WO1998054270A1 - Compositions adhesives thermofusibles a base de polydiene hydroxyle - Google Patents

Compositions adhesives thermofusibles a base de polydiene hydroxyle Download PDF

Info

Publication number
WO1998054270A1
WO1998054270A1 PCT/FR1998/001063 FR9801063W WO9854270A1 WO 1998054270 A1 WO1998054270 A1 WO 1998054270A1 FR 9801063 W FR9801063 W FR 9801063W WO 9854270 A1 WO9854270 A1 WO 9854270A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
ethylene
diisocyanate
hot
melt adhesive
Prior art date
Application number
PCT/FR1998/001063
Other languages
English (en)
Inventor
Jean Lebez
Jean-Jacques Flat
Jean-Michel Pierrot
Original Assignee
Elf Atochem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem S.A. filed Critical Elf Atochem S.A.
Priority to JP11500332A priority Critical patent/JP2000515583A/ja
Priority to US09/230,724 priority patent/US6207785B1/en
Priority to EP98928371A priority patent/EP0915942A1/fr
Priority to CA002262981A priority patent/CA2262981A1/fr
Priority to BR9806035A priority patent/BR9806035A/pt
Priority to AU80231/98A priority patent/AU8023198A/en
Publication of WO1998054270A1 publication Critical patent/WO1998054270A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • C08G18/698Mixtures with compounds of group C08G18/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J149/00Adhesives based on homopolymers or copolymers of compounds having one or more carbon-to-carbon triple bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • C08G2170/20Compositions for hot melt adhesives

Definitions

  • the present invention relates to hot melt adhesive compositions based on hydroxylated polydiene and more particularly hot melt adhesive compositions (HMA) in the form of a polymer containing free isocyanate functions, said polymer results from the reaction of a polyisocyanate (A), d polydiene polyol (B) and an ethylene copolymer (C) containing hydroxyl functions.
  • the polydiene polyol is a hydroxytelechelic polybutadiene and the copolymer (C) is either an ethylene-vinyl acetate copolymer (hydroxyethyl (meth) acrylate) or an ethylene- (meth) acrylate copolymer. hydroxyethyl alkyl- (meth) acrylate.
  • This composition generally associated with a sticky resin makes it possible to produce bondings resistant to high temperature after crosslinking of the free NCO functions usually under the effect of atmospheric humidity.
  • hot-melt adhesives hot-melts adhesives or HMA
  • HMA hot-melts adhesives
  • thermoplastic resin solid at room temperature
  • HMA hot-melts adhesives
  • These adhesives are fluidized when hot, the bonding of the surfaces to be bonded being ensured when the adhesive becomes rigid again on cooling.
  • These hot-melt adhesives generally result from the combination of three basic constituents: a thermoplastic resin, a sticky resin (tackifier) and a wax, to which additives such as stabilizer, filler, plasticizers and others can be combined.
  • the best known basic thermoplastic resins are polyamides, atactic polypropylene, ethylene-vinyl acetate (EVA) copolymers and ethylene- (meth) alkyl acrylate copolymers.
  • EVA ethylene-vinyl acetate
  • ethylene- (meth) alkyl acrylate copolymers In the current state, these hot-melt adhesives have good adhesive properties, but have the drawback of showing poor heat resistance, resistance hardly exceeding 60 to 80 ° C.
  • polyurethane hot-melt adhesives has been developed. These products are prepared in a conventional manner by reaction of polyisocyanate on polyols of polyester type, at least one of which is solid at room temperature. These adhesives are applied at high temperature in the molten phase. They have the disadvantage of being incompatible with sticky resins (tackifiers) which greatly limits the possibilities of formulation. This then results in an ability to bond limited to certain well defined supports. In addition, these products have open times of the order of a few minutes, which is too long for certain high speed applications.
  • the open time of a hot-melt adhesive is the time available for bonding, between the time when the adhesive is applied in the molten state on the first support to be bonded and the time when the hot-melt adhesive is no longer enough. fluid to allow the second support to be assembled correctly.
  • Another type of crosslinkable hot-melt adhesive has been developed from ethylene-hydroxylated vinyl acetate copolymers reacting with a polyisocyanate blocked in stoichiometric quantity, as described in European patent EP 294 271. These hot-melt adhesives, compatible with sticky resins ( tackifying), have good adhesive properties, but have the disadvantage of requiring subsequent heat treatments at temperatures of at least 140 ° C for several minutes to ensure their good crosslinking.
  • EP 380 379 describes crosslinkable hot-melt adhesive compositions in the form of a prepolymer containing free isocyanate functions, said prepolymer results from the reaction of a copolymer of ethylene and vinyl acetate containing hydroxyl functions with a polyisocyanate.
  • This prior art describes the copolymers obtained by direct copolymerization of ethylene, vinyl acetate and hydroxyethyl acrylate as well as the ethylene-vinyl acetate-vinyl alcohol copolymers obtained by partial hydrolysis of ethylene-acetate copolymers vinyl.
  • EP 600767 is similar to the previous ones, but a primary alcohol (dodecanol) is added to the ethylene-vinyl acetate-hydroxyethyl acrylate copolymer.
  • the essential difference in composition between these prior arts and the present invention is therefore the joint use of polydiene polyol and of a hydroxylated copolymer (C) to react on the polyisocyanate instead of only EVA-HEA (ethylene-vinyl acetate copolymer -hydroxyethyl acrylate) or instead of EVA-HEA and dodecanol.
  • EVA-HEA ethylene-vinyl acetate copolymer -hydroxyethyl acrylate
  • dodecanol ethylene-vinyl acetate copolymer -hydroxyethyl acrylate
  • the fluidity index is designated by Ml (Meit Index) or MFI (Meit Flow Index), - after preparation, give an HMA which has a lower viscosity especially if one starts with an EVA-HEA of low MFI, therefore allowing to use HMA at a lower temperature (110-140 ° C),
  • EP 293602 describes hot melt adhesive compositions comprising (i) the reaction product of a polyisocyanate with a polyol and (ii) a thermoplastic polymer such as an EVA (ethylene-vinyl acetate copolymer) or a SEBS (styrene block copolymer) ethylene / butene-styrene).
  • EVA ethylene-vinyl acetate copolymer
  • SEBS styrene block copolymer
  • the polyisocyanate (A) is generally chosen from aliphatic, cycloaliphatic or aromatic polyisocyanates well known to those skilled in the art, as well as mixtures of these compounds.
  • aliphatic polyisocyanates mention may be made of hexamethylene diisocyanate (HDI), trimethyl hexamethylene diisocyanate (HMDI), ethylene diisocyanate, ethylidene diisocyanate, propylene diisocyanate, butylene diisocyanate, dichlorohexamethylene diisocyanate, furfurylidene diisocyanate and mixtures as well as the derivatives (dimer, trimer, biuret, allophanate) of these compounds.
  • HDI hexamethylene diisocyanate
  • HMDI trimethyl hexamethylene diisocyanate
  • ethylene diisocyanate ethylidene diisocyanate
  • propylene diisocyanate propylene
  • cycloaliphatic polyisocyanates examples include isophorone diisocyanate (IPDI), cyclopentylene-1, 3-diisocyanate, cyclohexylene-1, 4-diisocyanate, cyclohexylene-1, 2-diisocyanate and mixtures and derivatives (dimer, trimer, biuret, allophanate) of these compounds.
  • IPDI isophorone diisocyanate
  • cyclopentylene-1 3-diisocyanate
  • cyclohexylene-1 4-diisocyanate
  • 2-diisocyanate 2-diisocyanate
  • mixtures and derivatives dimer, trimer, biuret, allophanate
  • aromatic polyisocyanates examples include 4,4'-diphenylmethane (MDI) and its isomers, in particular 2,4'- and 2,2'- diphenylmethane diisocyanate, toluene diisocyanate (TDI) and its isomers, in particular 2,4- and 2,6-toluene diisocyanate, 2,2-diphenylpropane-4,4'- diisocyanate, p-phenylene diisocyanate, m-phenylene diisocyanate, xylene diisocyanate, 1 , 4-naphthalene diisocyanate, 1,5-naphthylene diisocyanate, azobenzene-4,4'-diisocyanate, diphenyl sulfone-4,4'-diisocyanate, 1-chlorobenzene-2,4-diisocyanate, 4, 4'4 "-triisocyanato-triphen
  • diisocyanates are used and more particularly MDI and its isomers, TDI and its isomers, HDI, IPDI and their derivatives.
  • polydien polyols (B) which can be used according to the present invention
  • hydroxytelechelic conjugated diene oligomers which can be obtained by various processes such as the radical polymerization of conjugated diene having from 4 to 20 carbon atoms in presence of a polymerization initiator such as hydrogen peroxide or an azo compound such as azobis-2,2 '[methyl-2, N- (hydroxy-2ethyl) propionamide] or the anionic polymerization of conjugated diene having from 4 to 20 carbon atoms in the presence of a catalyst such as naphthalene dilithium.
  • a polymerization initiator such as hydrogen peroxide or an azo compound such as azobis-2,2 '[methyl-2, N- (hydroxy-2ethyl) propionamide]
  • a catalyst such as naphthalene dilithium
  • the conjugated diene of the polydiene-polyol is chosen from the group comprising butadiene, isoprene, chloroprene, pentadiene-1, 3, cyclopentadiene.
  • the number-average molar mass of the polyols which can be used can vary from 500 to 15,000 and preferably from 1000 to
  • a polydiene polyol based on butadiene is preferably used.
  • the polydiene polyol comprises 70 to 85% by mole, preferably 75% of units. and 15 to 30% preferably 25% of patterns
  • copolymers of conjugated diene and of vinyl and acrylic monomer such as styrene or acrylonitrile.
  • the OH index expressed in meq / g is between 0.5 and 5, their viscosity is between 500 and 100,000 mPa.s at 30 ° C.
  • polystyrene-polyols By way of illustration of polydien-polyols, mention will be made of polybutadienes with hydroxyl endings sold by the company ELF ATOCHEM S.A. under the names Poly Bd®R45 HT and Poly Bd®R20 LM.
  • the polymer of the invention can also comprise a chain extender.
  • chain extender currently denotes compounds carrying at least two reactive functions with the isocyanate functions.
  • the chain extender can be chosen from polyols. Their molecular mass can be between 62 and 500. By way of illustration of such compounds, mention may be made of ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1, 4-butanediol, 1, 6 -hexanediol, 2-ethyl-1, 3-hexanediol, N, N bis (2-hydroxypropyl) aniline, 3-methyl-1, 5-pentanediol and the mixture of at least two of the above-mentioned compounds. Polyamines can also be used as chain extenders. Their molecular mass can be between 60 and 500.
  • polystyrene resin By way of illustration of such polyamines, mention will be made of ethylene diamine, diphenyl methane diamine, isophoronediamine, hexamethylenediamine, diethyltoluenediamine.
  • One part by weight of one or more abovementioned chain extenders can be used per 100 parts by weight of polydiene polyol (B) used and preferably 5 to 30 parts by weight.
  • the hydroxyl functions of the copolymer (C) can be provided: - by grafting or by copolymerization of an unsaturated monomer having at least one hydroxylated function;
  • the hydroxyl-functional monomer can be, for example, allyl alcohol, N-hydroxymethyl acrylamide, 2-hydroxyethyl (meth) acrylate.
  • HSA HEMA
  • PEG polyethylene glycol
  • PPG polyoxypropylene glycol
  • PEG polyoxytetramethylene glycol
  • the unsaturated monomer can also be a carboxylic acid or an anhydride, for example (meth) acrylic acid and maleic anhydride. These acids or anhydrides are then neutralized with a diol such as ethylene glycol, PEG, PPG or PTMG.
  • a diol such as ethylene glycol, PEG, PPG or PTMG.
  • the hydroxylated function can also be produced by hydrolysis of a vinyl ester of saturated carboxylic acid such as vinyl acetate or propionate.
  • the copolymer (C) is advantageously a copolymer of ethylene, of an unsaturated carboxylic acid ester and of an unsaturated monomer having at least one hydroxyl function or a copolymer of ethylene, of a vinyl ester of carboxylic acid saturated and of an unsaturated monomer having at least one hydroxylated function.
  • alkyl (meth) acrylates alkyls having from 1 to 24 carbon atoms, in particular methyl, ethyl (meth) acrylates, n-butyl, isobutyl, 2-ethylhexyl.
  • the copolymer (C) is obtained by direct copolymerization (as opposed to grafting).
  • the copolymer (C) advantageously contains 40 to 95% by weight of ethylene, 4 to 40% of comonomer and 1 to 15% of monomer containing minus a hydroxylated function.
  • the meit index of the copolymer (C) according to ASTM D 1238-73 is advantageously between 1 and 1000 (g / 10 min).
  • the copolymer (C) preferably contains from 10 -3 to 45 10 -2 mole OH per 100 g of copolymer.
  • the copolymer (C) can be diluted in a polymer (C1) not containing a hydroxyl function and being neutral with respect to these hydroxyl functions.
  • (C1) can be a homo or copolymer polyethylene, a copolymer of ethylene and an unsaturated carboxylic acid ester, a copolymer of ethylene and a vinyl ester of saturated carboxylic acid, a styrene block copolymer -butadiene-styrene (SBS), a styrene-isoprene-styrene block copolymer (SIS) or these hydrogenated block copolymers (SEBS).
  • SBS styrene block copolymer -butadiene-styrene
  • SIS styrene-isoprene-styrene block copolymer
  • SEBS hydrogenated block copolymers
  • free isocyanate functions remain.
  • the content of free NCO functions is between 1 to 10% by weight of free NCO functions, relative to the total weight of the adhesive. Preferably, this content is from 1 to 5%. This content makes it possible to achieve a good compromise between the speed of crosslinking of the adhesive (after bonding) and its stability when hot (before bonding).
  • the polymer is prepared in the presence of a chain-limiting monoalcohol (D) which can have tackifying properties.
  • D chain-limiting monoalcohol
  • compositions according to the present invention can also contain:
  • tackifying resins are aliphatic or aliphato-aromatic (including natural or synthetic terpene resins) and generally do not contain a reactive function with isocyanates. However, it would not depart from the scope of the invention if a polyfunctional hydroxylated tackifying resin were used provided that it is taken into account in the NCO / OH ratio and that the viscosity of the compositions of the invention is compatible with their use,
  • G additives such as plasticizers, fillers, stabilizers that are chemically neutral with respect to isocyanates.
  • Tackifying resins or weakly hydroxylated waxes can be used provided that the hydroxyl functions they provide are taken into account in the calculation of the total NCO / total OH molar ratio and that they are reduced in proportion the amount of alcohol (D) used for the reaction with the excess of polyisocyanate.
  • tackifying resins waxes, plasticizers are used in a known manner in hot-melt adhesives to modify the viscosity, the open time and the tackiness.
  • compositions of the invention have a determined viscosity, that is to say fluid enough, to allow rapid bonding at relatively low temperature in atmospheric medium in order to achieve bonding which can subsequently resist
  • compositions of the invention essentially do not contain a free OH function.
  • the viscosity of the compositions of the invention is advantageously less than 10,000 mPa.s and preferably between 2,000 and 6,000 15 mPa.s. These viscosities are measured at the application temperatures of the HMA of the present invention.
  • the proportions of (B) and (C) can be any, advantageously B / C by weight is between 1/100 and 100/1 and preferably from 1/10 to 2/1.
  • the proportions by weight of (C1) relative to (C) can be any preferably C1 / C is between 1/20 and 20/1.
  • the possible amount of (D) is such that by weight D / (B + C) is between 0 and 5 and preferably from 0 to 2.
  • the NCO / OH molar ratio is chosen in order to avoid gelation during the synthesis.
  • this ratio is between 2 and 30 and preferably 2 to 5.
  • the quantity of tackifying resin (E) is defined by the mass ratio (E) / (B + C) ranging from 0 to 10, preferably 0 to 1.
  • the quantity of wax (F) is defined by the mass ratio ( F) / (B + C) ranging from 0 to 10, preferably 0 to 0.5.
  • compositions of the invention can be prepared by mixing the various constituents in the molten state.
  • the present invention also relates to a process for the preparation of a composition in which first of all: a / melting and drying of the polyhydric polyol (B), of the copolymer (C) optionally tackifying resins (E ), waxes (F) and additives (G) then b / addition and reaction of the polyisocyanate (A) and any monoalcohol (D) until the desired NCO level is obtained. If (D) is not very volatile it can be introduced in step a /.
  • the hot-melt adhesives according to the invention are advantageously produced in a single step according to the following process:
  • the dry monoalcohol then the diisocyanate are then introduced in suitable proportions and the isocyanate-alcohol reaction continued at 120-125 ° C until the theoretical NCO level is obtained.
  • the ready-to-use hot-melt adhesive is recovered by casting.
  • aromatic diisocyanates the operation is generally carried out in the absence of a catalyst.
  • catalysts for the NCO / OH reaction such as tin salts (dibutyltin laurate DBLT) or amines (diazabicyclo-octane).
  • the process can be carried out in one step as described above, that is to say by adding (A) and (D) simultaneously or in two steps by adding first (A) and then (D).
  • Diisocyanates such as 2-4-toluylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI) are used. Due to its lower toxicity, it is MDI which is the preferred diisocyanate of the invention.
  • the reaction between the copolymer (C) and the diisocyanate is carried out in the presence of a large molar excess of diisocyanate in order to avoid any undesired increase in viscosity.
  • the excess required depends on the OH functionality of the copolymer (C), the polydiene (B) and the isocyanate functionality and the reactivity of the diisocyanate used (a diisocyanate whose two NCO functions have the same reactivity (MDI) require a molar excess larger than a diisocyanate whose two NCO functions do not have the same reactivity (TDI)).
  • the viscosity of the adhesives of the invention at their processing temperature (110 to 140 ° C) is typically from 2000 to 6000 mPa.s. After storage at 130 ° C for 4 hours, in contact with the atmosphere, the viscosity increase of the adhesives of the invention is of the order of 15%, which allows industrial processing without problem with the existing machines (NORDSON MELTEX coating for example).
  • the present invention provides single-component hot-melt adhesives, which offer ease of application, high storage stability, ie several months at 25 ° C. and several hours at 130 ° C.
  • organometallic catalysts of the DBTL type.
  • the free isocyanate content of the adhesives according to the invention is expressed below in grams of NCO per 100 g of adhesive. It is determined according to standard AFNOR 52132.
  • melt index is measured at 190 ° C, under 2.16 kg according to standard ASTM D 1238-73 and expressed in g / 10 min.
  • ASTM D 4498 use of dimension plates: 100 mm x 25 mm x 1 mm.
  • thermopress plate Place four pads then four others joined lengthwise which will serve as wedges on the thermopress plate at 150 ° C or any other temperature of use.
  • thermometer dip a thermometer in the homogeneous holt-melt at 180 ° C. When the temperature of the thermometer reaches 150 ° C remove it from the pot with the adhesive on the lower part. Note the temperature at which the product freezes.
  • EVA-HEA ethylene-vinyl acetate-2-hydroxyethyl acrylate copolymer of MFI 450 and containing 32% by weight of vinyl acetate and 2.15% by weight of HEA produced by the company ELF ATOCHEM.
  • KRISTALEX F85 alphamethylstyrene resin supplied by the company HERCULES
  • ISONATE 125 pure MDI supplied by the company DOW (D) DODECANOL (D) RH 37 NC: tackylated hydroxylated resin supplied by the company
  • the hydroxyl number is 0.57 meq / g and the brookfield viscosity 2000 mPas at 100 ° C.
  • composition according to the invention are listed in Table 1.
  • EVA 1 supplied by the company ELF ATOCHEM with the brand EVATANE® 2805 (melt index 5 g / 10 min according to ASTMD 1238/72 and mass content of vinyl acetate 28%).
  • EVA 2 supplied by the company ELF ATOCHEM with the brand EVATANE ® 18500 (fluidity index 500 g / 10 min according to ASTMD 1238/73 and mass content of vinyl acetate 18%).
  • the viscosity of the hot melt according to Example 1 is 1350 mPa.s at 130 ° C and 4750 mPa.s at 100 ° C which allows it to be used at around 110 ° C.
  • Example 2 The hot melt according to Example 2 was carried out on the same process as Example 1 but with a greater amount of (E) and (F).
  • the hot melt according to Example 3 takes up the composition of Example 2 but in a two-step process.
  • Example 4 repeats the process of Example 2 but with a mass ratio (C) / (B) equal to 1.
  • C mass ratio
  • B mass ratio
  • the hot melt according to Example 5 uses the formulation and the process of Example 4 but with a lower ratio (D) / (B + C).
  • Brookfield viscosity is measured on 1, 1 -
  • Brookfield viscosity is measured on the first day at 130 ° C. and after aging of
  • test pieces carried out on the same day are tested regularly for 1 week.
  • Substrate a ier Kraft.
  • Temperature rise 0.4 ° C / min

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

L'invention concerne des compositions adhésives thermofusibles (HMA) se présentant sous forme de polymère contenant des fonctions isocyanates libres, ledit polymère résultant de la réaction d'un polyisocyanate (A), d'un polydiène polyol (B) et d'un copolymère (C) de l'éthylène contenant des fonctions hydroxyles. Elles ont une faible viscosité et peuvent donc être mises en oeuvre dès 110 °C. Elles sont réticulables à l'humidité atmosphérique.

Description

COMPOSITIONS ADHESIVES THERMOFUSIBLES
A BASE DE POLYDIENE HYDROXYLE
La présente invention concerne des compositions adhesives thermofusibles à base de polydiene hydroxylé et plus particulièrement des compositions adhesives thermofusibles (HMA) se présentant sous forme de polymère contenant des fonctions isocyanates libres, ledit polymère résulte de la réaction d'un polyisocyanate (A), d'un polydiene polyol (B) et d'un copolymère (C) de l'éthylène contenant des fonctions hydroxyles. Selon une forme particulière de l'invention, le polydiene polyol est un polybutadiène hydroxytéléchélique et le copolymère (C) est soit un copolymère éthylène-acétate de vinyle-(méth)acrylate d'hydroxyéthyle soit un copolymère éthylène-(méth)acrylate d'alkyle-(méth)acrylate d'hydroxyéthyle.
Cette composition associée généralement à une résine collante (tackifiante) permet de réaliser des collages résistants à température élevée après réticulation des fonctions-NCO libres habituellement sous l'effet de l'humidité atmosphérique.
Depuis quelques années, on cherche de plus en plus à présenter les compositions adhesives sous forme solide. Il s'agit dans ce cas d'adhésifs thermofusibles (hot-melts adhesives ou HMA) ayant pour base une résine thermoplastique, solide à température ambiante. Ces adhésifs sont fluidifiés à chaud, la liaison des surfaces à unir étant assurée quand l'adhésif redevient rigide au refroidissement. Ces adhésifs thermofusibles résultent généralement de la combinaison de trois constituants de base : une résine thermoplastique, une résine collante (tackifiante) et une cire, auxquels on peut associer des additifs tels que stabilisant, charge, plastifiants et autres. Les résines thermoplastiques de base les plus connues sont les polyamides, le polypropylène atactique, les copolymères éthylène-acétate de vinyle (EVA) et les copolymères éthylène-(meth)acrylate d'alkyle. Dans l'état actuel, ces adhésifs thermofusibles possèdent de bonnes propriétés adhesives, mais présentent l'inconvénient de montrer une mauvaise tenue à la chaleur, tenue n'excédant guère 60 à 80° C.
Pour pallier ce désavantage une nouvelle génération de produits thermofusibles réticulables : adhésifs thermofusibles polyuréthane, est développée. Ces produits sont préparés de façon classique par réaction de polyisocyanate sur des polyols de type polyester dont l'un au moins est solide à température ambiante. Ces adhésifs s'appliquent à haute température en phase fondue. Ils présentent l'inconvénient d'être incompatibles avec les résines collantes (tackifiantes) ce qui restreint fortement les possibilités de formulation. Ceci se traduit alors par une aptitude au collage limitée à certains supports bien définis. En outre, ces produits possèdent des temps ouverts de l'ordre de quelques minutes ce qui est trop long pour certaines applications à grandes cadences. Le temps ouvert d'un adhésif thermofusible est le temps disponible pour effectuer le collage, entre le moment où est appliqué l'adhésif à l'état fondu sur le premier support à coller et le moment où l'adhésif thermofusible n'est plus assez fluide pour permettre d'assembler correctement le deuxième support. Un autre type d'adhésif thermofusible réticulable a été développé à partir des copolymères éthylène-acétate de vinyle hydroxylé réagissant avec un polyisocyanate bloqué en quantité stoechiométrique, comme décrit dans le brevet européen EP 294 271. Ces adhésifs thermofusibles, compatibles avec les résines collantes (tackifiantes), possèdent de bonnes propriétés adhesives, mais présentent l'inconvénient de nécessiter des traitements thermiques postérieurs à des températures d'au moins 140° C pendant plusieurs minutes pour assurer leur bonne réticulation. De telles conditions de collages ne sont pas acceptables pour certains supports fragiles thermiquement. EP 380 379 décrit des compositions adhesives thermofusibles réticulables se présentant sous forme d'un prépolymère contenant des fonctions isocyanates libres, ledit prépolymère résulte de la réaction d'un copolymère de l'éthylène et de l'acétate de vinyle contenant des fonctions hydroxyles avec un polyisocyanate. Cet art antérieur décrit les copolymères obtenus par copolymérisation directe de l'éthylène, de l'acétate de vinyle et de l'acrylate d'hydroxyéthyle ainsi que les copolymères éthylène-acétate de vinyle-alcool vinylique obtenus par hydrolyse partielle de copolymères éthylène-acétate de vinyle.
EP 600767 est semblable aux précédents mais on ajoute un alcool primaire (dodécanol) au copolymère éthylène-acétate de vinyle-acrylate d'hydroxyéthyle.
La différence essentielle de composition entre ces arts antérieurs et la présente invention est donc l'utilisation conjointe de polydiene polyol et d'un copolymère (C) hydroxylé pour réagir sur le polyisocyanate au lieu du seul EVA-HEA (copolymère éthylène-acétate de vinyle-acrylate d'hydroxyéthyle) ou au lieu de l'EVA-HEA et du dodécanol. Ceci permet de : - réduire la viscosité du prépolymère pendant la préparation, et ceci d'autant plus que les EVA-HEA sont de faible MFI, donc faciliter la synthèse du HMA. On désigne l'indice de fluidité par Ml (Meit Index) ou MFI (Meit Flow Index), - après préparation, donner un HMA qui a une viscosité plus basse surtout si on part d'un EVA-HEA de faible MFI, donc permettre de mettre en oeuvre l'HMA à plus basse température {110-140°C),
- améliorer les performances à basse température grâce à l'addition d'un composé à très basse Tg, - améliorer les performances applicatives du HMA en particulier en terme de résistance à l'hydrolyse, propriétés mécaniques, adhesives et cohésives.
On peut aussi ajouter aux compositions de l'invention un monoalcool de spécialité (résines tackifiantes hydroxylées). EP 293602 décrit des compositions adhesives thermofusibles comprenant (i) le produit de réaction d'un polyisocyanate avec un polyol et (ii) un polymère thermoplastique tel qu'un EVA (copolymère éthylène-acétate de vinyle) ou un SEBS (copolymère bloc styrène-éthylène/butène-styrène). Le polymère thermoplastique (ii) n'est pas fonctionnalisé il n'est donc pas lié au réseau polyurethane constitué pendant la réticulation, alors que dans la présente invention le copolymère (C) est lié au réseau polyurethane. Ainsi les compositions de l'invention présentent les avantages suivants :
1. Amélioration des propriétés mécaniques, de pelage et de cohésion d'un joint de colle HMA en température par réticulation à l'humidité atmosphérique.
2. Possibilité d'appliquer l'adhésif thermofusible à "basse température" (110-140°C).
3. Amélioration des performances de collage à basse température.
4. Amélioration des performances applicatives de l'adhésif thermofusible
» Tenue à l'hydrolyse
• Adhésion
• Résistance mécanique
• Cohésion. Le polyisocyanate (A) est généralement choisi parmi les polyisocyanates aliphatiques, cycloaliphatiques ou aromatiques bien connus de l'homme du métier, ainsi que les mélanges de ces composés. A titre d'exemples de polyisocyanates aliphatiques, on peut citer l'hexaméthylène diisocyanate (HDI), le triméthyl hexaméthylène diisocyanate (HMDI), l'éthylène diisocyanate, l'éthylidène diisocyanate, le propylène diisocyanate, le butylène diisocyanate, le dichlorohexaméthylène diisocyanate, le furfurylidène diisocyanate et les mélanges ainsi que les dérivés (dimère, trimère, biuret, allophanate) de ces composés.
A titre d'exemples de polyisocyar ates cycloaliphatiques, on peut citer l'isophorone diisocyanate (IPDI), le cyclopentylène-1 ,3-diisocyanate, le cyclohexylène-1 ,4-diisocyanate, le cyclohexylène-1 ,2-diisocyanate et les mélanges et dérivés (dimère, trimère, biuret, allophanate) de ces composés.
A titre d'exemples de polyisocyanates aromatiques, on peut citer le 4,4'- diphénylméthane (MDI) et ses isomères, notamment le 2,4'- et le 2,2'- diphénylméthane diisocyanate, le toluène diisocyanate (TDI) et ses isomères, notamment le 2,4- et le 2,6-toluène diisocyanate, le 2,2-diphénylpropane-4,4'- diisocyanate, le p-phénylène diisocyanate, le m-phénylène diisocyanate, le xylène diisocyanate, le 1 ,4-naphtalène diisocyanate, le 1 ,5-naphtylène diisocyanate, l'azobenzène-4,4'-diisocyanate, le diphényl sulfone-4,4'- diisocyanate, le 1-chlorobenzène-2,4-diisocyanate, le 4,4'4"-triisocyanato- triphényl méthane, le 1 ,3,5-triisocyanato-tétraisocyanate et les mélanges de ces composés.
De préférence, on utilise les diisocyanates et plus particulièrement le MDI et ses isomères, le TDI et ses isomères, le HDI, l'IPDI et leurs dérivés.
A titre d'illustration de polydiènes-polyols (B) utilisables selon la présente invention, on citera les oligomères de diène conjugué hydroxytelecheliques qui peuvent être obtenus par différents procédés tels que la polymérisation radicalaire de diène conjugué ayant de 4 à 20 atomes de carbone en présence d'un amorceur de polymérisation tel que le peroxyde d'hydrogène ou un composé azoïque tel que l'azobis-2,2'[méthyl-2, N- (hydroxy-2éthyl)propionamide] ou la polymérisation anionique de diène conjugué ayant de 4 à 20 atomes de carbone en présence d'un catalyseur tel que le naphtalène dilithium.
Selon la présente invention, le diène conjugué du polydiène-polyol est choisi dans le groupe comprenant le butadiène, l'isoprène, le chloroprène, le pentadiène-1 ,3, le cyclopentadiène. La masse molaire moyenne en nombre des polyols utilisables peut varier de 500 à 15 000 et de préférence de 1000 à
3000. Selon la présente invention, on utilisera de préférence un polydiène- polyol à base de butadiene. Avantageusement, le polydiene polyol comprend 70 à 85 % en mole de préférence 75 % de motifs
Figure imgf000007_0001
et 15 à 30 % de préférence 25 % de motifs
Figure imgf000007_0002
2
Conviennent également les copolymères de diène conjugué et de monomère vinylique et acrylique tels que le styrène ou l'acrylonitrile.
On ne sortirait pas de l'invention si on utilisait des oligomères hydroxytelecheliques de butadiene époxydés sur la chaîne ou bien encore des oligomères hydrogénés hydroxytelecheliques de diènes conjugués.
L'indice d'OH exprimé en meq/g est compris entre 0,5 et 5, leur viscosité est comprise entre 500 et 100 000 mPa.s à 30°C.
A titre d'illustration de polydiènes-polyols, on citera les polybutadiènes à terminaisons hydroxylees commercialisés par la société ELF ATOCHEM S.A. sous les dénominations Poly Bd®R45 HT et Poly Bd®R20 LM.
Le polymère de l'invention peut comprendre aussi un allongeur de chaîne.
Par allongeur de chaîne, on désigne présentement des composés portant au moins deux fonctions réactives avec les fonctions isocyanates.
Comme exemples de telles fonctions réactives, on citera les fonctions hydroxylé et les fonctions aminé.
Selon l'invention, l'allongeur de chaîne peut être choisi parmi les polyols. Leur masse moléculaire peut être comprise entre 62 et 500. A titre d'illustration de tels composés, on citera l'éthylène glycol, le propylène glycol, le diéthylène glycol, le dipropylène glycol, le 1 ,4-butanediol, le 1 ,6-hexanediol, le 2-éthyl-1 ,3-hexanediol, le N,N bis(hydroxy-2 propyl)aniline, le 3-méthyl-1 ,5-pentanediol et le mélange d'au moins deux des composés précités. On peut également utiliser comme allongeurs de chaîne des polyamines. Leur masse moléculaire peut être comprise entre 60 et 500.
A titre d'illustration de telles polyamines, on citera l'éthylène diamine, la diphényl méthane diamine, l'isophoronediamine, l'hexaméthylenediamine, la diéthyltoluènediamine. On peut utiliser une partie en poids d'un ou plusieurs allongeurs de chaîne précités pour 100 parties en poids de polydiene polyol (B) mis en oeuvre et, de préférence 5 à 30 parties en poids.
Les fonctions hydroxyles du copolymère (C) peuvent être apportées : - par greffage ou par copolymérisation d'un monomère insaturé ayant au moins une fonction hydroxylé ;
- par greffage ou par copolymérisation d'un monomère insaturé puis réaction de ce monomère avec un produit apportant au moins une fonction hydroxylé ; - par modification d'un monomère greffé ou copolymérisé pour créer au moins une fonction hydroxylé.
Le monomère à fonction hydroxylé peut être par exemple l'alcool allylique, le N-hydroxyméthyl acrylamide, le (méth)acrylate de 2-hydroxyéthyle
(HEA ou HEMA) ou les (méth)acrylates de diols tels que le polyéthylèneglycol (PEG), le polyoxypropylene glycol (PPG) ou le polyoxytétramethylene glycol
(PTMG).
Le monomère insaturé peut être aussi un acide carboxylique ou un anhydride, par exemple l'acide (méth)acrylique et l'anhydride maléique. Ces acides ou anhydrides sont ensuite neutralisés par un diol tel que l'éthylèneglycol, le PEG, le PPG ou le PTMG.
La fonction hydroxylé peut aussi être produite par hydrolyse d'un ester vinylique d'acide carboxylique saturé tel que l'acétate ou le proprionate de vinyle.
Le copolymère (C) est avantageusement un copolymère de l'éthylène, d'un ester acide carboxylique insaturé et d'un monomère insaturé ayant au moins une fonction hydroxylé ou un copolymère de l'éthylène, d'un ester vinylique d'acide carboxylique saturé et d'un monomère insaturé ayant au moins une fonction hydroxylé.
A titre d'exemple d'ester d'acide carboxylique insaturé on peut citer les (méth)acrylates d'alkyle, les alkyles ayant de 1 à 24 atomes de carbone, en particulier les (méth)acrylates de méthyle, d'éthyle, de n-butyle, d'isobutyle, de 2-éthylhexyle.
A titre d'exemple d'esters vinyliques d'acides carboxyliques saturés, on peut citer l'acétate de vinyle et le proprionate de vinyle. Avantageusement le copolymère (C) est obtenu par copolymérisation directe (par opposition au greffage).
Le copolymère (C) contient avantageusement en poids 40 à 95 % d'éthylène, 4 à 40 % de comonomère et 1 à 15 % de monomère contenant au moins une fonction hydroxylé. Le meit index du copolymère (C) selon ASTM D 1238-73 est compris avantageusement entre 1 et 1000 (g/10 mn).
Le copolymère (C) contient de préférence de 10-3 à 45 10-2 mole OH pour 100 g de copolymère. Le copolymère (C) peut être dilué dans un polymère (C1 ) ne contenant pas de fonction hydroxylé et étant neutre vis-à-vis de ces fonctions hydroxyles.
(C1 ) peut être un polyéthylène homo ou copolymère, un copolymère de l'éthylène et d'un ester d'acide carboxylique insaturé, un copolymère de l'éthylène et d'un ester vinylique d'acide carboxylique saturé, un copolymère bloc styrène-butadiène-styrène (SBS), un copolymère bloc styrène-isoprène- styrène (SIS) ou ces copolymères blocs hydrogénés (SEBS).
Dans les présentes compositions, il reste des fonctions isocyanates libres. De préférence, la teneur en fonctions NCO libres est comprise entre 1 à 10% en poids de fonctions NCO libres, par rapport au poids total de l'adhésif. De préférence, cette teneur est de 1 à 5 %. Cette teneur permet de réaliser un bon compromis entre la vitesse de réticulation de l'adhésif (après collage) et sa stabilité à chaud (avant collage).
Avantageusement, le polymère est préparé en présence d'un monoalcool (D) limiteur de chaîne et qui peut présenter des propriétés tackifiantes.
Les compositions selon la présente invention peuvent en outre contenir :
- une ou plusieurs résines tackifiantes (E). Les résines tackifiantes préférées sont aliphatiques ou aliphato-aromatiques (y compris les résines terpéniques naturelles ou synthétiques) et ne contiennent généralement pas de fonction réactive avec les isocyanates. Cependant on ne sortirait pas du cadre de l'invention si on utilisait une résine tackifiante hydroxylée polyfonctionnelle à condition d'en tenir compte dans le rapport NCO/OH et que la viscosité des compositions de l'invention soit compatible avec leur usage,
- des cires (F),
- des additifs (G) tels que des plastifiants, des charges, des stabilisants chimiquement neutres vis-à-vis des isocyanates. Les résines tackifiantes ou les cires faiblement hydroxylees sont utilisables à condition de tenir compte des fonctions hydroxyles qu'elles apportent dans le calcul du rapport molaire NCO total/OH total et de diminuer en proportion la quantité d'alcool (D) utilisée pour la réaction avec l'excès de polyisocyanate.
Ces résines tackifiantes, cires, plastifiants sont utilisés de façon connue dans les adhésifs thermofusibles pour modifier la viscosité, le temps 5 ouvert et le pouvoir collant.
Il est recommandé que les compositions de l'invention possèdent une viscosité déterminée, c'est-à-dire suffisamment fluide, pour permettre une prise de collage rapide à température relativement basse en milieu atmosphérique en vue de réaliser un collage pouvant résister par la suite
10 jusqu'à une température d'au moins 150° C.
Les compositions de l'invention ne contiennent essentiellement pas de fonction OH libre.
La viscosité des compositions de l'invention est avantageusement inférieure à 10000 mPa.s et de préférence comprise entre 2000 et 6000 15 mPa.s. Ces viscosités sont mesurées aux températures d'application du HMA de la présente invention.
Les proportions de (B) et (C) peuvent être quelconques, avantageusement B/C en poids est compris entre 1/100 et 100/1 et de préférence de 1/10 à 2/1. 20 Les proportions en poids de (C1 ) par rapport à (C) peuvent être quelconques de préférence C1/C est compris entre 1/20 et 20/1.
La quantité éventuelle de (D) est telle que en poids D/(B+C) est compris entre 0 et 5 et de préférence de 0 à 2.
Le rapport molaire NCO / OH est choisi afin d'éviter la gelification 25 pendant la synhtèse.
Avantageusement ce rapport est compris entre 2 et 30 et de préférence 2 à 5.
La quantité de résine tackifiante (E) est définie par le rapport massique (E) / (B + C) allant de 0 à 10, de préférence 0 à 1. 30 La quantité de cire (F) est définie par le rapport massique (F) / (B + C) allant de 0 à 10, de préférence 0 à 0,5.
Les compositions de l'invention peuvent être préparées par mélange à l'état fondu des différents constituants.
A la température du mélange, habituellement comprise entre 100 et
35 150°C, la réaction entre les NCO et les OH est rapide et s'effectue en quelques heures au maximum. Le polymère obtenu réticule au contact de l'humidité atmosphérique : il convient, pour sa bonne conservation, de le stocker à l'abri de l'humidité. Selon une variante, la présente invention a aussi pour objet un procédé de préparation d'une composition dans lequel on effectue d'abord : a/ fusion et séchage du polydiene polyol (B), du copolymère (C) éventuellement des résines tackifiantes (E), des cires (F) et des additifs (G) puis b/ addition et réaction du polyisocyanate (A) et de l'éventuel monoalcool (D) jusqu'à obtention du taux de NCO recherché. Si (D) est peu volatil il peut être introduit dans l'étape a/.
Ainsi, dans la pratique, on peut procéder comme suit : les adhésifs thermofusibles selon l'invention sont avantageusement fabriqués en une seule étape selon le procédé suivant :
- tous les constituants de la formule, à l'exception du diisocyanate et du monoalcool sont préalablement fondus à 100-160° C et séchés sous pression réduite dans un réacteur agité. Le réacteur est purgé par de l'azote sec ;
- le monoalcool sec puis le diisocyanate sont alors introduits en proportions convenables et la réaction isocyanate-alcool poursuivie à 120- 125° C jusqu'à obtention du taux de NCO théorique. A la fin de la réaction, l'adhésif thermofusible prêt à l'emploi est récupéré par coulée. Dans le cas des diisocyanates aromatiques, on opère en général en l'absence de catalyseur. Pour les diisocyanates moins réactifs (IPDI), il est possible de faire appel à des catalyseurs connus de la réaction NCO/OH tels que les sels d'étain (laurate de dibutylétain DBLT) ou les aminés (diazabicyclo-octane).
Le procédé peut s'effectuer en une étape comme décrit ci-dessus c'est-à-dire en ajoutant (A) et (D) simultanément ou bien en deux étapes en ajoutant d'abord (A) puis ensuite (D).
On utilise des diisocyanates tels que les 2-4-toluylène-diisocyanate (TDI), diphénylméthane-diisocyanate (MDI), hexaméthylène-diisocyanate (HDI), isophorone-diisocyanate (IPDI). En raison de sa plus faible toxicité, c'est le MDI qui est le diisocyanate préféré de l'invention. La réaction entre le copolymère (C) et le diisocyanate est conduite en présence d'un fort excès molaire de diisocyanate afin d'éviter toute augmentation indésirée de la viscosité.
L'excès nécessaire dépend de la fonctionnalité en OH du copolymère (C), du polydiene (B) et de la fonctionnalité en isocyanate et de la réactivité du diisocyanate utilisé (un diisocyanate dont les deux fonctions NCO ont la même réactivité (MDI) exigent un excès molaire plus grand qu'un diisocyanate dont les deux fonctions NCO n'ont pas la même réactivité (TDI)). La viscosité des adhésifs de l'invention à leur température de mise en oeuvre (110 à 140°C) est typiquement de 2000 à 6000 mPa.s. Après stockage à 130° C pendant 4 heures, au contact de l'atmosphère, l'accroissement de viscosité des adhésifs de l'invention est de l'ordre de 15 %, ce qui permet une 5 mise en oeuvre industrielle sans problème avec les machines existantes (enducteur NORDSON MELTEX par exemple).
Ainsi, la présente invention fournit des adhésifs thermofusibles monocomposants, qui offrent une facilité de mise en oeuvre, une stabilité de stockage élevée, soit plusieurs mois à 25° C et plusieurs heures à 130-
10 140° C, des viscosités de mise en oeuvre < 10000 mPa.s, un temps ouvert approprié de 5 à 40 s, une cohésion initiale élevée, une température de fluage sous charge (SAFT) qui augmente au fur et à mesure de l'avancement de la réticulation, une souplesse du produit après réticulation complète. La réticulation s'effectue entre quelques heures et quelques jours selon la
15 température et l'humidité atmosphérique. Cette réaction peut être accélérée par des catalyseurs organométalliques, du type DBTL.
Exemples
La teneur en isocyanate libre des adhésifs selon l'invention est exprimée ci-après en grammes de NCO pour 100 g d'adhésif. On la détermine 20 selon la norme AFNOR 52132.
L'indice de fluidité (MFI) est mesuré à 190° C, sous 2,16 kg selon la norme ASTM D 1238-73 et exprimé en g/10 mn.
Dans les exemples suivants, pour l'évaluation des compositions de l'invention, nous considérons les propriétés suivantes : 25 • mesure du SAFT (Shear Adhésion Failure Température) selon
ASTM D 4498 : utilisation de plaques de dimension : 100 mm x 25 mm x 1 mm.
Délimiter avec un marqueur une zone de 25 mm x 25 mm en bout 30 d'éprouvette.
Placer quatre plaquettes puis quatre autres accolées dans le sens de la longueur qui serviront de cales sur le plateau de la thermopresse à 150° C ou toute autre température d'utilisation.
Verser l'adhésif en fusion sur les parties à encoller. 35 Appliquer quatre autres éprouvettes afin d'obtenir des surfaces encollées de 25 mm x 25 mm.
Presser pendant cinq secondes à 250 da N. Stocker les éprouvettes à 23°C pendant au moins quatre heures. Accrocher un poids de 0,5 kg à chaque extrémité et placer l'ensemble dans une étuve programmée pour une montée en température de 0,4 ° C/minute.
Le jour même du collage, noter la température à laquelle le poids tombe, c'est-à-dire à l'instant où il y a rupture du joint de colle. Faire une moyenne des quatre mesures.
• mesure du point de trouble : tremper un thermomètre dans le holt-melt homogène à 180°C. Lorsque la température du thermomètre atteint 150°C le retirer du pot avec l'adhésif sur la partie basse. Noter la température à laquelle le produit se fige.
• mesure de la viscosité : sur appareil type Brookfield DVII - Mobile 27 à 10 tours/minute. On utilise les produits suivants : (C) EVA-HEA : copolymère éthylène-acétate de vinyle-acrylate de 2- hydroxyéthyle de MFI 450 et contenant 32 % en poids d'acétate de vinyle et 2,15 % en poids d'HEA fabriqué par la société ELF ATOCHEM.
(B) Poly Bd ® 45 HT : polybutadiène à terminaisons hydroxylees de densité 0,90 ; Mn = 2800 ; viscosité 5000 mPa.s à 30°C ; indice d'OH = 0,83 meq/g fabriqué par la société ELF ATOCHEM.
(E) KRISTALEX F85 : résine d'alphaméthylstyrène fournie par la Société HERCULES
(A) ISONATE 125 : MDI pur fourni par la société DOW (D) DODECANOL (D) RH 37 NC : résine tackfiante hydroxylée fournie par la société
HERCULES. L'indice d'hydroxyle est 0,57 meq/g et la viscosité brookfield 2000 mPas à 100°C.
Synthèse du hot melt de l'invention Exemple 1 < > Barbottage d'azote sec dans le réacteur pendant 1/4 d'heure.
Chauffage de la double enveloppe à 130°C. Charge de (B), (C), (E), (F) et (G). mise sous vide en température pendant une heure (dégazage). ^ Charge de (A) et (D), les deux composants étant préalablement chauffés à 60°C.
<=> Palier de réaction de 4 heures sous vide à 130°C. <=> Dépotage et caractérisation. Résultats
Les exemples de composition selon l'invention sont répertoriés dans le tableau 1.
La référence inscrite dans le tableau (réf.) correspond à un hot meit non réticulable à base des copolymères éthylène-acétate de vinyle suivants :
EVA 1 : fourni par la société ELF ATOCHEM avec la marque EVATANE ® 2805 (indice de fluidité 5 g/10 mn selon ASTMD 1238/72 et teneur massique en acétate de vinyle 28 %).
EVA 2 : fourni par la société ELF ATOCHEM avec la marque EVATANE ® 18500 (indice de fluidité 500 g/10 mn selon ASTMD 1238/73 et teneur massique en acétate de vinyle 18 %).
Stabilité au stockage. Mesure de la viscosité à 130°C au premier jour (J).
En tenant compte des incertitudes de mesure on peut dire que la viscosité reste stable de J à J+19 ce qui indique qu'il n'y a pas de réaction intrinsèque de hot-melt s'il n'y a pas contact avec l'humidité atmosphérique.
Stabilité thermique à 130°C. Mesure de la viscosité à J après 4 heures à 130°C.
Les valeurs sont à nouveau très voisines. L'augmentation de viscosité atteint au maximum 18 % ce qui peut sembler important. Lorsque l'on rapporte ce pourcentage à une valeur de viscosité de l'ordre de 300 mPa.s on peut raisonnablement dire que ce gain est négligeable pour une application de type hot-melt.
Influence de la réactivité sur les valeurs de SAFT Dans les différentes séries d'évaluation, les SAFT sont supérieurs à
180°C à partir du septième jour (J + 7) de stockage à 23°C / 50 % d'humidité relative des assemblages collés alors que le hot-melt non réactif base EVA conserve des valeurs de SAFT plus basses autour de 80°C et constantes dans le temps. La viscosité du hot-melt selon l'exemple 1 est de 1350 mPa.s à 130°C et de 4750 mPa.s à 100°C ce qui permet de le mettre en oeuvre à environ 110°C.
Exemple 2
Le hot-melt selon l'exemple 2 a été réalisé sur le même procédé que l'exemple 1 mais avec une quantité de (E) et (F) plus importante.
Les résultats montrent une stabilité au stockage ainsi qu'une stabilité thermique satisfaisantes, d'autre part le SAFT évolue de façon comparable à l'exemple 1. Exemple 3
Le hot-melt selon l'exemple 3 reprend la composition de l'exemple 2 mais dans un procédé en deux étapes.
La caractérisation de cet adhésif aboutit aux mêmes conclusions que celles obtenues sur les deux exemples précédents.
Exemple 4
Le hot-melt selon l'exemple 4 reprend le procédé de l'exemple 2 mais avec un rapport massique (C) / (B) égal à 1. En plus des conclusions précédentes inchangées nous constatons une diminution de la viscosité avec une diminution du rapport (C) / (B).
Exemple 5
Le hot-melt selon l'exemple 5 reprend la formulation et le procédé de l'exemple 4 mais avec un rapport (D) / (B + C) plus faible.
En plus des conclusions précédentes nous observons une augmentation de viscosité liée à une diminution du rapport précité.
Les mesures des températures de point de trouble entre le premier et le trentième jour restent très proches, ce qui indique une bonne homogénéité et stabilité des différents hot-melts.
Tableau 1
Figure imgf000016_0001
La viscosité Brookfield est mesurée le 1er, 1 -|ème 20^me jour après la synthèse Aiguille n° 27, 10 tr/min, 130"C.
Figure imgf000016_0002
On mesure la viscosité Brookfield le premier jour à 130°C et après un vieillissement de
Figure imgf000016_0003
On teste les éprouvettes réalisées le même jour régulièrement pendant 1 semaine. Substrat : a ier Kraft. Montée en tem érature : 0,4°C/min
Figure imgf000016_0004
Figure imgf000016_0005

Claims

Revendications
1. Compositions adhesives thermofusibles (HMA) se présentant sous forme de polymère contenant des fonctions isocyanates libres, ledit polymère résultant de la réaction d'urv polyisocyanate (A), d'un polydiene polyol (B) et d'un copolymère (C) de l'éthylène contenant des fonctions hydroxyles.
2. Compositions selon la revendication 1 dans lesquelles le polydiene (B) est un polybutadiène à terminaisons hydroxyles.
3. Compositions selon l'une quelconque des revendications précédentes dans lesquelles (C) est un copolymère de l'éthylène et d'un monomère insaturé ayant au moins une fonction hydroxylé.
4. Compositions selon la revendication 3 dans lesquelles (C) est un copolymère de l'éthylène, de l'acétate de vinyle et du (meth)acrylate de 2- hydroxyéthyle.
5. Compositions selon l'une quelconque des revendications précédentes comprenant aussi au moins l'un des produits suivants :
(D) un monoalcool (E) une ou plusieurs résines tackifiantes
(F) des cires
(G) des additifs.
PCT/FR1998/001063 1997-05-29 1998-05-28 Compositions adhesives thermofusibles a base de polydiene hydroxyle WO1998054270A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11500332A JP2000515583A (ja) 1997-05-29 1998-05-28 水素化ポリジエンをベースとするホットメルト接着剤組成物
US09/230,724 US6207785B1 (en) 1997-05-29 1998-05-28 Hydroxylated polydiene based hot-melt adhesive compositions
EP98928371A EP0915942A1 (fr) 1997-05-29 1998-05-28 Compositions adhesives thermofusibles a base de polydiene hydroxyle
CA002262981A CA2262981A1 (fr) 1997-05-29 1998-05-28 Compositions adhesives thermofusibles a base de polydiene hydroxyle
BR9806035A BR9806035A (pt) 1997-05-29 1998-05-28 Composi-{es adesivas termofus¡veis - base de polidieno hidroxilado
AU80231/98A AU8023198A (en) 1997-05-29 1998-05-28 Hxdroxylated polydiene based hot-melt adhesive compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/06584 1997-05-29
FR9706584 1997-05-29

Publications (1)

Publication Number Publication Date
WO1998054270A1 true WO1998054270A1 (fr) 1998-12-03

Family

ID=9507366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/001063 WO1998054270A1 (fr) 1997-05-29 1998-05-28 Compositions adhesives thermofusibles a base de polydiene hydroxyle

Country Status (9)

Country Link
US (1) US6207785B1 (fr)
EP (1) EP0915942A1 (fr)
JP (1) JP2000515583A (fr)
KR (1) KR20000029667A (fr)
CN (1) CN1236383A (fr)
AU (1) AU8023198A (fr)
BR (1) BR9806035A (fr)
CA (1) CA2262981A1 (fr)
WO (1) WO1998054270A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329248A (ja) * 2000-05-19 2001-11-27 Nhk Spring Co Ltd シール部位のシーリング構造
EP1754765A1 (fr) * 2005-08-15 2007-02-21 Rohm and Haas Company Diluants polymères pour adhesifs structurels

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862187B2 (ja) * 2000-12-18 2012-01-25 日本発條株式会社 電子部品のシーリング方法
JP2005122774A (ja) * 2003-10-14 2005-05-12 Nec Corp 記録型光ディスク装置および光ディスク媒体
US20090159206A1 (en) * 2007-12-20 2009-06-25 National Starch And Chemical Investment Holding Corporation Moisture curable hot melt adhesive
CN109439268B (zh) * 2018-10-31 2021-09-17 烟台德邦科技股份有限公司 一种光伏叠瓦组件用低Tg、低银含量的导电胶

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217575A (ja) * 1982-06-11 1983-12-17 Unitika Ltd ホツトメルト接着剤
EP0600767A1 (fr) * 1992-12-04 1994-06-08 Elf Atochem S.A. Compositions adhésives thermofusibles réticulables à l'humidité

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819711A1 (fr) * 1996-07-16 1998-01-21 Ato Findley S.A. Adhésifs monocomposants à base de polyuréthane à cohésion initiale améliorée

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217575A (ja) * 1982-06-11 1983-12-17 Unitika Ltd ホツトメルト接着剤
EP0600767A1 (fr) * 1992-12-04 1994-06-08 Elf Atochem S.A. Compositions adhésives thermofusibles réticulables à l'humidité

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 062 (C - 215) 23 March 1984 (1984-03-23) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329248A (ja) * 2000-05-19 2001-11-27 Nhk Spring Co Ltd シール部位のシーリング構造
JP4618620B2 (ja) * 2000-05-19 2011-01-26 日本発條株式会社 ハードディスクドライブケースの筺体と蓋体との間のシーリング構造
EP1754765A1 (fr) * 2005-08-15 2007-02-21 Rohm and Haas Company Diluants polymères pour adhesifs structurels

Also Published As

Publication number Publication date
BR9806035A (pt) 1999-08-24
JP2000515583A (ja) 2000-11-21
EP0915942A1 (fr) 1999-05-19
CN1236383A (zh) 1999-11-24
CA2262981A1 (fr) 1998-12-03
AU8023198A (en) 1998-12-30
KR20000029667A (ko) 2000-05-25
US6207785B1 (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP5773652B2 (ja) 湿気硬化性ホットメルト接着剤
AU608346B2 (en) Cross-linkable hot melt adhesive composition
CN111100592B (zh) 一种潜伏型单组份聚氨酯热熔胶及其制备方法与胶膜
JPH06102780B2 (ja) 反応性ホットメルトウレタン接着剤組成物
TWI227256B (en) Aqueous dispersions of polyurethane resins and aqueous adhesives
CA2110539C (fr) Compositions adhesives thermofusibles reticulables a l&#39;humidite
CN102803416A (zh) 含有多官能二烯和亲二烯体化合物的热可逆热熔性粘合剂
CA2209967C (fr) Adhesifs monocomposants a base de polyurethane a cohesion initiale amelioree
FR2772780A1 (fr) Adhesif polyurethane reticulable par l&#39;humidite et utilisations dans le domaine de l&#39;hygiene
CA2008045C (fr) Composition adhesive thermofusible reticulable a l&#39;humidite,son procede de fabrication
WO2007083067A2 (fr) Stratifie comprenant au moins un substrat en copolymere a blocs polyether, procede de fabrication et utilisation dans l&#39;industrie de la chaussure
WO1998054270A1 (fr) Compositions adhesives thermofusibles a base de polydiene hydroxyle
US5262481A (en) Moisture-cross-linkable thermoplastic adhesive compositions, uses thereof, and modified components for use in said adhesive compositions
US6218471B1 (en) Adhesive compositions based on ethylene-unsaturated acid ester copolymers and containing hydroxyl functional groups
EP1040173B1 (fr) Adhesif polyurethane reticulable par l&#39;humidite
EP0568425B1 (fr) Compositions adhésives à base de prépolymères polyuréthanes applicables à chaud et leur procédé d&#39;obtention
EP0377363B1 (fr) Composition adhésive polyuréthanne
JPH04335082A (ja) 接着剤組成物
JPS63218783A (ja) 接着剤組成物の製造方法
FR2906535A1 (fr) Composition adhesive thermofusible a base d&#39;un copolymere d&#39;ethylene, et de polyisocyanate, reticulable a l&#39;humidite.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801075.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1998928371

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2262981

Country of ref document: CA

Ref document number: 2262981

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997000745

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998928371

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 09230724

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019997000745

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019997000745

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998928371

Country of ref document: EP