsmotoren die darin vorhandenen wichtigsten Lagerstellen (Hauptlager, Pleuellager, Kolbenbolzenbuchse. Nockenwellenbuchse u.a.), so erhält man einen guten Überblick über die Vielzahl oftmals konträrer Eigenschaften, die der Lagerwerkstoff erfüllen muß-
Je nach Lager- und Motorentyp sind nicht nur unterschiedliche konstruktive Gegebenheiten zu berücksichtigen, sondern es treten auch ganz unterschiedliche Belastungen (Gaskräfte, Massenkräfte, Gleitgeschwindigkeiten) auf. Für das hieraus resultierende vielseitige Anforderungsprofil (wie hohe Ermüdungsfestigkeit, hohe Verschleißfestigkeit, Freßunempfindlichkeit, hoher Korrosionswiderstand, hoher Kavitationswiderstand, u.a.) haben sich im Laufe der Zeit mehrschichtig aufgebaute Verbundwerkstoffe als besonders geeignet erwiesen. So gehören heute Zwei- bzw. Dreischichtverbundwerkstoffe zum Stand der Technik. Hierbei verleiht ein Stahlstützkörper dem Gleitlager die erforderliche mechanische Festigkeit und einen korrekten Festsitz im Gehäuse- Das Lagermetall, aufgebracht mittels Walzplattieren, Bandbegießen oder Sintern, erfüllt hierbei die bereits erwähnten Eigenschaften, wobei zusätzlich noch eine meist galvanisch aufgebrachte Gleitschicht mit als Diffusionsbarriere dienender Zwischenschicht das Verbundsystem komplettiert.
Betrachtet man die Entwicklungstendenzen im Bereich von zukünftigen Dieselmotoren, so treten zwei Hauptrandbedingungen in den Vordergrund: Minimierung des Kraftstoffverbrauches und Reduzierung der Schadstoffemissionen.
Gegenüber konventionellen Dieselmotoren wird dies mittels Direkteinspritzung, d.h. Steigerung des Verbrennungsdrucks und durch Turboaufladung erreicht. Hierdurch werden in neuen Motorengenerationen besonders an die Lagerwerkstoffe höchste Anforderungen gestellt. Eindeutig geht der Trend zu immer höher belastbaren Werkstoffen, der bereits bei Pleuellagern zu neuen Schichtverbundwerkstoffen geführt hat. So ist in diesem Bereich das Sputterlager (die Laufschicht besteht aus einer mittels Kathodenzerstäubung aufgebrachten Gleitschicht) zu einem festen Marktbestandteil geworden. Mit diesem Lagertyp können höchste Belastungen ohne Probleme realisiert werden.
Aber auch in anderen Bereichen wie z.B. der Kolbenbolzenlagerung sind die Beanspruchungen an die Lagerwerkstoffe derart gestiegen, daß sie von den dort eingesetzten traditionellen Buchsenwerkstoffen auf Stahl/Bleibronze-Basis nur durch Erhöhung des Kolbenbolzendurchmessers und einer dadurch reduzieπen spezifischen Belastung beherrscht werden- Diese Entwicklung weist jedoch in die falsche Richtung, weil hierdurch die oszillierenden Massen und damit die Bauhöhe des Motors anwachsen, was einer allgemein angestrebten Gewichtsreduzierung entgegenwirkt. Ein weiteres Problem bei der Verwendung der Bleibronzelegierungen ist ihre mangelnde Korrosionsbeständigkeit.
Hieraus wird deutlich, daß z.B. im Bereich von Buchsenwerkstoffen die zukünftigen Marktbedürfnisse nur durch ein neu zu entwickelndes Verbund- Werkstoffsystem erfüllt werden können. An dieses werden folgende technischen und wirtschaftlichen Anforderungen gestellt: der Verbundwerkstoff muß höchsten Belastungen standhalten können, er muß eine hohe Korrosionsbeständigkeit bei Temperaturen bis 200°C in einer aggressiven Umgebung besitzen (Werkstoff stark beansprucht durch Öladditive, Verbrennungsrückstände im Öl und starke Kontamination des Öls infolge längerer Wartungsintervalle ) und er muß kostengünstig herzustellen sein.
In der EP 0 681 114 wird ein Schichtverbundwerkstoff bestehend aus Stahl mit einem Gleitlagerwerkstoff aus einer Kupfer-Zink-Knetlegierung beschrieben, wie er als Lagerbuchsen- bzw. Anlaufscheibenwerkstoff Anwendung findet. Die Herstellung dieses Verbundwerkstoffs erfolgt mittels Walzplattierens. Eine sich an das Plattieren anschließende Wärmebehandlung erhöht als Folge von Diffusionsvorgängen die Bindefestigkeit zwischen Stahl und Lagermetall.
Bei diesem Verbundsystem handelt es sich bei der Herstellung, im Gegensatz zu dem in dieser Anmeldung beanspruchten Verfahren, um ein Walzplattierverfahren. Hierbei tritt als Folge des Walzdruckes eine mechanische Haftung durch Verzahnen der Oberflächen der beiden Werkstoffe ein. Eine nachfolgende Diffusionsglühung verstärkt zwar diese Bindung, führt aber nicht zu einer formschlüssigen Verbindung oder gar einer metallurgischen Bindung, wie dieses beim Begießen, also dem Kontakt einer flüssigen Phase mit einer festen Phase, der Fall ist.
Weiterhin muß festgestellt werden, daß der in der EP 0 681 114 beschriebene Prozeß auch hinsichtlich der Herstellungskosten teurer ist, als das hiermit verglichene Begießen, denn bevor der Verbundwerkstoff durch Walzplattieren hergestellt wird, muß das CuZn31Si-Band mittels eines eigenen Gießprozesses produziert werden. Erst in einem weiteren Arbeitsschritt kann durch Plattieren der Verbundwerkstoff entstehen. Beim Begießen von Stahl kann aber der Verbundwerkstoff in einem Arbeitsgang hergestellt werden.
Die DE-OS 25 48 941 beschreibt ein Verfahren zur Erzeugung von strangförmigen, metallischen Gegenständen, bei dem mehrere Schichten aus demselben Material aufgebracht werden. Dementsprechend sind mehrere Aufgießgefäße vorgesehen. Die jeweilige Schicht, die an der Aufgießstelle auf dem Band gebildet wird, wird fortlaufend abgezogen und jeweils gekühlt. Hierzu sind unter dem Band entsprechende Kühleinrichtungen vorgesehen.
Aus der DE-PS 10 63 343 ist ein Verfahren zum Bandgießen von Bleibronze bekannt, bei dem das Stahlband auf eine Temperatur von etwa 1100°C erwärmt wird, um ein Verziehen des Bandes zu verhindern. Zuvor wird das Band zu einem U-förmigen Profil mit abgewinkelten Rändern geformt. Nach dem Begießen und Abkühlen des Bandes, über das allerdings keine Aussagen gemacht werden, wird das Band auf die gewünschte Dicke gefräst und anschließend aufgewickelt.
Aus der DE 44 37 565 AI ist ein Verfahren zur Herstellung eines Stahlverbundgußwerkstoffes bekannt- Es handelt sich um kein kontinuierliches Bandbegießverfahren, sondern um ein Stand- bzw. Schleudergußverfahren, bei dem bereits umgeformte Lagerschalen beschichtet werden. Diese Lagerlegierung auf Kupferbasis enthält Nickel und Silizium in einem bestimmten Verhältnis, so daß die Eisensilizid-Sprödphasen an der Bindezone unterdrückt werden. Das zu beschichtende Gleitelement wird vorgewärmt, wobei die Vorwärmtemperatur in Abhängigkeit der Stahldicke gewählt wird. Dieses Verfahren ist nur für große Lager und somit teure Teile geeignet. Für die Massenherstellung, wie sie bei kleiner dimensionierten Lagern mit Stahldicken unter 10 mm erforderlich ist, kann dieses bekannte Verfahren nicht eingesetzt werden.
Die Aufgabe der Erfindung besteht darin, ausgehend von der DE-OS 25 48 941 , ein Verfahren und einen Schichtverbundwerkstoff bereitzustellen, der für Lagerstellen geeignet ist, bei dem Mischreibung gegeben ist, der korrosionsbeständig und kalt umformbar ist sowie höchste Belastungen aushält.
Gelöst wird die Aufgabe durch ein Verfahren, bei dem der Trägerwerkstoff auf eine Temperatur von 1000°C bis 1100°C vorgewärmt wird, und eine sich heterogen ausbildende, bleifreie Lagerlegierung auf Kupfer-Zink- oder Kupfer- Aluminium-Basis mit einer Temperatur von 1000°C bis 1250°C aufgegossen wird, wobei der Schichtverbundwerkstoff innerhalb von 2 bis 4 Minuten von Gießtemperatur der Lagerlegierung auf unter 100°C abgekühlt wird.
Vorzugsweise wird der Schichtverbundwerkstoff innerhalb der ersten 30 sec von der Gießtemperatur der Lagerlegierung auf ihre Erstarrungstemperatur abgekühlt.
Es hat sich gezeigt, daß die Anforderungen an den Schichtverbundwerkstoff durch hochfeste Kupferlegierungen erfüllt werden können. Hierzu zählen Sondermessing oder Aluminiumbronze, die, neben einer hohen Belastbarkeit, im Hinblick auf die Umweltverträglichkeit den Vorteil bieten, kein Blei zu enthalten. Prinzipiell kann in dieser Werkstoffgruppe von zwei unterschiedlichen Gefügemorphologien ausgegangen werden: Legierungssysteme, die homogen erstarren (z.B. CuA18 bzw. CuZn31Si) und Legierungssysteme, die ein heterogenes Gefüge bilden (z.B. CuAllOFe bzw. CuZn40Al).
Die "homogenen" Werkstoffe bestehen aus einem α-Mischkristall und besitzen neben guten Gleiteigenschaften auch eine gute Kaltumformbarkeit. Demgegenüber haben die "heterogenen" Legierungen, begünstigt durch ihren mehrphasigen Gefügeaufbau, höhere Verschleißbeständigkeit, aber schlechtere Kaltumformbarkeit.
Verbundwerkstoffe mit Lagerlegierungen auf Kupfer-Zink- oder Kupfer- Aluminium-Basis konnten bisher nur durch Schleudergießverfahren hergestellt werden. Kontinuierliche Bandbegießverfahren fanden bisher keine Anwendung, da sich beim Begießen des Substratwerkstoffes im Bereich der Bindezone Sprödphasen ausbildeten, die es nicht erlaubten, den Verbundwerkstoff umzuformen. Dies ist aber für die kostengünstige Herstellung von z.B. Gleitlagern oder Buchsen unerläßlich. Es wurde überraschend festgestellt, daß diese Verbundwerkstoffe dann z.B. umformbar werden, ohne daß sich das aufgegossene Lagermetall vom Substratwerkstoff löst, wenn die erfindungsgemäßen Verfahrensparameter eingehalten werden. Durch die Prozeßführung beim Begießen des Stahles wird es möglich, einen Verbundwerkstoff zu schaffen, der als Ganzes eine Umformung von mindestens 25 % erlaubt.
Die Bindezone am Übergang zum Stahl besitzt eine ausreichende Duktilität, d.h. die Bildung von Sprödphasen am Übergang Stahl/Lagermetall wurde vermieden. Damit waren die Voraussetzungen für eine Weiterverarbeitung des Schichtverbundes als Band durch Umformprozesse wie Walzen oder Rollbiegen z.B. zur Herstellung einer Buchse erfüllt.
Wenn die Lagerlegierung eine Kupfer-Aluminium-Legierung ist, wird nach dem Aufbringen der Lagerlegierung und nach dem Abkühlvorgang vorzugsweise eine Glühbehandlung bei 600°C bis 750°C über 4 bis 10 Stunden durchgeführt. Im Falle einer Kupfer-Zink-Legierung wird der Schichtverbundwerkstoff vorteilhafterweise entsprechend bei einer Temperatur von 400°C bis 550°C über 4 bis 10 Stunden geglüht.
Vorzugsweise wird die Lagerlegierung in einer Dicke DL aufgegossen, die zur Dicke Dτ des Trägermaterials ein Verhältnis DL/DT = 1 bis 2 aufweist. Die Ausgestaltung der Bindungszone kann über das Dickenverhältnis beeinflußt werden.
Der Schichtverbundwerkstoff für Lagerschalen oder Lagerbuchsen ist dadurch gekennzeichnet, daß die Lagerlegierung bleifrei ist und auf Kupfer-Zink oder Kupfer-Aluminium basiert sowie einen heterogenen Gefügeaufbau besitzt, wobei zwischen der Lagerlegierung und dem Trägerwerkstoff eine metallurgische Bindungszone vorhanden ist, die 80 bis 95 % Eisen, übliche Verunreinigungen und als Rest Kupfer aufweist sowie kubisch kristallisiert ist.
Die Bestimmung der Legierungsbestandteile der Bindungsschicht wird vorteilhafterweise durch eine energiedispersive Röntgenanalyse (EDX) mittels Rasterelektronenmikroskopie durchgeführt. Unter einer metallurgischen Bindungszone versteht man eine Bindezone, die sich infolge Diffusionsvorgängen von z.B. Elementen der aufgegossenen Legierung in den festen Trägerwerkstoff als deutlich erkennbare Zwischenschicht ausbildet. Meistens stellt sich diese Bindezone als Mischkristall oder intermetallische Phase beider Werkstoffe dar.
Der hohe Eisenanteil stammt aus dem Stahlträgerwerkstoff, während der Kupferanteil von der Lagerlegierung zur Verfügung gestellt wird. Außer diesen beiden Komponenten, die das Gefüge der metallurgischen Bindungszone bestimmen, können noch geringe Mengen der übrigen Legierungsbestandteile enthalten sein. Diese metallurgische Bindungszone gewährleistet eine hohe Haftfestigkeit und eine hohe Belastbarkeit des gesamten Schichtverbundwerkstoffes.
Die Dicke der Bindungszone liegt vorzugsweise im Bereich von 5 bis 50 μm.
Die heterogene Struktur der Lagerlegierung wäre im Hinblick auf die Kaltumformbarkeit des Materials nachteilig. Es hat sich jedoch überraschend herausgestellt, daß die heterogene Struktur dann nicht nachteilig ist, wenn ein ausgewogenes Verhältnis zwischen den - und |3-Phasen vorliegt.
Die -.-Phasen stellen sich bei hohen Temperaturen ein und müssen, um eine gute Umformbarkeit zu gewährleisten, u.a. in die α-Phase umgewandelt werden. Andererseits müssen auch ausreichende Anteile der (S-Phasen vorhanden sein, um die Heterogenität der Gefügestruktur zu erhalten, weil diese die Verschleißbeständigkeit vorteilhaft beeinflußt.
Die Umwandlung der /3-Phasen kann durch die Abkühlung nach dem Aufgießen gesteuert werden, wobei jedoch unter wirtschaftlichen Gesichtspunkten eine möglichst schnelle Abkühlung wünschenswert wäre. Es hat sich herausgestellt, daß eine Abkühlung auf 100°C innerhalb von 2 bis 4 Minuten geeignet ist, um ein Verhältnis der a- zu j3-Phasen von 1,5 bis 3,0 einzustellen. Der Schichtverbundwerkstoff mit einem solchen α- zu ß- Verhältnis vereint gute tribologische Eigenschaften mit guter Umformbarkeit sowie mit guten Korrosionseigenschaften und hoher Belastbarkeit.
Durch den nachfolgenden Glühvorgang kann das Verhältnis der α- zu (3-Phasen auf bis zu 6 weiter angehoben werden, was sich günstig auf die Umformeigenschaften auswirkt. Vorzugsweise wird der Schichtverbundwerkstoff für Gleitelemente, wie Gleitlager oder Buchsen, mit einer Dicke des Trägermaterials unter 10 mm verwendet.
Die Kupfer-Zink-Legierung kann beispielsweise folgende Zusammensetzung aufweisen:
Kupfer 55 - 63 %
Aluminium 1 ,5 - 2,5 %
Eisen 0,5 - 0,8 %
Mangan 1 ,8 - 2,2 %
Nickel 0,7 - 1 %
Zinn 0 - 0, 1 %
Zink Rest.
Beispielhafte Zusammensetzungen einer Kupfer-Aluminium-Legierung sind wie folgt:
Aluminium 7,5 - 11 %
Eisen 0,5 - 3 %
Mangan 0,5 - 2 %
Nickel 1 - 3,5 %
Zink 0 - 0,5 %
Kupfer Rest.
Der Schichtverbundwerkstoff kann zusätzlich noch eine Ternärschicht, beispielsweise aus PbSnCu oder einen Zinn-Flash als Einlaufschicht aufweisen.
Beispielhafte Ausführungsformen werden nachfolgend anhand der Zeichnungen näher erläutert: Es zeigen:
Fig. 1 ein Schliffbild einer CuA19Ni3Fe-Lagerlegierung im Gußzustand auf einem Trägerwerkstoff aus Stahl,
Fign. 2a u. 2b zwei Schliffbilder eines Schichtverbundwerkstoffes mit einer Lagerlegierung aus CuZn40Al im Gußzustand und
Fig. 3 ein Balkendiagramm zur Bindungsfestigkeit der
Verbundwerkstoffe CuA19Ni3Fe2 bzw. CuZn40A12 auf Stahl im Gußzustand bzw. nach einer Wärmebehandlung im direkten Vergleich zu herkömmlichen Schichtverbundwerkstoffen.
Beispiel 1
CuA19Ni3Fe
1 ,6 mm Stahlband
Gießplattieren des Stahlbandes Vörwärmtemperatur des
Trägermaterials 1100°C Schmelztemperatur der Lagerlegierung 1200°C
Abkühlung in 30 sec auf Erstarrungstemperatur, in weiteren 2,5 min auf 100°C
Fräsen der Lagermetalloberfläche 5 - 15 % der Lagermetalldicke
Wärmebehandlung 650°C, 6 h Haltezeit Umformprozeß 25 % Ein Schliffbild dieses Schichtverbundwerkstoffes im Gußzustand ist in der Fig. 1 zu sehen- Auf dem Trägerwerkstoff aus Stahl 1 befindet sich eine dünne Bindungszone 2, die 88 % Eisen und 6 % Kupfer aufweist, wobei die restlichen Bestandteile aus den übrigen Legierungsbestandteilen bestehen.
Auf der Bindungszone 2 befindet sich die Lagerlegierung 3, die eine heterogene dendritische Struktur aufweist, wobei die hellen Flächen die - Phase darstellen, - und -Phasen liegen im Verhältnis 2,6 in der Lagerlegierung 3 vor.
Beispiel 2
CuZn40A12
1 ,6 mm Stahlband Gießplattieren des Stahlbandes Vorwärmtemperatur des Trägermaterials 1000°C Schmelztemperatur der Lagerlegierung 1020°C
Abkühlung in 30 sec auf Erstarrungstemperatur, in weiteren 2,5 min auf 100°C
Fräsen der Lagermetalloberfläche 5 - 15 % der Lagermetalldicke
Wärmebehandlung 500°C, 4 h Haltezeit Umformprozeß 25 %
In den Fign. 2a und 2b sind Schliffbilder des Schichtverbundwerkstoffes mit der Lagerlegierung aus CuZn40A12 im Gießzustand dargestellt. Zwischen der Stahlträgerschicht 1 ' und dem Lagermaterial 3' befindet sich ebenfalls eine Bindungszone 2', die 81 % Eisen und 8 % Kupfer aufweist, wobei die restlichen Bestandteile aus den übrigen Legierungsbestandteilen bestehen.
Auch bei diesem Werkstoff zeigt sich eine heterogene Struktur-
In der Fig. 3 ist die Bindungsfestigkeit in N/mm2 für Verbundwerkstoffe hergestellt nach Ausführungsbeispiel 1 bzw. 2 im Vergleich zu herkömmlichen Schichtverbundwerkstoffen dargestellt. Der graue Bereich kennzeichnet die Meßwertsteuerung. Hierbei wurde sowohl der Gußzustand für CuA19Ni3Fe2 bzw. CuZn40A12 wie auch der Zustand nach einer Glühung untersucht- Es ist deutlich erkennbar, daß die beiden neuen Verbundwerkstoffe hinsichtlich Haftfestigkeit den bekannten Stahlverbundwerkstoffen wie CuA18 bzw. CuPblOSnlO deutlich überlegen sind. Eine durchgeführte Wärmebehandlung, um den für eine spätere Umformung angestrebten Gefügeaufbau einzustellen, wirkt sich nicht negativ auf die Haftfestigkeit aus (bei CuZn40A12 auf Stahl wird die Haftfestigkeit sogar noch verbessert).

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Schichtverbundwerkstoffes für Gleitelemente, wie Lagerschalen oder Lagerbuchsen, bei dem auf ein Trägermaterial, insbesondere aus Stahl, eine Lagerlegierung mittels eines kontinuierlichen Bandbegießprozesses auf das Trägermaterial aufgebracht wird,
dadurch gekennzeichnet,
daß der Trägerwerkstoff auf eine Temperatur von 1000°C bis 1100°C vorgewärmt wird,
daß eine sich heterogen ausbildende, bleifreie Lagerlegierung auf Kupfer-Zink- oder Kupfer-Aluminiumbasis mit einer Temperatur von 1000°C bis 1250°C aufgegossen wird, und
daß der Schichtverbundwerkstoff innerhalb von 2 bis 4 Minuten von Gießtemperatur der Lagerlegierung auf 100°C abgekühlt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß der Schichtverbundwerkstoff innerhalb der ersten 30 sec von der Gießtemperatur der Lagerlegierung auf die Erstarrungstemperatur der Lagerlegierung abgekühlt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß nach dem Aufbringen einer Kupfer-Aluminiumlegierung und nach dem Abkühlvorgang der Schichtverbundwerkstoff bei 600°C bis 750°C über 4 bis 10 Stunden geglüht wird.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß nach dem Aufbringen einer Kupfer-Zinklegierung und nach dem Abkühlvorgang der Schichtverbundwerkstoff bei einer Temperatur von 400°C bis 550°C über 4 bis 10 Stunden geglüht wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Lagerlegierung in einer Dicke DL aufgegossen wird, die zur Dicke Dτ des Trägermaterials ein Verhältnis DL/DT = 1 bis 2 aufweist.
6. Schichtverbundwerkstoff für Gleitelemente, wie Lagerschalen oder Lagerbuchsen, mit einem Trägerwerkstoff aus Stahl und mit einer aufgegossenen Lagerlegierung, dadurch gekennzeichnet, daß die Lagerlegierung bleifrei ist und auf Kupfer-Zink oder Kupfer-Aluminium basiert sowie einen heterogenen Gefügeaufbau aufweist, wobei zwischen der Lagerlegierung (3,3') und dem Trägerwerkstoff (1, 1 ') eine metallurgische Bindungszone (2,2') vorhanden ist, die 80 bis 95 % Eisen, übliche Verunreinigungen und als Rest Kupfer aufweist sowie kubisch kristallisiert ist.
7. Schichtverbundwerkstoff nach Anspruch 6, dadurch gekennzeichnet, daß das heterogene Gefüge - und -Phasen aufweist.
8. Schichtverbundwerkstoff nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß im Gußzustand nach dem Abkühlen und vor der Wärmebehandlung die - und j3-Phasen im Verhältnis von 1 ,5 bis 3,0 vorliegen.
9. Schichtverbundwerkstoff nach Anspruch 8, dadurch gekennzeichnet, daß nach dem Glühvorgang das Verhältnis der α- zu /3-Phasen auf bis zu 6 gesteigert sind.
10. Schichtverbundwerkstoff nach einem der Ansprüche 6 bis 9. dadurch gekennzeichnet, daß die Bindungsschicht eine Dicke von 5 - 50 μm aufweist.
11. Schichtverbundwerkstoff nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Lagerlegierung folgende Zusammensetzung aufweist:
Kupfer 55 - 63 %
Aluminium 1 ,5 - 2,5 %
Eisen 0.5 - 0,8 %
Mangan 1,8 - 2,2 %
Nickel 0,7 - 1 ,0 %
Zinn 0 - 0,1 %
Zink Rest.
12. Schichtverbundwerkstoff nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Legierung folgende Zusammensetzung aufweist:
Kupfer Rest
Aluminium 7,5 - 11,0 %
Eisen 0,5 - 3,0 %
Mangan 0,5 - 2,0 %
Nickel 1 ,0 - 3,5 %
Zink 0 - 0,5 %.
13. Schichtverbundwerkstoff nach einem der Ansprüche 6 bis 12. dadurch gekennzeichnet, daß auf der aufgegossenen Lagerlegierung eine Ternärschicht oder ein Zinn-Flash als Einlaufschicht aufgebracht ist.
PCT/DE1998/003483 1998-01-14 1998-11-24 Schichtverbundwerkstoff für gleitelemente und verfahren zu seiner herstellung WO1999036210A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP98964365A EP0966333B2 (de) 1998-01-14 1998-11-24 Schichtverbundwerkstoff für gleitelemente und verfahren zu seiner herstellung
AT0901798A AT411229B (de) 1998-01-14 1998-11-24 Schichtverbundwerkstoff für gleitelemente und verfahren zu seiner herstellung
BR9808259-0A BR9808259A (pt) 1998-01-14 1998-11-24 Material de compósito em camadas para elementos deslizantes e processo para sua preparação
SK1183-99A SK284335B6 (sk) 1998-01-14 1998-11-24 Kompozitný vrstvený materiál na klzné elementy a spôsob jeho výroby
JP53662199A JP2001516285A (ja) 1998-01-14 1998-11-24 摺動部材用の複合多層材料およびその作製方法
KR10-1999-7008131A KR100538977B1 (ko) 1998-01-14 1998-11-24 슬라이딩 요소용 다층 복합 재료 및 이의 제조방법
PL98335583A PL187646B1 (pl) 1998-01-14 1998-11-24 Sposób wytwarzania materiału warstwowego na elementy ślizgowe oraz materiał warstwowy na elementy ślizgowe
US09/367,132 US6273972B1 (en) 1998-01-14 1998-11-24 Stratified composite material for sliding elements and method for the production thereof
DE59808162T DE59808162D1 (de) 1998-01-14 1998-11-24 Schichtverbundwerkstoff für gleitelemente und verfahren zu seiner herstellung
AT98964365T ATE238863T1 (de) 1998-01-14 1998-11-24 Schichtverbundwerkstoff für gleitelemente und verfahren zu seiner herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19801074A DE19801074C2 (de) 1998-01-14 1998-01-14 Verfahren zur Herstellung eines Schichtverbundwerkstoffes für Gleitelemente
DE19801074.5 1998-01-14

Publications (1)

Publication Number Publication Date
WO1999036210A1 true WO1999036210A1 (de) 1999-07-22

Family

ID=7854543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/003483 WO1999036210A1 (de) 1998-01-14 1998-11-24 Schichtverbundwerkstoff für gleitelemente und verfahren zu seiner herstellung

Country Status (15)

Country Link
US (1) US6273972B1 (de)
EP (1) EP0966333B2 (de)
JP (1) JP2001516285A (de)
KR (1) KR100538977B1 (de)
CN (1) CN1094079C (de)
AT (2) AT411229B (de)
BR (1) BR9808259A (de)
CZ (1) CZ295510B6 (de)
DE (3) DE19801074C2 (de)
ES (1) ES2198785T5 (de)
PL (1) PL187646B1 (de)
RU (1) RU2218277C2 (de)
SK (1) SK284335B6 (de)
TR (1) TR199902050T1 (de)
WO (1) WO1999036210A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306542B3 (de) * 2003-02-13 2004-06-24 Sms Demag Ag Gleitstein für Gelenkspindeln
AT501676A1 (de) * 2004-06-02 2006-10-15 Miba Gleitlager Gmbh Verfahren zum herstellen eines schichtverbundwerkstoffes
AT501701B1 (de) * 2004-06-02 2007-01-15 Miba Gleitlager Gmbh Verfahren zum herstellen eines schichtverbundwerkstoffes
WO2007131742A1 (de) * 2006-05-17 2007-11-22 Man Diesel Filial Af Man Diesel Se, Tyskland Gleitlager, verfahren zur herstellung sowie verwendung eines derartigen gleitlagers
US7604304B2 (en) 2001-08-22 2009-10-20 Komatsu Ltd. Crawler, crawler pin, crawler bush, and crawler manufacturing method

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19950445C2 (de) * 1999-10-19 2002-09-19 Zollern Bhw Gleitlager Gmbh & Gleitlagerelement
WO2002040883A1 (en) * 2000-11-15 2002-05-23 Federal-Mogul Corporation Non-plated aluminum based bearing alloy with performance-enhanced interlayer
US6833339B2 (en) * 2000-11-15 2004-12-21 Federal-Mogul World Wide, Inc. Non-plated aluminum based bearing alloy with performance-enhanced interlayer
DE10144126C1 (de) * 2001-09-08 2003-01-30 Ks Gleitlager Gmbh Pleuellagerschale- oder -buchse oder Hauptlagerschale
US6787100B2 (en) * 2001-10-17 2004-09-07 Federal-Mogul World Wide, Inc. Multiple layer powder metal bearings
DE10159949C1 (de) 2001-12-06 2003-05-22 Wieland Werke Ag Verwendung einer Kupfer-Aluminium-Legierung mit definierten Deckschichten als Lagerwerkstoff zur Herstellung von verschleißfesten Gleitlagern
US7387443B2 (en) 2002-09-06 2008-06-17 Federal Mogul Wiesbaden Gmbh Piston pin bushing
DE10329276B4 (de) * 2003-06-30 2007-07-19 Federal-Mogul Wiesbaden Gmbh & Co. Kg Gleitlagerbuchse und Verfahren zur Herstellung einer Gleitlagerbuchse
DE10333591B4 (de) * 2003-07-24 2005-10-13 Federal-Mogul Wiesbaden Gmbh & Co. Kg Fließer zum Aufbringen einer Flüssigkeit, insbesondere einer Metallschmelze auf ein Substrat
DE10333589B9 (de) * 2003-07-24 2010-06-10 Federal-Mogul Wiesbaden Gmbh & Co. Kg Verfahren zur Herstellung eines bandförmigen Verbundwerkstoffes für die Gleitlagerherstellung und Vorrichtung zur Durchführung des Verfahrens
DE10333590B4 (de) * 2003-07-24 2005-10-13 Federal-Mogul Wiesbaden Gmbh & Co. Kg Gießkammer für ein Verfahren zur Herstellung eines bandförmigen Verbundwerkstoffes
DE10343618B3 (de) * 2003-09-20 2004-11-04 Ks Gleitlager Gmbh Gleitlagerverbundwerkstoff
DE10355547A1 (de) * 2003-11-21 2005-06-23 Ks Gleitlager Gmbh Gleitlagerverbundwerkstoff mit aufgesputterter Gleitschicht
DE10360818A1 (de) * 2003-12-23 2005-07-21 Ks Gleitlager Gmbh Gleitlagerverbundwerkstoff
US7050880B2 (en) * 2003-12-30 2006-05-23 Sc Solutions Chemical-mechanical planarization controller
DE102004013548A1 (de) 2004-03-19 2005-10-06 Ks Gleitlager Gmbh Kolbenbolzenbuchse
AT414128B (de) 2004-08-03 2006-09-15 Miba Gleitlager Gmbh Aluminiumlegierung für tribologisch beanspruchte flächen
DE102004038191A1 (de) * 2004-08-06 2006-03-16 Ks Gleitlager Gmbh Gleitlagerverbundwerkstoff
CA2514491C (en) * 2004-09-17 2012-07-03 Sulzer Metco Ag A spray powder
DE102004045110B3 (de) * 2004-09-17 2006-01-19 Daimlerchrysler Ag Hochverschleißfeste und dauerfeste Lagerbeschichtung für Kurbelwellen- und Pleuellager
RU2295423C2 (ru) * 2005-05-03 2007-03-20 Институт проблем сверхпластичности металлов Российской академии наук Способ получения антифрикционного слоя подшипника скольжения
DE102005023309B4 (de) * 2005-05-13 2009-10-01 Federal-Mogul Wiesbaden Gmbh Gleitlagerverbundwerkstoff, Verwendung und Herstellungsverfahren
DE102005023307B4 (de) * 2005-05-13 2009-05-07 Federal-Mogul Wiesbaden Gmbh Gleitlagerverbundwerkstoff, Verwendung und Herstellungsverfahren
DE102005063325B4 (de) * 2005-05-13 2008-01-10 Federal-Mogul Wiesbaden Gmbh & Co. Kg Gleitlagerverbundwerkstoff, Verwendung und Herstellungsverfahren
DE102005063324B4 (de) * 2005-05-13 2008-02-28 Federal-Mogul Wiesbaden Gmbh & Co. Kg Gleitlagerverbundwerkstoff, Verwendung und Herstellungsverfahren
DE102006023384A1 (de) * 2006-05-17 2007-11-22 Sms Demag Ag Verwendung eines Gleitlagers
DE102007029470A1 (de) * 2007-06-26 2009-01-02 Mahle International Gmbh Verfahren zur Herstellung von Gleitlagern sowie mit diesem Verfahren herstellbare Gleitlager
CN101876326B (zh) * 2009-11-16 2012-07-25 武汉理工大学 电扇复合材料轴承套及其制备方法
RU2468265C2 (ru) * 2010-07-26 2012-11-27 Учреждение Российской академии наук Институт физики им. Х.И. Амирханова Дагестанского научного центра РАН Способ получения биметаллических подшипников скольжения
CN101954474B (zh) * 2010-08-06 2012-06-13 西安理工大学 铜铅合金/钢双金属层状复合材料的制备方法
BR112018002251A2 (pt) 2015-08-13 2018-09-18 Miba Gleitlager Austria Gmbh elemento de rolamento deslizante multicamada e seu método para a fabricação
CN105127369A (zh) * 2015-09-10 2015-12-09 安庆银泰轴承有限公司 一种空调轴承内套的铸造工艺
CN106224370A (zh) * 2016-08-31 2016-12-14 诸暨市三传动科技有限公司 一种钢挂铜双金属项圈轴承
AT518876B1 (de) * 2016-12-07 2018-02-15 Miba Gleitlager Austria Gmbh Verfahren zur Herstellung eines Mehrschichtgleitlagerelementes
CN106887547B (zh) * 2017-02-28 2019-05-14 广东润盛科技材料有限公司 铝锰合金动力电池壳体及其制备方法
US11466728B2 (en) 2018-03-21 2022-10-11 Tenneco Inc. Bearing and method of manufacturing permitting high temperature heat treatment
DE102020002524A1 (de) 2020-04-25 2021-10-28 Wieland-Werke Aktiengesellschaft Mangan- und aluminiumhaltige Kupfer-Zink-Legierung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1063343B (de) 1956-01-21 1959-08-13 Glyco Metall Werke Verfahren und Vorrichtung beim ununterbrochenen Angiessen von Metallegierungen, insbesondere Bleibronze, an Stahlbaender
DE2548941A1 (de) 1974-11-01 1976-05-13 Erik Allan Olsson Verfahren zur erzeugung von strangfoermigen, metallischen gegenstaenden
DE3938234A1 (de) * 1988-11-19 1990-05-31 Glyco Metall Werke Verfahren und vorrichtung zur herstellung eines schichtwerkstoffes fuer gleitelemente
DE4411762A1 (de) * 1994-04-06 1995-10-12 Kolbenschmidt Ag Gleitlagerwerkstoff
DE4437565A1 (de) 1994-10-20 1996-04-25 Fuerstlich Hohenzollernsche We Lagerwerkstoff aus einer Legierung auf Kupfer-Basis und Verfahren zur Herstellung eines Stahlverbundgußwerkstoffes umfassend einen solchen Lagerwerkstoff

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE17660C (de) J. GALLAUDAT in Lausanne Maschinentheiler für Kugellöcher
DE1714C (de) 1877-07-13 1900-01-01 A. CRIENITZ in Wünschendorf b. Weida Maschine zur Anfertigung von Papiersäcken
DE1187805B (de) * 1960-03-24 1965-02-25 Dr Eugen Vaders Doppelmetall-Lagerschale
DE1842279U (de) * 1961-09-28 1961-11-23 Schmalbach Ag J A Eindruckdeckel.
DE3906402C2 (de) * 1987-09-03 1994-05-05 Glyco Metall Werke Schichtwerkstoff für Gleitlagerelemente, z.B. Radialgleitlager bzw. Axialgleitlager
IT1215841B (it) * 1988-02-10 1990-02-22 Emilio Ghisoni Revolver a canna ribassata.
DE3813802A1 (de) * 1988-04-23 1989-11-09 Glyco Metall Werke Schichtwerkstoff oder schichtwerkstueck mit einer auf einer traegerschicht angebrachten funktionsschicht, insbesondere gleitschicht mit der struktur einer festen, aber schmelzbaren dispersion
JP2866384B2 (ja) * 1988-11-04 1999-03-08 オイレス工業株式会社 耐摩耗性を有する摺動部材用アルミニウム青銅鋳物
DE4004703C2 (de) * 1989-03-01 1994-01-27 Glyco Metall Werke Schichtwerkstoff für Gleitlagerelemente mit Antifriktionsschicht aus einem Lagerwerkstoff auf Aluminium-Basis
US5226953A (en) * 1989-11-17 1993-07-13 Glyco Metallwerke Daelen & Loos Gmbh Process and device for producing a laminated material for slide elements
DE4103117C2 (de) * 1990-02-03 1993-11-04 Glyco Metall Werke Verfahren zur herstellung von gleitelementen mit einer gleitschicht aus ternaerer oder binaerer weissmetall-lagerlegierung
JPH0694036A (ja) * 1992-09-11 1994-04-05 Daido Metal Co Ltd 耐フレッチング特性に優れた多層すべり軸受
JP2679920B2 (ja) * 1992-09-28 1997-11-19 大同メタル工業株式会社 非焼付性に優れたオーバーレイを有するすべり軸受材料
DE4240157A1 (de) * 1992-11-30 1994-06-01 Chuetsu Metal Works Synchronisierring mit einer Spritzbeschichtung aus einem verschleißbeständigen Messingmaterial
DE4316755A1 (de) * 1993-05-19 1994-11-24 Metallgesellschaft Ag Zink-Aluminium-Gußlegierung
JP2693369B2 (ja) * 1993-12-28 1997-12-24 大同メタル工業株式会社 多層構造エンドベアリング及びその製造方法
DE4442186C2 (de) * 1994-11-26 1999-03-04 Glyco Metall Werke Schichtwerkstoff und Verfahren zu seiner Herstellung
DE19654953A1 (de) * 1996-06-01 1998-03-26 Glyco Metall Werke Schichtwerkstoff für Gleitelemente

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1063343B (de) 1956-01-21 1959-08-13 Glyco Metall Werke Verfahren und Vorrichtung beim ununterbrochenen Angiessen von Metallegierungen, insbesondere Bleibronze, an Stahlbaender
DE2548941A1 (de) 1974-11-01 1976-05-13 Erik Allan Olsson Verfahren zur erzeugung von strangfoermigen, metallischen gegenstaenden
DE3938234A1 (de) * 1988-11-19 1990-05-31 Glyco Metall Werke Verfahren und vorrichtung zur herstellung eines schichtwerkstoffes fuer gleitelemente
DE4411762A1 (de) * 1994-04-06 1995-10-12 Kolbenschmidt Ag Gleitlagerwerkstoff
EP0681114A2 (de) 1994-04-06 1995-11-08 KOLBENSCHMIDT Aktiengesellschaft Gleitlagerwerkstoff
DE4437565A1 (de) 1994-10-20 1996-04-25 Fuerstlich Hohenzollernsche We Lagerwerkstoff aus einer Legierung auf Kupfer-Basis und Verfahren zur Herstellung eines Stahlverbundgußwerkstoffes umfassend einen solchen Lagerwerkstoff

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604304B2 (en) 2001-08-22 2009-10-20 Komatsu Ltd. Crawler, crawler pin, crawler bush, and crawler manufacturing method
DE10306542B3 (de) * 2003-02-13 2004-06-24 Sms Demag Ag Gleitstein für Gelenkspindeln
AT501676A1 (de) * 2004-06-02 2006-10-15 Miba Gleitlager Gmbh Verfahren zum herstellen eines schichtverbundwerkstoffes
US7156149B2 (en) 2004-06-02 2007-01-02 Miba Gleitlager Gmbh Method for producing a stratified composite material
AT501701B1 (de) * 2004-06-02 2007-01-15 Miba Gleitlager Gmbh Verfahren zum herstellen eines schichtverbundwerkstoffes
AT501676B1 (de) * 2004-06-02 2007-01-15 Miba Gleitlager Gmbh Verfahren zum herstellen eines schichtverbundwerkstoffes
US7281568B2 (en) 2004-06-02 2007-10-16 Miba Gleitlager Gmbh Method for producing a stratified composite material
WO2007131742A1 (de) * 2006-05-17 2007-11-22 Man Diesel Filial Af Man Diesel Se, Tyskland Gleitlager, verfahren zur herstellung sowie verwendung eines derartigen gleitlagers
EP2281654A3 (de) * 2006-05-17 2011-07-27 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland Gleitlager, Verfahren zur Herstellung sowie Verwendung eines derartigen Gleitlagers

Also Published As

Publication number Publication date
KR100538977B1 (ko) 2005-12-26
TR199902050T1 (xx) 2004-12-21
JP2001516285A (ja) 2001-09-25
DE59808162D1 (de) 2003-06-05
US6273972B1 (en) 2001-08-14
EP0966333B2 (de) 2007-08-29
ES2198785T5 (es) 2008-02-01
CZ302099A3 (cs) 2000-07-12
SK118399A3 (en) 2000-05-16
DE19861160C1 (de) 2001-12-06
AT411229B (de) 2003-11-25
EP0966333B1 (de) 2003-05-02
PL335583A1 (en) 2000-05-08
DE19861160C5 (de) 2005-05-25
PL187646B1 (pl) 2004-08-31
ATE238863T1 (de) 2003-05-15
RU2218277C2 (ru) 2003-12-10
CN1094079C (zh) 2002-11-13
DE19801074C2 (de) 2002-01-31
ATA901798A (de) 2003-04-15
BR9808259A (pt) 2000-05-16
CN1250401A (zh) 2000-04-12
CZ295510B6 (cs) 2005-08-17
EP0966333A1 (de) 1999-12-29
DE19801074A1 (de) 1999-07-22
SK284335B6 (sk) 2005-02-04
KR20000076043A (ko) 2000-12-26
ES2198785T3 (es) 2004-02-01

Similar Documents

Publication Publication Date Title
EP0966333B1 (de) Schichtverbundwerkstoff für gleitelemente und verfahren zu seiner herstellung
DE102006019826B3 (de) Bandförmiger Werkstoffverbund und dessen Verwendung, Verbundgleitelement
EP2985358B1 (de) Gleitlagerverbundwerkstoff
AT511196B1 (de) Mehrschichtlagerschale
DE4332433A1 (de) Mehrschichtgleitlager enthaltend eine Al-Sn-Legierungsschicht mit hoher Ermüdungsbeständigkeit und Paßfähigkeit
DE2809866C2 (de) Lagerlegierung auf Aluminiumbasis
DE4328920A1 (de) Mehrschicht-Gleitlager und Lagerzusammenstellung
EP0868539B1 (de) Gleitlagerwerkstoff aus einer bis auf erschmelzungsbedingte verunreinigungen siliciumfreien aluminiumlegierung
EP3334596B1 (de) Mehrschichtgleitlagerelement und dessen herstellungsverfahren
WO2009068132A1 (de) Motorblock mit eingegossenen zylinderlaufbuchsen mehrerer materiallagen und verfahren zur herstellung der zylinderlaufbuchsen
AT511432B1 (de) Verfahren zur herstellung eines gleitlagerelementes
DE3335716A1 (de) Gleitlager und verfahren zu seiner herstellung
AT518875B1 (de) Mehrschichtgleitlagerelement
EP0837953A1 (de) Schichtwerkstoff
DE3519452C2 (de) Schichtwerkstoff für Gleitlagerelemente mit Antifriktionsschicht aus einem Lagerwerkstoff auf Aluminiumbasis
DE4101620A1 (de) Kupferlegierung mit ueberlegener bestaendigkeit gegenueber fressendem verschleiss, verschleiss und korrosion zur verwendung als material fuer ein gleit- bzw. schiebeelement
DE102007049041A1 (de) Gleitlager mit Gleit- und Einlaufschicht sowie dessen Herstellungsverfahren
DE4103117A1 (de) Verfahren zur herstellung von gleitelementen mit gleitschicht aus ternaerer oder binaerer weissmetall-lagerlegierung
DE202021102412U1 (de) Gleitlagerverbundwerkstoff
EP3825119A1 (de) Mehrschichtgleitlagerelement
EP2167829B1 (de) Gleitlagerverbundwerkstoff
DE3000774C2 (de) Zinnhaltige Aluminium-Lagerlegierung
WO1998017833A2 (de) Gleitlagerwerkstoff aus einer bis auf erschmelzungsbedingte verunreinigungen siliciumfreien aluminiumlegierung
DE102007049042A1 (de) Gleitlager mit Gleitschicht und Einlaufschicht
AT505290A4 (de) Gleitlagerwerkstoff aus einer legierung auf kupferbasis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98803307.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AT BR CN CZ JP KR PL RU SK TR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09367132

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998964365

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1998 9017

Country of ref document: AT

Date of ref document: 19990722

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 19989017

Country of ref document: AT

Ref document number: PV1999-3020

Country of ref document: CZ

Ref document number: 1999/02050

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 118399

Country of ref document: SK

ENP Entry into the national phase

Ref document number: 1999 536621

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997008131

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998964365

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1999-3020

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019997008131

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998964365

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV1999-3020

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1019997008131

Country of ref document: KR