WO1998046656A1 - Composition de (co)polymeres d'olefines et procede de production de celle-ci - Google Patents

Composition de (co)polymeres d'olefines et procede de production de celle-ci Download PDF

Info

Publication number
WO1998046656A1
WO1998046656A1 PCT/JP1998/001194 JP9801194W WO9846656A1 WO 1998046656 A1 WO1998046656 A1 WO 1998046656A1 JP 9801194 W JP9801194 W JP 9801194W WO 9846656 A1 WO9846656 A1 WO 9846656A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin
catalyst
polymer
polymer composition
transition metal
Prior art date
Application number
PCT/JP1998/001194
Other languages
English (en)
French (fr)
Inventor
Akira Yamauchi
Jun Saito
Original Assignee
Chisso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corporation filed Critical Chisso Corporation
Publication of WO1998046656A1 publication Critical patent/WO1998046656A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment

Definitions

  • the present invention relates to an orefin (co) polymer composition and a method for producing the same, and more particularly, to an orefin (co) polymer composition having high melt tension, excellent moldability and good transparency, and production thereof. About the method. Background art
  • Polypropylene is widely used in various molding fields because it has excellent mechanical properties, chemical resistance, etc., and is extremely useful in balance with economy. However, since polypropylene has a low melt tension, it has poor moldability such as hollow molding, foam molding, and extrusion molding. In addition, the visibility is poor, and the commercial value may be impaired in the application field, and improvement of these is desired.
  • melt viscoelasticity such as melt tension
  • a composition containing polyethylene or polypropylene having different intrinsic viscosities or molecular weights there have been proposed a composition containing polyethylene or polypropylene having different intrinsic viscosities or molecular weights, and a method for producing such a composition by multi-stage polymerization.
  • a method of producing a polyethylene composition comprising three types of polyethylene having different viscosity average molecular weights, each containing 1 to 10% by weight of polyethylene having a high viscosity average molecular weight, by a melt-kneading method or a multi-stage polymerization method (Japanese Patent Publication No. Sho 62 — US Pat. No. 6,157,757), using a highly active titanium / vanadium solid catalyst component, by multistage polymerization method, to obtain 0.05 to 1 weight of ultrahigh molecular weight polyethylene having an intrinsic viscosity of 20 d 1 / g or more.
  • polypropylene having a high melt tension is produced by polymerizing propylene using a prepolymerized catalyst in which ethylene and a polyene compound are prepolymerized to the supported catalyst component containing titanium and the organic aluminum compound catalyst component.
  • Production method JP-A-5-222122
  • prepolymerization using the same catalyst component as ethylene alone are performed, and the intrinsic viscosity is 20 d1 / g or more.
  • a method for producing an ethylene / ⁇ -branched olefin copolymer having a high melt tension using a prepolymerization catalyst containing ethylene Japanese Patent Application Laid-Open No. 4-55410) is disclosed.
  • Japanese salts of aromatic carboxylic acids Japanese Patent Publication No. 40-1652
  • benzylidene sorbitol derivatives Japanese Patent Publication No. A method of adding a nucleating agent such as that described in U.S. Pat.
  • a method in which a small amount of vinylcyclohexanediaryltrimethylsilane or the like is polymerized and a pre-activated catalyst is used to polymerize propylene Japanese Patent Application Laid-Open No. Sho 60-139710 JP-A-63-15803, JP-A-63-15804, JP-A-63-18709 Japanese Patent Publication No. 7-58003, Japanese Patent Application Laid-Open No. 7-304825).
  • the amount of the olefin (co) -polymerization to produce a trace amount of the high-molecular-weight polyolefin is increased. Difficulties in controlling the trace amount of glycerol, and the need for low polymerization temperatures to produce polyolefins of sufficiently high molecular weight, which requires process modifications and lowers the productivity of the final propylene composition I do.
  • polypropylene is not sufficient in improving the melt tension, but also has a problem to be improved in transparency. It is required to improve the performance.
  • the present invention is suitable for hollow molding, foam molding, extrusion molding, fiber, injection molding, and film, and has a high melt tension and a high transparency that can exhibit high-speed formation in other various molding methods. ) It is intended to provide a polymer composition and a method for producing the same.
  • the present inventors have conducted intensive studies to achieve the objectives in the previous period, and found that any catalyst for polyolefin production was loaded with a small amount of polypropylene, polyethylene having a specific intrinsic viscosity, and a non-linear olefin polymer. It has been found that olefin (co) polymer compositions having high melt tension, excellent moldability and excellent transparency can be obtained by homopolymerization or copolymerization of propylene using the converted catalyst. Reached. Disclosure of the invention
  • Olefin (co) polymer composition as an active ingredient.
  • Orefin (co) The intrinsic viscosity [ ⁇ ] of the polymer composition measured with tetralin at 135 ° C 0.2 to 0.2; L 0 d 1 / g. (Co) polymer composition.
  • the (C) linear olefin (co) polymer other than the high molecular weight polyethylene is selected from a propylene homopolymer or a propylene one-year-old olefin copolymer containing 50% by weight or more of propylene polymerized units.
  • the refined (co) polymer composition according to (1) which is one or more kinds.
  • the Olefin (co) polymer composition has a melt tension (MS) at 230
  • Olefin (co) polymer is used as a transition metal compound catalyst component, with a periodic table of 0.01 to 1,000 moles per mole of transition metal atom (1991 version).
  • Organometallic compounds of metals selected from the group consisting of metals belonging to Groups 2 and 13 (catalysts for the production of polyolefins comprising a combination of ALJ and 0 to 500 moles of electron donor per mole of transition metal atom, and
  • a preactivated catalyst consisting of polyethylene and non-linear olefin polymer having an intrinsic viscosity [r? E ] of 15-100 d1 / g measured in tetralin at 135 ° C supported on this catalyst.
  • a method for producing an olefin (co) polymer composition which is produced by (co) polymerizing propylene alone or other olefins having 2 to 12 carbon atoms with propylene.
  • An organic metal compound (AL 2 ) of a metal selected from the group consisting of metals belonging to Groups 1, 2, 12, and 13 of the Periodic Table (1991 version) is used as the preactivation catalyst.
  • Organometallic compounds contained in the preactivation catalyst 0.05 to 5,000 mol per 1 mol of transition metal atoms in total with AL ⁇
  • electron donor (E 2 ) contained in the preactivation catalyst Propylene alone in the presence of an olefin (co) polymerization catalyst further containing 0 to 3,000 moles per mole of transition metal atom in the preactivated catalyst in total with the electron donor (E ⁇ )
  • the method for producing an olefin (co) polymer composition according to the above (6) which is produced by (co) polymerizing propylene and another olefin having 2 to 12 carbon atoms.
  • the preactivated catalyst is a high-molecular-weight polyethylene having an intrinsic viscosity [E] of 15 to 100 d1 Zg, measured in tetrachloride at 135 ° C, per gram of the transition metal compound catalyst component.
  • the preactivated catalyst is used at a temperature of 135 ° C per 1 g of the transition metal compound catalyst component.
  • a method for producing a polymer composition is produced.
  • Olefin (co) The polymer composition contains 0.01 to 000 mmol of catalyst in terms of transition metal atoms in the catalyst per liter of (co) polymerization volume of propylene or other olefins.
  • R 2 represents a saturated cyclic hydrocarbon group having 3 to 18 carbon atoms which has a saturated cyclic structure of a hydrocarbon which may contain a silicon atom and which may contain a silicon atom.
  • R 2 represents a chain hydrocarbon group having 1 to 3 carbon atoms which may contain silicon, or silicon, and R 3 , R 4 , and R 5 may contain silicon.
  • R 3 , R 4 , and R 5 may contain silicon.
  • n 0, 1, m is 1 or 2
  • R 6 represents a linear hydrocarbon group having 1 to 6 carbon atoms which may contain silicon
  • R 7 represents Represents a chain hydrocarbon group having 1 to 12 carbon atoms which may contain silicon, hydrogen or halogen, and when m is 2, each R 7 may be the same or different.
  • (6) or (7) a process for producing the above-mentioned (co) polymer composition using a non-linear oligomer polymer obtained by polymerizing a system monomer.
  • Transition metal compound catalyst component periodic table of 0.01 to 1,000 moles per mole of transition metal atom (1991 edition) belongs to Groups 1, 2, 12, and 13
  • a method for producing an orefin (co) polymer composition which comprises homopolymerizing or copolymerizing other olefins having 2 to 12 carbon atoms.
  • the preactivated catalyst may include an organometallic compound of a metal selected from the group consisting of metals belonging to Groups 1, 2, 12, and 13 of the Periodic Table (1991 edition) (AL 2 ) Is preactivated with the organometallic compound contained in the preactivated catalyst (0.05 to 5,000 moles per mole of transition metal atom in total with AL d, and electron donor (E 2 )) Electron donor contained in the catalyst (in the presence of an olefin (co) polymer catalyst combined with a total of 0-3, ⁇ 00 moles per mole of transition metal atoms in the preactivated catalyst in total with E ⁇ The propylene alone or propylene and its carbon number of 2 to 12 (14) The method for producing an olefin (co) polymer composition according to the above (14), which comprises (co) polymerizing another olefin.
  • AL 2 organometallic compound of a metal selected from the group consisting of metals belonging to Groups 1, 2, 12, and 13 of the Periodic Table (1991 edition
  • Olefin (co) The polymer composition is 0.01 to 1,000 mmol per liter of (co) polymerization volume of propylene or other olefins in terms of transition metal atoms in the catalyst. (14) or (
  • R 2 represents a chain hydrocarbon group having 1 to 3 carbon atoms which may contain silicon, or silicon, and R 3 , R 4 , and R 5 may contain silicon.
  • R 3 , R 4 , and R 5 may contain silicon.
  • n 0, 1, m is 1 or 2
  • R 6 represents a linear hydrocarbon group having 1 to 6 carbon atoms which may contain silicon
  • R 7 represents Represents a chain hydrocarbon group having 1 to 12 carbon atoms which may contain silicon, hydrogen or halogen, and when m is 2, each R 7 may be the same or different.
  • the first to fifth aspects of the present invention relate to an orefin (co) polymer composition
  • the olefin (co) polymer composition contains at least a melt tension (MS) at 230 ° C and an intrinsic polymer measured in tetralin at 135 ° C. Between the viscosity [7? ⁇ ]
  • the sixth to twentieth inventions of the present invention include a transition metal compound catalyst component, a transition metal atom Periodic table of 0.01 to 1,000 moles per mole (1991 edition) Organometallic compounds of metals selected from the group consisting of metals belonging to Group 1, Group 2, Group 12 and Group 13 ( A Li) and 0 to 500 moles of electron donor per mole of transition metal atom (catalyst for the production of polyolefin comprising a combination of Ed, and 0.01 to 100 moles per gram of transition metal compound component supported by this catalyst.
  • g is less than 15 dlZg in intrinsic viscosity [r? c ] measured in tetralin at 135 ° C.
  • polypropylene (C) for polymerization (co) polymerization and transition metal compound catalyst components 5,000 g of 135.
  • the preactivation catalyst according to the second invention contains the preactivation catalyst with respect to 1 mol of the transition metal atom in the preactivation catalyst.
  • Organometallic compounds of metals (periodic table of 0.05 to 5,000 moles in total with ALJ (1991 edition) selected from the group consisting of metals belonging to Groups 1, 2, 12, and 13
  • Organometallic compound (AL 2 ) of the deactivated metal and the electron donor contained in the preactivated catalyst per mole of the transition metal atom in the preactivated catalyst (0 to 3,000 moles of electron
  • polypropylene refers to a propylene homopolymer or a propylene one-year-old olefin containing 50% by weight or more of propylene polymerized units.
  • polyethylene refers to a random copolymer and a propylene-olefin block copolymer, and the term “polyethylene” refers to an ethylene homopolymer and an ethylene one-year-old olefin random copolymer containing 50% by weight or more of ethylene polymerized units. means.
  • the polyethylene constituting the component (a) of the olefin (co) polymer composition of the first to fifth inventions of the present invention has an intrinsic viscosity [A] of 15 ° C. measured in tetralin at 135 ° C.
  • ethylene homopolymer or ethylene olefin copolymer containing 50% by weight or more of ethylene copolymerized units preferably ethylene homopolymer or polymerized ethylene
  • An ethylene-olefin copolymer containing about 0% by weight or more, particularly preferably an ethylene homopolymer or a one-year-old ethylene olefin copolymer containing about 90% by weight or more of ethylene polymerization units is suitable.
  • the polymer may be used alone or in combination of two or more.
  • the upper limit of the component (c) when the difference between the intrinsic viscosity [r? P ] of the component (c) and the polypropylene is large, the component (a) in the component (c) polypropylene in the composition becomes The dispersing power of the polyethylene becomes poor, and as a result, the melt tension does not increase.
  • the upper limit is preferably set to about 1 OOd lZ g.
  • the intrinsic viscosity [77A] of the polyethylene component is 15 to; LOOd 1 / g, preferably 17 to 50 d1 / g.
  • the polyethylene of component (a) needs to have a high molecular weight of 15 d 1 / g when the intrinsic viscosity [7?] Measured in tetralin at 135 ° C is high. Therefore, it is preferable that the ethylene polymerization unit is 50% by weight or more.
  • the density of the polyethylene as the component (a) is not particularly limited, but is preferably about 880 to 980 g / 1.
  • R 2 represents a chain hydrocarbon group or Kei element, up to 3 carbon atoms which may contain a Kei element
  • R 3, R 4, R E is also contain Kei containing Represents a chain hydrocarbon group having a good number of carbon atoms of 1 to 6, or a silicon atom, but any one of R 3 , R 4 and R 5 may be hydrogen.
  • R 3 , R 4 and R 5 may be hydrogen.
  • R 7 represents a chain hydrocarbon group having up to six carbon atoms which may contain Kei element
  • R 7 is Represents a chain hydrocarbon group having 1 to 12 carbon atoms which may contain silicon, hydrogen or halogen, and when m is 2, each R 7 may be the same or different.
  • It is a system monomer. More specifically, examples of the saturated ring hydrocarbon monomer include vinylcyclopropane, vinylcyclobutane, vinylcyclopentane, 3-methylvinylcyclopentane, vinylcyclohexane, and 2-methylvinylcyclohexane.
  • Vinylcycloalkanes such as 1,3-methylvinylcyclohexane, 4-methylvinylcyclohexane, and vinylcyclobutane; arylcycloalkanes such as arylcyclopentane and arylcyclohexane; and cyclotrimethylenevinylsilane , Cyclot Rimethylenemethylvinylsilane, cyclotetramethylenevinylsilane, cyclotetramethylenemethylvinylsilane, cyclopentamethylenevinylsilane, cyclopentamethylenemethylvinylsilane, cyclopentamethyleneethylvinylsilane, cyclohexamethyleneethylvinylsilane, cyclotetramethylenearylsilane
  • a saturated cyclic hydrocarbon monomer having a silicon element in a saturated cyclic structure such as phenylarylsilane, cyclobutyldimethylvinylsilane, cyclopentyldimethylvinylsilasilane, cyclohexylvinylsilane,
  • branched chain olefins examples include 3-methylbutene-1,1,3-methylpentene-1,1,3-ethylpentene-1 and the like.
  • 3-branched olefins, 4-ethylhexene-1,4,4-dimethylpentene1-1 4-position branched olefins such as 1,4,4-dimethylhexene-11, vinyltrimethylsilane, vinyltriethylsilane, vinyltri-n-butylsilane, aryltrimethylsilane, arylethyldimethylsilane, arylethylmethylsilane, and aryl Alkenyl silanes such as triethylsilane, aryltri-n-propylsilane, 3-butenyltrimethylsilane, and 3-butenyltriethylsilane; dimethyldiarylsilane, ethylmethyldiarylsilane, getyl
  • Diarylsilanes and the like examples include styrene and its derivatives such as o-methylstyrene and alkylstyrenes such as p-t-butylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3, Dialkylstyrenes such as 4-dimethylstyrene and 3,5-dimethylstyrene; halogen-substituted styrenes such as 2-methyl-4-fluorostyrene, 2-ethylstyrene, 4-chlorostyrene, o-fluorostyrene, and p-fluorostyrene Trialkylsilylstyrenes such as p-trimethylsilylstyrene, m-trimethylsilylstyrene, and p-ethyldimethylsilylstyrene; arylaryltolu
  • the polypropylene (component (c)) which constitutes the olefin (co) polymer composition of the first invention has an intrinsic viscosity [ ⁇ ? ⁇ ] of 0.2 to less than 135 ° C in tetralin. 10 d 1 / g crystalline polypropylene, which is a propylene homopolymer or a propylene-olefin random copolymer or a propylene-olefin block copolymer containing 50% by weight or more of propylene polymerized units.
  • a propylene homopolymer a propylene one-year-old olefin random copolymer having a propylene polymer unit content of 90% by weight or more, or an ethylene-olefin block having a propylene polymer unit content of 70% by weight or more It is a copolymer.
  • These (co) polymers may be not only one kind but also a mixture of two or more kinds.
  • the intrinsic viscosity [r? P ] of the component (c) component olefin (co) polymer is from 0.2 to LO dl Zg, preferably from 0.5 to 8 d1 / g.
  • Component olefin (co) The olefins other than propylene which are copolymerized with propylene constituting the polymer, although not particularly limited, a olefin having 2 to 12 carbon atoms is preferably used.
  • Specific examples include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-11-pentene, 3-methyl-11-pentene, and the like. May be not only one kind but also two or more kinds.
  • the stereoregularity of the component (olefin) polymer is not particularly limited, and any polypropylene that achieves the object of the present invention may be used as long as it is a crystalline polypropylene.
  • the isotactic pentad fraction (mmmm) measured by 13 C-NMR (nuclear magnetic resonance spectrum) is 0.80 to 0.99, preferably 0.85 to 0.99, particularly Preferably, polypropylene having a crystallinity of 0.90 to 0.99 is used.
  • the isotactic pentad fraction (mmmm) is the pentad unit in the polypropylene molecular chain, as measured by 13 C—NMR proposed by A. Zambelli (Macromolecules 925 (1973)).
  • the measuring device for example, a JE0L-GX270 NMR measuring device (manufactured by JEOL Ltd.) is used.
  • the orefin (co) polymer composition of the first aspect of the present invention comprises the above-mentioned component (a) 0.01 to 5 parts by weight, preferably 0.02 to 2 parts by weight, particularly preferably 0.05 to 1 part by weight, and non-linear olefin polymer (b) component 0.0001 to 0.05 Parts by weight, preferably 0.0001 to 0.01 parts by weight, particularly preferably 0.0001 to 0.005 parts by weight, and 100 parts by weight of the component (c) olefin (co) polymer.
  • the polyethylene content of the component (a) is less than 0.01 part by weight, the effect of improving the melt tension and crystallization temperature of the obtained copolymer (co) polymer composition is small, and if it exceeds 5 parts by weight, the effect is low. This is not preferable because the improvement is lost and the homogeneity of the obtained olefin (co) polymer composition may be impaired.
  • the amount of the non-linear copolymer (b) is less than 0.0001 parts by weight, the effect of improving the crystallization temperature of the obtained copolymer (co) polymer and the transparency at the time of film formation is small. If the amount is more than 10 parts by weight, the effect is lost, and the homogeneity of the obtained olefin (co) polymer composition may be impaired.
  • the melt tension of the olefin (co) polymer composition of the fifth invention is determined by the log (MS) of the melt tension (MS) at 230 ° C and the intrinsic viscosity [7? ⁇ ] measured in tetralin at 135 ° C. )> 4.24x log [r? T ] -1.11
  • the relationship represented by The upper limit is not particularly limited, but if the melt tension is too high, the moldability of the composition deteriorates.
  • melt tension (MS) at 230 ° C is calculated using the melt tension tester type 2 1 o
  • the olefin (co) polymer composition was heated to 230 ° C in the apparatus, and the molten olefin (co) polymer composition was adjusted to a diameter of 2.09.
  • the strand is extruded from a 5 mm nozzle at a speed of 20 mm / min into the atmosphere at 23 ° C to form a strand, and the tension of the filamentous polypropylene composition when the strand is pulled at a speed of 3.14 mZ is measured. Value (unit: cN).
  • pre-activation refers to the ability of the catalyst for the production of polyolefin to polymerize the high molecular weight polymer prior to conducting the homo- or copolymerization of propylene or propylene with other olefins.
  • activation means that the catalyst is preactivatedly (co) polymerized with ethylene or ethylene and other olefins and non-linear olefins in the presence of a catalyst for polyolefin production and supported on the catalyst.
  • the preactivated catalyst for polymerization of olefin (co) polymer of the present invention is a polyolefin production catalyst comprising a catalyst component of a transition metal compound conventionally used for production of polyolefin, an organometallic compound and an electron donor optionally used.
  • the catalyst is preactivated by supporting a small amount of a polyolefin having a specific intrinsic viscosity for homo- or copolymerization and a small amount of a polyolefin having a high specific viscosity on a catalyst for use.
  • any known catalyst component mainly composed of the transition metal compound catalyst component proposed for polyolefin production is used as the transition metal compound catalyst component.
  • a titanium-containing solid catalyst component is preferably used for industrial production.
  • titanium-containing solid catalyst component a titanium-containing solid catalyst component containing a titanium trichloride composition as a main component
  • Japanese Patent Publication No. 56-33556 Japanese Patent Publication No. 59-285733, Japanese Patent Publication No. 63-63632, etc.
  • a titanium-containing supported catalyst component in which titanium tetrachloride is supported on a magnesium compound, and titanium, magnesium, halogen, and an electron donor are essential components
  • a transition metal compound catalyst component other than the above a transition metal compound having at least one ⁇ -electron conjugated ligand, which is usually referred to as a meta-opencene, can also be used.
  • the transition metal at this time is preferably selected from Zr, Ti, Hf, V, Nb, Ta and Cr.
  • ⁇ -electron conjugated ligand examples include a ligand having a] -cyclopentene genenyl structure, a “1-benzene structure, a 7-cyclobutatrienyl structure, or a 7-cyclopentactotetraen structure. Particularly preferred are ligands having a 7? -Cyclopentagel structure.
  • Examples of the ligand having a -cyclopentenyl group include a cyclobenzyl group, an indenyl group and a fluorenyl group. These groups include hydrocarbon groups such as alkyl groups, aryl groups and aralkyl groups, silicon-substituted hydrocarbon groups such as trialkylsilyl groups, halogen atoms, alkoxy groups, aryloxy groups, linear and cyclic groups. It may be substituted with an alkylene group or the like.
  • two of the ⁇ -electron conjugated ligands are an alkylene group, a substituted alkylene group, a cycloalkylene group, a substituted cycloalkylene group, a substituted alkylidene group. It may be cross-linked via a group, a phenyl group, a silylene group, a substituted dimethylsilylene group, a germyl group, or the like.
  • the transition metal catalyst component has at least one ⁇ -electron ligand as described above, and a carbon hydride group such as an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, It may have an amino-substituted hydrocarbon group, an alkoxy group, an aryloxy group, a substituted sulfonato group, an amidosilylene group, an amidoalkylene group, or the like.
  • Divalent groups such as amide silylene groups and amidoalkylene groups bind to ⁇ -electron conjugated ligands. May be.
  • the transition metal compound catalyst component having at least one ⁇ -electron conjugated ligand which is usually referred to as methionine sen, as described above, can be further used by being supported on a particulate carrier.
  • a particulate carrier a granular or spherical particulate solid having a particle size of 5 to 300) Ltm, preferably 10 to 200 ⁇ m, even if it is an inorganic or organic compound, is used.
  • the inorganic compound used in the carrier S i 0 2, A 1 2 0 3, MgO, T i 0 2, ZnO and the like or mixtures thereof. Of these, it preferred the ones composed mainly of S i 0 2 or A l 2 0 3.
  • organic compound used for the carrier examples include polymers or copolymers of ⁇ -olefins having 2 to 12 carbon atoms, such as ethylene, propylene, 1-butene and 4-methyl-11-pentene, and styrene or styrene.
  • examples include a polymer or copolymer of a styrene derivative.
  • Organometallic compound (AL, Periodic Table (1991 version) Compound having an organic group of a metal selected from the group consisting of metals belonging to Group 1, Group 2, Group 12, and Group 13, for example, An organic lithium compound, an organic sodium compound, an organic magnesium compound, an organic zinc compound, an organic aluminum compound, or the like can be used in combination with the transition metal compound catalyst component.
  • the general formula is A 1 + Q) (wherein, R 1 and R 2 are the same or different of a hydrocarbon group such as an alkyl group, a cycloalkyl group and an aryl group and an alkoxy group, X is a halogen atom, and p and q are , 0 + p + q ⁇ 3)
  • R 1 and R 2 are the same or different of a hydrocarbon group such as an alkyl group, a cycloalkyl group and an aryl group and an alkoxy group
  • X is a halogen atom
  • p and q are , 0 + p + q ⁇ 3
  • Specific examples of the organoaluminum compound which can be suitably used include trimethylaluminum, triethylaluminum, and tri-n.
  • Trial such as -propyl aluminum, tri-n-butyl aluminum, tri-i-butyl aluminum, tri-n-hexyl aluminum, tri-i-hexyl aluminum, tri-n-butyl aluminum
  • Dialkylaluminum monohalides such as kill aluminum, getyl aluminum chloride, di-n-propyl aluminum dimethyl chloride, g i-butyl aluminum chloride, getyl aluminum dimethyl aluminum chloride, and getyl aluminum iodide;
  • Dialkylaluminum hydride such as getyl aluminum hydride, alkyl aluminum sesquihalide such as ethyl aluminum sesquichloride, monoalkyl aluminum dimethyl sulfide such as ethyl aluminum dichloride, etc.
  • Alkoxyalkyl aluminum such as chilled aluminum can be mentioned, and preferably, trialkylaluminum and dialkylaluminum monohalide are used. These organic aluminum compounds can be used alone or in combination of two or more.
  • an aluminoxane compound can also be used as an organometallic compound (AL J.
  • R 3 is a hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, specifically, a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, a pentyl group, and a hexyl group.
  • Alkenyl groups such as alkyl group, aryl group, 2-methylaryl group, propyl group, isopropyl group, 2-methyl-1-propenyl group, butenyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group
  • cycloalkyl groups such as cyclohexyl groups, and aryl groups.
  • P is a force which is an integer of 4 to 30, preferably 6 to 30, particularly preferably 8 to 30.
  • an organometallic compound (another compound as AL is a boron-based organometallic compound.
  • This boron-based organometallic compound is obtained by reacting a transition metal compound with an ionic compound containing a boron atom.
  • the transition metal compound used at this time may be the same as the transition metal compound catalyst component used in producing the preactivated catalyst for the olefin (co) polymerization, but is preferably used.
  • Examples of the ionic compound containing a boron atom include tetrakis (pentafluorophenyl) borate triethylammonium, tetrakis (pentafluorofluorophenyl) borate tri- ⁇ -butylammonium, tetrakis (pentafluoro) Phenyl) triphenylammonium borate, tetrax (tetrafluorophenyl) methylammonium borate, tetrax (fluorophenyl pentano) trimethylammonium borate, tetrakis (fluorophenyl pentano) boric acid And trimethylammonium.
  • the boron-based organometallic compound can also be obtained by contacting a transition metal compound with a boron atom-containing Lewis acid.
  • a transition metal compound used at this time the same force as the transition metal catalyst component used for producing the preactivated catalyst for the polymerization of olefin (co) polymer can be used.
  • the above-mentioned transition metal compound catalyst component having at least one ⁇ -electron conjugated ligand usually referred to as meta-opening.
  • boron atom-containing Lewis acid a compound represented by the following general formula can be used.
  • R 4 , R 5 , and R 6 each independently represent a fluorine atom, a phenyl group which may have a substituent such as a methyl group or a trifluorophenyl group, or a fluorine atom.
  • the compounds represented by the above general formula include: tri (n-butyl) boron, triphenylboron, tris [3,5-bis (trifluoromethyl) phenyl] boron, tris (4 —Fluoromethylphenyl) boron, Tris (3,5-difluorophenyl) boron, Tris (2,4,6-trifluorophenyl) boron, Tris (pentafluorophenyl) boron, etc. (Pentafluorophenyl) boron is particularly preferred.
  • Electron donors (E J are used as needed to control the rate of formation and Z or tacticity of the polyolefin.
  • electron donors include ethers, alcohols, esters, aldehydes, fatty acids, ketones, nitriles, amines, amides, ureas and thioureas, isocyanates, azo compounds, and phosphines.
  • Compounds having oxygen, nitrogen, sulfur, or phosphorus atom in the molecule such as phosphites, phosphites, phosphinites, hydrogen sulfide and thioethers, neoalcohols, and silanols, and Si-in the molecule And organic silicon compounds having a 0-C bond.
  • Ethers include dimethyl ether, dimethyl ether, di-n-propyl ether, di-n-butyl ether, di-n-amyl ether, di-n-pentyl ether, di-n-hexyl ether, di-n-hexyl ether , Di-n-octyl ether, g-i-one-octyl ether, g-n-dodecyl ether, diphenyl ether, ethylene glycol monoethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran and the like. Ethanol, propanol, butanol, pentanol, hexanol, octanol, 2-ethylhexanol, aryl alcohol, benzyl alcohol ⁇ a
  • Phenol ethylene glycol, glycerin and the like, and phenols such as phenol, cresol, xylenol, ethylphenol and naphthol.
  • esters include methyl methacrylate, methyl formate, methyl acetate, methyl methacrylate, ethyl acetate, vinyl acetate, mono-n-propyl acetate, i-propyl acetate, butyl formate, amyl acetate, n-butyl acetate, Octyl acetate, phenyl acetate, ethyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, octyl benzoate, 2-ethylhexyl benzoate, methyl toluate, methyl ethyl toluate, methyl anilate Ethyl anilate, propyl anilate, phenyl anilate,
  • aldehydes include acetate aldehyde, propionaldehyde, and benzaldehyde
  • carboxylic acids include monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, acrylic acid, maleic acid, valeric acid, and benzoic acid.
  • carboxylic acids and acid anhydrides such as benzoic anhydride, fluoric anhydride and tetrahydrophthalic anhydride
  • ketones include acetone, methylethylketone, methyl-i-butylketone, and benzophenone.
  • nitrogen-containing compounds include nitriles such as acetonitrile and benzonitrile, methylamine, getylamine, tributylamine, triethanolamine, (3 (N, N-dimethylamino) ethanol, pyridine, quinoline, ⁇ -picoline, , 4,6-trimethylpyridine, 2,2,5,6-tetramethylpiperidine, 2,2,5,5, tetramethylpyrrolidine, ⁇ , ⁇ , ⁇ ', ⁇ '—tetramethylethylenediamine, aniline, dimethyl Amines such as aniline, formamide, hexamethylphosphoric triamide, ⁇ , ⁇ , ⁇ ', ⁇ ', ⁇ "1-pentamethyl-1- ⁇ '— ⁇ -dimethylaminomethylphosphate triamide, octamethylpyrophosphoryl Amides such as amides, ⁇ , ⁇ , ⁇ ', ⁇ '—ureas such as tetramethylurea, fu
  • Examples of the phosphorus-containing compound include phosphines such as ethyl phosphine, triethyl phosphine, tri-n-octyl phosphine, triphenyl phosphine, tri-phenyl phosphine, dimethyl phosphite, and di-n-octyl phosphine.
  • phosphines such as ethyl phosphine, triethyl phosphine, tri-n-octyl phosphine, triphenyl phosphine, tri-phenyl phosphine, dimethyl phosphite, and di-n-octyl phosphine.
  • Phosphines such as triphenyl phosphine and triphenyl phosphine oxide
  • phosphites such as dimethyl phosphite, di-n-octyl phosphite, triethyl phosphite, tri- ⁇ -butyl phosphite, and triphenyl phosphite can be used. Is exemplified.
  • Examples of the sulfur-containing compound include thioethers such as getyl thioether, diphenyl thioether, and methyl phenyl thioether, and thioalcohols such as ethyl thioalcohol, ⁇ -propylthioalcohol, and thiophenol.
  • Examples of organic silicon compounds include silanols such as trimethylsilanol, triethylsilanol, and triphenylsilanol, trimethylmethoxysilane, dimethyldimethoxysilane, methylphenyldimethyloxysilane, diphenyldimethyloxysilane, methyltrimethoxysilane, and vinyltrimethoxysilane.
  • These electron donors can be used alone or as a mixture of two or more.
  • the preactivated catalyst used in the sixth invention is
  • a transition metal compound catalyst component and
  • a catalyst for producing polyolefin comprising a combination of
  • Polypropylene for polymerization (co) polymerization with intrinsic viscosity [r? C ] of less than 15 dlZg measured in 0.11 to 100 g of transition metal compound component at 135 ° C tetralin per 1 g Ropylene (C), and
  • the polyethylene (A) has an intrinsic viscosity [7] measured in tetralin at 135 ° C. of 15 to 15; L 00 dlZg, preferably 17 to 50 dlZg.
  • the copolymer (co) constitutes the polyethylene of the component (a) of the polymer composition. Therefore, the intrinsic viscosity [r? E ] of the polyethylene (a) and the intrinsic viscosity [77] of the polyethylene (A)
  • the supported amount of polyethylene (A) per g of the transition metal compound catalyst component is 0.01 to 5,000 g, preferably 0.05 to 2,000 g, and more preferably 0.1 to 1,000 g. If the amount supported per 1 g of the transition metal compound catalyst component is less than 0.01 g, the effect of improving the melt tension and crystallization temperature of the olefin (co) polymer composition finally obtained by the (co) polymerization is not sufficient. If the amount is more than 5,000 g, not only the improvement of the effect is not remarkable, but also the homogeneity of the finally obtained olefin (co) polymer composition may deteriorate. It is not preferable because there is.
  • the supported amount of the non-linear olefin polymer (B) per 1 g of the catalyst component of the transition metal compound is 0.001 to 100 g, preferably 0.005 to 50 g, and more preferably 0.01 to 20 g.
  • the supported amount per 1 g of the transition metal compound catalyst component is less than 0.001 g, the effect of improving the transparency and the crystallization temperature of the olefin (co) polymer composition finally obtained by the (co) polymerization is reduced. If it is insufficient, and if it exceeds 100 g, not only the improvement of those effects will not be remarkable, but also the homogeneity of the finally obtained olefin (co) polymer composition may be deteriorated. It is not preferable.
  • Olefin (co) polymer (C) has an intrinsic viscosity [ c ] of less than 15 dl "g measured in tetralin at 135 ° C. It is an olefin (co) polymer having the same composition as the fin (co) polymer. o It is incorporated as a part of the olefin (co) polymer of component (c) of the olefin (co) polymer composition of the first invention. Olefin (co) polymer (C) is a component that imparts dispersibility of polyethylene (A) to the finally obtained orefin (co) polymer composition. . ] Is preferably smaller than the intrinsic viscosity [7? J] of the polyethylene (A) and larger than the intrinsic viscosity [r? T ] of the finally obtained olefin (co) polymer composition.
  • the preactivation catalyst is a combination of the transition metal compound catalyst component, the organometallic compound (ALi), and an electron donor (EJ) optionally used in the presence of a catalyst for producing polyolefin,
  • the propylene or olefin for the purpose of (co) polymerization is preliminarily (co) polymerized with olefin and other olefins.
  • the transition metal compound catalyst component from 0.01 to 1 mol of the transition metal in the catalyst component; L, 000 mol, preferably from 0.05 to 500 mol of the organometallic compound (ALi), In addition, 0 to 500 moles, preferably ⁇ to 100 moles, of the electron donor are combined with 1 mole of the transition metal in the catalyst component and used as a catalyst for producing polyolefin.
  • the catalyst for producing polyolefin is converted into a transition metal atom in a catalyst component of 0.001 to 1 per liter of a (co) polymerization volume of non-linear olefin and ethylene or non-linear olefin and ethylene and other olefins. 5,000 mmol, preferably 0.01-000 mmol, in the absence of solvent or In a solvent up to 100 liters per 1 g of the transition metal compound catalyst component, 0.01 to 500 g of propylene or a mixture of propylene and another olefin for the purpose of the (co) polymerization is supplied.
  • Preliminary (co) polymerization to produce 0.01 to 100 g of a olefin (co) polymer (C) per 1 g of the transition metal compound catalyst component, and then to a non-linear olefin 0.00.01 g to l, 0.000 g, and pre-activated (co) polymerized to give 0.001 to 50 g of a non-linear olefin polymer per 1 g of the transition metal compound catalyst component (B) is produced, and then 0.01 g to 100,000 g of ethylene or a mixture of ethylene and ethylene and other olefins is supplied to pre-activate (co) polymerize the transition metal.
  • the transition metal compound is produced by producing 0.01 to 5, OOO g of polyethylene (A) per 1 g of the compound catalyst component.
  • the catalyst component is coated and supported with an olefin (co) polymer (C), a non-linear olefin polymer (B) and a polyethylene (A).
  • ⁇ polymerization volume '' means the volume of the liquid phase portion in the polymerization vessel in the case of liquid phase polymerization, and the volume of the gas phase portion in the polymerization vessel in the case of gas phase polymerization.
  • the amount of the transition metal compound catalyst component used is preferably in the above range in order to maintain an efficient and controlled (co) polymerization reaction rate of propylene. Also, if the amount of the organometallic compound (ALJ is too small, the (co) polymerization reaction rate is too slow, and if it is too large, the (co) polymerization reaction rate cannot be expected to increase correspondingly.
  • the organometallic compound (ALJ is undesirably increased in the resulting olefin (co) polymer composition, which is not preferable.
  • the amount of the electron donor (E) is too large, the (co) polymerization reaction rate may decrease. Too much solvent not only requires a large reaction vessel, but also makes it difficult to efficiently control and maintain the (co) polymerization reaction rate.
  • Preliminary and activation treatments include, for example, aliphatic hydrocarbons such as butane, pentane, hexane, heptane, octane, isooctane, decane, dodecane, alicyclic rings such as cyclopentane, cyclohexane, and methylcyclohexane.
  • Group hydrocarbon, toluene, xylene It can be carried out in a liquid phase using olefin itself as a solvent, an aromatic hydrocarbon such as benzene, ethylbenzene, an inert solvent such as a gasoline fraction / hydrogen diesel oil fraction, or gas. It is also possible to do it in phase.
  • the preactivation treatment may be carried out in the presence of hydrogen.
  • hydrogen in order to produce a high-molecular-weight polyethylene (A) having an intrinsic viscosity [ ⁇ A] of 15 to L 00 d, hydrogen must be used. It is better not to have them.
  • the pre-polymerization conditions of propylene or a mixture of propylene and other olefins for the purpose of the main (co) polymerization are as follows: the olefin (co) polymer (C) is a transition metal compound catalyst component 1 g. ⁇ .01 g to 100 g per 1 g of the non-linear olefin polymer (B) per gram of the transition metal compound catalyst component. (: Carried out at a temperature of up to 100 ° C and a pressure of 0.1 MPa to 5 MPa for 1 minute to 24 hours.
  • Pre-activation of ethylene or a mixture of ethylene and other olefins are such that the amount of polyethylene (A) is from 0.01 to 5,000 g, preferably from 0.05 to 2,000 g, more preferably from 0.1 to ⁇ , 00 g per g of the transition metal compound catalyst component.
  • the amount of polyethylene (A) is from 0.01 to 5,000 g, preferably from 0.05 to 2,000 g, more preferably from 0.1 to ⁇ , 00 g per g of the transition metal compound catalyst component.
  • a mixture of propylene or propylene for the purpose of the (co) polymerization and other olefins is used for the purpose of suppressing a decrease in the activity of the (co) polymerization due to the pre-activation treatment.
  • the addition polymerization may be carried out with a reaction amount of 0.01 to 100 g of the olefin (co) polymer (C) per 1 g of the transition metal compound catalyst component.
  • the amount of the organometallic compound is Forces that can be carried out in the same range as preactivated polymerization with a mixture of ethylene or ethylene and other olefins 0.0005 to 10 mol, preferably 0.01 to 5 mol of electrons per mole of transition metal atom
  • the force performed in the presence of the donor is preferred.
  • the reaction is carried out at a temperature of 40 to 100 ° C and a pressure of 0.1 to 5 MPa for 1 minute to 24 hours.
  • organometallic compounds (AL,), electron donors (EJ, and solvents) used for the addition polymerization can be used as in the case of preactivated polymerization using ethylene or a mixture of ethylene and other olefins.
  • organometallic compounds (AL,), electron donors (EJ, and solvents) used for the addition polymerization can be used as in the case of preactivated polymerization using ethylene or a mixture of ethylene and other olefins.
  • propylene or a mixture of propylene and other olefins use one with the same composition as for the purpose of this (co) polymerization.
  • the intrinsic viscosity ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ r? C ] of the polypropylene formed by addition polymerization is smaller than the intrinsic viscosity [TJ A] of polyethylene (A), and finally the (b) component after the main (co) polymerization Incorporated as part of polypropylene.
  • the preactivated catalyst may be used as it is or as a catalyst for homoolefin (co) polymerization further containing an additional organometallic compound (AL 2 ) and an electron donor (E 2 ) to obtain the desired polypropylene composition. It can be used for a book (co) polymer of an oligomer having 2 to 12 carbon atoms.
  • the catalyst for polymerization of the olefin alone (co) may be an organometallic compound (AL 2 ) in the catalyst for activating the organometallic compound (AL 2 ) per mole of the transition metal atom in the preactivated catalyst or the preactivated catalyst.
  • organometallic compound (AL 2 ) in the catalyst for activating the organometallic compound (AL 2 ) per mole of the transition metal atom in the preactivated catalyst or the preactivated catalyst.
  • the electron donor (E 2 ) to 0.05 to 3,000 mol, preferably 0.1 to 1,000 mol, and 1 mol of the transition metal atom in the activation catalyst in total (ALi + s 2 ).
  • Organometallic compound content (AL ⁇ + AL 2 ) force j. If too small, the (co) polymerization reaction rate in homo (co) polymerization of propylene or propylene and other olefins is too slow, while excessively large Also the (co) polymerization reaction rate rises as expected Not only is it not efficient because it is not recognized, but also the organometallic compound residue remaining in the finally obtained olefin (co) polymer composition is not preferable. Further, when the content of the electron donor (E, + E 2 ) becomes excessive, the (co) polymerization reaction rate is remarkably reduced.
  • organometallic compounds A 2
  • electron donors E 2
  • One type may be used alone, or two or more types may be used in combination.
  • the same type as used in the pre-activation treatment may differ. You may.
  • Olefin alone (co) polymerization catalyst is removed by filtering or decanting the solvent, unreacted Olefin, organometallic compound (ALJ, and electron donor (EJ, etc.) present in the preactivated catalyst.
  • the obtained granules or a suspension obtained by adding a solvent to the granules may be combined with an additional organometallic compound (AL 2 ) and, if desired, an electron donor (E 2 ).
  • the solvent and the unreacted orefin are removed by distillation under reduced pressure or by evaporating with an inert gas stream or the like, or the granules obtained by adding a solvent to the granules and, if desired, an organometallic compound ( AL 2 ) and the electron donor (E 2 ) may be combined.
  • the amount of the preactivation catalyst or the catalyst for singly olefin (co) polymerization may be: 0.001 to 1,000 mmol, preferably 0.005 to 500 mmol, based on the number of transition metal atoms contained therein.
  • the homo- (co) polymerization of propylene or a mixture of propylene and other olefins in the sixth invention is a homo- or co-polymerization known as the polymerization process.
  • Processes can be used, specifically, aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, isooctane, decane, dodecane, cyclopentane, cyclohexane, methylcyclohexane, etc.
  • Slurry weight for carrying out (co) polymerization of olefins in alicyclic hydrocarbons, aromatic hydrocarbons such as toluene, xylene, ethylbenzene, and other inert solvents such as gasoline fractions and hydrogenated diesel oil fractions Synthetic method, bulk polymerization method using orefin itself as a solvent, gas phase polymerization method in which (co) polymerization of orefin is performed in gas phase, liquid phase polymerization in which polyolefin produced by (co) polymerization is liquid, or A polymerization process that combines two or more of these processes can be used.
  • the polymerization conditions include a polymerization temperature of 20 to 120 ° C, preferably 30 to 100 ° C, particularly preferably 40 to 100 ° C, and a polymerization pressure of 0.1.
  • the polymerization time is about 5 minutes to 24 hours, continuously, semi-continuously or batchwise in the range of 5 to 5 MPa, preferably 0.3 to 5 MPa.
  • the (c) component olefin (co) polymer produced by homopolymerization and the finally obtained olefin (co) polymer composition Has an intrinsic viscosity [ ⁇ ⁇ ] of 0.2 to 10 d 1 / g, preferably 0.7 to 5 d 1 Zg, and is used in the obtained olefin (co) polymer composition.
  • the molecular weight of the (co) polymer obtained by using hydrogen during the polymerization can be adjusted in the same manner as in the known polymerization method for olefins.
  • the desired high melt tension and high crystallization can be achieved through post-treatments such as the catalyst deactivation treatment step, catalyst residue removal step, and drying step, if necessary.
  • An olefin (co) polymer composition with temperature and high transparency is finally obtained.
  • a high-molecular-weight polyethylene (A) and a non-linear olefin polymer (B) are produced by a preactivation step, and finally obtained.
  • Olefin (co) Employs a method of uniformly dispersing in the polymer composition, so that the required amount of preactivated catalyst can be adjusted collectively while propylene or propylene and other olefins are used.
  • conventional (co) polymerization ordinary olefin (co) polymerization may be carried out using an existing process, so that the same production volume can be maintained as compared with normal polyolefin production.
  • melt tension (MS) at 230 ° C and the measurement in tetralin at 135 ° C are described above. Satisfies the relationship with the intrinsic viscosity [7? ⁇ ], and easily obtains a refined (co) polymer composition having good force and transparency.
  • Intrinsic viscosity The intrinsic viscosity measured in tetralin at 135 ° C using a Ostwald viscometer (manufactured by Mitsui Toatsu Chemicals, Inc.) (unit: dlZg).
  • Crystallization temperature (T c) The temperature of the polyolefin was raised from room temperature to 230 ° C from room temperature by 30 ° C / min using a DSC type 7 differential scanning calorimeter manufactured by Perkin Elmer, Inc. After holding for 1 ° min., The temperature was lowered to 120 ° C at 20 ° C for 0 min., Maintained at the same temperature for 10 min., And then raised to 230 ° C under the temperature rising condition of 20 ° C / Same temperature After holding at 5 for 10 minutes, the temperature is lowered to 150 ° C at —80 ° C / min. Temperature (T c) (unit: C).
  • the haze inside the film excluding the influence of the surface The polypropylene is formed into a film with a thickness of 15 Ojum using a press machine at a temperature of 200 ° C and a pressure of 19.6 MPa, and flows on the film surface. After coating with paraffin, Haze was measured according to JI SK7 105 (unit:%).
  • the total amount of the solid product was mixed with 1.5 liters of tetrachloride titanium dissolved in 1.5 liters of 1,2-dichloroethane, then 36 g of di-i-butyl phthalate was added, and the mixture was stirred at 100 ° C. After 2 hours, the liquid phase was removed by decantation at the same temperature, and 1.5 liters of 1,2-dichloroethane and 5 liters of titanium tetrachloride were added again. The mixture was stirred and maintained, washed with hexane, and dried to obtain a titanium-containing supported catalyst component (transition metal compound catalyst component) containing 2.8% by weight of titanium.
  • transition metal compound catalyst component transition metal compound catalyst component
  • the amount (W 2 ) of poly-3-methylbutene-1 (B) per 1 g of the titanium-containing supported catalyst component formed in 3-methylbutene-1 preactivated polymerization II was determined by The difference between the amount of polymer produced per gram of the supported catalyst component (W T2 ) and the amount of polypropylene (C) produced per gram of the titanium-containing supported catalyst component after prepolymerization (Wi) is determined by the following equation.
  • the intrinsic viscosity [r? B ] of poly-3-methylbutene-1 (B) produced in preactivated polymerization II with 3-methylbutene-1 is the intrinsic viscosity of polypropylene (C) produced in prepolymerization [ c ] and the intrinsic viscosity [r? T2 ] of the polymer formed by the pre-activation treatment can be obtained by the following equation.
  • Pre-activated polymerization with 3-methylbutene-1 according to the above formula —3—Methylbutene 1 (B) amount is 3 g per 1 g of supported catalyst component containing titanium.
  • the intrinsic viscosity [B] was 2.3 dlZg.
  • the pressure in the gas phase inside the polymerization vessel was 0.79 under the condition of a polymerization temperature of 70 ° C.
  • propylene was continuously supplied into the polymerization vessel for 2 hours to perform main polymerization of propylene.
  • the obtained polymer was obtained by pre-activated polymerization corresponding to the component (a) and having a content of 0.26% by weight of polyethylene (A), and poly (3-methylbutene) obtained by the pre-activated polymerization corresponding to the component (b).
  • One (B) is a polypropylene composition having a content of 0.0351% by weight, and the intrinsic viscosity [r? P ] of the component (c) polypropylene was 1.83 dl / g.
  • Example 1 polypropylene was produced under the same conditions as in Example 1 except that preactivation polymerization I of the titanium-containing supported catalyst component with ethylene was not performed. 0.1 part by weight of 2,6-di-tert-butyl-p-cresol and 0.1 part by weight of calcium stearate were mixed with 100 parts by weight of the obtained polypropylene composition, and the mixture was extruded with a screw diameter of 40 mm. Granulated at 230 ° C using a granulator to obtain pellets. Various physical properties of the pellets were evaluated, and the MFR was 4.5 gZl 0 minutes. Table 1 summarizes the detailed physical properties.
  • Example 1 The procedure of Example 1 was repeated except that the pre-activated polymerization was not performed with 3-methylbutene-11 and the ethylene of the titanium-containing supported catalyst component.
  • Parts by weight and 0.1 part by weight of calcium stearate were mixed, and the mixture was granulated at 230 ° C. by using an extrusion granulator having a screw diameter of 4 Omm to obtain pellets.
  • the MFR was 4.7 g / 10 minutes.
  • Table 1 The procedure of Example 1 was repeated except that the pre-activated polymerization was not performed with 3-methylbutene-11 and the ethylene of the titanium-containing supported catalyst component.
  • Parts by weight and 0.1 part by weight of calcium stearate were mixed, and the
  • the whole amount of the homogeneous solution was dropped into 200 liters of titanium tetrachloride kept at 120 ° C over 3 hours. After the dropwise addition, the temperature was raised to 110 ° C over 4 hours.When the temperature reached 110 ° C, dibutyl phthalate 5.03 liter was added, and the mixture was stirred at 110 ° C for 2 hours. The reaction was carried out while holding. After completion of the reaction for 2 hours, the solid portion was collected by hot filtration, and the solid portion was resuspended with 275 liters of titanium tetrachloride. Then, the reaction was continued again at 110 ° C. for 2 hours.
  • the polymer was withdrawn from the polymerizer at a rate of 11.6 kgZh so as to maintain the level of the polymer in the reactor at 60% by volume.
  • the extracted polymer was subjected to a contact treatment with nitrogen gas containing 5% by volume of water vapor at 100 ° C. for 30 minutes to have an intrinsic viscosity [r] T ] of 1.88 dlZg and 0.8% by weight of ethylene polymerized units. A polymer was obtained.
  • the content of polyethylene (A) produced by preactivation in the polymer is 0.15% by weight, the content of poly-3-methylbutene-1 (B) is 0.0168% by weight, and the intrinsic viscosity of polypropylene [7 ⁇ ] was 1.83 d lZg.
  • Example 2 polypropylene was produced under the same conditions as in Example 2 except that preactivation polymerization I of the titanium-containing supported catalyst component with ethylene was not performed. 0.1 parts by weight of 2,6-di-tert-butyl-p-cresol and 0.1 parts by weight of calcium stearate were mixed with 100 parts by weight of the obtained polypropylene composition, and the mixture was extruded with a screw screw 40 mm. Granulated at 230 ° C using a granulator to obtain pellets. When the various physical properties of the pellet were evaluated, the MFR was 4.1 g for 10 minutes. Table 1 summarizes the detailed physical properties.
  • Example 2 The procedure of Example 2 was repeated except that the pre-activated polymerization of the titanium-containing supported catalyst component with 3-methylbutene-1 and ethylene was not carried out.
  • Example 2 To 100 parts by weight of the obtained polypropylene composition, 0.1 part by weight of 2,6-di-tert-butyl-p-cresol and 0.1 part by weight of calcium stearate were mixed, and the mixture was subjected to a screw diameter of 40 parts. The pellets were granulated at 230 ° C using an extruding granulator of mm. ⁇ When the various properties of the lett were evaluated and measured, the MFR was 4.5 g / 10 min. Detailed physical properties are summarized in Table 1.

Description

明 細 書 ォレフィン (共) 重合体組成物およびその製造方法 技術分野
本発明は、 ォレフィン (共) 重合体組成物およびその製造方法に係り、 さらに 詳しくは、 溶融張力が高く、 成形加工性の優れ、 透視性が良好なォレフィン (共 ) 重合体組成物およびその製造方法に関する。 背景技術
ポリプロピレンは、 機械的性質、 耐薬品性等に優れ、 また経済性とのバランス において極めて有用なため各成形分野に広く用いられている。 しかしながら、 ポ リプロピレンは溶融張力が小さいため、 中空成形、 発泡成形、 押し出し成形等の 成形性に劣っている。 また、 透視性が劣り、 用途分野においては商品価値を損な う場合があり、 これらの向上が望まれている。
ポリプロピレンの溶融張力を高める方法として、 溶融状態下において、 ポリプ 口ピレンに有機過酸化物と架橋助剤を反応させる方法 (特開昭 5 9 - 9 3 7 1 1 号公報、 特開昭 6 1 - 1 5 2 7 5 4号公報等) 、 半結晶性ポリプロピレンに低分 解温度過酸化物を酸素存在下で反応させて、 自由端長鎖分岐を有しゲルを含まな いポリプロピレンを製造する方法 (特開平 2 - 2 9 8 5 3 6号公報) などが開示 されている。
溶融張力等の溶融粘弾性を向上させる他の方法として、 固有粘度または分子量 の異なるポリエチレン若しくはポリプロピレンを配合した組成物や、 このような 組成物を多段階重合によって製造する方法が提案されている。
たとえば、 超高分子量ポリプロピレン 2〜 3 0重量部を通常のポリプロピレン 1 0 0重量部に添加し、 融点以上 2 1 0 °C以下の温度範囲で押し出す方法 (特公 昭 6 1 - 2 8 6 9 4号公報) 、 多段重合法により得られた極限粘度比が 2以上の 分子量の異なる 2成分のポリプロピレンからなる押し出しシート (特公平 1一 1 2 7 7 0号公報) 、 高粘度平均分子量のポリエチレンを 1〜 1 0重量%含む、 粘 度平均分子量の異なる 3種類のポリェチレンからなるポリェチレン組成物を溶融 混練法、 若しくは多段重合法によって製造する方法 (特公昭 6 2— 6 1 0 5 7号 公報) 、 高活性チタン ·バナジウム固体触媒成分を用いて、 多段重合法により、 極限粘度が 2 0 d 1 / g以上の超高分子量ポリエチレンを 0 . 0 5ないし 1重量 %未満重合させるポリエチレンの重合方法 (特公平 5 - 7 9 6 8 3号公報) 、 1 —ブテンや 4ーメチルー 1一ペンテンで予備重合処理された高活性チタン触媒成 分を用いて特殊な配列の重合器により多段重合法により、 極限粘度が 1 5 d 1 Z g以上の超高分子量ポリエチレンを 0 . 1〜 5重量%重合させるポリエチレンの 重合方法 (特公平 7— 8 8 9 0号公報) などが開示されている。
さらに、 担持型チ夕ン含有固体触媒成分および有機アルミニゥム化合物触媒成 分にエチレンとポリェン化合物が予備重合されてなる予備重合触媒を用いてプロ ピレンを重合することにより、 高溶融張力を有するポリプロピレンを製造する方 法 (特開平 5 - 2 2 2 1 2 2号公報) および同様の触媒成分を用い予備重合をェ チレンの単独で行い極限粘度が 2 0 d 1 / g以上のポリェチレンを含有するェチ レン含有予備重合触媒を用いる高溶融張力を有するエチレン · α—才レフィン共 重合体の製造方法 (特開平 4 - 5 5 4 1 0号公報) が開示されている。
ポリプロピレンの透視性を改良する試みに関しては、 たとえば、 芳香族カルボ ン酸のアルミニウム塩 (特公昭 4 0— 1 6 5 2号公報等) や、 ベンジリデンソル ビ卜一ル誘導体 (特公昭 5 1— 2 2 7 4 0号公報等) 等の造核剤をポリプロピレ ンに添加する方法が開示されている。 これらの他にビニルシクロへキサンゃァリ ル卜リメチルシラン等を少量重合させて予備活性化処理した触媒を用いてプロピ レンの重合を行う方法 (特開昭 6 0 - 1 3 9 7 1 0号公報、 特開昭 6 3 - 1 5 8 0 3号公報、 特開昭 6 3 - 1 5 8 0 4号公報、 特開昭 6 3 - 2 1 8 7 0 9号公報 、 特公平 7 - 5 8 0 3号公報、 特開平 7 - 3 0 4 8 2 5号公報等) 力 ^提案されて いる。
上記提案されている種々の組成物やそれらの製造方法においては、 ポリオレフ ィンの溶融張力のある程度の向上は認めらるものの、 架橋助剤による臭気の残留 、 結晶化温度、 成形加工性、 透視性など改善すべき点も残っている。
また、 高分子量のポリオレフインの製造工程を、 本重合における通常のプロピ レン (共) 重合工程に組み込む多段重合法においては、 その高分子量のポリオレ フィンを微量生成させるための、 ォレフィン (共) 重合量の微量コントロールが 難しいこと、 また分子量の十分に大きいポリオレフインを生成するために低い重 合温度が必要なこともあり、 プロセスの改造を必要とし、 さらに最終的なポリプ ロピレン組成物の生産性も低下する。
ポリェン化合物を予備重合させる方法においては、 別途にポリェン化合物を準 備する必要があり、 またポリェチレンを予備重合させる方法を開示した文献に基 づいてプロピレンを重合した場合、 最終的に得られるポリプロピレン組成物への 予備重合したポリエチレンの分散が不均一であり、 ポリプロピレン組成物中の分 散性改善が要求される。 またこの文献には、 1—ブテンの重合については具体的 に記載されているものの、 プロピレンの (共) 重合については具体的な記載はな い。
透視性を改良する方法として、 ポリプロピレン組成物に芳香族カルボン酸のァ ルミ二ゥム塩を使用した場合には、 分散性が不良なうえに、 透視性の改良法が不 十分であり、 また、 ベンジリデンソルビトール誘導体を使用した場合には、 透視 性においては一定の改良がみられるものの、 加工時に臭気が強いことや、 添加剤 のブリード現象 (浮き出し) が生じる等の課題を有している。
ビニルシクロへキサンやァリルトリメチルシラン等を少量重合させて予備活性 化処理した触媒を用いてプロピレンの重合を行う方法では、 該触媒のプロピレン に対する重合活性が低下するのみならず、 塊状ポリマーが生成するといった運転 上の課題が生じるので、 工業的な長時間の連続重合法は採用できない方法であつ た。
上記したように、 従来技術においては、 ポリプロピレンは溶融張力の向上にお いて不十分である外、 透視性の改善すべき課題を有しており、 また、 このような ポリプロピレンを製造するに際してその生産性を向上させることが要求されてい る。
本発明は、 中空成形、 発泡成形、 押し出し成形、 繊維、 射出成形、 フィルムに 適し、 またその他の各種成形法においても高速性形成を発揮し得る高溶融張力、 および高透視性を有するォレフィン (共) 重合体組成物およびその製造方法を提 供することを目的とする。
本発明者等は、 前期目的を達成すべく鋭意研究した結果、 ポリオレフイン製造 用触媒にいづれも少量のポリプロピレンおよび特定の固有粘度を有するポリェチ レン、 および非直鎖ォレフイン重合体を担持させて予備活性化した触媒を使用し てプロピレンを単独もしくは共重合させることにより、 高溶融張力で成形加工性 が優れ、 透視性が優れたォレフィン (共) 重合体組成物が得られることを見出し 、 本発明に至った。 発明の開示
( 1 ) (a) エチレン単独重合体又はエチレン重合単位を 50重量%以上含有す るエチレン一才レフィン共重合体であって、 135 °Cのテトラリンで測定した固 有粘度 [r?E ] が 15〜; L 00 d 1/gの範囲の高分子量ポリエチレンを 0. 0 1〜5. 0重量部と、
(b) 非直鎖ォレフイン重合体を 0. 0001〜0. 05重量部と、
(c) 前記高分子量ポリエチレン以外の直鎖ォレフイン (共) 重合体を 100重 量部を、
有効成分とするォレフィン (共) 重合体組成物。 (2) ォレフィン (共) 重合体組成物の 135 °Cのテトラリンで測定した固有粘 度 [ τ ] 力 0. 2〜; L 0 d 1 /gの範囲である前記 ( 1 ) に記載のォレフィ ン (共) 重合体組成物。
(3) 前記 (C) 高分子量ポリエチレン以外の直鎖ォレフイン (共) 重合体が、 プロピレン単独重合体、 又はプロピレン重合単位を 50重量%以上含有するプロ ピレン一才レフィン共重合体から選択された一種類以上のものである前記 ( 1 ) に記載の才レフィン (共) 重合体組成物。
(4) 非直鎖ォレフイン重合体は、 下記の a, bおよび c式の化合物を重合単位 としてなることを特徴とする前記 ( 1 ) に記載のォレフィン (共) 重合体組成物 a. - [CH2 -CH] -
R1 b. - [CH2 一 CH] -
I
R5 — R2 - R
I
R4
Figure imgf000007_0001
(5) ォレフィン (共) 重合体組成物が、 230°Cにおける溶融張力 (MS)と 13
5 °Cのテトラリン中で測定した固有粘度 [ 7? τ]との間に、
log (MS) >4.24x log [r?T] - 1.11 で表される関係を有する前記 ( 1 ) に記載のォレフィン (共) 重合体組成物。
(6) ォレフィン (共) 重合体が、 遷移金属化合物触媒成分、 遷移金属原子 1モ ルに対し 0. 01〜1, 000モルの周期表 (1991年版) 第 1族、 第 2族、 第 1
2族および第 13族に属する金属よりなる群から選択された金属の有機金属化合 物 (ALJおよび遷移金属原子 1モルに対し 0〜500モルの電子供与体 の組み合わせからなるポリオレフイン製造用触媒、 ならびに、 この触媒に担持さ せた 135 °Cのテトラリン中で測定した固有粘度 [ r? E]が 15〜 100 d 1 / g のポリエチレンおよび非直鎖ォレフィン重合体からなる予備活性化触媒の存在下 に、 プロピレンの単独またはプロピレンと炭素数 2〜 12のその他のォレフィン を (共) 重合させて製造することを特徴とするォレフィン (共) 重合体組成物製 造法。
(7) 予備活性化触媒に、 周期表 (1991年版) 第 1族、 第 2族、 第 12族および 第 13族に属する金属よりなる群から選択された金属の有機金属化合物 (AL2) を予備活性化触媒中に含まれる有機金属化合物 ( A L ^との合計で遷移金属原子 1モルに対し 0. 05〜5, 000モル、 ならびに電子供与体 (E 2)を予備活性 化触媒中に含まれる電子供与体 ( E ^との合計で予備活性化触媒中の遷移金属原 子 1モル当たり 0〜3, 000モルをさらに含有させたォレフィン (共) 重合触 媒の存在下に、 プロピレンの単独またはプロピレンと炭素数 2〜 12のその他の ォレフィンを (共) 重合させて製造する前記 (6) に記載のォレフィン (共) 重 合体組成物の製造法。
( 8 ) 予備活性化触媒が、 遷移金属化合物触媒成分 1 g当たり、 135 °Cのテト ラリン中で測定した固有粘度 [ E]が 15〜 100 d 1 Z gの高分子量ポリェチ レン 0. 01〜5, 000 gを担持し、 かつ非直鎖ォレフイン重合体が 0. 00 1〜100 g担持している前記 (6) または (7) のォレフイン (共) 重合体組 成物の製造法。
( 9 ) 予備活性化触媒が、 遷移金属化合物触媒成分 1 g当たり、 135 °Cのテト ラリン中で測定した固有粘度 [ 7? c]が 15 d lZgより小さいポリプロピレン 0 . 01〜; 100 g、 および 135 °Cのテトラリン中で測定した固有粘度 [ r? E]が 15〜: L 00 d lZgの高分子量ポリエチレン 0. 01〜5, 000 gを担持し 、 かつ非直鎖才レフイン重合体 0. 001〜100 gを担持している前記 (6) または (7) 記載のォレフィン (共) 重合体組成物の製造法。
( 10) ォレフィン (共) 重合体組成物が、 プロピレンまたはプロピレンとその 他のォレフィンの (共) 重合容積 1リツ トル当たり触媒中の遷移金属原子に換算 して 0. 01〜し 000ミリモルの触媒量で製造される前記 (6) または (7 ) 記載のォレフィン (共) 重合体組成物の製造法。
( 1 1) 非直鎖ォレフインとして、 次式、
CH2 二 CH - R2
(式中、 R2 はケィ素を含んでいてもよい炭化水素の飽和環状構造を有する、 ケ ィ素を含んでいてもよい炭素数 3から 18の含飽和環炭化水素基を表す。 ) で示 される含飽和環炭化水素単量体を重合してなる非直鎖ォレフイン重合体を用いる 前記 (6) または (7) 記載のォレフィン (共) 重合体組成物の製造法。
( 12) 非直鎖ォレフインとして、 次式、
R3
I
CH2 =CH— R2 - R4
I
R5
(式中、 R2 はケィ素を含んでいてもよい炭素数 1〜3までの鎖状炭化水素基、 またはケィ素を表し、 R3 、 R4 、 R5 はケィ素を含んでいてもよい炭素数 1〜 6までの鎖状炭化水素基、 またはケィ素を表すが、 R3 、 R4 、 R5 のいずれか 1個は水素であってもよい。 ) で示される枝鎖ォレフイン類を重合してなる非直 鎖ォレフイン重合体を用いる前記 (6) または (7) 記載のォレフィン (共) 重 合体組成物の製造法。 (13) 非直鎖ォレフインとして、 次式、
Figure imgf000010_0001
(式中、 nは 0、 1、 mは 1、 2のいずれかであり、 R6 はケィ素を含んでいて もよい炭素数 1〜6までの鎖状炭化水素基を表し、 R7 はケィ素を含んでいても よい炭素数 1〜12までの鎖状炭化水素基、 水素またはハロゲンを表し、 mが 2 の時、 各 R7 は同一でも異なってもよい。 ) で示される芳香族系単量体を重合し てなる非直鎖ォレフイン重合体を用いる前記 (6) または (7) 言己載のォレフィ ン (共) 重合体組成物の製造法。
(14) 遷移金属化合物触媒成分、 遷移金属原子 1モルに対し 0. 01〜 1, 0 00モルの周期表 (1991年版) 第 1族、 第 2族、 第 12族および第 13族に属す る金属よりなる群から選択された金属の有機金属化合物 (A L および遷移金属 原子 1モルに対し 0〜500モルの電子供与体 (E Jの組み合わせからなるポリ ォレフィン製造用触媒、 ならびに、 この触媒に担持させた 135°Cのテトラリン 中で測定した固有粘度 [77 Ε]が 15〜1 OO d lZgのポリエチレンおよび非直 鎖ォレフイン重合体からなる予備活性化触媒の存在下に、 プロピレンの単独また はプロピレンと炭素数 2〜12のその他のォレフィンを単独もしくは共重合させ ることを特徴とするォレフィン (共) 重合体組成物の製造方法。
(15) 予備活性化触媒に、 周期表 (1991年版) 第 1族、 第 2族、 第 12族およ び第 13族に属する金属よりなる群から選択された金属の有機金属化合物 (AL 2)を予備活性化触媒中に含まれる有機金属化合物 ( A L dとの合計で遷移金属原 子 1モルに対し 0. 05〜5, 000モル、 ならびに電子供与体 (E 2)を予備活 性化触媒中に含まれる電子供与体 (E ^との合計で予備活性化触媒中の遷移金属 原子 1モル当たり 0〜3, ◦ 00モルを含有させて組合せたォレフィン (共) 重 合触媒の存在下に、 プロピレンの単独またはプロピレンと炭素数 2〜12のその 他のォレフィンとを (共) 重合することを特徴とする前記 ( 14) に記載のォレ フィン (共) 重合体組成物の製造方法。
(16) 予備活性化触媒として、 遷移金属化合物触媒成分 1 g当たり、 135°C のテ卜ラリン中で測定した固有粘度 [τ]Ε]が 15〜100 d lZgの範囲のポリ エチレン 0. 01~5, 000 gならびに非直鎖ォレフイン重合体が◦. 001 〜100 g担持しているものを使用する前記 ( 14) または ( 15) 言己載のォレ フィン (共) 重合体組成物の製造方法。
(17) 予備活性化触媒として、 遷移金属化合物触媒成分 1 g当たり、 135°C のテトラリン中で測定した固有粘度 [ 7? c]が 15d l/gより小さいポリプロピ レン 0. 01〜100 g、 および 135°Cのテトラリン中で測定した固有粘度 [ τ]Ε]が 15〜 100 d 1 /gの範囲のポリエチレン 0. 01〜5, 000 gを担 持し、 かつ非直鎖ォレフイン重合体 0. 001〜100 g担持しているものを使 用する前記 ( 14) または (15) 記載のォレフィン (共) 重合体組成物の製造 方法。
(18) ォレフィン (共) 重合体組成物が、 プロピレンまたはプロピレンとその 他のォレフィンの(共) 重合容積 1リッ卜ル当たり触媒中の遷移金属原子に換算 して 0. 01〜1, 000ミリモルの触媒量で製造される前記 ( 14) または (
15) 記載のォレフィン (共) 重合体組成物の製造方法。
(19) 非直鎖ォレフインとして、 次式、
R3
I
CH2 =CH-R2 一 R4
I
R5
(式中、 R2 はケィ素を含んでいてもよい炭素数 1〜3までの鎖状炭化水素基、 またはケィ素を表し、 R3 、 R4 、 R5 はケィ素を含んでいてもよい炭素数 1〜 6までの鎖状炭化水素基、 またはケィ素を表すが、 R3 、 R4 、 R5 のいずれか 1個は水素であってもよい。 ) で示される枝鎖ォレフイン類を用いる前記 (14 ) または (15) 記載のォレフィン (共) 重合体組成物の製造方法。
(20) 非直鎖ォレフインとして、 次式、
Figure imgf000012_0001
(式中、 nは 0、 1、 mは 1、 2のいずれかであり、 R6 はケィ素を含んでいて もよい炭素数 1〜6までの鎖状炭化水素基を表し、 R7 はケィ素を含んでいても よい炭素数 1〜12までの鎖状炭化水素基、 水素またはハロゲンを表し、 mが 2 の時、 各 R7 は同一でも異なってもよい。 ) で示される芳香族系単量体を用いる 前記 (14) または (15) 記載のォレフィン (共) 重合体組成物の製造方法。 上述のように本発明の第 1〜第 5の発明は、 ォレフィン (共) 重合体組成物で あって、
(a) エチレン単独重合体又はエチレン重合単位を 50重量%以上含有するェチ レン一才レフィン共重合体であって、 少なくとも 1 35 °Cのテトラリンで測定し た固有粘度 [τ?Ε]が 15〜100 d 1/gの範囲の高分子量ポリエチレンを 0. 01〜5. 0重量部と、
(b) 非直鎖ォレフイン重合体を 0. 0001〜0. 05重量部と、
( c ) 前記高分子量ポリェチレン及び非直鎖ォレフィン重合体以外の直鎖ォレフ ィン (共) 重合体を 100重量部を、
少なくとも主成分とするォレフィン (共) 重合体組成物であり、 第 5発明では ォレフィン (共) 重合体組成物が、 230°Cにおける溶融張力 (MS)と 135°Cの テトラリン中で測定した固有粘度 [ 7? τ]との間に、
log (MS) >4.24x log [r?T]一 1.11
で表される関係を有する。
また本発明の第 6〜第 20の発明は、 遷移金属化合物触媒成分、 遷移金属原子 1モルに対し 0. 01〜1, 000モルの周期表 (1991年版) 第 1族、 第 2族、 第 12族および第 13族に属する金属よりなる群から選択された金属の有機金属 化合物 (A Li)および遷移金属原子 1モルに対し 0〜500モルの電子供与体 ( Edの組み合わせからなるポリオレフイン製造用触媒、 ならびに、 この触媒に担 持した遷移金属化合物成分 1 g当たり 0. 01〜100 gの 135°Cのテトラリ ン中で測定した固有粘度 [r?c]が 15 d lZgより小さい本 (共) 重合目的のポ リプロピレン (C) および遷移金属化合物触媒成分 1 g当たり 0. 01〜5, 0 00 gの 135。Cのテトラリン中で測定した固有粘度 A]が 15〜 100 d 1 /gであるポリエチレン (A) 、 および遷移金属化合物触媒成分 1 g当たり、 非 直鎖ォレフイン (B) を 0. 001〜100 g重合反応させてなる予備活性化角虫 媒の存在下に、 プロピレンの単独またはプロピレンと炭素数 2〜12のォレフィ ンを単独もしくは共重合させることを特徴とする第 1〜第 5発明に係るォレフィ ン (共) 重合体組成物の製造方法である。
また、 第 6〜第 20の発明中の一態様として、 第 2発明に記載の予備活性化触 媒に、 予備活性化触媒中の遷移金属原子 1モルに対し予備活性化触媒中に含まれ る金属の有機金属化合物 (ALJとの合計で 0. 05〜5, 000モルの周期表 (1991年版) 第 1族、 第 2族、 第 12族および第 13族に属する金属よりなる群 から選択された金属の有機金属化合物 (AL2)、 および予備活性化触媒中の遷移 金属原子 1モルに対し予備活性化触媒中に含まれる電子供与体 (E Jとの合計で 0〜3, 000モルの電子供与体 (E2)をさらに含有させたォレフィン本 (共) 重合触媒の存在下に、 プロピレンの単独またはプロピレンと炭素数 2〜12のォ レフインを単独もしくは共重合させることを包含する。
発明を実施するための最良の形態
本明細書中において用いる 「ポリプロピレン」 の用語は、 プロピレン単独重合 体およびプロピレン重合単位を 50重量%以上含有するプロピレン一才レフイン ランダム共重合体およびプロピレン—ォレフィンブロック共重合体を意味し、 「 ポリエチレン」 の用語は、 エチレン単独重合体およびエチレン重合単位を 50重 量%以上含有するエチレン一才レフインランダム共重合体を意味する。
本発明の第 1〜第 5の発明のォレフィン (共) 重合体組成物の (a) 成分を構 成するポリエチレンは、 135°Cのテ卜ラリン中で測定した固有粘度 [ A]が 1 5〜100 d 1 /gのポリエチレンであって、 エチレン単独重合体またはェチレ ン重合単位を 50重量%以上含有するエチレン一才レフイン共重合体であり、 好 ましくはェチレン単独重合体もしくはェチレン重合単位を Ί 0重量%以上含有す るエチレン—ォレフィン共重合体、 特に好ましくはエチレン単独重合体もしくは エチレン重合単位を 90重量%以上含有するエチレン一才レフィン共重合体が適 しており、 これらの (共) 重合体は 1種のみならず 2種以上混合してもよい。
(a) 成分のポリエチレンの固有粘度 [r?A]が 15 d lZg未満であると、 得 られるポリプロピレン組成物の溶融張力および結晶化温度の向上効果が不十分と なり、 また固有粘度 [ A]の上限については特に限定されないが、 (c) 成分の ポリプロピレンの固有粘度 [r?P]との差が大きいと、 組成物とした際に (c) 成 分のポリプロピレン中への (a) 成分のポリエチレンの分散力悪くなり、 結果と して溶融張力が上昇しなくなる。 さらに製造上の効率からも上限は 1 OOd lZ g程度とするのがよい。
(a) 成分のポリエチレンの固有粘度 [77 A]は 15〜; L OOd 1/g, 好まし くは 17〜50 d 1/gの範囲である。 また (a) 成分のポリエチレンは、 13 5°Cのテ卜ラリン中で測定した固有粘度 [7? が15 d 1/gにまで高分子量ィ匕 させる必要があるため、 高分子量化の効率面からエチレン重合単位が 50重量% 以上であることが好ましい。
(a) 成分のポリエチレンの密度については、 特に制限はないが、 具体的には 、 880〜980 g/1程度のものが好適である。
本発明の第 1〜第 5の発明のォレフィン (共) 重合体組成物を構成する (b) 成分の非直鎖ォレフインとして、 ケィ素を含んでいてもよい炭化水素の飽和環状 構造および C = C結合を有する、 ケィ素を含んでいてもよい炭素数 5〜20まで の含飽和環炭化水素単量体や、
CH2 = CH- R2
次式、
R3
I
C H2 =CH-R2 — R4
I RB
(式中、 R2 はケィ素を含んでいてもよい炭素数 1〜3までの鎖状炭化水素基、 またはケィ素を表し、 R3 、 R4 、 RE はケィ素を含んでいてもよい炭素数 1〜 6までの鎖状炭化水素基、 またはケィ素を表すが、 R3 、 R4 、 R5 のいずれか 1個は水素であってもよい。 ) で示される枝鎖ォレフイン類や、 次式、
CH2
Figure imgf000015_0001
(式中、 nは 0、 1、 mは 1、 2のいずれかであり、 R7 はケィ素を含んでいて もよい炭素数 1〜6までの鎖状炭化水素基を表し、 R7 はケィ素を含んでいても よい炭素数 1〜12までの鎖状炭化水素基、 水素またはハロゲンを表し、 mが 2 の時、 各 R7 は同一でも異なってもよい。 ) で示される芳香族系単量体である。 具体的に示すと、 含飽和環炭化水素単量体の例としては、 ビニルシクロプロパ ン、 ビニルシクロブタン、 ビニルシクロペンタン、 3—メチルビニルシクロペン タン、 ビニルシクロへキサン、 2—メチルビニルシクロへキサン、 3—メチルビ ニルシクロへキサン、 4ーメチルビニルシクロへキサン、 ビニルシクロへブタン 等のビニルシクロアルカン類、 ァリルシクロペンタン、 ァリルシクロへキサン等 のァリルシクロアルカン類等の他、 シクロ卜リメチレンビニルシラン、 シクロ卜 リメチレンメチルビニルシラン、 シクロテトラメチレンビニルシラン、 シクロテ 卜ラメチレンメチルビニルシラン、 シクロペンタメチレンビニルシラン、 シクロ ペンタメチレンメチルビニルシラン、 シクロペンタメチレンェチルビニルシラン ン、 シクロへキサメチレンェチルビニルシラン、 シクロテトラメチレンァリルシ
ルァリルシラン等の飽和環状構造内にケィ素元素を有する含飽和環炭化水素単量 体や、 シクロブチルジメチルビニルシラン、 シクロペンチルジメチルビ二ルシラ シラン、 シクロへキシルビニルシラン、
Figure imgf000016_0001
、 シクロへキシルジェチルァリルシラン、 4—トリメチルシリルビニルシクロへ キサン、 4一卜リメチルシリルァリルシクロへキサン等の飽和環状構造外にケィ 素原子を含んだ含飽和環炭化水素単量体等があげられる。
枝鎖ォレフイン類の例としては、 3—メチルブテン一 1、 3—メチルペンテン — 1、 3—ェチルペンテン— 1等の 3位枝鎖ォレフイン、 4ーェチルへキセン一 1、 4 , 4—ジメチルペンテン一 1、 4, 4—ジメチルへキセン一 1等の 4位枝 鎖ォレフイン、 ビニルトリメチルシラン、 ビニル卜リエチルシラン、 ビニルトリ n—ブチルシラン、 ァリル卜リメチルシラン、 ァリルェチルジメチルシラン、 ァ リルジェチルメチルシラン、 ァリル卜リエチルシラン、 ァリルトリ— n—プロピ ルシラン、 3—ブテニル卜リメチルシラン、 3—ブテニルトリエチルシラン等の アルケニルシラン類や、 ジメチルジァリルシラン、 ェチルメチルジァリルシラン 、 ジェチルジァリルシラン等のジァリルシラン類等があげられる。 芳香族系単量体としては、 スチレン、 及びその誘導体である o—メチルスチレ ン、 p— t—ブチルスチレン等のアルキルスチレン類、 2, 4—ジメチルスチレ ン、 2, 5—ジメチルスチレン、 3 , 4—ジメチルスチレン、 3, 5—ジメチル スチレン等のジアルキルスチレン類、 2—メチル—4一フルォロスチレン、 2 - ェチルー 4—クロロスチレン、 o—フル才ロスチレン、 p—フル才ロスチレン等 のハロゲン置換スチレン類、 p—卜リメチルシリルスチレン、 m—卜リメチルシ リルスチレン、 p—ェチルジメチルシリルスチレン等の卜リアルキルシリルスチ レン類、 o—ァリルトルエン、 p—ァリルトルエン等のァリルトルエン類、 2— ァリル一 p—キシレン、 4—ァリルー o—キシレン、 5—ァリルー m—キシレン 等のァリルキシレン類、 ビニルジメチルフエニルシラン、 ビニルェチルメチルフ ェニルシラン、 ビニルジェチルフユニルシラン、 ァリルジメチルフヱニルシラン 、 ァリルェチルメチルフエニルシラン等のアルケニルフエニルシラン類、 また、 4一 (o—トリル) ーブテン一 1や 1ービニルナフタレン等があげられる。 これ らの非直鎖ォレフィン類は単独あるいは 2種類以上を混合して使用することがで きる。
本第 1発明のォレフィン (共) 重合体組成物を構成する (c ) 成分のポリプロ ピレンは、 1 3 5 °Cのテ卜ラリン中で測定した固有粘度 [ τ? Ρ ]が 0 . 2〜1 0 d 1 / gの結晶性ポリプロピレンであって、 プロピレン単独重合体またはプロピレ ン重合単位を 5 0重量%以上含有するプロピレン—ォレフィンランダム共重合体 もしくはプロピレン—ォレフィンブロック共重合体であり、 好ましくはプロピレ ン単独重合体、 プロピレン重合単位含有量が 9 0重量%以上含有するプロピレン 一才レフインランダム共重合体またはプロピレン重合単位含有量が 7 0重量%以 上のエチレン—ォレフィンブロック共重合体である。 これらの (共) 重合体は 1 種のみならず 2種以上の混合物であつてもよい。
( c ) 成分のォレフィン (共) 重合体の固有粘度 [ r? P]は 0 . 2〜; L O d l Z g 、 好ましくは 0 . 5〜8 d 1 / gのものが用いられる。 (c) 成分のォレフィン (共) 重合体の固有粘度 [r?P]が 0. 2 d lZg未満の 場合、 得られる才レフィン (共) 重合体組成物の機械的特性が悪化し、 また 10 d lZgを超えると得られるォレフィン (共) 重合体組成物の! 性力悪ィヒする (c) 成分のォレフィン (共) 重合体を構成するプロピレンと共重合されるプ ロピレン以外のォレフィンとしては、 特に限定されないが、 炭素数 2〜1 2のォ レフインが好ましく用いられる。 具体的には、 エチレン、 1—ブテン、 1一ペン テン、 1一へキセン、 1—ォクテン、 1ーデセン、 4—メチルー 1一ペンテン, 3—メチル— 1一ペンテン等が挙げられ、 これらのォレフィンは 1種のみならず 2種以上であってもよい。
(c) 成分のォレフィン (共) 重合体の立体規則性については、 特に制限はな く結晶性ポリプロピレンであれば、 本発明の目的を達成するどのようなポリプロ ピレンであってもよい。 具体的には13 C— NMR (核磁気共鳴スペクトル) で測 定したアイソタクチックペンタッド分率 (mmmm) が 0. 80〜0. 99、 好 ましくは 0. 85〜0. 99、 特に好ましくは 0. 90〜0. 99の結晶性を有 するポリプロピレンが使用される。
ァイソタクチックペンタッド分率 (mmmm) とはエイ ザンベリ(A. Zambell i)等によって提案 (Macromolecules 925 (1973)) された 13 C— NM Rにより 測定される、 ポリプロピレン分子鎖中のペンタヅド単位でのァイソタクチック分 率であり、 スペクトルの測定におけるピークの帰属決定法はエイ ザンベリ(A.Z ambelli)等によって提案 (Macroraolecules 8, 687 (1975)) された帰属に従って 決定される。 具体的には、 ポリマー濃度 20重量%の o—ジクロ口ベンゼン 臭 化ベンゼン =8/2重量比の混合溶液を用い、 67. 20MHz, 130°Cにて 測定することによって求められる。 測定装置としては、 たとえば JE0L— GX 270NMR測定装置 (日本電子 (株) 製) が用いられる。
本第 1発明のォレフィン (共) 重合体組成物は、 前記した (a) 成分のポリエ チレン 0. 01〜5重量部、 好ましくは 0. 02〜2重量部、 特に好ましくは 0 . 05〜1重量部、 および (b) 成分の非直鎖才レフイン重合体 0. 0001〜 0. 05重量部、 好ましくは 0. 0001〜0. 01重量部、 特に好ましくは 0 . 0001〜0. 005重量部、 (c) 成分のォレフィン (共) 重合体 100重 量部からなる。
(a) 成分のポリエチレンが 0. 01重量部未満であると、 得られるォレフィ ン (共) 重合体組成物の溶融張力と結晶化温度の向上効果が少なく、 また 5重量 部を超えると効果の向上はなくなる他、 得られるォレフィン (共) 重合体組成物 の均質性が損なわれる場合があるので好ましくない。
(b) 成分の非直鎖ォレフイン重合体が 0. 0001重量部未満であると、 得 られるォレフイン (共) 重合体組成物の結晶化温度やフィルム時の透視性の向上 効果が少なく、 また 5重量部を超えると効果がなくなる他、 得られるォレフィン (共) 重合体組成物の均質性が損なわれる場合があるので好ましくない。
本第 5発明のォレフィン (共) 重合体組成物の溶融張力は、 230°Cにおける 溶融張力 (MS) と 135 °Cのテトラリン中で測定した固有粘度 [ 7? τ]とが、 log (MS) >4.24x log [r?T]一 1.11
で表される関係にあることが好ましい。 上限については特に限定されないが、 あ まりにも溶融張力が高いと組成物の成形性が悪化することから、
好ましくは
4.24xlog[r?T] +0.40>log(MS) 〉4.24x log[ τ? τ]— 1.11、
より好ましくは
4.24xlog[r?T] +0.14>log (MS) >4.24x log[ r? τ]— 1.11、
最も好ましくは
4.24xlog[r?T]+0.14>log( S) >4.24xlog[rj τ] -0.95
の関係を満足する。
ここで、 230°Cにおける溶融張力 (MS) は、 メルトテンションテスター 2型 1 o
( (株) 東洋精機製作所製) を用いて、 装置内にてォレフイン (共) 重合体組成 物を 2 3 0 °Cに加熱し、 溶融ォレフィン (共) 重合体組成物を直径 2 . 0 9 5 m mのノズルから 2 0 mm/分の速度で 2 3 °Cの大気中に押し出してストランドと し、 このストランドを 3 . 1 4 mZ分の速度で引き取る際の糸状ポリプロピレン 組成物の張力を測定した値 (単位: c N ) である。
本明細書中において 「予備活性化」 との用語は、 ポリオレフイン製造用触媒の 高分子量物重合活性を、 プロピレン又はプロピレンと他のォレフィンとの単独も しくは共重合を実施するに先立って、 予め活性化することを意味し、 ポリオレフ ィン製造用触媒の存在下にエチレンまたはエチレンとその他のォレフィンおよび 非直鎖ォレフインとを予備活性ィヒ (共) 重合して触媒に担持させることにより行 。
本発明の才レフィン (共) 重合用予備活性化触媒は、 従来からポリオレフイン の製造用に使用される遷移金属化合物触媒成分、 有機金属化合物および所望によ り使用される電子供与体からなるポリオレフイン製造用触媒に、 少量の特定の固 有粘度を有する単独もしくは共重合目的のポリオレフインおよび特定の高い固有 粘度を有する少量のポリオレフインを担持させることにより予備活性化した触媒 である。
本発明のォレフィン (共) 重合用予備活性化触媒において、 遷移金属化合物触 媒成分として、 ポリオレフィン製造用として提案されている遷移金属化合物触媒 成分を主成分とする公知の触媒成分のいずれをも使用することができ、 中でもェ 業生産上、 チタン含有固体触媒成分が好適に使用される。
チタン含有固体触媒成分としては、 三塩化チタン組成物を主成分とするチタン 含有固体触媒成分 (特公昭 5 6 - 3 3 5 6号公報、 特公昭 5 9— 2 8 5 7 3号公 報、 特公昭 6 3— 6 6 3 2 3号公報等) 、 マグネシウム化合物に四塩化チタンを 担持した、 チタン、 マグネシウム、 ハロゲン、 および電子供与体を必須成分とす るチタン含有担持型触媒成分 (特開昭 6 2 - 1 0 4 8 1 0号公報、 特開昭 6 2一 W
1 9
1 0 4 8 1 1号公報、 特開昭 6 2— 1 0 4 8 1 2号公報、 特開昭 5 7— 6 3 3 1 0号公報、 特開昭 5 7— 6 3 3 1 1号公報、 特開昭 5 8— 8 3 0 0 6号公報、 特 開昭 5 8 - 1 3 8 7 1 2号公報等) などが提案されており、 これらのいずれをも 使用することができる。
上記以外の遷移金属化合物触媒成分として、 通常メタ口センと称させる π電子 共役配位子を少なくとも 1個有する遷移金属化合物も用いることができる。 この 時の遷移金属は、 Z r, T i , H f, V , N b, T aおよび C rから選択するこ とが好ましい。
π電子共役配位子の具体例としては、 ]ーシクロペン夕ジェニル構造、 "一べ ンゼン構造、 7?—シクロプタトリエニル構造、 又は、 7?—シクロォクタテ卜ラエ ン構造を有する配位子が挙げられ、 特に好ましいのは、 7?—シクロペンタジェ二 ル構造を有する配位子である。
ーシクロペン夕ジェニル構造を有する配位子としては、 たとえば、 シクロべ ン夕ジェニル基、 インデニル基、 フルォレニル基等が挙げられる。 これらの基は 、 アルキル基、 ァリール基およびァラルキル基のような炭化水素基、 卜リアルキ ルシリル基のようなケィ素置換炭化水素基、 ハロゲン原子、 アルコキシ基、 ァリ 一口キシ基、 鎖状および環状アルキレン基などで置換されても良い。
遷移金属化合物が π電子共役配位子を 2個以上含む場合には、 そのうち 2個の π電子共役配位子同士は、 アルキレン基、 置換アルキレン基、 シクロアルキレン 基、 置換シクロアルキレン基、 置換アルキリデン基、 フヱニル基、 シリレン基、 置換ジメチルシリレン基、 ゲルミル基などを介して架橋していても良い。 このと きの遷移金属触媒成分は、 上記のような π電子配位子を少なくとも 1個有する他 に、 アルキル基、 シクロアルキル基、 ァリール基、 ァラルキル基のような炭ィヒ水 素基、 ケィ素置換炭化水素基、 アルコキシ基、 ァリーロキシ基、 置換スルホナト 基、 アミドシリレン基、 アミドアルキレン基などを有しても良い。 なお、 アミド シリレン基やアミドアルキレン基のような 2価の基は π電子共役配位子と結合し ても良い。
上記のような通常メ夕口センと称される π電子共役配位子を少なくとも 1個有 する遷移金属化合物触媒成分は、 さらに微粒子状担体に担持させて用いることも 可能である。 このような微粒子状担体としては、 無機又は有機化合物であっても 、 粒子怪が 5〜300 )Ltm、 好ましくは 10〜200 μ mの顆粒状ないしは球状 の微粒子固体が使用される。 このうち、 担体に使用する無機化合物としては、 S i 02 , A 12 03 , MgO, T i 02 , ZnO等またはこれらの混合物が挙げ られる。 これらの中では、 S i 02 または A l 2 03 を主成分とする物が好まし い。 また、 担体に使用する有機化合物としては、 エチレン、 プロピレン、 1—ブ テン、 4ーメチルー 1一ペンテン等の炭素数 2〜1 2の α—才レフインの重合体 または共重合体、 さらにはスチレンまたはスチレン誘導体の重合体または共重合 体が挙げられる。
有機金属化合物 (AL として、 周期表 (1991年版) 第 1族、 第 2族、 第 1 2 族および第 1 3族に属する金属よりなる群から選択された金属の有機基を有する 化合物、 たとえば、 有機リチウム化合物、 有機ナトリウム化合物、 有機マグネシ ゥム化合物、 有機亜鉛化合物、 有機アルミニウム化合物などを、 前記遷移金属化 合物触媒成分と組み合わせて使用することができる。
特に、 一般式が A 1
Figure imgf000022_0001
+ Q) (式中、 R1 および R2 は、 アルキル 基、 シクロアルキル基、 ァリール基等の炭化水素基およびアルコキシ基の同種ま たは異種を、 Xはハロゲン原子を表わし、 pおよび qは、 0く p + q≤3の正数 を表わす) で表わされる有機アルミニウム化合物を好適に使用することができる 有機アルミニウム化合物の具体例としては、 卜リメチルアルミニウム、 卜リエ チルアルミニウム、 トリ— n—プロピルアルミニウム、 トリ— n—ブチルアルミ 二ゥム、 トリ— i—ブチルアルミニウム、 トリー n—へキシルアルミニウム、 卜 リ一 i—へキシルアルミニウム、 トリ一 n—才クチルアルミニウム等のトリアル キルアルミニウム、 ジェチルアルミニウムクロライ ド、 ジ— n - プロピルアルミ ニゥムクロライ ド、 ジー i一ブチルアルミニウムクロライ ド、 ジェチルアルミ二 ゥムブ口マイ ド、 ジェチルアルミニウムアイオダィ ド等のジアルキルアルミニゥ ムモノハラィ ド、 ジェチルアルミニウムハイ ドライ ド等のジアルキルアルミニゥ ムハイ ドライ ド、 ェチルアルミニウムセスキク口ライド等のアルキルアルミニゥ ムセスキハライ ド、 ェチルアルミニウムジクロライド等のモノアルキルアルミ二 ゥムジハライ ドなどの他ジェ卜キシモノェチルアルミニウム等のアルコキシアル キルアルミニウム挙げることができ、 好ましくは、 トリアルキルアルミニウムお よびジアルキルアルミニウムモノハラィ ドを使用する。 これらの有機アルミニゥ ム化合物は、 1種だけでなく 2種類以上を混合して用いることもできる。
また、 有機金属化合物 (A L Jとして、 アルミノキサン化合物も使用すること ができる。 アルミノキサンとは、
一般式
R 3 2A 1一 ( O A 1 ) a - O A 1 R 3 2
I
R 3
または、 一般式
( O A 1 ) q + 2
I
R 3
で表される有機アルミニウム化合物である。
ここで、 R 3 は炭素数 1〜6、 好ましくは、 1〜4の炭化水素基であり、 具体 的には、 メチル基、 ェチル基、 プロピル基、 ブチル基、 イソブチル基、 ペンチル 基、 へキシル基などのアルキル基、 ァリル基、 2—メチルァリル基、 プロぺニル 基、 イソプロぺニル基、 2—メチルー 1—プロぺニル基、 ブテニル基等のアルケ ニル基、 シクロプロピル基、 シクロブチル基、 シクロペンチル基、 シクロへキシ ル基等のシクロアルキル基、 およびァリール基などである化合物が挙げられる。 これらのうち特に好ましいのは、 アルキル基であり、 各 R 3 は同一でも異なって いても良い。 Pは 4〜3 0の整数である力 好ましくは 6〜3 0、 特に好ましく は 8〜3 0である。
また、 有機金属化合物 (A L としての別の化合物として、 ホウ素系有機金属 化合物が挙げられる。 このホウ素系有機金属化合物は、 遷移金属化合物とホウ素 原子を含むイオン性化合物と反応させることにより得られる。 このとき用いられ る遷移金属化合物としては、 ォレフィン (共) 重合用予備活性化触媒を製造する 際に使用する遷移金属化合物触媒成分と同様のものが使用可能であるが、 好まし く用いられるのは、 前述した通常メタ口センと称される少なくとも 1個の π電子 共約配位子を有する遷移金属化合物触媒成分である。
ホウ素原子を含むイオン性化合物としては、 具体的には、 テトラキス (ペン夕 フルオロフェニル) 硼酸トリェチルアンモニゥム、 テトラキス (ペン夕フルォロ フエニル) 硼酸卜リー η—ブチルアンモニゥム、 テトラキス (ペンタフルオロフ ェニル) 硼酸トリフエ二ルアンモニゥム、 テ卜ラキス (ペン夕フルオロフェニル ) 硼酸メチルアンモニゥム、 テ卜ラキス (ペン夕フルオロフェニル) 硼酸卜リジ メチルアンモニゥム、 テ卜ラキス (ペン夕フルオロフェニル) 硼酸卜リメチルァ ンモニゥム等が挙げられる。
ホウ素系有機金属化合物は、 また、 遷移金属化合物とホウ素原子含有ルイス酸 とを接触させることによつても得られる。 このとき用いられる遷移金属化合物と しては、 ォレフィン (共) 重合用予備活性化触媒を製造する際に使用する遷移金 属触媒成分と同様のものが使用可能である力^ 好ましく用いられるのは、 前述し た通常メタ口センと称される少なくとも 1個の π電子共役配位子を有する遷移金 属化合物触媒成分である。
ホウ素原子含有ルイス酸としては、 下記の一般式で表される化合物が使用可能 である。
B R 4 R 5 R 6 W
2 3
(式中、 R 4、 R 5 、 R 6 は、 それぞれ独立してフッ素原子、 メチル基、 トリフ ルオロフェニル基などの置換基を有しても良いフエニル基、 または、 フッ素原子 を示す。 )
上記一般式で表される化合物として具^:的には、 トリ (n—プチル) ホウ素、 トリフエニルホウ素、 卜リス [ 3, 5—ビス (トリフルォロメチル) フエニル] ホウ素、 卜リス (4—フルォロメチルフエニル) ホウ素、 トリス (3, 5—ジフ ルオロフェニル) ホウ素、 トリス (2, 4, 6 —トリフルオロフェニル) ホウ素 、 トリス (ペン夕フルオロフェニル) ホウ素等が挙げられ、 卜リス (ペンタフル オロフェニル) ホウ素が特に好ましい。
電子供与体 (E Jは、 ポリオレフインの生成速度および Zまたは立体規則性を 制御することを目的として必要に応じて使用される。
電子供与体 として、 たとえば、 エーテル類、 アルコール類、 エステル類 、 アルデヒド類、 脂肪酸類、 ケトン類、 二卜リル類、 アミン類、 アミド類、 尿素 およびチォ尿素類、 イソシァネート類、 ァゾ化合物、 ホスフィン類、 ホスフアイ ト類、 ホスフィナイト類、 硫化水素およびチォエーテル類、 ネオアルコール類、 シラノール類などの分子中に酸素、 窒素、 硫黄、 燐のいずれかの原子を有する有 機化合物および分子中に S i - 0 - C結合を有する有機ケィ素化合物などが挙げ られる。
エーテル類としては、 ジメチルエーテル、 ジェチルエーテル、 ジ— n—プロピ ルエーテル、 ジ— n—ブチルエーテル、 ジー i—ァミルエーテル、 ジ— n—ペン チルエーテル、 ジ— n—へキシルエーテル、 ジー i —へキシルエーテル、 ジ— n ォクチルエーテル、 ジー i一才クチルエーテル、 ジー n—ドデシルエーテル、 ジ フエニルエーテル、 エチレングリコールモノェチルエーテル、 ジエチレングリコ ールジメチルエーテル、 テ卜ラヒドロフラン等が、 アルコール類としては、 メタ ノール、 エタノール、 プロパノール、 ブ夕ノール、 ペン卜ノール、 へキサノール 、 ォクタノール、 2—ェチルへキサノール、 ァリルアルコール、 ベンジルアルコ ^ a
2 4 ール、 エチレングリコール、 グリセリン等が、 またフエノール類として、 フエノ —ル、 クレゾ一ル、 キシレノール、 ェチルフエノール、 ナフトール等が挙げられ る。 エステル類としては、 メタクリル酸メチル、 ギ酸メチル、 酢酸メチル、 酩酸メチル、 酢酸ェチル、 酢酸ビニル、 酢酸一 n—プロピル、 酢酸— i—プロピ ル、 ギ酸ブチル、 酢酸アミル、 酢酸— n—ブチル、 酢酸ォクチル、 酢酸フヱニル 、 プロピオン酸ェチル、 安息香酸メチル、 安息香酸ェチル、 安息香酸プロピル、 安息香酸プチル、 安息香酸ォクチル、 安息香酸— 2—ェチルへキシル、 トルィル 酸メチル、 トルィル酸ェチル、 ァニス酸メチル、 ァニス酸ェチル、 ァニス酸プロ ピル、 ァニス酸フエニル、 ケィ皮酸ェチル、 ナフ卜ェ酸メチル、 ナフ卜ェ酸ェチ ル、 ナフトェ酸プロピル、 ナフ卜ェ酸ブチル、 ナフ卜ェ酸一 2—ェチルへキシル 、 フユニル酢酸ェチル等のモノカルボン酸エステル類、 コハク酸ジェチル、 メチ ルマロン酸ジェチル、 ブチルマロン酸ジェチル、 マレイン酸ジブチル、 ブチルマ レイン酸ジェチル等の脂肪族多価カルボン酸エステル類、 フタル酸モノメチル、 フタル酸ジメチル、 フタル酸ジェチル、 フタル酸ジ—n—プロピル、 フタル酸モ ノー n—ブチル、 フタル酸ジ一 n—ブチル、 フタル酸ジ— iーブチル、 フタル酸 ジ—n—へプチル、 フタル酸ジ— 2—ェチルへキシル、 フタル酸ジ—n—才クチ ル、 iーフタル酸ジェチル、 i 一フタル酸ジプロピル、 iーフタル酸ジブチル、 i 一フタル酸ジ一 2—ェチルへキシル、 テレフタル酸ジェチル、 テレフタル酸ジ プロピル、 テレフタル酸ジブチル、 ナフタレンジカルボン酸ジー i —ブチル等の 芳香族多価カルボン酸エステル類が挙げられる。
アルデヒド類としては、 ァセトアルデヒド、 プロピオンアルデヒド、 ベンズァ ルデヒド等が、 カルボン酸類として、 ギ酸、 酢酸、 プロピオン酸、 酪酸、 修酸、 コハク酸、 アクリル酸、 マレイン酸、 吉草酸、 安息香酸などのモノカルボン酸類 および無水安息香酸、 無水フ夕ル酸、 無水テトラヒドロフタル酸などの酸無水物 が、 ケトン類として、 アセトン、 メチルェチルケトン、 メチル— i—ブチルケ卜 ン、 ベンゾフェノン等が例示される。 窒素含有化合物としては、 ァセトニトリル、 ベンゾニ卜リル等の二トリル類、 メチルァミン、 ジェチルァミン、 トリブチルァミン、 卜リエ夕ノールァミン、 (3 ( N , N—ジメチルァミノ) エタノール、 ピリジン、 キノリン、 α—ピコリン、 2, 4, 6—トリメチルピリジン、 2, 2, 5 , 6—テトラメチルピペリジン、 2, 2, 5 , 5 , テトラメチルピロリジン、 Ν, Ν , Ν' , Ν ' —テ卜ラメチルェ チレンジァミン、 ァニリン、 ジメチルァニリン等のアミン類、 ホルムアミド、 へ キサメチルリン酸卜リアミド、 Ν, Ν, Ν ' , Ν ' , Ν" 一ペンタメチル一 Ν' — β —ジメチルアミノメチルリン酸卜リアミ ド、 ォクタメチルピロホスホルアミド等 のアミド類、 Ν, Ν , Ν ' , Ν ' —テトラメチル尿素等の尿素類、 フユ二ルイソシ ァネート、 トルィルイソシァネ一卜等のイソシァネー卜類、 ァゾベンゼン等のァ ゾ化合物類が例示される。
燐含有化合物としては、 ェチルホスフィン、 トリェチルホスフィン、 トリ— η 一才クチルホスフィン、 卜リフエニルホスフィン、 トリフエニルホスフィンォキ シド等のホスフィン類、 ジメチルホスファイ ト、 ジー η—才クチルホスフィン、 トリフエニルホスフィン、 トリフエニルホスフィンォキシド等のホスフィン類、 ジメチルホスファイト、 ジー η—才クチルホスフアイ ト、 卜リエチルホスフアイ ト、 トリー η—ブチルホスファイ ト、 トリフエニルホスファイト等のホスフアイ ト類が例示される。
硫黄含有化合物としては、 ジェチルチオエーテル、 ジフヱ二ルチオエーテル、 メチルフヱニルチオエーテル等のチォエーテル類、 ェチルチオアルコール、 η— プロピルチオアルコール、 チォフエノール等のチォアルコール類が挙げられ、 さ らに、 有機ケィ素化合物として、 卜リメチルシラノール、 トリェチルシラノール 、 トリフエ二ルシラノール等のシラノール類、 卜リメチルメ トキシシラン、 ジメ チルジメ トキシシラン、 メチルフエ二ルジメ 卜キシシラン、 ジフエ二ルジメトキ シシラン、 メチルトリメトキシシラン、 ビニルトリメ 卜キシシラン、 フエニル卜 Z b
— i—プロピルジメトキシシラン、 ジ一 i —ブチルジメトキシシラン、 ジフエ二 ルジェトキシシラン、 メチルトリエトキシシラン、 ェチル卜リエトキシシラン、 ビニルトリエトキシシラン、 ブチルトリエトキシシラン、 フエニルトリエ卜キシ シラン、 ェチルトリイソプロボキシシラン、 ビニルトリァセトキシシラン、 シク 口ペンチルメチルジメトキシシラン、 シクロペンチルトリメトキシシラン、 ジシ クロペンチルジメトキシシラン、 シクロへキシルメチルジメトキシシラン、 シク 口へキシルトリメトキシシラン、 ジシクロへキシルジメ 卜キシシラン、 2—ノル ボル二ルメチルジメトキシシラン等の分子中に S i —O— C結合を有する有機ケ ィ素化合物等が挙げられる。
これらの電子供与体は、 1種の単独あるいは 2種類以上を混合して使用するこ とができる。
本第 6発明で使用する予備活性化触媒は、
遷移金属化合物触媒成分および、
遷移金属原子 1モルに対し 0. 0 1〜1, 000モルの周期表 (1991年版) 第 1族、 第 2族、 第 1 2族および第 1 3族に属する金属よりなる群から選択された 金属の有機金属化合物 (ALJ、 および
遷移金属原子 1モルに対し 0〜 500モルの電子供与体 (Ei)、
の組み合わせからなるポリオレフイン製造用触媒、
ならびに、 この触媒に担持した
遷移金属化合物成分 1 g当たり 0. 0 1〜1 O O gの 1 35°Cのテ卜ラリン中 で測定した固有粘度 [r?c]が 1 5 d lZgより小さい本 (共) 重合目的のポリプ ロピレン (C) 、 および
遷移金属化合物触媒成分 1 g当たり 0. 0 1〜5, 000 gの 1 35°Cのテト ラリン中で測定した固有粘度 [ A]が 1 5〜1 ◦ 0 d lZgであるポリエチレン (A) 、
からなる。 予備活性化触媒において、 ポリェチレン ( A) は、 135°Cのテトラリン中で 測定した固有粘度 [7 ]が 15〜; L 00d lZg、 好ましくは 17〜50dlZ gの範囲のエチレン単独重合体またはエチレン重合単位が 50重量%以上、 好ま しくは 70重量%以上、 さらに好ましくは 90重量%以下であるエチレンと炭素 数 3〜12のォレフインとの共重合体であり、 最終的には本第 1発明のォレフィ ン (共) 重合体組成物の (a)成分のポリエチレンを構成する。 したがって、 ( a) 成分のポリエチレンの固有粘度 [r?E]とポリエチレン (A) の固有粘度 [77
A]とは、 [7] E] = [7? A]の関係にある。
ポリエチレン (A) の遷移金属化合物触媒成分 1 g当たりの担持量は 0. 01 〜5, 000g、 好ましくは 0. 05〜2, 000g、 さらに好ましくは 0. 1 〜 1, 000 gである。 遷移金属化合物触媒成分 1 g当たりの担持量が 0. 01 g未満では、 本 (共) 重合で最終的に得られるォレフィン (共) 重合体組成物の 溶融張力および結晶化温度の向上効果が不十分であり、 また 5, 000 gを越え る場合にはそれらの効果の向上が顕著でなくなるばかりでなく、 最終的に得られ るォレフイン (共) 重合体組成物の均質性が悪化する場合があるので好ましくな い。
非直鎖ォレフイン重合体 (B) の遷移金属化合物触媒成分 1 g当たりの担持量 は 0. 001〜100g、 好ましくは 0. 005〜50g、 さらに好ましくは 0 . 01〜20gである。 遷移金属化合物触媒成分 1 g当たりの担持量が 0. 00 1 g未満では、 本 (共) 重合で最終的に得られるォレフィン (共) 重合体組成物 の透視度および結晶化温度の向上効果が不十分であり、 また 100 gを越える場 合にはそれらの効果の向上が顕著でなくなるばかりでなく、 最終的に得られる才 レフイン (共) 重合体組成物の均質性が悪化する場合があるので好ましくない。 一方、 ォレフィン (共) 重合体 (C) は、 135°Cのテ卜ラリン中で測定した 固有粘度 [ c]が 15 d l "gより小さい本 (共) 重合目的の (c)成分のォレ フィン (共) 重合体と同一組成のォレフィン (共) 重合体であり、 最終的には本 o 第 1発明のォレフィン (共) 重合体組成物の (c) 成分のォレフィン (共) 重合 体の一部として組み入られる。 ォレフィン (共) 重合体 (C) は、 ポリエチレン (A) の最終的に得られるォレフィン (共) 重合体組成物中への分散性を付与す る成分であり、 その意味からもその固有粘度 [ 。]は、 ポリエチレン (A) の固 有粘度 [ 7? Jより小さく、 最終的に得られるォレフィン (共) 重合体組成物の固 有粘度 [r?T]より大きいことが好ましい。
本第 6発明において、 予備活性化触媒は、 前記遷移金属化合物触媒成分、 有機 金属化合物 (ALi)および所望により使用される電子供与体 (EJの組み合わせ 力らなるポリオレフイン製造用触媒の存在下に、 本 (共) 重合目的のプロピレン またはプロピレンとその他のォレフィンを予備 (共) 重合させてォレフィン (共
) 重合体 (C) を生成させ、 次いで非直鎖ォレフインを予備重合させて非直鎖ォ レフイン重合体 (B) を生成させて、 次いでエチレンまたはエチレンとその他の 才レフィンを予備活性化 (共) 重合させてポリエチレン (A) を生成させて、 遷 移金属化合物触媒成分にォレフィン (共) 重合体 (C) および非直鎖ォレフイン 重合体 (B) およびポリエチレン (A) を担持させる予備活性化処理により製造 する。 非直鎖ォレフイン重合体 (B) とエチレン (A) またはエチレンとその他 のォレフィンの順序は規定しない。
この予備活性化処理において、 遷移金属化合物触媒成分、 触媒成分中の遷移金 属 1モルに対し 0. 01〜; L, 000モル、 好ましくは 0. 05〜500モルの 有機金属化合物 (ALi)、 および触媒成分中の遷移金属 1モルに対し 0〜500 モル、 好ましくは◦〜 100モルの電子供与体 を組み合わせてポリオレフ イン製造用触媒として使用する。
このポリオレフイン製造用触媒を、 非直鎖ォレフインおよびエチレンまたは非 直鎖ォレフインおよびエチレンとその他のォレフィンの (共) 重合容積 1リット ル当たり、 触媒成分中の遷移金属原子に換算して 0. 001〜5, 000ミリモ ル、 好ましくは 0. 01〜 000ミリモル存在させ、 溶媒の不存在下または ム 遷移金属化合物触媒成分 1 gに対し 1 0 0リツトルまでの溶媒中において、 本 ( 共) 重合目的のプロピレンまたはプロピレンとその他のォレフィンとの混合物 0 . 0 l〜5 0 0 gを供給して予備 (共) 重合させて遷移金属化合物触媒成分 1 g に対し 0 . 0 1〜1 0 0 gのォレフイン (共) 重合体 (C ) を生成させ、 次いで 非直鎖ォレフイン 0 . 0 0 0 1 g〜l, 0 0 0 gを供給して予備活性化 (共) 重 合させて遷移金属化合物触媒成分 1 gに対し 0 . 0 0 0 1〜5 0 gの非直鎖ォレ フィン重合体 (B ) を生成させ、 次いでエチレンまたはエチレンとエチレンとそ の他のォレフィンとの混合物 0 . 0 1 g〜1 0, 0 0 0 gを供給して予備活性化 (共) 重合させて遷移金属化合物触媒成分 1 gに対し 0 . 0 1〜 5 , O O O gの ポリエチレン (A ) を生成させることにより、 遷移金属化合物触媒成分にォレフ イン (共) 重合体 (C ) および非直鎖ォレフイン重合体 (B ) およびポリエチレ ン (A ) が被覆担持される。
本明細書中において、 「重合容積」 の用語は、 液層重合の場合には重合器内の 液相部分の容積を、 気相重合の場合には重合器内の気相部分の容積を意味する。 遷移金属化合物触媒成分の使用量は、 プロピレンの効率的、 かつ制御された ( 共) 重合反応速度を維持する上で、 前記範囲であることが好ましい。 また、 有機 金属化合物 (A L Jの使用量が、 少なすぎると (共) 重合反応速度が遅くなりす ぎ、 また大きくしても (共) 重合反応速度のそれに見合う上昇が期待できないば かりか、 最終的に得られるォレフィン (共) 重合体組成物中に有機金属化合物 ( A L Jの残さが多くなるので好ましくない。 さらに、 電子供与体 (E の使用量 が大きすぎると、 (共) 重合反応速度が低下する。 溶媒使用量が大きすぎると、 大きな反応容器を必要とするばかりでなく、 効率的な (共) 重合反応速度の制御 及び維持が困難となる。
予備、活'性化処理は、 たとえば、 ブタン、 ペンタン、 へキサン、 ヘプタン、 ォク タン、 イソオクタン、 デカン、 ドデカン等の脂肪族炭化水素、 シクロペンタン、 シクロへキサン、 メチルシクロへキサン等の脂環族炭化水素、 トルエン、 キシレ ン、 ェチルベンゼン等の芳香族炭化水素、 他にガソリン留分ゃ水素ィヒジーゼル油 留分等の不活性溶媒、 ォレフィン自身を溶媒とした液相中で行いことができ、 ま た溶媒を用いずに気相中で行うことも可能である。
予備活性化処理は、 水素の存在下においても実施してもよいが、 固有粘度 [η A]が 15〜; L 00 d の高分子量のポリエチレン (A) を生成させるために は、 水素は用いないほうが好適である。
予備活性化処理においては、 本 (共) 重合目的のプロピレンまたはプロピレン とその他のォレフィンとの混合物の予備 (共) 重合条件は、 ォレフィン (共) 重 合体 (C) が遷移金属化合物触媒成分 1 g当たり◦. 01 g〜l 00 g生成し、 非直鎖ォレフイン重合体 (B) が遷移金属化合物触媒成分 1 g当たり 0. 000 1〜50 g生成する条件であればよく、 通常、 一 40° (:〜 100°Cの温度下、 0 . 1 MP a〜5MP aの圧力下で、 1分〜 24時間実施する。 またエチレンまた はエチレンとその他のォレフィンとの混合物の予備活性化 (共) 重合条件は、 ポ リエチレン (A) が遷移金属化合物触媒成分 1 g当たり 0. 01〜5, 000 g 、 好ましくは 0. 05〜2、 000 g、 さらに好ましくは 0. 1〜丄, 00〇 g の量で生成するような条件であれば特に制限はなく、 通常、 — 40° (:〜 40°C、 好ましくは一 40 °C〜 30 °C、 さらに好ましくは一 40 °C〜 20 °C程度の比較的 低温度下、 0. 1 MP a〜5MP a、 好ましくは 0. 2MPa〜5MPa、 特に 好ましくは 0. 3MP a〜5MP aの圧力下で、 1分〜 24時間、 好ましくは 5 分〜 18時間、 特に好ましくは 10分〜 12時間である。
また、 前記予備活性化処理後に、 予備活性化処理による本 (共) 重合活性の低 下を抑制することを目的として、 本 (共) 重合目的のプロピレンまたはプロピレ ンとその他のォレフィンとの混合物による付加重合を、 遷移金属化合物触媒成分 1 g当たり 0. 01〜 100 gのォレフイン (共) 重合体 (C) の反応量で行つ てもよい。 この場合、 有機金属化合物 (ALJ、 電子供与体 溶媒、 およ びプロピレンまたはプロピレンとその他のォレフインとの混合物の使用量はェチ レンまたはエチレンとその他のォレフィンとの混合物による予備活性化重合と同 様な範囲で行うことができる力 遷移金属原子 1モル当たり 0. 005〜10モ ル、 好ましくは 0. 01〜5モルの電子供与体の存在下に行うの力 s好ましい。 ま た、 反応条件については— 40〜100°Cの温度下、 0. l〜5MPaの圧力下 で、 1分から 24時間実施する。
付加重合に使用される有機金属化合物 (AL,)、 電子供与体 (EJ、 溶媒の種 類については、 エチレンまたはエチレンとその他のォレフィンとの混合物による 予備活性化重合と同様なものを使用でき、 プロピレンまたはプロピレンとその他 のォレフインとの混合物については本 (共) 重合目的と同様の組成のものを使用 する。
付加重合で生成するポリプロピレンの固有粘度 〖r?c]は、 ポリエチレン (A) の固有粘度 [TJ A]より小さな範囲であり、 最終的には本 (共) 重合後の (b) 成 分のポリプロピレンの一部として組み入れられる。
予備活性化触媒は、 そのまま、 または追加の有機金属化合物 (AL2)及び電子 供与体 (E2)をさらに含有させたォレフィン単独 (共) 重合用触媒として、 目的 のポリプロピレン組成物を得るための炭素数 2~12のォレフインの本 (共) 重 合に用いることができる。
前記ォレフィン単独 (共) 重合用触媒は、 前記予備活性化触媒、 予備活性化触 媒中の遷移金属原子 1モルに対し有機金属化合物 (AL 2)を活性化触媒中の有機 金属化合物 (ALJとの合計 (ALi + し2)で0. 05〜3, 000モル、 好 ましくは 0. 1〜 1, 000モルおよび活性化触媒中の遷移金属原子 1モルに対 し電子供与体 (E 2)を予備活性化触媒中の電子供与体 (Ε,)との合計 (Ei +E 2)で 0〜5, 000モル、 好ましくは 0〜3, 000モルからなる。
有機金属化合物の含有量 (AL^ +AL2)力 j、さすぎると、 プロピレンまたは プロピレンとその他のォレフィンの単独 (共) 重合における (共) 重合反応速度 が遅すぎ、 一方過剰に大きくしても (共) 重合反応速度の期待されるほどの上昇 は認められず非効率的であるばかりではなく、 最終的に得られるォレフィン (共 ) 重合体組成物中に残留する有機金属化合物残さが多くなるので好ましくない。 さらに電子供与体の含有量 (E, +E2)が過大になると (共) 重合反応速度が著 しく低下する。
ォレフィン単独 (共) 重合用触媒に必要に応じて追加使用される有機金属化合 物 (AL2)および電子供与体 (E 2)の種類については既述の有機金属化合物 (A Li)および電子供与体 (EJと同様なものを使用することができる。 また、 1種 の単独使用でもよく 2種以上を混合使用してもよい。 また予備活性化処理の際に 使用したものと同種でも異なっていてもよい。
ォレフィン単独 (共) 重合用触媒は、 前記予備活性化触媒中に存在する溶媒、 未反応のォレフィン、 有機金属化合物 (ALJ、 および電子供与体 (EJ等を濾 別またはデカンテーシヨンして除去して得られた粉粒体またはこの粉粒体に溶媒 を添加した懸濁液と、 追加の有機金属化合物 (AL2)および所望により電子供与 体 (E2)とを組み合わせてもよく、 また、 存在する溶媒および未反応のォレフィ ンを減圧蒸留または不活性ガス流等により蒸発させて除去して得た粉粒体または 粉粒体に溶媒を添加した懸濁液と、 所望により有機金属化合物 (AL2)及び電子 供与体 ( E 2)とを組み合わせてもよい。
本第 6発明のォレフィン (共) 重合体組成物の製造方法において、 前記予備活 性化触媒または才レフィン単独 (共) 重合用触媒の使用量は、 重合容積 1 リット ルあたり、 予備活性化触媒中の遷移金属原子に換算して、 0. 001〜1, 00 0ミリモル、 好ましくは 0. 005〜 500ミリモル使用する。 遷移金属化合物 触媒成分の使用量を上記範囲とすることにより、 プロピレンまたはプロピレンと 組成ォレフィンとの混合物の効率的かつ制御された (共) 重合反応速度を維持す ることができる。
本第 6発明におけるプロピレンまたはプロピレンとその他のォレフィンとの混 合物の単独 (共) 重合は、 その重合プロセスとして公知の才レフィン (共) 重合 プロセスが使用可能であり、 具体的には、 プロパン、 ブタン、 ペンタン、 へキサ ン、 ヘプタン、 オクタン、 イソオクタン、 デカン、 ドデカン等の脂肪族炭化水素 、 シクロペンタン、 シクロへキサン、 メチルシクロへキサン等の脂環族炭化水素 、 トルエン、 キシレン、 ェチルベンゼン等の芳香族炭化水素、 他にガソリン留分 や水素化ジーゼル油留分等の不活性溶媒中で、 ォレフィンの (共) 重合を実施す るスラリー重合法、 ォレフィン自身を溶媒として用いるバルク重合法、 ォレフィ ンの (共) 重合を気相中で実施する気相重合法、 さらに (共) 重合して生成する ポリオレフィンが液状である液相重合、 あるいはこれらのプロセスの 2以上を組 み合わせた重合プロセスを使用することができる。
上記のいずれの重合プロセスを使用する場合も、 重合条件として、 重合温度は 20〜 120°C、 好ましくは 30〜 100°C、 特に好ましくは 40〜 100°Cの 範囲、 重合圧力は 0. 1〜5MP a、 好ましくは 0. 3~5MPaの範囲におい て、 連続的、 半連続的、 若しくはバッチ的に重合時間は 5分間〜 24時間程度の 範囲が採用される。 上記の重合条件を採用することにより、 (c) 成分のボリプ ロピレンを高効率かつ制御された反応速度で生成させることができる。
本第 6発明のポリプロピレン組成物の製造方法により好ましい態様においては 、 単独 (共) 重合において生成する (c) 成分のォレフィン (共) 重合体および 最終的に得られるォレフィン (共) 重合体組成物の固有粘度 [ητ]が 0. 2〜1 0 d 1/g, 好ましくは 0. 7〜5 d 1 Zgの範囲となり、 かつ得られるォレフ イン (共) 重合体組成物中に、 使用した予備活性化触媒に由来するポリエチレン (A) が 0. 01〜5重量%、 および非直鎖ォレフイン重合体 (B) 力 s'O. 00 01〜0. 05重量%の範囲となるように重合条件を選定する。 また、 公知の才 レフインの重合方法と同様に、 重合時に水素を用いることにより得られる (共) 重合体の分子量を調整することができる。
単独 (共) 重合の終了後、 必要に応じて公知の触媒失活処理工程、 触媒残さ除 去工程、 乾燥工程等の後処理工程を経て、 目的とする高溶融張力および高結晶化 温度および高透視を有するォレフィン (共) 重合体組成物が最終的に得られる。 本第 6発明のォレフィン (共) 重合体組成物の製造方法においては、 高分子量 のポリエチレン (A) および非直鎖ォレフイン重合体 (B) を予備活性化工程に よって生成させ、 最終的に得られるォレフィン (共) 重合体組成物中に均一分散 させる方法を採用しているので、 予備活性化触媒の必要量をまとめて調整するこ とが可能な一方、 プロピレンまたはプロピレンとその他のォレフィンの本 (共) 重合では既存のプロセスを用いて通常のォレフィン (共) 重合を実施すればよい ので、 通常のポリオレフイン製造と比較して同等の生産量を維持することができ る。
本第 6発明の予備活性化触媒を使用するォレフイン (共) 重合体組成物の製造 方法を採用することにより、 前記した 230°Cにおける溶融張力 (MS) と 13 5°Cのテトラリン中で測定した固有粘度 [7?τ]との関係を満足し、 力つ透視性が 良好な才レフィン (共) 重合体組成物が容易に得られる。 実施例
以下に、 本発明を実施例および比較例によりさらに詳細に説明する。
実施例および比較例において使用する用語の定義および測定方法は以下の通り である。
固有粘度 : 135°Cのテトラリン中で測定した極限粘度を、 ォストヴァ ルト粘度計 (三井東圧化学 (株) 製) により測定した値 (単位: d lZg) 。 溶融張力 (MS) :メルトテンションテスタ一 2型 ( (株) 東洋精機製作所製 ) により測定した値 (単位: cN)
結晶化温度 (T c ) :パーキンエルマ一社製の D S C 7型示差走査熱量分析計 を用いてポリオレフインを室温から 30°C/分の昇温条件下 230°Cまで昇温し 、 同温度にて 1◦分間保持後、 一 20°0 分にて一 20°Cまで降温し、 同温度に て 10分間保持した後、 20°CZ分の昇温条件下で 230°Cまで昇温し、 同温度 5 にて 10分間保持後、 — 80°C/分にて 150°Cまで降温し、 150°Cからは— 5°CZ分にて高温しながら結晶化時の最大ピークを示す温度を結晶化温度 (T c ) とした (単位:。 C) 。
内部ヘイズ:表面の影響を除いたフィルム内部の Ha z eであり、 プレス機を 用いて温度 200°C、 圧力 19. 6MP aの条件下でポリプロピレンを厚さ 15 Ojumのフィルムとし、 フィルム表面に流動パラフィンを塗った後、 J I SK7 105に準拠して H a z eを測定した (単位:%) 。
実施例 1
( 1 ) 遷移金属化合物触媒成分の調製
撹拌機付きステンレス製反応器中において、 デカン 0. 3リットル、 無水塩化 マグネシウム 48 g、 オルトチタン酸— n—ブチル 170 gおよび 2—ェチル— 1—へキサノール 195 gを混合し、 撹拌しながら 130°Cに 1時間加熱して溶 解させ均一な溶液とした。 この均一溶液を 70°Cに加温し、 撹拌しながらフタル 酸ジ— i一ブチル 18 gを加え 1時間経過後、 四塩化ケィ素 520 gを 2. 5時 間かけて添加し固体を析出させ、 さらに 70°Cに 1時間加熱保持した。 固体を溶 液から分離し、 へキサンで洗浄して固体生成物を得た。
固体生成物の全量を 1, 2—ジクロルェタン 1. 5リツトルに溶解した四塩ィ匕 チタン 1. 5リットルと混合し、 次いでフタル酸ジ一 i一ブチル 36 g加え、 撹 拌しながら 100°Cに 2時間反応させた後、 同温度においてデカンテ一シヨンに より液相部を除き、 再び、 1 , 2—ジクロルェタン 1. 5リットルおよび四塩ィヒ チタン 5リットルを加え、 100°Cに 2時間撹拌保持し、 へキサンで洗浄し 乾燥してチタン 2. 8重量%を含有するチタン含有担持型触媒成分 (遷移金属化 合物触媒成分) を得た。
( 2 ) 予備活性化触媒の調製
内容積 5リ、ソトルの傾斜羽根付きステンレス製反応器を窒素ガスで置換した後 、 n—へキサン 2, 8リットル、 卜リエチルアルミニウム (有機金属化合物 (A b
Lx)) 4ミリモルおよび前項で調整したチタン含有担持型触媒成分を 9. 0 g ( チタン原子換算で 5. 26ミリモル) 加えた後、 ロピレン 20 g供給し、 —2 °Cで 10分間、 予備重合を行った。
別途、 同一の条件で行つた予備重合により生成したポリマーを分析したところ 、 チタン含有担持型触媒成分 1 g当たり、 プロピレン 2 gがポリプロピレン (C ) となり、 ポリプロピレン (C) の 135°Cのテ卜ラリン中で測定した固有粘度
[r?c]が 2. 8 d 1/gであった。
反応時間終了後、 未反応のプロピレンを反応器外に放出し、 反応器の気相部を 1回、 窒素置換した後、 反応器内の温度を一 0°Cに保ちつつ、 3—メチルブテン - 1を 270 g供給し、 5時間予備活性化重合 IIを行った。
別途、 同一の条件で行った予備活性化重合 Πにより生成したポリマーを分析し た結果、 チタン含有担持型触媒成分 1 g当たり、 ポリマーが 5 gが存在し、 かつ ポリマーの 135°Cのテトラリン中で測定した固有粘度 [r?T2] が 2. 5 d 1/ であった。
3—メチルブテン— 1による予備活性化重合 IIで生成したチタン含有担持型触 媒成分 1 g当たりのポリ一 3—メチルブテン一 1 (B) 量 (W2)は、 予備活性ィ匕 処理後のチタン含有担持型触媒成分 1 g当たりのポリマー生成量 (WT2) と予備 重合後のチタン含有担持型触媒成分 1 g当たりのポリプロピレン (C) 生成量 ( Wi)との差として次式で求められる。
Figure imgf000038_0001
また、 3—メチルブテン— 1による予備活性化重合 IIで生成したポリ— 3—メ チルブテン - 1 (B) の固有粘度 [r?B]は、 予備重合で生成したポリプロピレン (C) の固有粘度 [ c]および予備活性化処理で生成したポリマーの固有粘度 [ r?T2] から次式により求められる。
[?? B] = ( [r?T2] XWT2- [ric] xWi)/ (WT2-Wi) = [7? 3M]
上記式に従って 3-メチルブテン— 1による予備活性化重合 IIで生成したポリ —3—メチルブテン一 1 (B) 量は、 チタン含有担持型触媒成分 1 g当たり 3 g
、 固有粘度 [ B]は 2. 3 d lZgであった。
反応時間終了後、 未反応の 3—メチルブテン一 1を反応器外に放出し、 反応器 の気相部を 1回、 窒素置換した後、 反応器内の温度を一 1°Cに保ちつつ、 反応器 内の圧力が 0. 59 MP aを維持するようにエチレンを反応器に連続的に 2時間 供給し、 予備活性化重合 Iを行った。
別途、 同一の条件で行った予備活性化重合 Iにより生成したポリマ一を分析し た結果、 チタン含有担持型触媒成分 1 g当たり、 ポリマーが 27 g存在し、 かつ ポリマ一の 135°Cのテトラリン中で測定した固有粘度 [ T2] が 28. 2 d 1 であり、 上記と同様にして算出した予備活性化重合 Iにより生成したボリエ チレンの生成量 (W3)は、 チタン含有担持型触媒成分 1 g当たり 22 g、 固有粘 度 [r ]は 34d 1/gであった。
反応時間終了後、 未反応のエチレンを反応器外に放出し、 反応器の気相部を 1 回、 窒素置換し、 本 (共) 重合用の予備活性化触媒スラリーとした。
(3) ポリプロピレン組成物の製造 (プロピレンの本 (共) 重合)
内容積 500リットルの撹拌機付き、 ステンレス製重合器を窒素置換した後、
20°Cにおいて n—へキサン 240リットル、 卜リエチルアルミニウム (有機金 属化合物 (AL2)) 780ミリモル、 ジイソプロピルジメトキシシラン (電子供 与体 (E2)) 78ミリモルおよび前記で得た予備活性化触媒スラリーの 1Z2量 を重合器内に投入した。 弓 Iき続いて、 水素 55リットルを重合器内に導入し、 Ί
0°Cに昇温した後、 重合温度 70°Cの条件下、 重合器内の気相部圧力が 0. 79
MP aに保持しながらプロピレンを連続的に 2時間、 重合器内に供給しプロピレ ンの本重合を実施した。
重合時間経過後、 メタノール 1リツトルを重合器内に導入し、 触媒失活反応を 70°Cにて 15分間実施し、 弓 Iき続き未反応ガスを排出後、 溶媒分離、 重合体の 乾燥を行い、 固有粘度 [7? ]が1. 91 d lZgのポリマー 38. 5 kgを得た 得られたポリマ一は、 (a) 成分に該当する予備活性化重合によるポリェチレ ン (A) 含有率 0. 26重量%、 (b) 成分に該当する予備活性化重合によるポ リ—3—メチルブテン一 1 (B) 含有率 0. 0351重量%のポリプロピレン組 成物であり、 (c) 成分のポリプロピレンの固有粘度 [r?P]は 1. 83d l/g であった。
得られたポリプロピレン組成物 100重量部に対して、 2, 6—ジー t一プチ ル— P—クレゾール 0. 1重量部、 およびステアリン酸カルシウム 0. 1重量部 を混合し、 混合物をスクリュー径 40mmの押出造粒機を用いて 230 °Cにて造 粒し、 ペレツ卜とした。 ペレットについて各種物性を評価測定したところ、 MF Rは 4. 3 gZl O分、 溶融張力 (MS) は 4. 5 cN、 結晶化温度は 125. 6°C, 内部 Haz eは 2. 8 %であった。 詳細な物性は表 1にまとめて示す。 比較例 1
実施例 1において、 チタン含有担持型触媒成分のエチレンによる予備活性化重 合 Iを実施しなかったことを除き、 他は実施例 1と同一の条件で処理してポリプ ロピレンの製造を行った。 得られたポリプロピレン組成物 100重量部に対して 、 2, 6—ジー tーブチルー p—クレゾール 0. 1重量部、 およびステアリン酸 カルシウム 0. 1重量部を混合し、 混合物をスクリュー径 40 mmの押出造粒機 を用いて 230°Cにて造粒し、 ペレットとした。 ペレットについて各種物性を評 価測定したところ、 MFRは 4. 5 gZl 0分であった。 詳細な物性は表 1にま とめて示す。
比較例 2
実施例 1において、 チタン含有担持型触媒成分の 3—メチルブテン一 1、 およ びエチレンによる予備活性化重合を実施しなかったことを除き、 他は実施例 1と 同一の条件で処理してポリプロピレンの製造を行った。 得られたポリプロピレン 組成物 100重量部に対して、 2, 6—ジ— t一プチルー p—クレゾール 0. 1 重量部、 およびステアリン酸カルシウム 0. 1重量部を混合し、 混合物をスクリ ュ一径 4 Ommの押出造粒機を用いて 230°Cにて造粒し、 ペレットとした。 ぺ レットについて各種物性を評価測定したところ、 MFRは 4. 7 g/10分であ つた。 詳細な物性は表 1にまとめて示す。
実施例 2
( 1 ) 遷移金属化合物触媒成分の調製
撹拌機付きステンレス製反応器中において、 デカン 37. 5リットル、 無水塩 化マグネシウム 7. 14 k g、 および 2—ェチル— 1—へキサノール 35. 1 リ ッ トルを混合し、 撹拌しながら 140°Cに 4時間加熱反応を行って均一な溶液と した。 この均一溶液中に無水フタル酸 1. 67 k gを添加し、 さらに 130°Cに て 1時間撹拌混合を行い、 無水フタル酸をこの均一溶液に溶解した。
得られた均一溶液を室温 (23°C) に冷却した後、 この均一溶液を一 20°Cに 保持した四塩化チタン 200リツ トル中に 3時間かけて全量滴下した。 滴下後、 4時間かけて 1 10°Cに昇温し、 1 10°Cに達したところでフタル酸ジ一 iーブ チル 5. 03リッ トルを添加し、 2時間 1 10°Cにて撹拌保持して反応を行った 。 2時間の反応終了後、 熱濾過して固体部を採取し、 固体部を 275リッ トルの 四塩化チタンにより再懸濁させた後、 再び 1 10°Cで 2時間、 反応を持続した。 反応終了後、 再び熱濾過により固体部を採取し、 n -へキサンにて、 洗浄液中 に遊離のチタンが検出されなくなるまで充分洗浄した。 続いて、 濾過により溶媒 を分離し、 固体部を減圧乾燥してチタン 2. 4重量%を含有するチタン含有担持 型触媒成分 (遷移金属化合物触媒成分) を得た。
( 2 ) 予備活性化触媒の調製
内容積 30リッ トルの傾斜羽根付きステンレス製反応器を窒素ガスで置換後、 n -へキサン 18リッ トル、 トリェチルアルミニウム (有機金属化合物 (ALJ ) 60ミリモルおよび前項で調製したチタン含有担持型触媒成分 150 g (チタ ン原子換算で 75. 16ミリモル) を添加した後、 プロピレン 210 gを供給し 、 一 1°Cで 20分間、 予備重合を行った。
別途、 同一の条件で行った予備重合後に生成したポリマーを分析した結果、 チ タン含有担持型触媒成分 1 g当たり、 1. 2 gのポリプロピレン (C) が生成し 、 このポリプロピレン (C) の 135°Cのテトラリン中で測定した固有粘度 [r? c]が 2. 7 d 1/gであった。
反応時間終了後、 未反応のプロピレンを反応器外に放出し、 反応器の気相部を 1回、 窒素置換した後、 反応器内の温度を 15 °Cに保ちつつ、 3 -メチルブテン 一 1を 1500 g供給し、 4時間予備活性化重合 IIを行った。
別途、 同一の条件で行った予備活性化重合 Πにより生成したポリマーを分析し た結果、 チタン含有担持型触媒成分 1 g当たり、 ポリマーが 4. 4 gが存在し、 かつポリマーの 135 °Cのテトラリン中で測定した固有粘度 [ ? T2] 力 s 2. 2 d 1 Z gであった。 よつて予備活性化重合 IIにより生成したポリ一 3—メチルブテ ンー 1 (B) 量は、 チタン含有担持型触媒成分 1 g当たり 3. 2 g、 固有粘度 [ r?B]は 2. 0 d 1 / であった。
反応時間終了後、 未反応の 3—メチルブテン - 1を反応器外に放出し、 反応器 の気相部を 1回、 窒素置換した後、 反応器内の温度を - o°cに保ちつつ、 反応器 内の圧力が 0. 59 MP aを維持するようにエチレンを反応器に連続的に 2時間 供給し、 予備活性化重合 Iを行った。
別途、 同一の条件で行った予備活性化重合 Iにより生成したポリマ一を分析し た結果、 チタン含有担持型触媒成分 1 g当たり、 ポリマーが 33 g存在し、 かつ ポリマーの 135°Cのテ卜ラリン中で測定した固有粘度 [τ7τ2] が 26. 2 d 1
/ gであり、 上記と同様にして算出した予備活性化重合 Iにより生成したポリエ チレンの生成量 (W3)は、 チタン含有担持型触媒成分 1 g当たり 28. 6 g、 固 有粘度 [7? ]は29. 9 (11 ^であった。
反応時間終了後、 未反応のエチレンを反応器外に放出し、 反応器の気相部を 1 回、 窒素置換し、 本 (共) 重合用の予備活性化触媒スラリーとした。 (3) ポリプロピレン組成物の製造 (プロピレンの本 (共) 重合)
窒素置換された、 内容積 1 10リツ トルの撹拌機を備えた連続式横型気相重合 器 (長さ Z直径 =3. 7) に、 ポリプロピレンパウダーを 25k g導入し、 さら に予備活性化触媒スラリーをチタン含有担持型触媒成分として 0. 61 g/h、 トリェチルアルミニウム (有機金属化合物 (AL2)) およびジイソプロピルジメ トキシシラン (電子供与体 (E2)) の 15重量%n—へキサン溶液をチタン含有 担持型触媒成分中のチタン原子に対し、 それぞれモル比が 90および 15となる ように連続的に供給した。
さらに、 重合温度 70°Cの条件下、 重合器内のプロピレン濃度に対する水素濃 度比およびエチレン濃度比が 0. 012となるように水素を 0. 005となるよ うにエチレンを供給して、 さらに重合器内の圧力が 2. 15MPaを保持するよ うにプロピレンを重合器内に供給して、 プロピレンの気相重合を 150時間連続 して行った。
重合期間中は重合器内の重合体の保有レベルが 60容積%に維持するように重 合器からポリマーを 1 1. 6 k gZhの速度で抜き出した。
抜き出したポリマーを、 水蒸気を 5容積%含む窒素ガスにより 100°Cにて 3 0分間接触処理し、 固有粘度 [r]T]が 1. 88d lZg、 エチレン重合単位を 0 . 8重量%含有したポリマーを得た。
ポリマ—中の予備活性化処理により生成したポリエチレン (A) 含有率は 0. 15重量%、 ポリ— 3 -メチルブテン— 1 (B) 含有率は 0. 0168重量%ぉ よびポリプロピレンの固有粘度 [ 7^]は1. 83 d lZgであった。
得られたポリプロピレン組成物 100重量部に対して、 2, 6—ジ— t一プチ ルー P—クレゾール 0. 1重量部、 およびステアリン酸カルシウム 0. 1重量部 を混合し、 混合物をスクリュ一径 40mmの押出造粒機を用いて 230°Cにて造 粒し、 ペレットとした。 ペレッ トについて各種物性を評価測定したところ、 MF Rは 4. 7 g/10分、 溶融張力 (MS) は 3. 8 cN、 結晶化温度は 123. 4°C、 内部 Haz eは 2. 6%であった。 詳細な物性は表 1にまとめて示す。 比較例 3
実施例 2において、 チタン含有担持型触媒成分のェチレンによる予備活性化重 合 Iを実施しなかったことを除き、 他は実施例 2と同一の条件で処理してポリプ ロピレンの製造を行った。 得られたポリプロピレン組成物 100重量部に対して 、 2, 6—ジー tーブチルー p—クレゾール 0. 1重量部、 およびステアリン酸 カルシウム 0. 1重量部を混合し、 混合物をスクリュー怪 40 mmの押出造粒機 を用いて 230°Cにて造粒し、 ペレットとした。 ペレットについて各種物性を評 価測定したところ、 MFRは 4. 1 gノ 10分であった。 詳細な物性は表 1にま とめて示す。
比較例 4
実施例 2において、 チタン含有担持型触媒成分の 3—メチルブテン— 1、 およ びェチレンによる予備活性化重合を実施しなかったことを除き、 他は実施例 2と 同一の条件で処理してポリプロピレンの製造を行った。 得られたポリプロピレン 組成物 100重量部に対して、 2, 6—ジー t一ブチル—p—クレゾール 0. 1 重量部、 およびステアリン酸カルシウム 0. 1重量部を混合し、 混合物をスクリ ュ一径 40 mmの押出造粒機を用いて 230°Cにて造粒し、 ペレットとした。 ぺ レツ卜について各種物性を評価測定したところ、 MFRは 4. 5 g/10分であ つた。 詳細な物性は表 1にまとめて示す。
表 1
Figure imgf000045_0001
m *ι :遷移金属化合物角蝶成分 1 g当たりの ( g )
*2 :プロピレン (共) 重合体組成物中に占める Mtヒ (wt%)

Claims

請 求 の 範 囲
1. (a) エチレン単独重合体又はエチレン重合単位を 50重量%以上含有する エチレン—ォレフィン共重合体であって、 135°Cのテ卜ラリンで測定した固有 粘度 [r?E]が 15〜100 d 1/gの範囲の高分子量ポリエチレンを 0. 01〜 5. 0重量部と、
(b) 非直鎖ォレフイン重合体を 0. 0001〜0. 05重量部と、
(c) 前記高分子量ポリエチレン以外の直鎖ォレフイン (共) 重合体を 100重 量部を、
有効成分とするォレフィン (共) 重合体組成物。
2. ォレフィン (共) 重合体組成物の 135 °Cのテトラリンで測定した固有粘度
[77 τ]が、 0. 2〜 10 d の範囲である請求項 1に記載のォレフィン (共 ) 重合体組成物。
3. 前記 (C) 高分子量ポリエチレン以外の直鎖ォレフイン (共) 重合体が、 プ ロピレン単独重合体、 又はプロピレン重合単位を 50重量%以上含有するプロピ レン一才レフイン共重合体から選択された一種類以上のものである請求項 1に記 載のォレフィン (共) 重合体組成物。
4. 非直鎖ォレフイン重合体は、 下記の a, bおよび c式の化合物を重合単位と してなることを特徴とする請求項 1に記載のォレフィン (共) 重合体組成物。
a. - [CH2 -CH] - I
R1
b. 一 [CH2 -CH] 一
I
R5 -R2 一 R3
I
R4 c. 一 [CH
Figure imgf000047_0001
5. ォレフィン (共) 重合体組成物が、 230°Cにおける溶融張力 (MS)と 135
°Cのテ卜ラリン中で測定した固有粘度 [ 7? τ]との間に、
log (MS) >4.24x log [r?T]一 1.11
で表される関係を有する請求項 1に記載のォレフィン (共) 重合体組成物。
6. ォレフィン (共) 重合体が、 遷移金属化合物触媒成分、 遷移金属原子 1モル に対し 0. 01〜1, 000モルの周期表 (1991年版) 第 1族、 第 2族、 第 12 族および第 13族に属する金属よりなる群から選択された金属の有機金属化合物 (A および遷移金属原子 1モルに対し 0〜500モルの電子供与体 (EJの 組み合わせからなるポリオレフイン製造用触媒、 ならびに、 この触媒に担持させ た 135°Cのテトラリン中で測定した固有粘度 [r?E]が 15〜100 d lZgの ポリエチレンおよび非直鎖ォレフィン重合体からなる予備活性化触媒の存在下に 、 プロピレンの単独またはプロピレンと炭素数 2〜12のその他の才レフィンを (共) 重合させて製造することを特徴とするォレフィン (共) 重合体組成物の製 造法。
7. 予備活性化触媒に、 周期表 (1991年版) 第 1族、 第 2族、 第 12族および第 13族に属する金属よりなる群から選択された金属の有機金属化合物 (AL2)を 予備活性化触媒中に含まれる有機金属化合物 (ALJとの合計で遷移金属原子 1 モルに対し 0. 05〜5, 000モル、 ならびに電子供与体 (E2)を予備活性ィヒ 触媒中に含まれる電子供与体 (EJとの合計で予備活性化触媒中の遷移金属原子 1モル当たり 0〜3, 000モルをさらに含有させたォレフィン (共) 重合触媒 の存在下に、 プロピレンの単独またはプロピレンと炭素数 2〜12のその他のォ レフインを (共) 重合させて製造する請求項 6に記載のォレフィン (共) 重合体 組成物の製造法。
8. 予備活性化触媒が、 遷移金属化合物触媒成分 1 g当たり、 135°Cのテ卜ラ リン中で測定した固有粘度 [r?E]が 15〜100d lZgの高分子量ポリェチレ ン 0. 01〜5, 000 gを担持し、 かつ非直鎖ォレフイン重合体が 0. 001 〜100 g担持している請求項 6または請求項 7に記載のォレフィン (共) 重合 体組成物の製造法。
9. 予備活性化触媒が、 遷移金属化合物触媒成分 1 g当たり、 135°Cのテトラ リン中で測定した固有粘度 [r?c]が 15 d l/gより小さいポリプロピレン 0. 01〜100 g、 および 135°Cのテ卜ラリン中で測定した固有粘度 [7^]が1 5〜100 d 1/gの高分子量ポリエチレン 0. 01〜5, 00 O gを担持し、 かつ非直鎖ォレフイン重合体 0. 001〜100 gを担持している請求項 6また は請求項 7に記載のォレフィン (共) 重合体組成物の製造法。
10. ォレフィン (共) 重合体組成物が、 プロピレンまたはプロピレンとその他 の才レフインの (共) 重合容積 1リットル当たり触媒中の遷移金属原子に換算し て 0. 01〜1 , 000ミリモルの触媒量で製造される請求項 6または請求項 7 に記載の才レフィン (共) 重合体組成物の製造法。
1 1. 非直鎖ォレフインとして、 次式、
CH2 =CH— R2
(式中、 R2 はケィ素を含んでいてもよい炭化水素の飽和環状構造を有する、 ケ ィ素を含んでいてもよい炭素数 3から 18の含飽和環炭化水素基を表す。 ) で示 される含飽和環炭化水素単量体を重合してなる非直鎖ォレフイン重合体を用いる 請求項 6または請求項 7に記載のォレフィン (共) 重合体組成物の製造法。
12. 非直鎖ォレフインとして、 次式、 R3
I
CH2 =CH-R2 一 R4 R5
(式中、 R2 はケィ素を含んでいてもよい炭素数 1〜3までの鎖状炭化水素基、 またはケィ素を表し、 R3 、 R4 、 RB はケィ素を含んでいてもよい炭素数 1〜 6までの鎖状炭化水素基、 またはケィ素を表すが、 R3 、 R4 、 R5 のいずれか 1個は水素であってもよい。 ) で示される枝鎖才レフイン類を重合してなる非直 鎖ォレフイン重合体を用いる請求項 6または請求項 7に記載のォレフィン (共) 重合体組成物の製造法。
13. 非直鎖ォレフインとして、 次式、
Figure imgf000049_0001
(
(式中、 nは 0、 1、 mは 1、 2のいずれかであり、 R6 はケィ素を含んでいて もよい炭素数 1〜6までの鎖状炭化水素基を表し、 R7 はケィ素を含んでいても よい炭素数 1〜12までの鎖状炭化水素基、 水素またはハロゲンを表し、 mが 2 の時、 各 R7 は同一でも異なってもよい。 ) で示される芳香族系単量体を重合し てなる非直鎖ォレフイン重合体を用いる請求項 6または請求項 7に記載のォレフ ィン (共) 重合体組成物の製造法。
14. 遷移金属化合物触媒成分、 遷移金属原子 1モルに対し 0. 01〜 1, 00 0モルの周期表 (1991年版) 第 1族、 第 2族、 第 12族および第 13族に属する 金属よりなる群から選択された金属の有機金属化合物 (A L:)および遷移金属原 子 1モルに対し 0〜500モルの電子供与体 の組み合わせからなるポリオ レフイン製造用触媒、 ならびに、 この触媒に担持させた 135。Cのテ卜ラリン中 で測定した固有粘度 [7^]が15〜1 OOd lZgのポリエチレンおよび非直鎖 ォレフィン重合体からなる予備活性化触媒の存在下に、 プロピレンの単独または 4 O プロピレンと炭素数 2〜12のその他のォレフィンを単独もしくは共重合させる ことを特徴とする才レフィン (共) 重合体組成物の製造方法。
15. 予備活性化触媒に、 周期表 (1991年版) 第 1族、 第 2族、 第 12族および 第 13族に属する金属よりなる群から選択された金属の有機金属化合物 (AL2) を予備活性化触媒中に含まれる有機金属化合物 (A との合計で遷移金属原子 1モルに対し 0. 05〜5, 000モル、 ならびに電子供与体 (E2)を予備活性 化触媒中に含まれる電子供与体 との合計で予備活性化触媒中の遷移金属原 子 1モル当たり 0〜3, 000モルを含有させて組合せたォレフィン (共) 重合 触媒の存在下に、 プロピレンの単独またはプロピレンと炭素数 2〜12のその他 のォレフインとを (共) 重合することを特徴とする請求項 14に記載のォレフィ ン (共) 重合体組成物の製造方法。
16. 予備活性化触媒として、 遷移金属化合物触媒成分 1 g当たり、 135°Cの テトラリン中で測定した固有粘度 [ E]が 15〜 100 d 1 Z gの範囲のポリェ チレン 0. 01〜5, 000 gならびに非直鎖ォレフイン重合体が 0. 001〜 100 g担持しているものを使用する請求項 14または請求項 15に記載のォレ フィン (共) 重合体組成物の製造方法。
17. 予備活性化触媒として、 遷移金属化合物触媒成分 1 g当たり、 135°Cの テトラリン中で測定した固有粘度 [ r?。]が 15 d 1 Z gより小さいポリプロピレ ン 0. 01〜100 g、 および 135°Cのテ卜ラリン中で測定した固有粘度 [Ϊ] Ε]が 15〜; I 00 d lZgの範囲のポリエチレン 0. 01〜5, 000 gを担持 し、 かつ非直鎖ォレフイン重合体 0. 001〜100 g担持しているものを使用 する請求項 14または請求項 15に記載のォレフィン (共) 重合体組成物の製造 方法。
18. ォレフィン (共) 重合体組成物が、 プロピレンまたはプロピレンとその他 のォレフインの (共) 重合容積 1リットル当たり触媒中の遷移金属原子に換算し て 0. 01〜1, 000ミリモルの触媒量で製造される請求項 14または請求項 15に記載のォレフィン (共) 重合体組成物の製造方法。
19. 非直鎖ォレフインとして、 次式、
R3 CH2 =CH— R2 — R4
I
R5
(式中、 R2 はケィ素を含んでいてもよい炭素数 1〜3までの鎖状炭ィヒ水素基、 またはケィ素を表し、 R3 、 R4 、 R5 はケィ素を含んでいてもよい炭素数 1〜 6までの鎖状炭化水素基、 またはケィ素を表すが、 R3 、 R4 、 R5 のいずれか 1個は水素であってもよい。 ) で示される枝鎖ォレフイン類を用いる請求項 14 または請求項 15に記載のォレフィン (共) 重合体組成物の製造方法。
20. 非直鎖ォレフインとして、 次式、
Figure imgf000051_0001
(式中、 nは 0、 1、 mは 1、 2のいずれかであり、 R 6 はケィ素を含んでいて もよい炭素数 1〜6までの鎖状炭化水素基を表し、 R7 はケィ素を含んでいても よい炭素数 1〜12までの鎖状炭化水素基、 水素またはハロゲンを表し、 mが 2 の時、 各 は同一でも異なってもよい。 ) で示される芳香族系単量体を用いる 請求項 14または請求項 15に記載のォレフィン (共) 重合体組成物の製造方法
PCT/JP1998/001194 1997-04-17 1998-03-19 Composition de (co)polymeres d'olefines et procede de production de celle-ci WO1998046656A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/115244 1997-04-17
JP11524497 1997-04-17

Publications (1)

Publication Number Publication Date
WO1998046656A1 true WO1998046656A1 (fr) 1998-10-22

Family

ID=14657920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001194 WO1998046656A1 (fr) 1997-04-17 1998-03-19 Composition de (co)polymeres d'olefines et procede de production de celle-ci

Country Status (1)

Country Link
WO (1) WO1998046656A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130310A (ja) * 1984-11-30 1986-06-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS6225106A (ja) * 1985-07-25 1987-02-03 Mitsui Petrochem Ind Ltd オレフインの連続重合法
JPH07304825A (ja) * 1994-05-10 1995-11-21 Chisso Corp ポリプロピレンの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130310A (ja) * 1984-11-30 1986-06-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS6225106A (ja) * 1985-07-25 1987-02-03 Mitsui Petrochem Ind Ltd オレフインの連続重合法
JPH07304825A (ja) * 1994-05-10 1995-11-21 Chisso Corp ポリプロピレンの製造方法

Similar Documents

Publication Publication Date Title
AU744410B2 (en) Process for preparing polypropylene
KR101355861B1 (ko) 고성능 폴리프로필렌의 제조방법
EP1008607A1 (en) Propylene copolymer and process for the production thereof
JP2001522903A5 (ja)
US6566294B2 (en) Multi-donor catalyst system for the polymerization of olefins
JPH11335499A (ja) プロペンの重合体及びその製造方法、並びにその使用方法
WO2012062735A1 (en) Improved process for polymerising propylene
JP2013224449A (ja) オレフィン前重合を用いたプロピレンの重合方法
WO1999009076A1 (fr) Polypropylene polydisperse et procede de production associe
WO1998046677A1 (fr) Composition de polypropylene et son procede de fabrication
WO1999007747A1 (fr) Procede de preparation de (co)polymeres d'olefines, copolymeres d'olefines, et utilisation de ceux-ci
KR20010023881A (ko) 폴리프로필렌 조성물
JPH0632829A (ja) オレフィン重合用触媒系、この重合のための方法及び得られたポリマー
CN109196003B (zh) 用于制备成核的聚烯烃的固体催化剂
WO1998030614A1 (fr) Copolymere propylene/ethylene, son procede de production, et articles moules a partir dudit copolymere
US6235845B1 (en) Olefin (co)polymer composition
JP4787278B2 (ja) 前重合されたオレフィン重合用触媒、これを用いたオレフィンの重合方法、およびこれによって製造されたポリオレフィン
JP3984290B2 (ja) 広い熱加工ウインドーを有する高活性触媒から製造されるポリプロピレンポリマー樹脂とそれから製造される物品
JP2691023B2 (ja) 超高分子量ポリプロピレン及びその製造方法
WO1998046656A1 (fr) Composition de (co)polymeres d'olefines et procede de production de celle-ci
JP3444185B2 (ja) オレフィン(共)重合体組成物及びその製造方法
JP3873449B2 (ja) オレフィン(共)重合体組成物およびその製造方法
JP2008037908A (ja) オレフィン(共)重合体組成物の製造方法及びそれに用いる予備活性化触媒の製造方法
JP3932678B2 (ja) オレフィン(共)重合体組成物及びオレフィン(共)重合体組成物成型品
JP2676266B2 (ja) ポリプロピレン組成物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WR Later publication of a revised version of an international search report
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09403249

Country of ref document: US

122 Ep: pct application non-entry in european phase