WO1999004437A1 - Vertikaler leistungs-mosfet - Google Patents

Vertikaler leistungs-mosfet Download PDF

Info

Publication number
WO1999004437A1
WO1999004437A1 PCT/DE1998/002020 DE9802020W WO9904437A1 WO 1999004437 A1 WO1999004437 A1 WO 1999004437A1 DE 9802020 W DE9802020 W DE 9802020W WO 9904437 A1 WO9904437 A1 WO 9904437A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
zones
additional zones
power mosfet
vertical power
Prior art date
Application number
PCT/DE1998/002020
Other languages
English (en)
French (fr)
Inventor
Gerald Deboy
Jenoe Tihanyi
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP98947303A priority Critical patent/EP0929910A1/de
Priority to JP50615499A priority patent/JP4116098B2/ja
Priority to US09/462,759 priority patent/US6479876B1/en
Publication of WO1999004437A1 publication Critical patent/WO1999004437A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body

Definitions

  • the invention relates to a vertical power MOSFET with a semiconductor body with an inner zone of the first conductivity type and a predetermined doping concentration, with at least one base zone of the second conductivity type adjacent to the inner zone and a first surface of the semiconductor body, in each of which at least one source zone is embedded , with at least one drain zone adjoining one of the surfaces of the semiconductor body, with additional zones of the second conduction type arranged in the inner zone essentially within the space charge zone spanning the blocking voltage, with at least one additional zone between these additional zones and doped higher than the inner zone from first conductivity type and with a doping level of the additional zones and with distances of the additional zones of the second conductivity type from one another such that their charge carriers are largely eliminated when the reverse voltage is applied.
  • Such a vertical power MOSFET is described for example in DE 43 09 764 C2.
  • This known vertical power MOSFET which is shown in section in the attached FIG. 3, has a lightly n-doped inner zone 1.
  • Base zones 3 of the p-conductivity type are embedded in the upper surface 2 of a semiconductor body.
  • Source zones 4 of the n + line type are embedded in the base zones 3.
  • a gate electrode 8 is provided insulated above the surface 2.
  • a highly doped drain zone 7 of the same conductivity type as the inner zone 1 is arranged on the other surface 6.
  • Additional semiconductor zones 11, 12 are provided in the inner zone 1 in the region of the space charge zone spanning at blocking voltage.
  • Additional zones 12 doped higher than the inner zone and of the same n-conduction type as the inner zone 1 are arranged between the zones 11.
  • the zones 11, 12 are columnar.
  • the additional zones 11 of the opposite conduction type can also be arranged in the form of a rod. They are then surrounded on all sides by a single zone 12. Like zones 12, this single zone has the same conductivity type as inner zone 1, but it has a higher doping.
  • the power MOSFET If there is a voltage in the forward direction on the power MOSFET according to FIG. 3, it can be controlled in a conductive manner via the gate electrode 8. Here, the electrons originating from a source zone 4 find a high doping in the additional zones 12. The path resistance of the power MOSFET is thus reduced.
  • a space charge zone is formed starting from the pn junction between the inner zone 1 and the base zone 3, the expansion of which increases with the reverse voltage increasing. If the space charge zone abuts the p-doped zones 11, these are conductively connected to the base zones 3 via the cleared area of the inner zone 1. A high ear connection is not desirable because of the dynamic properties. If the reverse voltage increases further, the space charge zone expands further, so that some of the charge carriers also come from
  • Zones 11 and 12 are cleared. This is shown schematically by a dashed line 13.
  • the charge carriers are then from a large part of the inner zone 1 and from the Zones 11, 12 completely cleared.
  • the space charge zone thus takes a course in the inner zone 1, which is delimited by a dashed line 14. With the maximum reverse voltage present, the additional zones 11, 12 are completely in the space charge zone.
  • the removal of the charge carriers has the effect as if zones 11 and 12 were not present.
  • the maximum extent of the space charge zone is exclusively the doping of the inner zone 1.
  • the degree of compensation that is to say the total balance of the sum of the charges in zones 11 ("p-pillars") and the sum of the charges in zones 12 ("n-pillars") and the surrounding areas, is chosen to be low enough, then with block this component without difficulty 1,000 V and more.
  • this power MOSFET has a resistance that corresponds to that of a significantly lower blocking MOSFET.
  • the blocking behavior is determined by the "height" of zones 11, 12 and the degree of compensation.
  • the sheet resistance can be set by the distance a of the zones 11, 12 from the first surface 2. It can also be influenced by the doping of the zones 12.
  • the doping and the thickness of the zones 11, 12 are set such that the charge carriers from these zones 11, 12 are completely cleared out when the maximum reverse voltage is applied.
  • the FREDFET Fluorescence Epitaxial Diode-FET
  • the reverse recovery behavior (“backward recovery behavior”), however, is not optimal due to the desired transistor properties with regard to current stall, level and time course of the reverse current peak.
  • Zones of the first conduction type are reduced and that the thickness dimensioning of the additional zones is selected such that the space charge zone spanning at blocking voltage faces away from the first surface of the semiconductor body Transition between the additional zones of the first line type and the inner zone practically does not exceed.
  • the invention is based on the knowledge that the doping concentration of the additional zones is the same
  • Conduction type like the inner zone is on average about an order of magnitude above the doping concentration of the substrate receiving the same reverse voltage, which is, for example, n " -doped. Therefore, the charge carrier lifetime can be determined by diffusion of platinum, gold etc. or by irradiation with electrons or helium are reduced more by at least the same amount before negative effects on the specific resistance of the MOSFET occur as a result of the compensating effect of the lifetime adjustment on the doping of the current-carrying regions.
  • the thickness dimensioning of the additional zones forming an active layer is optimally selected such that the space charge zone does not reach the (rear) n ⁇ / n + transition between the inner zone and the drain zone facing away from the first surface of the semiconductor body at full reverse voltage.
  • An example of this is a thickness of approximately below 10 ⁇ m for a reverse voltage of 400 V.
  • FIG. 1 shows a section through the vertical power MOSFET according to the invention
  • FIG. 2 (a) to (c) are schematic representations to explain the manufacture of the power MOSFET and
  • Figure 3 shows a section through an existing vertical power MOSFET.
  • the n-type zones 11 are doped by diffusion with platinum, gold, etc., in order to reduce the charge carrier life in these zones.
  • This reduction in the lifetime of the charge carrier can also be achieved by irradiation with electrons or helium.
  • effects on the specific resistance of the MOSFET as a result of the compensating effect of the reduction in the carrier lifetime are prevented.
  • the thickness dimensioning of the additional zones 11, 12 is selected such that the space charge zone does not reach the "rear” n + / n " transition between the inner zone 1 and the drain zone 7 at full blocking voltage and practically at the transition between the additional zones 11, 12 and inner zone 1 ends.
  • the inner zone 1 can be p-doped, while the zones 11 are n-doped and the zones 12, like the inner zone 1, are p-doped. It is also possible in a p-type inner zone 1 to provide only one n-type zone 11 (“column”) or only one p-type zone 11 in an n-type inner zone 1.
  • the zones 11, 12 can be used as "p-pillars" for the zones 11 in an n-epitaxial layer for the zones 12 (see FIG. 2 (c)) or as "n-pillars” for the zones 12 in a p- Epitaxial layer for the zones 11 (see FIG. 2 (b)) can be produced. It is also possible to introduce the zones 11, 12 as “n-pillars” and “p-pillars” in an n ⁇ or p ⁇ epitaxial layer (see FIG. 2 (a)). The variant of FIG. 2 (c) has proven to be particularly advantageous.

Abstract

Die Erfindung betrifft einen vertikalen Leistungs-MOSFET mit in einer Innenzone (1) angeordneten zusätzlichen Zonen (11, 12), die den gleichen und den entgegengesetzten Leitfähigkeitstyp wie die Innenzone (1) haben. Die Ladungsträger-Lebensdauer ist in den zusätzlichen Zonen (12), die den gleichen Leitfähigkeitstyp wie die Innenzone (1) aufweisen, vermindert, und die zusätzlichen Zonen (11, 12) sind so dimensioniert, daß die Raumladungszone den von der oberen Oberfläche des MOSFET abgewandten Rand der zusätzlichen Zone (12) vom gleichen Leitfähigkeitstyp wie die Innenzone (1) praktisch nicht überschreitet.

Description

Beschreibung
Vertikaler Leistungs-MOSFET
Die Erfindung betrifft einen vertikalen Leistungs-MOSFET mit einem Halbleiterkörper mit einer Innenzone vom ersten Leitungstyp und vorgegebener Dotierungskonzentration, mit mindestens einer an der Innenzone und an eine erste Oberfläche des Halbleiterkörpers angrenzenden Basiszone vom zweiten Lei- tungstyp, in die jeweils mindestens eine Sourcezone eingebettet ist, mit mindestens einer an eine der Oberflächen des Halbleiterkörpers angrenzenden Drainzone, mit in der Innenzone im wesentlichen innerhalb der sich bei Sperrspannung aufspannenden Raumladungszone angeordneten zusätzlichen Zonen des zweiten Leitungstyps, mit mindestens einer zwischen diesen zusätzlichen Zonen liegenden, höher als die Innenzone dotierten zusätzlichen Zone vom ersten Leitungstyp und mit einer Dotierungshöhe der zusätzlichen Zonen und mit Abständen der zusätzlichen Zonen des zweiten Leitungstyps voneinander derart, daß ihre Ladungsträger bei angelegter Sperrspannung weitgehend ausgeräumt sind.
Ein derartiger vertikaler Leistungs-MOSFET ist beispielsweise in der DE 43 09 764 C2 beschrieben.
Dieser bekannte vertikale Leistungs-MOSFET, der im Schnitt in der beigefügten Fig. 3 dargestellt ist, hat eine niedrig n- dotierte Innenzone 1. In die obere Oberfläche 2 eines Halbleiterkörpers sind Basiszonen 3 des p-Leitungstyps eingela- gert. In die Basiszonen 3 sind Sourcezonen 4 des n+-Leitungε- typs eingebettet. Isoliert über der Oberfläche 2 ist eine Gateelektrode 8 vorgesehen. An der anderen Oberfläche 6 ist einen hochdotierte Drainzone 7 vom gleichen Leitungstyp wie die Innenzone 1 angeordnet . In der Innenzone 1 sind im Bereich der sich bei Sperrspannung aufspannenden Raumladungszone zusätzliche Halbleiterzonen 11, 12 vorgesehen. Es sind mindestens zwei Zonen 11 des der Innenzone 1 entgegengesetzten Leitungstyps vorhanden. Zwischen den Zonen 11 sind höher als die Innenzone dotierte zusätzliche Zonen 12 des der Innenzone 1 gleichen n-Leitungstyps angeordnet. Die Zonen 11, 12 sind säulenförmig ausgebildet. Die zusätzlichen Zonen 11 des entgegengesetzten Leitungstyps können auch stabförmig angeordnet werden. Sie sind dann von ei- ner einzigen Zone 12 allseitig umgeben. Diese einzige Zone hat ebenso wie die Zonen 12 den gleichen Leitungstyp wie die Innenzone 1, sie weist jedoch eine höhere Dotierung auf.
Liegt am Leistungs-MOSFET nach Fig. 3 eine Spannung in Durch- laßrichtung an, so kann er über die Gateelektrode 8 leitend gesteuert werden. Hierbei finden die aus einer Sourcezone 4 stammenden Elektronen in den zusätzlichen Zonen 12 eine hohe Dotierung vor. Damit verringert sich der Bahnwiderstand des Leistungs-MOSFETs .
Liegt am Leistungs-MOSFET eine Sperrspannung an, so bildet sich ausgehend vom pn-Obergang zwischen der Innenzone 1 und der Basiszone 3 eine Raumladungszone aus, deren Ausdehnung mit steigender Sperrspannung anwächst. Stößt die Raumladungs- zone an die p-dotierten Zonen 11 an, so werden diese über das ausgeräumte Gebiet der Innenzone 1 leitend an die Basiszonen 3 angeschlossen. Eine hochohrnige Verbindung ist wegen der dynamischen Eigenschaften an sich nicht erwünscht. Bei weiter ansteigender Sperrspannung dehnt sich die Raumladungszone weiter aus, so daß auch ein Teil der Ladungsträger aus den
Zonen 11 und 12 ausgeräumt wird. Dies ist durch eine gestrichelte Linie 13 schematisch dargestellt.
Bei weiterer Steigerung der Sperrspannung sind dann die La- dungsträger aus einem großen Teil der Innenzone 1 und aus den Zonen 11, 12 vollständig ausgeräumt. Die Raumladungszone nimmt damit in der Innenzone 1 einen Verlauf an, der durch eine gestrichelte Linie 14 begrenzt ist. Bei maximal anliegender Sperrspannung liegen so die zusätzlichen Zonen 11, 12 vollständig in der Raumladungszone.
Das Ausräumen der Ladungsträger hat die Wirkung, als ob die Zonen 11 und 12 nicht vorhanden wären. Bei maximaler Ausdehnung der Raumladungszone ist also in erster Näherung aus- schließlich die Dotierung der Innenzone 1 maßgebend. Wird der Kompensationsgrad, also die Gesamtbilanz der Summe der Ladungen in den Zonen 11 ("p-Säulen") und der Summe der Ladungen in den Zonen 12 ("n-Säulen") sowie der umgebenden Bereiche niedrig genug gewählt, so lassen sich mit diesem Bauelement ohne weiteres 1.000 V und mehr sperren. Im Durchlaßfall hat dagegen dieser Leistungs-MOSFET einen Widerstand, der dem eines erheblich niedriger sperrenden MOSFET entspricht. Das Sperrverhalten wird durch die "Höhe" der Zonen 11, 12 und den Kompensationsgrad bestimmt.
Der Bahnwiderstand läßt sich durch den Abstand a der Zonen 11, 12 von der ersten Oberfläche 2 einstellen. Er läßt sich außerdem durch die Dotierung der Zonen 12 beeinflussen.
Bei diesem bekannten MOSFET werden die Dotierung und die Dik- ke der Zonen 11, 12 so eingestellt, daß die Ladungsträger aus diesen Zonen 11, 12 bei Anlegen der maximalen Sperrspannung vollständig ausgeräumt sind.
Vertikale MOSFETs, die in der Leistungselektronik eingesetzt werden, bieten an sich im Gegensatz zu anderen Transistorkonzepten, wie beispielsweise einem Bipolartransistor mit isoliertem Gate (IGBT) die Möglichkeit, die durch ein ^-Substrat, eine n"-Epitaxieschicht und eine p-Wanne (vgl. die Be- zugszeichen 7, 1 und 3 in Fig. 3) gebildete Inversdiode als Freilaufdiode einzusetzen. Solche Freilaufdioden werden insbesondere in Pulswechselrichteranwendungen, wie beispielsweise Schaltnetzteilen und Halb- oder Vollbrücken zur Motorsteuerung, benötigt.
Derzeit gibt es mit dem FREDFET ("Fast Recovery Epitaxial Di- ode-FET" ) ein Bauelement, dessen Inversdiode in gewisser Weise als Freilaufdiode einsetzbar ist. Das Reverse-Recovery- Verhalten ( "Rückwärts-Erholungsverhalten" ) ist jedoch auf- grund der angestrebten Transistoreigenschaften hinsichtlich Stromabriß, Höhe und zeitlicher Verlauf der Rückstromspitze, nicht optimal.
Werden übliche MOSFETs angewendet, so ist ständig eine exter- ne Beschaltung mit eigener Freilaufdiode und einer weiteren Zener-Diode zwischen Drain und Source zum Schutz des MOSFETs vor einem Durchbruch erforderlich. Auch der aus der DE 43 09 764 C2 bekannte und oben anhand der Fig. 3 erläuterte Leistungs-MOSFET ist hinsichtlich der Eigenschaften seiner Inversdiode nicht befriedigend.
Es ist daher Aufgabe der vorliegenden Erfindung, einen vertikalen Leistungs-MOSFET zu schaffen, der hinsichtlich der Eigenschaften seiner Inversdiode ohne Verschlechterung der Transistoreigenschaften, insbesondere des spezifischen Widerstandes zwischen Drain und Source, verbessert ist.
Diese Aufgabe wird bei einem vertikalen Leistungs-MOSFET der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß die Ladungsträger-Lebensdauer mindestens in den zusätzlichen
Zonen vom ersten Leitungstyp vermindert ist und daß die Dik- kendi ensionierung der zusätzlichen Zonen so gewählt ist, daß die sich bei Sperrspannung aufspannende Raumladungszone den von der ersten Oberfläche des Halbleiterkörpers abgewandten Übergang zwischen den zusätzlichen Zonen vom ersten Leitungs- typ und der Innenzone praktisch nicht überschreitet.
Die Erfindung geht dabei von der Erkenntnis aus, daß die Do- tierungskonzentration der zusätzlichen Zonen des gleichen
Leitungstyps wie die Innenzone durchschnittlich um etwa eine Größenordnung über der Dotierungskonzentration des die gleiche Sperrspannung aufnehmenden Substrates, das beispielsweise n"-dotiert ist, liegt. Daher kann die Ladungsträger-Lebens- dauer durch Diffusion von Platin, Gold usw. oder durch Bestrahlung mit Elektronen oder Helium um mindestens den gleichen Betrag stärker abgesenkt werden, bevor negative Auswirkungen auf den spezifischen Widerstand des MOSFETs als Folge der kompensierenden Wirkung der Lebensdauereinstellung auf die Dotierung der stromführenden Gebiete auftreten.
Es ist also eine wesentlich kürzere Lebensdauer der Ladungsträger erzielbar, wobei Werte für diese angestrebt werden, die unterhalb 0,5 μs liegen sollten. Durch diese geringere Lebensdauer wird ein rascheres Abkommutieren des Stromes erreicht, so daß der MOSFET früher seine Sperrspannung aufnehmen kann. Damit werden die Speicherladung und die Belastung des einschaltenden MOSFETs in einer Voll- oder Halbbrückenkonfiguration entsprechend verringert.
Die Dickendi ensionierung der eine aktive Schicht bildenden zusätzlichen Zonen ist optimal so gewählt, daß die Raumladungszone bei voller Sperrspannung den von der ersten Oberfläche des Halbleiterkörpers abgewandten (hinteren) n~/n+- Übergang zwischen der Innenzone und der Drainzone jedenfalls nicht erreicht. Als Beispiel sei hierfür eine Dicke von etwa unterhalb 10 μm für eine Sperrspannung von 400 V genannt.
Da damit der Strom im wesentlichen innerhalb relativ hoch do- tierter Bahngebiete fließt, ist der Verlust an spezifischem Drain-Source-Widerstand sehr gering. Auch wird erreicht, daß die Speicherladung im "hinteren" Bereich des MOSFETs verbleibt. Diese Speicherladung wird durch Rekombination und Diffusion innerhalb von etwa 0,5 μs abgebaut, so daß ein "sanfter" Verlauf der Rückstromspitze, ein sog. "soft reco- very-Verhalten" erzielbar ist. Insbesondere kann auch der Abriß des Rückstromes, der sonst bei jedem MOSFET mit minimaler Dickenauslegung auftritt, vermieden werden. Überspannungen, die durch Streuinduktivitäten im Zweig zwischen kommutieren- dem und einschaltendem MOSFET bis hin zu einem Avalanche- durchbruch des kommutierenden Schalters auftreten, und die damit verbundenen Netzbelastungen werden so sicher verhindert .
Damit ist ein Einsatz des erfindungsgemäßen vertikalen Leistungs-MOSFET als Freilaufdiode möglich. Das heißt, eine entsprechende Ersatzbeschaltung mit einer eigenen Freilaufdiode ist im Gegensatz zum Stand der Technik nicht mehr erforderlich.
Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:
Figur 1 einen Schnitt durch den erfindungsgemäßen vertikalen Leistungs-MOSFET,
Figur 2 (a) bis (c) schematische Darstellungen zur Erläuterung der Herstellung des Leistungs-MOSFET und
Figur 3 einen Schnitt durch einen bestehenden vertikalen Leistungs-MOSFET.
Die Fig. 3 ist bereits eingangs ausführlich beschrieben worden. In der Fig. 1 werden für einander entsprechende Bauteile die gleichen Bezugszeichen wie in Fig. 3 verwendet, so daß von näheren Erläuterungen hierzu abgesehen werden kann.
Im Gegensatz zu dem bestehenden vertikalen MOSFET gemäß
Fig. 3 sind bei dem erfindungsgemäßen vertikalen Leistungs- MOSFET die n-leitenden Zonen 11 durch Diffusion mit Platin, Gold usw. dotiert, um die Ladungsträger-Lebensdauer in diesen Zonen zu vermindern. Diese Verringerung der Ladungsträger- Lebensdauer kann auch durch Bestrahlung mit Elektronen oder Helium erreicht werden. Infolge der ursprünglich höheren Dotierung werden Auswirkungen auf den spezifischen Widerstand des MOSFETs als Folge der kompensierenden Wirkung der Verringerung der Ladungsträger-Lebensdauer verhindert.
Durch die geringere Ladungsträger-Lebensdauer wird ein rascheres Abkommutieren des Stromes erreicht, so daß der Leistungs-MOSFET früher seine Sperrspannung aufnehmen kann.
Die Dickendimensionierung der zusätzlichen Zonen 11, 12 ist so gewählt, daß die Raumladungszone bei voller Sperrspannung den "hinteren" n+/n"-Übergang zwischen der Innenzone 1 und der Drainzone 7 keinesfalls erreicht und praktisch am Übergang zwischen den zusätzlichen Zonen 11, 12 und der Innenzone 1 endet.
Die maximale Ausdehnung der Raumladungszone ist in Fig. 1 durch eine Linie 15 angedeutet.
Die in den Fig. 1 und 2 angegebenen Polaritäten können selbstverständlich vertauscht werden. So kann beispielsweise die Innenzone 1 p-dotiert sein, während die Zonen 11 n- dotiert und die Zonen 12 wie die Innenzone 1 p-dotiert sind. Außerdem ist es auch möglich, in einer p-leitenden Innenzone 1 nur eine n-leitende Zone 11 ("Säule") oder in einer n- leitenden Innenzone 1 nur eine p-leitende Zone 11 vorzusehen.
Die Zonen 11, 12 können als "p-Säulen" für die Zonen 11 in einer n-Epitaxieschicht für die Zonen 12 (vgl. Fig. 2(c)) oder als "n-Säulen" für die Zonen 12 in einer p-Epitaxie- schicht für die Zonen 11 (vgl. Fig. 2(b)) hergestellt werden. Auch ist es möglich, die Zonen 11, 12 als "n-Säulen" und "p- Säulen" in eine n~- bzw. p~-Epitaxieschicht einzubringen (vgl. Fig. 2 (a) ) . Als besonders vorteilhaft hat sich die Variante der Fig. 2(c) erwiesen.

Claims

Patentansprüche
1. Vertikaler Leistungs-MOSFET mit einem Halbleiterkörper mit einer Innenzone (1) vom ersten Leitungstyp und vorgegebener Dotierungskonzentration, mit mindestens einer an die Innenzone (1) und an eine erste Oberfläche des Halbleiterkörpers angrenzenden Basiszone (3) vom zweiten Leitungstyp, in die jeweils mindestens eine Sourcezone (4) eingebettet ist, mit mindestens einer an eine der Oberflächen des Halbleiterkör- pers angrenzenden Drainzone (7) mit in der Innenzone (1) im wesentlichen innerhalb der sich bei Sperrspannung aufspannenden Raumladungszone angeordneten zusätzlichen Zonen (11) des zweiten Leitungstyps, mit mindestens einer zwischen diesen zusätzlichen Zonen liegenden, höher als die Innenzone (1) do- tierten zusätzlichen Zone (12) vom ersten Leitungstyp und mit einer Dotierungshöhe der zusätzlichen Zonen (11, 12) und mit Abständen der zusätzlichen Zonen des zweiten Leitungstyps voneinander derart, daß ihre Ladungsträger bei angelegter Sperrspannung weitgehend ausgeräumt sind, d a d u r c h g e k e n n z e i c h n e t , daß die Ladungsträger-Lebensdauer mindestens in den zusätzlichen Zonen (12) vom ersten Leitungstyp vermindert ist und daß die Dickendimensionierung der zusätzlichen Zonen (11, 12) so gewählt ist, daß die sich bei Sperrspannung aufspannende Raumladungszone (vgl. 15) den von der ersten Oberfläche des
Halbleiterkörpers abgewandten Übergang zwischen den zusätzlichen Zonen (12) vom ersten Leitungstyp und der Innenzone (1) praktisch nicht überschreitet.
2. Vertikaler Leistungs-MOSFET nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Ladungsträger-Lebensdauer durch Diffusion von Platin und/oder Gold oder durch Bestrahlung mit Elektronen und/oder Helium herabgesetzt ist.
3. Vertikaler Leistungs-MOSFET nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Ladungsträger-Lebensdauer auf Werte unterhalb 0,5 μs eingestellt ist.
4. Vertikaler Leistungs-MOSFET nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Dicke der zusätzlichen Zonen (11, 12) in Dickenrichtung des vertikalen MOSFETs für eine Sperrspannung von 400 V etwa unterhalb 10 μm beträgt.
5. Vertikaler Leistungs-MOSFET nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß eine der zusätzlichen Zonen (11, 12) als p-Säule bzw. als n-Säule in eine n- bzw. p-Epitaxieschicht eingebracht ist.
6. Vertikaler Leistungs-MOSFET nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß die zusätzlichen Zonen (11, 12) als p- bzw. n-Säulen in eine n"- oder p"-Epitaxieschicht eingebracht sind.
PCT/DE1998/002020 1997-07-17 1998-07-17 Vertikaler leistungs-mosfet WO1999004437A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98947303A EP0929910A1 (de) 1997-07-17 1998-07-17 Vertikaler leistungs-mosfet
JP50615499A JP4116098B2 (ja) 1997-07-17 1998-07-17 縦形パワーmosfet
US09/462,759 US6479876B1 (en) 1997-07-17 1998-07-17 Vertical power MOSFET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19730759.0 1997-07-17
DE19730759A DE19730759C1 (de) 1997-07-17 1997-07-17 Vertikaler Leistungs-MOSFET

Publications (1)

Publication Number Publication Date
WO1999004437A1 true WO1999004437A1 (de) 1999-01-28

Family

ID=7836066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/002020 WO1999004437A1 (de) 1997-07-17 1998-07-17 Vertikaler leistungs-mosfet

Country Status (5)

Country Link
US (1) US6479876B1 (de)
EP (1) EP0929910A1 (de)
JP (1) JP4116098B2 (de)
DE (1) DE19730759C1 (de)
WO (1) WO1999004437A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081768A2 (de) * 1999-08-20 2001-03-07 Shindengen Electric Manufacturing Company, Limited Feldeffekttransistor mit isolierter Steuerelektrode und Verfahren zu dessen Herstellung
JP2001210823A (ja) * 2000-01-21 2001-08-03 Denso Corp 半導体装置
US6630698B1 (en) 1998-09-02 2003-10-07 Infineon Ag High-voltage semiconductor component
WO2004042825A1 (en) * 2002-11-06 2004-05-21 Koninklijke Philips Electronics N.V. Semiconductor devices and methods of manufacture thereof
US6819089B2 (en) 2001-11-09 2004-11-16 Infineon Technologies Ag Power factor correction circuit with high-voltage semiconductor component
US6825514B2 (en) 2001-11-09 2004-11-30 Infineon Technologies Ag High-voltage semiconductor component

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3804375B2 (ja) 1999-12-09 2006-08-02 株式会社日立製作所 半導体装置とそれを用いたパワースイッチング駆動システム
DE10048345A1 (de) 2000-09-29 2002-05-16 Eupec Gmbh & Co Kg Körper aus Halbleitermaterial mit reduzierter mittlerer freier Weglänge
DE10052004C1 (de) * 2000-10-20 2002-02-28 Infineon Technologies Ag Vertikaler Feldeffekttransistor mit Kompensationszonen und Anschlüssen an einer Seite eines Halbleiterkörpers
JP3899231B2 (ja) * 2000-12-18 2007-03-28 株式会社豊田中央研究所 半導体装置
EP1267415A3 (de) 2001-06-11 2009-04-15 Kabushiki Kaisha Toshiba Leistungshalbleiterbauelement mit RESURF-Schicht
JP3973395B2 (ja) * 2001-10-16 2007-09-12 株式会社豊田中央研究所 半導体装置とその製造方法
JP3634848B2 (ja) 2003-01-07 2005-03-30 株式会社東芝 電力用半導体素子
DE10361136B4 (de) * 2003-12-23 2005-10-27 Infineon Technologies Ag Halbleiterdiode und IGBT
JP4844371B2 (ja) * 2006-12-04 2011-12-28 富士電機株式会社 縦型超接合半導体素子
DE102007019551B9 (de) * 2007-04-25 2012-10-04 Infineon Technologies Austria Ag Halbleiterbauelement und Verfahren zur Herstellung desselben
US8492829B2 (en) * 2008-09-01 2013-07-23 Rohm Co., Ltd. Semiconductor device having super junction metal oxide semiconductor structure and fabrication method for the same
CN103383954A (zh) * 2012-05-03 2013-11-06 朱江 一种无源超结半导体装置及其制备方法
US9287371B2 (en) 2012-10-05 2016-03-15 Semiconductor Components Industries, Llc Semiconductor device having localized charge balance structure and method
US9219138B2 (en) 2012-10-05 2015-12-22 Semiconductor Components Industries, Llc Semiconductor device having localized charge balance structure and method
US9583578B2 (en) * 2013-01-31 2017-02-28 Infineon Technologies Ag Semiconductor device including an edge area and method of manufacturing a semiconductor device
US9306034B2 (en) 2014-02-24 2016-04-05 Vanguard International Semiconductor Corporation Method and apparatus for power device with multiple doped regions
US9825128B2 (en) 2015-10-20 2017-11-21 Maxpower Semiconductor, Inc. Vertical power transistor with thin bottom emitter layer and dopants implanted in trenches in shield area and termination rings
US9768247B1 (en) 2016-05-06 2017-09-19 Semiconductor Components Industries, Llc Semiconductor device having improved superjunction trench structure and method of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0071916A2 (de) * 1981-08-12 1983-02-16 Siemens Aktiengesellschaft Leistungs-MOS-Feldeffekttransistor und Verfahren zu seiner Herstellung
GB2243952A (en) * 1990-05-09 1991-11-13 Int Rectifier Corp Power transistor device having deep increased concentration region
US5216275A (en) * 1991-03-19 1993-06-01 University Of Electronic Science And Technology Of China Semiconductor power devices with alternating conductivity type high-voltage breakdown regions
DE4309764A1 (de) * 1993-03-25 1994-09-29 Siemens Ag Leistungs-MOSFET

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH668505A5 (de) * 1985-03-20 1988-12-30 Bbc Brown Boveri & Cie Halbleiterbauelement.
DE69320033T2 (de) * 1993-06-10 1998-12-03 Cons Ric Microelettronica Monolitisch integrierte Struktur eines vertikalen Bipolar- und eines vertikalen MOSFET-Transistors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0071916A2 (de) * 1981-08-12 1983-02-16 Siemens Aktiengesellschaft Leistungs-MOS-Feldeffekttransistor und Verfahren zu seiner Herstellung
GB2243952A (en) * 1990-05-09 1991-11-13 Int Rectifier Corp Power transistor device having deep increased concentration region
US5216275A (en) * 1991-03-19 1993-06-01 University Of Electronic Science And Technology Of China Semiconductor power devices with alternating conductivity type high-voltage breakdown regions
DE4309764A1 (de) * 1993-03-25 1994-09-29 Siemens Ag Leistungs-MOSFET

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630698B1 (en) 1998-09-02 2003-10-07 Infineon Ag High-voltage semiconductor component
US6894329B2 (en) 1998-09-02 2005-05-17 Infineon Technologies Ag High-voltage semiconductor component
US6960798B2 (en) 1998-09-02 2005-11-01 Infineon Technologies Ag High-voltage semiconductor component
EP1081768A2 (de) * 1999-08-20 2001-03-07 Shindengen Electric Manufacturing Company, Limited Feldeffekttransistor mit isolierter Steuerelektrode und Verfahren zu dessen Herstellung
EP1081768A3 (de) * 1999-08-20 2001-08-22 Shindengen Electric Manufacturing Company, Limited Feldeffekttransistor mit isolierter Steuerelektrode und Verfahren zu dessen Herstellung
US6703665B1 (en) 1999-08-20 2004-03-09 Shindengen Electric Manufacturing Co., Ltd. Transistor
JP2001210823A (ja) * 2000-01-21 2001-08-03 Denso Corp 半導体装置
US6819089B2 (en) 2001-11-09 2004-11-16 Infineon Technologies Ag Power factor correction circuit with high-voltage semiconductor component
US6825514B2 (en) 2001-11-09 2004-11-30 Infineon Technologies Ag High-voltage semiconductor component
US6828609B2 (en) 2001-11-09 2004-12-07 Infineon Technologies Ag High-voltage semiconductor component
WO2004042825A1 (en) * 2002-11-06 2004-05-21 Koninklijke Philips Electronics N.V. Semiconductor devices and methods of manufacture thereof

Also Published As

Publication number Publication date
EP0929910A1 (de) 1999-07-21
JP2001501042A (ja) 2001-01-23
DE19730759C1 (de) 1998-09-03
US6479876B1 (en) 2002-11-12
JP4116098B2 (ja) 2008-07-09

Similar Documents

Publication Publication Date Title
DE19730759C1 (de) Vertikaler Leistungs-MOSFET
DE10259373B4 (de) Überstromfeste Schottkydiode mit niedrigem Sperrstrom
DE19811297B4 (de) MOS-Halbleitervorrichtung mit hoher Durchbruchspannung
EP0200863B1 (de) Halbleiterbauelement mit Thyristor- und Diodenstrukturen
DE10250575A1 (de) IGBT mit monolithisch integrierter antiparalleler Diode
EP0987766A1 (de) Randstruktur für einen Feldeffekttransistor mit einer Vielzahl von Zellen
DE19528998C2 (de) Bidirektionaler Halbleiterschalter und Verfahren zu seiner Steuerung
EP0913000B1 (de) Durch feldeffekt steuerbares halbleiterbauelement
DE3631136C2 (de)
EP1097482B1 (de) J-fet-halbleiteranordnung
DE3131914A1 (de) Leistungs-mos-feldeffekttransistor und verfahren zu seiner herstellung
EP1092238A1 (de) Universal-halbleiterscheibe für hochvolt-halbleiterbauelemente
EP1116276B1 (de) Halbleiterbauelement mit feldformungsgebieten
DE10360574B4 (de) Leistungshalbleiterbauelement mit sanftem Abschaltverhalten
EP0709899A2 (de) Halbleiterdiode mit Elektronen-Injektionsmittel
DE10245089A1 (de) Dotierverfahren und Halbleiterbauelement
DE102005029263A1 (de) Halbleiterbauelement mit verbesserter dynamischer Belastbarkeit
WO1991010265A1 (de) Feldeffekt-gesteuertes halbleiter-bauelement
DE10223951A1 (de) Hochvoltdiode mit optimiertem Abschaltverfahren und entsprechendes Optimierverfahren
EP0559945A1 (de) Abschaltbares Leistungshalbleiter-Bauelement
DE10126309A1 (de) Rückwärtssperrendes Leistungshalbleiterbauelement
DE10321222A1 (de) Halbleiterbauelement
DE4240027A1 (de) MOS-gesteuerte Diode
DE10326739B3 (de) Halbleiterbauelement mit Schottky-Metallkontakt
DE10038150B4 (de) Mittels Feldeffekt steuerbares Halbleiterelement mit integrierter Schottky-Diode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998947303

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 506154

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998947303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09462759

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 1998947303

Country of ref document: EP