WO1998040701A1 - Procede et dispositif pour detecter des quantites lors de la collecte de lait a l'aide de systemes mobiles ou fixes - Google Patents

Procede et dispositif pour detecter des quantites lors de la collecte de lait a l'aide de systemes mobiles ou fixes Download PDF

Info

Publication number
WO1998040701A1
WO1998040701A1 PCT/EP1998/001113 EP9801113W WO9840701A1 WO 1998040701 A1 WO1998040701 A1 WO 1998040701A1 EP 9801113 W EP9801113 W EP 9801113W WO 9840701 A1 WO9840701 A1 WO 9840701A1
Authority
WO
WIPO (PCT)
Prior art keywords
milk
flow
sound
air
section
Prior art date
Application number
PCT/EP1998/001113
Other languages
German (de)
English (en)
Inventor
Georg DÜCKINGHAUS
Alfons BRÜGGEMAN
Original Assignee
Schwarte-Werk Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwarte-Werk Gmbh filed Critical Schwarte-Werk Gmbh
Publication of WO1998040701A1 publication Critical patent/WO1998040701A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/08Air or gas separators in combination with liquid meters; Liquid separators in combination with gas-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/24Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of the velocity of propagation of sound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02433Gases in liquids, e.g. bubbles, foams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Definitions

  • the invention relates to a method for quantity detection during milk acceptance with a mobile or stationary acceptance system, in which a quantity of milk to be transferred via a transfer path from a first container to a second container is recorded and quantified via its volume, and a device for carrying out the method according to the preamble of claim 9.
  • the task of collecting quantities when receiving milk with mobile acceptance systems is to accept quantities from a first container, for example a delivery container from a supplier, and to transfer them to a second container, for example a collecting tank.
  • a first container for example a delivery container from a supplier
  • a second container for example a collecting tank.
  • the volume of the transferred milk is determined by its volume and the mass of the transferred milk is calculated from the density of the degassed milk. So that the mass of the transferred amount of milk can be determined - the milk quality regulation stipulates that the milk mass and not the volume is to be paid to the supplier - the liquid volume flow that enters the measuring system and is mixed with the gaseous components, especially air may be to completely degas or vent and only then determine volumetnch.
  • the separated air results almost exclusively from the air that enters the measuring system during milk intake, especially milk at the start of milk transfer and snorkeling at the end of milk transfer, and only to an extremely small extent from air, which are small and tiny air bubbles is deposited in the milk of the delivery container. Desorption of milk dissolved in air is not sought; however, it cannot be prevented under certain procedural conditions (vacuum operation).
  • Known measuring systems are equipped with a control system, the task of which is then, among other things, to master special cases and also improper handling of the system in addition to a 'normal' milk intake.
  • the measuring system should be easily adaptable to different suction conditions (suction height and / or hose length) in terms of control and regulation technology and in any case quickly find a stable operating point without instabilities.
  • the measuring systems which have become known so far and which are either designed as so-called pump systems (cf. for example DE 24 37 306 A1; DE 3440 310 A1) or vacuum systems (cf. for example DE 25 10 966 A1; DE 40 07 914 A1) work over the duration of milk acceptance with an essentially constant acceptance performance, which is determined by the design of the pump or vacuum system. It should be noted that the acceptance performance has increased to 30,000 l / h in recent years, in some cases even more, whereby the so-called air separator container of the measuring system is a component that limits its maximum acceptance performance.
  • the air separator containers known today separate the air bubbles contained in the milk from the milk mainly by buoyancy and subsequent separation via the free liquid surface and only to a small extent by separating and separating the air bubbles in the centrifugal field of a rotating milk flow in the air separator container. Therefore, when designing known air separator containers, care is taken to ensure that the lowering speed of the milk in the container is slow compared to the rate of ascent of the air bubbles. This is achieved by the longest possible residence time of the milk and thus the air bubbles contained in the milk in the air separator container, the residence time being determined by the liquid-filled volume of the air separator container for a given acceptance performance.
  • An air separator as is known, for example, from DE 2437 306 A1 or DE 25 10 966 A1, can at best cover the lower performance range of acceptance powers required today, and only if favorable operating conditions are present.
  • Air separator container described in DE 41 11 280 A1 tries to solve the problem by reducing the flow velocity of the milk flowing into the air separator container immediately before it enters the same.
  • a bluff body designed as a stopper with a plurality of parallel channels be preceded by the inlet connection together with a funnel widening to its cross section.
  • the result is to be achieved with the known air separator container that the Milk measuring system can be operated with a higher throughput without the milk having a higher proportion of the air inclusions than in conventional systems at this higher output or without having a lower proportion of air inclusions with the same throughput.
  • the measures proposed above are problematic because they also create flow resistances on the one hand and cleaning problems on the other hand due to the extremely enlarged surfaces exposed to the liquid
  • the known air separator containers are subject to basic flow-physical limits, which are all the lower and to which it is more difficult to approximate, the colder and more viscous the carrier liquid milk for the gas bubbles and the more finely divided the gas admixtures are. It has therefore also been proposed (cf. for example DE 35 45 160 A1) that the quantity acquisition, in particular of milk, is carried out directly via the milk mass and not via to carry out the volume of transferred milk. This is achieved in that the total or part of the milk quantity to be transferred is or are successively transferred to a measuring container and the mass of the milk quantity presented in this measuring container is determined gravimetrically.
  • the speed of sound is fundamentally temperature-dependent, at least the temperature in the main stream must be measured. From the respective sound propagation time in the main flow and that in the secondary flow, the reference flow, and using the speed of sound in air as a function of the temperature in the main flow, a current milk fraction ⁇ (t) in the main flow can now be calculated continuously with the corresponding assignment of the measured values obtained.
  • a current milk fraction ⁇ (t) in the main flow can now be calculated continuously with the corresponding assignment of the measured values obtained.
  • t A required for the transfer of the total milk quantity
  • the milk volume V which then passes through the defined location of the transfer path is then determined from the respectively continuously determined milk components ⁇ (t) and the values associated therewith of the flow physical quantity which characterizes the flow at the defined point of its transfer path M o of the transferred amount of milk (pure liquid phase) determined.
  • the flow-physical quantity characterizing the flow at the defined point can be, for example, the mean flow velocity in this passage cross-section, which is continuously and easily determined, for example, using a flow meter, as has also hitherto been done in known methods. Since the passage cross-section Ao at the defined point of the transfer path is known, the milk volume V M o passed through this passage cross-section in the acceptance time t A is determined according to equation (1) to t A
  • VMO An J ⁇ (t) Vffeno) dt. (1 )
  • the transmission is limited to a diametrical section of the main flow, it cannot be ruled out that the measurement result for the sound propagation time in the main flow will be influenced by at least theoretically possible separation movements of the air bubbles in their carrier liquid (e.g. concentration of the swarm of bubbles in certain areas). Therefore the pre made a stroke that the air bubbles contained in a passage cross section of the main stream in the latter are distributed substantially uniformly over this passage cross section, the distribution, viewed in the direction of flow, taking place before the transmission
  • the venting of the side stream is particularly efficient if, as is also provided, this is done by the separating action of a centrifugal force field. According to a first proposal, this can be done by applying the energy for generating the centrifugal force field from the flow energy of the side stream and according to a second proposal by external energy that is discharged into the secondary flow from the environment
  • the latter is branched off in an amount dependent on the back pressure of the flow at the point of the division in order to achieve the division of quantity, and in addition it serves to supply the secondary flow with the electricity energy necessary for its further treatment
  • a bypass line branches in this is a separator for separating gas from its carrier fluid, in the present case of air from a milk / air mixture, both in the first section and Also in the bypass line, as seen in the direction of flow, an ultrasound device is arranged behind the separating device, each of which consists of a transmitter and a receiver exists and each serves to transmit a characteristic and known sound path.
  • Temperature measurements in the main and secondary flow preferably in a plane in which the sound path lies, on the one hand is the computational correction of the temperature-dependent sound velocities in the Main flow (separate for liquid and air) possible, which can not be measured separately from each other there, and on the other hand, the reference measurement in the secondary flow can be corrected depending on the temperature.
  • the temperature-dependent sound velocity a ⁇ (T ⁇ ) is stored in a data memory , which is connected to a computer and control unit, in which all measured values obtained with the proposed device are processed
  • the separating device is particularly simple and particularly efficient in terms of separation technology if it is designed as a centrifugal separator with a tangential inlet and outlet in order to intensify the separating effect of the centrifugal force field either because the energy of the secondary flow is insufficient or because the driving forces of the separation process are forced If it is desired, a further 1 nn is proposed to additionally equip the centrifugal separator with a drive to support the rotational flow
  • the division of the flow into the main and secondary flow is particularly simple if the flow entry into the bypass line acts as a flow divider is in the form of a pitot tube. In order to increase the representativity of the secondary flow in comparison to the main flow, it is further provided that the flow divider accesses the entire passage cross section of the first section of the transfer line.
  • a flow-physical quantity which reliably and precisely characterizes the flow at the defined point of the transfer path is, as is also provided, obtained in that the measuring device is designed for its determination as a volume counter and / or flow meter.
  • FIG. 1 shows a device in a highly simplified and schematic form for carrying out the proposed method
  • FIGS. 2 and 3 show sketches of the underlying models for the quantitative detection of the sound path in the milk / air mixture (main stream) or in deaerated milk (secondary stream) serve to explain the calculation of the milk component ⁇ (t).
  • FIG. 1 shows a section of a transfer line 3 in which a first section 3a is shown on the left-hand side, followed by a second section 3b and finally a third section 3c.
  • a measuring device 6 for determining a flow-physical quantity which characterizes the flow in the first section 3a, for example the mean flow velocity.
  • the passage cross-section detected by the measuring device 6 bears the reference symbol 0.
  • the part of the transfer line 3 shown is flowed through by an inlet E in the direction of an outlet A.
  • the transfer line 3 branches into the above-mentioned second section 3b and a bypass line 4.
  • An upstream bypass line 4b opens tangentially into a separating device 5, while a downstream bypass line 5 Line 4c tapers tangentially from this and is returned to the second section 3b of the transfer line 3.
  • the flow entry into the Byoass line 4 is designed as a flow divider 4a in the form of a pitot tube.
  • the second section 3b accommodates a first ultrasound device 7, which consists of a There is a transmitter 7a and a receiver 7b arranged diametrically on the other side of the second section 3b.
  • a second ultrasound device 8 in the bypass line 4, seen in the direction of flow, behind the separating device 5, likewise consisting of a transmitter 8a and a receiver 8b
  • a mixing device 9 is arranged in front of the first ultrasound device 7, which is preferably designed as a static mixer
  • a device for measuring the temperature 12 or 13 is provided in the cross-sectional plane 1 and 2.
  • the measuring device 6, the ultrasound devices 7 and 8 and the devices for measuring the temperatures 12 and 13 are connected to a computer and control unit 10 which is connected to a data memory 11 for reading in and reading out data, necessarily the speed of sound in air a u (T ⁇ ) which is dependent on the temperature Ti in the main stream
  • a milk / air mixture occurs which forms a flow in the first section 3a, one of which characterizes the flow physics size by means of the measuring device 6 is continuously recorded.
  • the latter is preferably designed as a volume meter and / or flow meter; from the respective measured variable can then, for example, continuously the current average flow velocity v m ⁇ r [e ⁇ o in the passage cross-section A. be determined.
  • a volume flow of the milk / air mixture Q M / LO is divided behind the measuring device 6 into a main flow Q M L1 and a secondary flow Q M / _2.
  • the latter in the form of a milk / air mixture in front of the separating device 5, is then freed of air admixtures in the separating device 5 and reaches the downstream bypass line 4c as a milk flow Q M 2.
  • the main flow Q M / u (milk / air mixture) is continuously subjected to ultrasound pulses in the first ultrasound device 7 and transmitted through it, and the sound propagation time t required for the present sound path di is measured.
  • the milk flow Q M2 undergoes a comparable transmission through the second ultrasound device 8.
  • a sound path d 2 is provided here, and the sound time t 2 required for this is also measured. All measured values (the mean flow velocity v-nn te i .
  • VMO An ( ( J ) (t) Vmüt ioft) dt (1) o processed. It is assumed or desirable that the respective bubble distribution in the passage cross sections Ao and i is homogeneous and correspond to each other and thus the milk fractions ⁇ (t) in these mean cross sections are the same.
  • Equation (1) represents the volume of the air-free milk which flows through the average cross-section Ao in the form of a milk / air mixture in the acceptance time t A.
  • Equation (1) is the milk fraction determined according to equation (2) ⁇ p (t) a time-dependent variable in the general case, since it is determined by the air content of the milk, which is generally time-variable, and the temperature Ti, which is variable in time, in the main flow. Seme Derivation is briefly outlined below
  • the average velocity v mrt t e ⁇ o (t) is generated by the measuring device 6 in the average cross section Ao.
  • Di is the total sound path in the average cross section Ai, and ti is the sound propagation time for this sound path.
  • the value di / ti thus represents the average speed of sound in the milk / air mixture in the average cross-section Ai
  • a M ⁇ is calculated from a M2 and the temperature ratio V (Ti / T 2 ) and the evaluation via based on
  • the two sound propagation times ti and t 2 (ultrasound devices 7 and 8), at least one of the temperatures Ti or T 2 (measuring devices 12 and 13) and the average speed v mrtte ⁇ 0 (measuring device 6) are thus to be measured

Abstract

L'invention concerne un procédé permettant de détecter de quantités lors de la collecte de lait à l'aide de systèmes mobiles ou fixes, selon lequel le volume de lait à acheminer sur une voie de transfert entre un premier et un second récipient est détecté et déterminé en termes quantitatif. Ce procédé permet de détecter des quantités sans entraîner l'effet restrictif inhérent au bac d'un séparateur d'air. A cet effet, un écoulement qui se forme lors du transfert des volumes de lait est séparé en un courant principal et en un courant secondaire. L'air ajouté est supprimé du courant secondaire. Le courant principal et le courant secondaire désaéré sont chacun soumis en continu à l'action d'impulsions ultrasonores à l'aide desquelles chacun des courants est examiné. Chaque temps de propagation sonore et au moins la température régnant dans le courant principal sont mesurés. La vitesse sonore moyenne du moment du mélange lait/air qui s'écoule dans le courant principal est déterminée à partir du temps de propagation sonore dans ledit courant principal. La vitesse sonore moyenne du moment du lait désaéré qui s'écoule dans le courant secondaire est déterminée à partir du temps de propagation sonore dudit courant secondaire, qui est à associer. Une proportion de lait du moment Ζ(t) dans le courant principal est calculée sur la base de ces deux vitesses sonores, ainsi que sur celle de la vitesse sonore de l'air, à la température correspondante du courant principal. Dans un temps de collecte tA nécessaire pour transférer le volume global de lait, le volume de lait VMO (de la quantité de lait transférée) qui traverse au total le point défini de la voie de transfert est déterminé sur la base de chacune des proportions de lait Ζ(t) et sur celle de la vitesse d'écoulement moyenne qui y est associée et est présente au point défini de la voie de transfert ou sur la base d'une grandeur qui y est proportionnelle.
PCT/EP1998/001113 1997-03-13 1998-02-27 Procede et dispositif pour detecter des quantites lors de la collecte de lait a l'aide de systemes mobiles ou fixes WO1998040701A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19710296.4 1997-03-13
DE1997110296 DE19710296C1 (de) 1997-03-13 1997-03-13 Verfahren und Vorrichtung zur Mengenerfassung bei der Milchannahme mit mobilen oder stationären Annahmesystemen

Publications (1)

Publication Number Publication Date
WO1998040701A1 true WO1998040701A1 (fr) 1998-09-17

Family

ID=7823176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/001113 WO1998040701A1 (fr) 1997-03-13 1998-02-27 Procede et dispositif pour detecter des quantites lors de la collecte de lait a l'aide de systemes mobiles ou fixes

Country Status (2)

Country Link
DE (1) DE19710296C1 (fr)
WO (1) WO1998040701A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006000771A2 (fr) * 2004-06-24 2006-01-05 Paul Crudge Debitmetre
DE102013216105A1 (de) * 2013-08-14 2015-03-05 Volkswagen Ag Verfahren und Messsystem zur Bestimmung einer Menge eines abgefüllten Fluids

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143010A1 (de) * 2001-09-03 2003-03-27 Westfalia Landtechnik Gmbh Verfahren und Vorrichtung zur quantitativen Charakterisierug von Milch bzw. zur quantitativen Qualitätsprüfung von Milch
BRPI0610244A2 (pt) 2005-05-27 2010-06-08 Cidra Corp método e aparelho para medição de um parametro de um fluxo multifásico
US20100132451A1 (en) 2007-05-22 2010-06-03 Boehm Alfred Method and device for determining volume during transfer of a liquid
DE102009041571B4 (de) 2009-09-08 2011-06-09 Schwarte Jansky Gmbh Verfahren und Vorrichtung zur Mengenbestimmung bei der Überführung einer Flüssigkeit
US11181406B2 (en) 2019-12-03 2021-11-23 Woodward, Inc. Ultrasonic mass fuel flow meter
US11307069B2 (en) * 2020-03-06 2022-04-19 Woodward, Inc. Ultrasonic flow meter in a bypass channel coupled in parallel with a flow tube
US11668818B2 (en) 2020-08-07 2023-06-06 Woodward, Inc. Ultrasonic position sensor
CN116368357A (zh) 2020-08-07 2023-06-30 伍德沃德有限公司 超声波流量计流控制
WO2022197321A1 (fr) 2021-03-17 2022-09-22 Woodward, Inc. Débitmètre massique de carburant à ultrasons

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0012160A1 (fr) * 1978-12-11 1980-06-25 Conoco Phillips Company Procédé et appareil ultrasoniques pour la détermination des données quantitatives et volumétriques d'un mélange d'eau et d'huile
DE2918477A1 (de) * 1978-08-23 1980-11-13 Otto Tuchenhagen Verfahren und vorrichtung fuer luftfreie volumenmessung bei unterbrochener milchannahme
EP0035936A2 (fr) * 1980-03-12 1981-09-16 COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel Procédé et dispositif pour contrôler le fonctionnement d'une colonne d'extraction liquide-liquide
DE3447656A1 (de) * 1983-12-30 1985-07-11 Institut Français du Pétrole, Rueil-Malmaison, Hauts-de-Seine Verfahren und vorrichtung zur messung der durchflussmengen der fluessigen und gasfoermigen phase eines fliessenden zweiphasenfluids
US5115670A (en) * 1990-03-09 1992-05-26 Chevron Research & Technology Company Measurement of fluid properties of two-phase fluids using an ultrasonic meter
US5152174A (en) * 1990-09-24 1992-10-06 Labudde Edward V Mass flow rate sensor and method
DE19507542C1 (de) * 1995-03-03 1996-09-12 Schwarte Werk Gmbh Verfahren und Vorrichtung zur Bestimmung der Masse einer eine Durchflußleitung durchströmenden Milchmenge im Zuge der Milchannahme

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2510966A1 (de) * 1975-03-13 1976-09-30 Ahrens & Bode Masch & App Foerdereinrichtung fuer fluessigkeiten, insbesondere fuer pump- und messanlagen zur annahme von milch
DE3440310A1 (de) * 1984-11-05 1986-08-21 Tuchenhagen GmbH, 2059 Büchen Verfahren und vorrichtung zur uebernahme von milch
DE3545160A1 (de) * 1985-12-20 1987-07-02 Tuchenhagen Otto Gmbh Verfahren und anordnung zur uebernahme, massenbestimmung und -abgrenzung von fluessigkeiten, insbesondere milch
DE4007914A1 (de) * 1990-03-13 1991-09-19 Jansky Gmbh Luftabscheider in einer messanlage fuer milch, insbesondere fuer einen milchsammelwagen
DE4429808C2 (de) * 1994-08-23 1998-01-29 Gutehoffnungshuette Man Brückenlegepanzer mit Verlegeeinrichtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2918477A1 (de) * 1978-08-23 1980-11-13 Otto Tuchenhagen Verfahren und vorrichtung fuer luftfreie volumenmessung bei unterbrochener milchannahme
EP0012160A1 (fr) * 1978-12-11 1980-06-25 Conoco Phillips Company Procédé et appareil ultrasoniques pour la détermination des données quantitatives et volumétriques d'un mélange d'eau et d'huile
EP0035936A2 (fr) * 1980-03-12 1981-09-16 COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel Procédé et dispositif pour contrôler le fonctionnement d'une colonne d'extraction liquide-liquide
DE3447656A1 (de) * 1983-12-30 1985-07-11 Institut Français du Pétrole, Rueil-Malmaison, Hauts-de-Seine Verfahren und vorrichtung zur messung der durchflussmengen der fluessigen und gasfoermigen phase eines fliessenden zweiphasenfluids
US5115670A (en) * 1990-03-09 1992-05-26 Chevron Research & Technology Company Measurement of fluid properties of two-phase fluids using an ultrasonic meter
US5152174A (en) * 1990-09-24 1992-10-06 Labudde Edward V Mass flow rate sensor and method
DE19507542C1 (de) * 1995-03-03 1996-09-12 Schwarte Werk Gmbh Verfahren und Vorrichtung zur Bestimmung der Masse einer eine Durchflußleitung durchströmenden Milchmenge im Zuge der Milchannahme

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006000771A2 (fr) * 2004-06-24 2006-01-05 Paul Crudge Debitmetre
WO2006000771A3 (fr) * 2004-06-24 2006-03-23 Paul Crudge Debitmetre
GB2415500B (en) * 2004-06-24 2008-07-30 Paul Crudge Flow meter
DE102013216105A1 (de) * 2013-08-14 2015-03-05 Volkswagen Ag Verfahren und Messsystem zur Bestimmung einer Menge eines abgefüllten Fluids

Also Published As

Publication number Publication date
DE19710296C1 (de) 1998-03-05

Similar Documents

Publication Publication Date Title
DE69811044T2 (de) Verfahren zur Messung der Viskosität eines Fluidums
DE3214635A1 (de) Entgasungsvorrichtung
WO1998040701A1 (fr) Procede et dispositif pour detecter des quantites lors de la collecte de lait a l'aide de systemes mobiles ou fixes
DE2832296A1 (de) Probeentnahme- und eichvorrichtung fuer fluidanalysen
DE2820254C3 (de) Verfahren und Gerät zur automatischen Analyse der Partikelgröße
DE102010039031A1 (de) Verfahren und Vorrichtung zur Ermittlung der Viskosität
DE3239126A1 (de) Stroemungsmesser fuer fluide
DE2854821A1 (de) Vorrichtung zum verfolgen der zusammensetzungsaenderungen eines stroemenden heterogenen fluessigkeitsgemisches
DE19983372B4 (de) Gasmischsystem und Verfahren
DE102019115215A1 (de) Messgerät zum Bestimmen der Dichte, des Massedurchflusses und/ oder der Viskosität einer mit Gas beladenen Flüssigkeit, Prozessanlage mit einem solchen Messgerät, und Verfahren zum Überwachen einer mit Gas beladenen Flüssigkeit
DE2610992C2 (de) Verfahren und Vorrichtung zum Bestimmen des prozentualen Gesamtvolumens von Partikeln in einer flüssigen Probe
DE2411210A1 (de) Verfahren und vorrichtung fuer die analyse von reaktionsgeschwindigkeiten bei kontinuierlich und diskontinuierlich stroemenden proben
EP3637098A1 (fr) Procédé de mesure et dispositif de mesure permettant de mesurer la distribution de la taille des particules et la concentration des particules dans une conduite traversée par un liquide
DE102008055032A1 (de) Anordnung und Verfahren zur Mehrphasendurchflussmessung
DE102006033611B4 (de) Gasphasenkorrektur für Ultraschalldurchflussmesser
EP0217155A2 (fr) Procédé et dispositif pour établir un échantillon représentatif d'un volume de lait
DE4422367C1 (de) Ultraschall-Durchflußmesser mit kontinuierlicher Nullfluß-Kalibrierung
DE4424494A1 (de) Verfahren zum Kalibrieren eines Analysesystems und Analysesystem
DE3105890A1 (de) "messvorrichtung mit einem in einem leitungssystem stroemenden fluid"
DE3540769C2 (fr)
DE2558520C2 (de) Verfahren und Vorrichtung zum Proportionieren miteinander zu vereinender Flüssigkeiten
EP1844301A2 (fr) Procede de refoulement et de detection de la quantite refoulee d'un liquide et dispositif de detection de quantite lors de la reception et / ou du prelevement d'un liquide
WO2008049752A1 (fr) Système de mesure de débit et procédé de détermination d'un débit d'un liquide chargé en solides dans un conduit
DE10156450A1 (de) Verfahren und Vorrichtung zur Bestimmung eines Massenstromes einer während eines Melkvorganges fließenden Milch
EP3963293B1 (fr) Appareil de mesure de caractérisation d'un milieu coulant non homogène

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): PL

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase