WO1998030345A1 - Verfahren zum herstellen einer kühlplatte für öfen zur eisen- und stahlerzeugung - Google Patents

Verfahren zum herstellen einer kühlplatte für öfen zur eisen- und stahlerzeugung Download PDF

Info

Publication number
WO1998030345A1
WO1998030345A1 PCT/EP1998/000021 EP9800021W WO9830345A1 WO 1998030345 A1 WO1998030345 A1 WO 1998030345A1 EP 9800021 W EP9800021 W EP 9800021W WO 9830345 A1 WO9830345 A1 WO 9830345A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
preform
cooling plate
plate
continuous casting
Prior art date
Application number
PCT/EP1998/000021
Other languages
English (en)
French (fr)
Inventor
Marc Solvi
Roger Thill
Yrjö LEPPÄNEN
Pertti MÄKINEN
Original Assignee
Paul Wurth S.A.
Outokumpu Poricopper Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from LU90003A external-priority patent/LU90003B1/de
Application filed by Paul Wurth S.A., Outokumpu Poricopper Oy filed Critical Paul Wurth S.A.
Priority to BR9806859-8A priority Critical patent/BR9806859A/pt
Priority to JP53052398A priority patent/JP3907707B2/ja
Priority to US09/341,057 priority patent/US6470958B1/en
Priority to DE59801166T priority patent/DE59801166D1/de
Priority to AT98904032T priority patent/ATE203941T1/de
Priority to AU62071/98A priority patent/AU6207198A/en
Priority to PL98334628A priority patent/PL185392B1/pl
Priority to CA002274861A priority patent/CA2274861C/en
Priority to EP98904032A priority patent/EP0951371B1/de
Publication of WO1998030345A1 publication Critical patent/WO1998030345A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/009Continuous casting of metals, i.e. casting in indefinite lengths of work of special cross-section, e.g. I-beams, U-profiles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0041Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form

Definitions

  • the present invention relates to a method for producing a cooling plate for furnaces for iron or steel production, such as blast furnaces.
  • Such cooling plates for blast furnaces are also called “staves”. They are arranged on the inside of the furnace shell and have internal ones
  • Coolant channels that are connected to the cooling system of the shaft furnace.
  • the surface facing the inside of the furnace is usually lined with a refractory material.
  • a cooling plate which is made from a forged or rolled copper block.
  • the coolant channels are blind holes that are drilled into the rolled copper block by mechanical deep drilling.
  • the invention is therefore based on the object of proposing a method with which, in particular, high-quality copper cooling plates can be produced more cheaply.
  • This object is achieved by a method according to claim 1.
  • a preform is formed by means of a continuous casting mold
  • Continuous casting of the cooling plate inserts in the casting channel of the continuous casting mold producing channels running in the continuous casting direction in the preform, which form coolant channels in the finished cooling plate.
  • a usable cooling plate of great length can then be finished relatively easily, without complex deep drilling.
  • the mechanical strength of a continuously cast cooling plate is much higher than that of a molded cooling plate. The heat transfer is optimal since the continuously cast channels are formed directly in the cast body. Since the cross section of the continuously cast channels does not necessarily have to be circular, new advantageous possibilities regarding the design and arrangement of the coolant channels are opened.
  • tines in the casting channel of the continuous casting mold can be used to produce grooves in a surface of the preform in the continuous casting direction. These grooves enlarge the cooled surface of the finished cooling plate and form anchors for a refractory lining.
  • such grooves can also be subsequently worked into a surface of the continuously cast preform, for example milled. This procedure is necessary, for example, if the grooves are to run transversely to the continuous casting direction.
  • the thickness of the continuously cast preform is advantageously reduced by rolling.
  • the crystal structure of the copper becomes finer as a result of the rolling, which has a favorable effect on the mechanical and thermal properties of the finished cooling plate.
  • the reduction in rolling increases the manufacturing costs of the cooling plate, it can be advantageous to also roll continuously cast preforms for thicker cooling plates.
  • the channels cast into the preform surprisingly do not represent an essential obstacle to the subsequent rolling of the preform. This applies in particular if the cast channels have an elongated, for example oval, cross section.
  • the continuously cast and, if necessary, rolled preform is transformed into two
  • a plate is cut out transversely to the casting direction, two end faces being formed transversely to the casting direction, the spacing of which essentially corresponds to the desired length of the cooling plate.
  • several cooling plates of the same or different lengths can advantageously be produced from a continuously cast preform. The production of particularly long cooling plates is also possible without additional effort.
  • the plates separated from the preform have a plurality of parallel through-channels, which extend in the casting direction and each form a junction in the two end faces.
  • the cross section of the cast channels advantageously has an elongated one
  • cooling plates can be produced with a smaller plate thickness than cooling plates with drilled channels, which saves copper.
  • channels with elongated cross sections are also easier to manufacture during continuous casting. Another advantage is that larger channels on the coolant side can be achieved in the cooling plate for channels with elongated cross sections. Channels with elongated (such as oval) cross sections, as already indicated above, also behave far more advantageously when rolling the preform than channels with circular cross sections.
  • connection holes opening connection holes for supply and return lines drilled perpendicular to the back surface in the plate, and the end openings of the channels closed. In these connection bores, connection pieces can then be inserted, which are led out of the furnace shell when a cooling plate is mounted on the furnace shell.
  • Each continuously cast channel can have its own flow and return connection. However, several continuously cast channels can also be connected to each other by means of cross holes. These cross bores are then arranged and closed, for example, in such a way that a serpentine channel results with a flow connection and a return connection per cooling plate.
  • the cooling plate can advantageously be bent and centered such that its curvature is adapted to the curvature of the furnace. This is particularly the case when cooling plates with a large width are used. This is also the case for cooling plates that are used in the blast furnace frame. Such cooling plates for the frame must indeed fit as closely as possible to the tank in order to absorb the pressures acting on the frame lining.
  • FIG. 1 shows a schematic longitudinal section through a continuous casting mold for the method according to the invention
  • FIG. 2 shows a schematic cross section along the section line 2-2 through the continuous casting mold according to FIG. 1;
  • Figure 3 is a plan view of the back of a finished cooling plate, which was produced with the inventive method
  • Figure 4 a longitudinal section along the section line 4-4 through the
  • FIG. 5 shows a cross section along the section line 5-5 through the cooling plate of Figure 3;
  • Figure 6 is a perspective view of an arrangement of cooling plates in a shaft furnace;
  • Figure 7 a plan view of the back of a cooling plate which is particularly suitable for the arrangement according to Figure 6 and was produced with the inventive method.
  • Figure 1 and Figure 2 show schematically the structure of a continuous casting mold
  • This continuous casting mold 10 consists, for example, of four cooled mold plates 12, 14, 16 and 18, which form a cooled pouring channel 20 for a melt, for example a low-alloy copper melt.
  • the arrows 22 and 24 in FIG. 1 indicate supply connections and return connections for a coolant in the side mold plates 12 and 14.
  • the arrow 25 in Figure 1 shows the pouring direction.
  • FIG. 1 it can be seen that three rod-shaped inserts 28 protrude into the pouring channel 20.
  • the latter are connected to a coolant collector 30, for example, which is above the mold plates 12-18 above the pouring channel 20 is arranged.
  • Each of these rod-shaped inserts 28 advantageously consists of an outer tube 32 which is closed at the end face and an inner tube 34 which is open at the end face, which are arranged such that they form an annular gap 36 for the coolant.
  • the following coolant flow thus results for each of the three rod-shaped inserts 28.
  • the coolant flows into the annular gap 36 via a flow chamber 38. It cools the outer tube 32 over its entire length and enters the inner tube 34 at the lower end from the annular gap 36.
  • This inner tube 34 conducts the coolant back into a return chamber 40 in the collector 30.
  • the rod-shaped inserts 28 can, however, also be designed as uncooled graphite rods.
  • the front mold plate 16 has a plurality of prongs 26.
  • the latter extend essentially over the entire length of the molding plate 16 and protrude perpendicularly to the pouring direction into the pouring channel 20.
  • the above-described continuous casting mold 10 is used in accordance with the invention
  • Cast strand which forms a preform of the cooling plate to be produced.
  • the rod-shaped inserts 28 in the continuously cast preform produce channels running in the continuous casting direction, the cross section of which is determined by the cross section of the rod-shaped inserts 28.
  • the tines 26 in the molding plate 18 produce longitudinal grooves running in the continuous casting direction in the continuously cast preform.
  • FIGS. 3 to 4 show a finished cooling plate 50 which was produced on the basis of a continuously cast preform.
  • the preform of the cooling plate 50 was cast with a continuous mold that had no tines 26 so that the original preform was substantially rectangular in cross-section with no grooves.
  • the three channels 52 are indicated with dashed lines, which according to the invention were produced during the continuous casting by the inserts in the continuous casting mold. As can be seen from FIG. 5, these inserts had an oval shape.
  • the continuous casting mold as can also be seen from FIGS. 4 and 5, they were arranged off-center in the rectangular cross section of the preform, ie they were closer to the Surface of the preform that finally forms the back in the finished cooling plate 50.
  • Connection holes 62 for supply and return ports 64, 66 drilled perpendicular to the plate surface in the rear 68 of the plate. Before the end openings 58 of the channels 52 are finally closed by plugs 70, the channels could possibly be reworked mechanically. In order to finalize the cooling plate 50, all that had to be done was to fasten the supply and return connections 64, 66, as well as fastening pins 72 and spacer connections 74 to the plate.
  • Spacer 74 rests on a furnace plate 76. It should be noted that the cooling plate 50 of Figures 3-5 is for a vertical one
  • Cooling ducts 52 run vertically and the transverse grooves 60 run horizontally.
  • the cooling plate 50 could also have longitudinal grooves which run parallel to the casting direction. The latter would then advantageously be produced with a casting mold with tines, as shown in FIG. 2, directly during continuous casting.
  • FIG. 6 shows an arrangement of cooling plates 80, in which the grooves 82 were produced directly during the continuous casting in this way.
  • the cooling channels 84 produced during continuous casting thus extend parallel to the grooves 82.
  • the cooling plates 80 are arranged horizontally in the furnace, i.e. that the cooling channels 84 and the grooves 82 run horizontally in the built-in cooling plates 80.
  • the cooling plates 80 are bent and centered such that their curvature matches the curvature of the blast furnace shell (not shown).
  • Figure 7 shows with dashed lines an advantageous arrangement of the
  • Coolant channels in one of the cooling plates 80 Three continuous cast channels 84-j, 842 and 843 can be seen, as well as two short transverse bores 86 and 88.
  • the bore 86 connects the channels 84- ) and 842 at one end of the plate 80 and is with a plug 90 closed.
  • the bore 88 connects the channels 84 2 and 84 3 at the other end of the plate 80 and is closed with a plug 92.
  • the channels 84-), 84 2 and 84 3 in the end faces 54, 56 of the plate 80 are also closed by plugs 70.
  • the reference number 94 shows a flow connection which opens into the channel 84-
  • the reference number 96 shows a return connection which opens into the channel 84 3 .
  • FIG. 6 shows schematically how the supply and return connections 94, 96 of the individual cooling plates 80 are connected to one another via pipe bridges 98.
  • the cooling plate 80 like the cooling plate 50, could also have one supply and return connection per cooling channel 84-j, 842 and 84 3 . It should be noted that cooling plates which are attached in the blast furnace above the blow molds are advantageously provided with a fireproof spray compound on their side facing the inside of the furnace.
  • the grooves 60, 82 can be designed, for example, as dovetail grooves. It is also advantageous to generously round off the edges and corners of the grooves 60, 82. This reduces the risk of cracking in the refractory mass.
  • Cooling plates for the frame of the blast furnace advantageously have a smooth front and back. They are thinner than the cooling plates with grooves shown and are advantageously produced from a continuously cast preform, the thickness of which has been reduced by rolling. They are centered on the diameter of the armor in the area of the frame, so that they fit positively with their smooth rear surface on the blast furnace shell.
  • the frame lining with shaped stones made of carbon is in a form-fitting manner on the likewise smooth front of the cooling plates. This ensures that relatively thin cooling plates can easily transmit the high pressures acting on the frame lining to the blast furnace. All cooling plates shown have three continuously cast channels.
  • cooling plates with more or less than three continuously cast channels can also be produced with the method according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Blast Furnaces (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

Es wird ein Verfahren zum Herstellen einer Kühlplatte (50, 80) mit integrierten Kühlmittelkanälen (52, 84) für einen Ofen zur Eisen- oder Stahlerzeugung beschrieben. Mittels einer Stranggießform (10) wird eine Vorform der Kühlplatte (50, 80) stranggegossen, wobei stabförmige Einsätze (28) im Gießkanal (20) der Stranggießform (10) in dieser Vorform in Stranggießrichtung verlaufende Kanäle (52, 84) erzeugen, die in der fertigen Kühlplatte Kühlmittelkanäle ausbilden.

Description

Verfahren zum Herstellen einer Kühlplatte für Öfen zur Eisen- und Stahlerzeugung
Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen einer Kühlplatte für Öfen zur Eisen- oder Stahlerzeugung, wie zum Beispiel Hochöfen.
Solche Kühlplatten für Hochöfen werden auch noch "Staves" genannt. Sie werden auf der Innenseite des Ofenpanzers angeordnet und weisen interne
Kühlmittelkanäle auf, die an das Kühlsystem des Schachtofens angeschlossen werden. Ihre dem Inneren des Ofens zugekehrte Oberfläche ist meistens mit einem feuerfesten Material ausgekleidet.
Die meisten dieser Kühlplatten werden heute noch aus Gußeisen hergestellt. Da Kupfer jedoch eine weitaus bessere Wärmeleitfähigkeit als
Gußeisen hat, wäre es wünschenswert auch kupferne Kühlplatten einzusetzen.
Es wurden bis jetzt verschieden Herstellungsverfahren für kupferne Kühlplatten vorgeschlagen.
Zuerst wurde versucht, kupferne Kühlplatten durch Formgießen herzustellen, wobei die internen Kühlmittelkanäle durch einen Sandkern in der Gießform ausgebildet werden. Dieses Verfahren hat sich in der Praxis jedoch nicht bewährt, da die gegossenen Kupferplatten öfters Lunker und Porositäten aufweisen, die sich äußerst negativ auf die Lebensdauer der Platten auswirken, der Formsand aus den Kühlkanälen schwierig zu entfernen ist und/oder der Kühlkanal im Kupfer mangelhaft ausgebildet ist.
Aus der GB-A-1571789 ist bekannt beim Formgießen der Kühlplatten den Sandkern durch eine vorgeformte metallische Rohrschlange aus Kupfer oder Edelstahl zu ersetzen. Letztere wird in der Gießform in den Kühlplattenkörper eingegossen und bildet einen schlangenförmigen Kühlmittelkanal aus. Auch dieses Verfahren hat sich in der Praxis nicht bewährt. Zwischen dem Kühlplattenkörper aus Kupfer und der eingegossenen Rohrschlange besteht nämlich, durch verschiedene Ursachen bedingt, ein hoher Wärmeübergangs- widerstand, so daß sich eine relativ schlechte Kühlung der Platte ergibt. Weiterhin können auch bei diesem Verfahren Lunker und Porositäten im Kupfer nicht wirksam verhindert werden.
Aus der DE-A-2907511 ist eine Kühlplatte bekannt, die aus einem geschmiedeten oder gewalzten Kupferblock gefertigt ist. Die Kühimittelkanäle sind hierbei Sackbohrungen, die durch mechanisches Tiefbohren in den gewalzten Kupferblock eingebracht werden. Bei diesen Kühlplatten werden die vorerwähnten Nachteile des Formgießens vermieden. Insbesondere sind Lunker und Porositäten in der Platte praktisch ausgeschlossen. Leider sind die Herstellungskosten dieser Kühlplatten jedoch relativ hoch, da insbesondere das Tiefbohren der Kühlkanälen kompliziert, zeitaufwendig und teuer ist.
Der Erfindung liegt folglich die Aufgabe zugrunde, ein Verfahren vorzuschlagen mit dem sich insbesondere qualitativ hochwertige Kupferkühlplatten billiger herstellen lassen. Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst. Erfindungsgemäß wird mittels einer Stranggießform eine Vorform der
Kühlplatte stranggegossen, wobei Einsätze im Gießkanal der Stranggießform in Stranggießrichtung verlaufende Kanäle in der Vorform erzeugen, die in der fertigen Kühlplatte Kühlmittelkanäle ausbilden. Aus der stranggegossenen Vorform läßt sich dann relativ einfach, ohne aufwendiges Tiefbohren, eine einsatzfähige Kühlplatte großer Länge fertigstellen. Hierzu ist insbesondere anzumerken, daß Lunker und Porositäten beim Stranggießen weitaus wirksamer verhindert werden können, als beim Formgießen. Weiterhin ist die mechanische Festigkeit einer stranggegossenen Kühlplatte weitaus höher, als die einer formgegossenen Kühlplatte. Der Wärmeübergang ist optimal, da die stranggegossenen Kanäle unmittelbar im gegossenen Körper ausgebildet sind. Da der Querschnitt der stranggegossenen Kanäle nicht unbedingt kreisrund sein muß, werden neue vorteilhafte Möglichkeiten betreffend die Gestaltung und Anordnung der Kühlmittelkanäle eröffnet. Es wurde weiterhin festgestellt, daß die spezielle Beschaffenheit der Oberfläche einer stranggegossenen Kühlplatte gute Voraussetzungen für die Haftung einer feuerfesten Spritzmasse mit sich bringt. Beim Stranggießen können durch Zinken im Gießkanal der Stranggießform in Stranggießrichtung verlaufende Nuten in einer Oberfläche der Vorform erzeugt werden. Diese Nuten vergrößern die gekühlte Oberfläche der fertigen Kühlplatte und bilden Verankerungen für eine feuerfeste Auskleidung aus. Solche Nuten können jedoch auch nachträglich in eine Oberfläche der stranggegossenen Vorform eingearbeitet, zum Beispiel eingefräst werden. Diese Vorgehensweise ist zum Beispiel erforderlich, falls die Nuten quer zu Stranggießrichtung verlaufen sollen.
Sollen besonders dünne Kühlplatten hergestellt werden, so wird die Dicke der stranggegossenen Vorform vorteilhaft durch Walzen reduziert. Durch das Walzen wird die Kristallstruktur des Kupfers feiner, was sich günstig auf die mechanischen und thermischen Eigenschaften der fertigen Kühlplatte auswirkt. Obwohl die Walzreduktion die Herstellungskosten der Kühlplatte erhöht, kann es somit von Vorteil sein, auch stranggegossene Vorformen für dickere Kühlplatten zu walzen. In diesem Zusammenhang ist besonders hervorzuheben, daß die in die Vorform eingegossenen Kanäle überraschenderweise kein wesentliches Hindernis für das nachträgliche Walzen der Vorform darstellen. Dies gilt insbesondere dann, falls die eingegossenen Kanäle einen länglichen, zum Beispiel ovalen Querschnitt aufweisen. Aus der stranggegossenen und ggf. gewalzten Vorform wird durch zwei
Schnitte quer zur Gießrichtung ein Platte herausgetrennt, wobei zwei Stirnflächen quer zur Gießrichtung ausgebildet werden, deren Abstand im wesentlichen der gewünschten Länge der Kühlplatte entspricht. Es ist anzumerken, daß aus einer stranggegossenen Vorform vorteilhaft mehrere Kühlplatten gleicher oder verschiedener Länge hergestellt werden können. Das Herstellen besonders langer Kühlplatten ist ebenfalls ohne Mehraufwand möglich. Die aus der Vorform herausgetrennten Platten weisen mehrere parallele Durchgangskanäle auf, die sich in Gießrichtung erstrecken und in den zwei Stirnseiten jeweils eine Einmündung ausbilden. Der Querschnitt der eingegossenen Kanäle weist vorteilhaft eine längliche
Form auf, die ihre kleinste Ausdehnung senkrecht zur Kühlplatte hat. Hierdurch können Kühlplatten mit einer geringeren Plattendicke hergestellt werden als Kühlplatten mit gebohrten Kanälen, wodurch Kupfer eingespart wird. Es ist ebenfalls anzumerken, daß Kanäle mit länglichen Querschnitten auch einfacher beim Stranggießen herzustellen sind. Ein weiterer Vorteil besteht darin, daß bei Kanälen mit länglichen Querschnitten größere kühlmittelseitige Austauschflächen in der Kühlplatte zu erzielen sind. Kanäle mit länglichen (wie zum Beispiel ovalen) Querschnitten verhalten sich, wie weiter oben bereits angedeutet, auch weitaus vorteilhafter beim Walzen der Vorform als Kanäle mit kreisrunden Querschnitten. In dem nächsten Herstellungsschritt werden vorteilhaft in die
Durchgangskanäle einmündende Anschlußbohrungen für Vor- und Rücklaufleitungen senkrecht zur Rückfläche in die Platte gebohrt, und die stirnseitigen Einmündungen der Kanäle verschlossen. In diese Anschlußbohrungen können anschließend Anschlußstutzen eingesetzt werden, die bei einer am Ofenpanzer montierten Kühlplatte aus dem Ofenpanzer herausgeführt werden.
Jeder stranggegossene Kanal kann seinen eigenen Vorlauf- und Rücklaufanschluß aufweisen. Mehrere stranggegossenen Kanäle können jedoch auch mittels Querbohrungen miteinander verbunden werden. Diese Querbohrungen sind dann zum Beispiel derart angeordnet und verschlossen, daß sich ein schlangenförmiger Kanal mit einem Vorlaufanschluß und einem Rücklaufanschluß pro Kühlplatte ergibt.
Die Kühlplatte kann vorteilhaft derart gebogen und zentriert werden, daß ihre Krümmung der Krümmung des Hochofenpanzers angepaßt ist. Dies ist besonders der Fall, wenn Kühlplatten mit großer Breite eingesetzt werden. Dies ist ebenfalls der Fall für Kühlplatten die im Hochofengestell eingesetzt werden. Solche Kühlplatten für das Gestell müssen sich in der Tat möglichst eng an den Panzer anschmiegen, um die auf die Gestellauskieidung wirkenden Drücke aufzunehmen. Zwecks besserer Veranschaulichung der Erfindung und ihrer Vorteile, werden verschiedene Ausführungsbeispiele anhand der beigefügten Zeichnungen näher beschrieben.
Es zeigen: Figur 1 : einen schematischen Längsschnitt durch eine Stranggießform für das erfindungsgemäße Verfahren;
Figur 2: einen schematischen Querschnitt entlang der Schnittlinie 2-2 durch die Stranggießform nach Figur 1 ;
Figur 3: eine Draufsicht auf die Rückseite einer fertigen Kühlplatte, die mit dem erfindungsgemäßen Verfahren hergestellt wurde;
Figur 4: einen Längsschnitt entlang der Schnittlinie 4-4 durch die
Kühlplatte der Figur 3;
Figur 5: einen Querschnitt entlang der Schnittlinie 5-5 durch die Kühlplatte der Figur 3; Figur 6: eine perspektivische Ansicht einer Anordnung von Kühlplatten in einem Schachtofen;
Figur 7: eine Draufsicht auf die Rückseite einer Kühlplatte die besonders für die Anordnung nach Figur 6 geeignet ist und mit dem erfindungsgemäßen Verfahren hergestellt wurde. Figur 1 und Figur 2 zeigen schematisch den Aufbau einer Stranggießform
10 für das erfindungsgemäße Verfahren. Diese Stranggießform 10 besteht zum Beispiel aus vier gekühlten Formplatten 12, 14, 16 und 18, die einen gekühlten Gießkanal 20 für eine Schmelze, zum Beispiel eine niedrig legierte Kupferschmelze ausbilden. Die Pfeile 22 und 24 in Figur 1 deuten Vorlaufanschlüsse und Rücklaufanschlüsse für ein Kühlmittel in den seitlichen Formplatten 12 und 14 an. Der Pfeil 25 in Figur 1 zeigt die Gießrichtung.
In Figur 1 sieht man, daß in den Gießkanal 20 drei stabförmige Einsätze 28 hineinragen. Letztere sind z.B. an einen Kühlmittelkollektor 30 angeschlossen, der oberhalb der Formplatten 12-18 über dem Gießkanal 20 angeordnet ist. Jeder dieser stabförmigen Einsätze 28 besteht vorteilhaft aus einem stirnseitig verschlossenen Außenrohr 32 und einem stirnseitig offenen Innenrohr 34, die derart angeordnet sind, daß sie einen Ringspalt 36 für das Kühlmittel ausbilden. Für jeden der drei stabförmigen Einsätze 28 ergibt sich somit folgende Kühlmittelströmung. Im Kollektor 30 strömt das Kühlmittel über eine Vorlaufkammer 38 in den Ringspalt 36 ein. Es kühlt das Außenrohr 32 auf seiner ganzen Länge und tritt am unteren Ende aus dem Ringspalt 36 in das Innenrohr 34 ein. Dieses Innenrohr 34 leitet das Kühlmittel in eine Rücklaufkammer 40 im Kollektor 30 zurück. Die stabförmigen Einsätze 28 können jedoch auch als ungekühlte Graphitstäbe ausgebildet werden.
In Figur 2 sieht man, daß die vordere Formplatte 16 mehrere Zinken 26 aufweist. Letztere erstrecken sich im wesentlichen über die gesamte Länge der Formplatte 16 und ragen senkrecht zur Gießrichtung in den Gießkanal 20 hinein. Mit der vorbeschriebenen Stranggießform 10 wird erfindungsgemäß ein
Strang gegossen, der eine Vorform der herzustellenden Kühlplatte ausbildet. Die stabförmigen Einsätze 28 erzeugen hierbei in der stranggegossenen Vorform in Stranggießrichtung verlaufende Kanäle, deren Querschnitt durch den Querschnitt der stabförmigen Einsätze 28 bestimmt wird. Die Zinken 26 in der Formplatte 18 erzeugen in der stranggegossenen Vorform in Stranggießrichtung verlaufende Längsnuten.
Die Figuren 3 bis 4 zeigen eine fertige Kühlplatte 50 die auf Basis einer stranggegossenen Vorform hergestellt wurden. Es ist jedoch anzumerken, daß die Vorform der Kühlplatte 50 mit einer Stranggießform gegossen wurde, die keine Zinken 26 aufwies, so daß die ursprüngliche Vorform im wesentlichen einen rechteckigen Querschnitt ohne Nuten hatte. In Figur 3 sind mit gestrichelten Linien die drei Kanäle 52 angedeutet die erfindungsgemäß beim Stranggießen durch die Einsätze in der Stranggießform erzeugt wurden. Diese Einsätze hatten, wie aus Figur 5 ersichtlich, eine ovale Form. Sie waren in der Stranggießform, wie aus Figur 4 und 5 noch ersichtlich, außermittig im rechteckigen Querschnitt der Vorform angeordnet, d.h. sie lagen näher an der Oberfläche der Vorform die in der fertigen Kühlplatte 50 schlußendlich die Rückseite ausbildet.
Es hat sich von Vorteil erwiesen, die Vorform dicker als für die fertige Kühlplatte erforderlich zu gießen, und die Dicke der Vorform anschließend durch Walzen erst auf die Dicke der fertigen Kühlplatte zu reduzieren. Bei diesem Walzen der Vorform erhält das Kupfer eine feinere Kristallstruktur, was sich positiv auf die mechanischen und thermischen Eigenschaften der fertigen Kühlplatte auswirkt. Es bleibt in diesem Zusammenhang festzustellen, daß ein von Anfang an länglicher Querschnitt der Kühlkanäle beim Walzen weitaus vorteilhafter verformt wird als ein kreisrunder Querschnitt.
Anschließend hat man aus der gewalzten Vorform, durch zwei Schnitte quer zur Gießrichtung, eine rechteckige Rohplatte herausgetrennt. Hierdurch wurden die zwei Stirnflächen 54, 56 der fertigen Kühlplatte ausgebildet. In dieser Rohplatte erstreckten sich die Kanäle 52 folglich als Durchgangskanäle zwischen den beiden Stirnflächen 54, 56 und bildeten hierin offene Einmündungen 58 aus. In die Oberfläche dieser Rohplatte die den größten Abstand zu den außermittigen Kanälen 52 aufwies, wurden anschließend Nuten 58 quer zur Gießrichtung eingefräst. Um die mechanische Festigkeit der Platte noch weiter zu erhöhen, könnte sie jetzt kugelgestrahlt werden. Im nächsten Herstellungsschritt wurden in die Kanäle 52 einmündende
Anschlußbohrungen 62 für Vor- und Rücklaufstutzen 64, 66 senkrecht zur Plattenoberfläche in die Rückseite 68 der Platte gebohrt. Bevor die stirnseitigen Einmündungen 58 der Kanäle 52 definitiv durch Stopfen 70 verschlossen werden, könnten die Kanäle gegebenenfalls noch mechanisch nachbearbeitet werden. Um die Kühlplatte 50 definitiv fertigzustellen mußten lediglich noch die Vor- und Rücklaufstutzen 64, 66, sowie Befestigungszapfen 72 und Abstandstutzen 74 an der Platte befestigt werden.
In Figur 5 sieht man wie die fertige Kühlplatte 50 mittels der
Abstandstutzen 74 auf einer Ofenpanzerplatte 76 aufliegt. Es bleibt anzumerken, daß die Kühlplatte 50 der Figuren 3-5 für einen senkrechten
Einbau in den Ofen bestimmt ist, d.h. daß in den eingebauten Kühlplatten die Kühlkanäle 52 senkrecht und die Quernuten 60 waagerecht verlaufen. Anstelle der Quernuten 60, die quer zur Gießrichtung verlaufen, könnte die Kühlplatte 50 auch Längsnuten aufweisen die parallel zur Gießrichtung verlaufen. Letztere würden dann vorteilhaft, mit einer Gießform mit Zinken, wie sie in Figur 2 gezeigt ist, unmittelbar beim Stanggießen erzeugt.
Figur 6 zeigt eine Anordnung von Kühlplatten 80, bei denen die Nuten 82 auf diese Art und Weise unmittelbar beim Stranggießen erzeugt wurden. Innerhalb der Kühlplatten 80 erstrecken sich die beim Stranggießen erzeugten Kühlkanäle 84 (siehe Figur 7) also parallel zu den Nuten 82. Es ist anzumerken, daß die Kühlplatten 80 im Ofen horizontal angeordnet sind, d.h. daß in den eingebauten Kühlplatten 80 die Kühlkanäle 84 und die Nuten 82 waagerecht verlaufen. Die Kühlplatten 80 sind derart gebogen und zentriert, daß ihre Krümmung der Krümmung des (nicht gezeigten) Hochofenpanzers angepaßt ist. Figur 7 zeigt mit gestrichelten Linien eine vorteilhafte Anordnung der
Kühlmittelkanäle in einer der Kühlplatten 80. Man erkennt drei stranggegossene Kanäle 84-j , 842 und 843, sowie zwei kurze Querbohrungen 86 und 88. Die Bohrung 86 verbindet die Kanäle 84-) und 842 an einem Ende der Platte 80 und ist mit einem Stopfen 90 verschlossen. Die Bohrung 88 verbindet die Kanäle 842 und 843 an anderen Ende der Platte 80 und ist mit einem Stopfen 92 verschlossen. Wie die Kanäle 52 in der Platte 50, sind die Kanäle 84-) , 842 und 843 in den Stirnflächen 54, 56 der Platte 80 ebenfalls durch Stopfen 70 verschlossen. Die Referenzzahl 94 zeigt einen Vorlaufanschluß der in den Kanal 84-, einmündet, und die Referenzzahl 96 einen Rücklaufanschluß der in den Kanal 843 einmündet. Das Kühlmittel das über Vorlaufanschluß 94 in die Platte 80 eintritt, muß letztere schlangenförmig durchströmen, bevor es sie wieder über den Rücklaufanschluß 96 verlassen kann. In Figur 6 ist schematisch dargestellt, wie die Vor- und Rücklaufanschlüsse 94, 96 der einzelnen Kühlplatten 80 über Rohrbrücken 98 miteinander verbunden sind. Selbstverständlich könnte die Kühlplatte 80, wie die Kühlplatte 50, ebenfalls je einen Vor- und Rücklaufanschluß pro Kühlkanal 84-j , 842 und 843 aufweisen. Es bleibt anzumerken, daß Kühlplatten die im Hochofen oberhalb der Blasformen angebracht werden vorteilhaft auf ihrer dem Inneren des Ofens zugekehrten Seite mit einer feuerfesten Spritzmasse versehen werden. Um die Haftung der feuerfesten Spritzmasse an den Kühlplatten zu verbessern, können die Nuten 60, 82 zum Beispiel als Schwalbenschwanznuten ausgebildet werden. Es ist weiterhin von Vorteil, die Kannten und Ecken der Nuten 60, 82 großzügig abzurunden. Hierdurch wird nämlich die Gefahr einer Rißbildung in der feuerfesten Masse reduziert.
Kühlplatten für das Gestell des Hochofens weisen dagegen vorteilhaft eine glatte Vorder- und Rückseite auf. Sie sind dünner als die gezeigten Kühlplatten mit Nuten und werden vorteilhaft aus einer stranggegossenen Vorform hergestellt, deren Dicke durch Walzen reduziert wurde. Sie werden auf den Durchmesser des Panzers im Bereich des Gestells zentriert, so daß sie formschlüssig mit ihrer glatten Rückfläche an dem Hochofenpanzer anliegen. Die Gestellauskleidung mit Formsteinen aus Kohlenstoff liegt hierbei formschlüssig an der ebenfalls glatten Vorderseite der Kühlplatten an. Hierdurch wird gewährleistet, daß relativ dünne Kühlplatten die großen Drücke die auf die Gestellauskleidung einwirken problemlos auf den Hochofenpanzer übertragen können. Alle gezeigten Kühlplatten weisen drei stranggegossene Kanäle auf.
Selbstverständlich können mit dem erfindungsgemäßen Verfahren ebenfalls Kühlplatten mit mehr oder mit weniger als drei stranggegossenen Kanälen hergestellt werden.

Claims

Patentansprüche
1 ) Verfahren zum Herstellen einer Kühlplatte (50, 80) mit integrierten Kühlmittelkanälen (52, 84) für einen Ofen zur Eisen- oder Stahlerzeugung, dadurch gekennzeichnet, daß mittels einer Stranggießform (10) eine Vorform der Kühlplatte (50, 80) stranggegossen wird, wobei stabförmige Einsätze (28) im Gießkanal (20) der Stranggießform (10) in dieser Vorform in Stranggießrichtung verlaufende Kanäle (52, 84) erzeugen, die in der fertigen Kühlplatte Kühlmittelkanäle ausbilden. 2) Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Stranggießform (10) Zinken (26) aufweist, die in einer Oberfläche der Vorform in Stranggießrichtung verlaufende Nuten (82) erzeugt.
3) Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in eine Oberfläche der stranggegossenen Vorform quer zu Stranggießrichtung verlaufende Nuten (60) eingearbeitet werden.
4) Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß aus der Vorform durch zwei Schnitte quer zur Gießrichtung ein Platte herausgetrennt wird, wobei zwei Stirnflächen (54, 56) quer zur Gießrichtung ausgebildet werden, und wobei sich die Kanäle (52, 84) als Durchgangskanäle durch die Platte zwischen den beiden Stirnflächen (54,
56) erstrecken und hierin Einmündungen (58) ausbilden.
5) Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß in die Kanäle (52, 84) einmündende Anschlußbohrungen (62) für Vor- und Rücklaufleitungen (64, 66) senkrecht zur Plattenoberfläche in die Platte (50, 80) gebohrt werden, und die stirnseitigen Einmündungen (58) der Kanäle
(52, 84) verschlossen werden.
6) Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Querschnitt der stranggegossenen Kanäle (52, 84) eine längliche Form aufweist, die ihre kleinste Ausdehnung senkrecht zur Kühlplatte (50, 80) aufweist.
7) Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die stranggegossenen Kanäle (52, 84) mittels Querbohrungen (86, 88) miteinander verbunden werden.
8) Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Querbohrungen (86, 88) derart angeordnet und verschlossen werden, daß sich ein schlangenförmiger, durchgehender Kanal mit einem Vorlaufanschluß (94) und einem Rücklaufanschluß (96) ergibt. 9) Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Kühlplatte (80) derart zentriert wird, daß ihre Krümmung der Krümmung einer Schachtofenwand angepaßt ist.
10) Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Vorform aus einer Kupferlegierung stranggegossen wird. 1 1 ) Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Dicke der stranggegossenen Vorform durch Walzen reduziert wird.
PCT/EP1998/000021 1997-01-08 1998-01-05 Verfahren zum herstellen einer kühlplatte für öfen zur eisen- und stahlerzeugung WO1998030345A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR9806859-8A BR9806859A (pt) 1997-01-08 1998-01-05 Processo para fabricação de uma placa de resfriamento para fornos
JP53052398A JP3907707B2 (ja) 1997-01-08 1998-01-05 製鉄及び製鋼炉用の冷却プレートの製造方法
US09/341,057 US6470958B1 (en) 1997-01-08 1998-01-05 Method of Producing a cooling plate for iron and steel-making furnaces
DE59801166T DE59801166D1 (de) 1997-01-08 1998-01-05 Verfahren zum herstellen einer kühlplatte für öfen zur eisen- und stahlerzeugung
AT98904032T ATE203941T1 (de) 1997-01-08 1998-01-05 Verfahren zum herstellen einer kühlplatte für öfen zur eisen- und stahlerzeugung
AU62071/98A AU6207198A (en) 1997-01-08 1998-01-05 Method of producing a cooling plate for iron and steel-making furnaces
PL98334628A PL185392B1 (pl) 1997-01-08 1998-01-05 Sposób wytwarzania chłodnicy płytowej ze zintegrowanymi kanałami chłodzącymi dla pieców do wytapiania surówki i stali
CA002274861A CA2274861C (en) 1997-01-08 1998-01-05 Method of producing a cooling plate for iron and steel-making furnaces
EP98904032A EP0951371B1 (de) 1997-01-08 1998-01-05 Verfahren zum herstellen einer kühlplatte für öfen zur eisen- und stahlerzeugung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
LU90003 1997-01-08
LU90003A LU90003B1 (de) 1997-01-08 1997-01-08 Verfahren zum Herstellen einer Kuehlplatte fuer Schachtoefen
LU90146 1997-09-30
LU90146A LU90146A7 (de) 1997-01-08 1997-09-30 Verfahren zum Herstellen einer Kuehlplatte fuer Schachtoefen

Publications (1)

Publication Number Publication Date
WO1998030345A1 true WO1998030345A1 (de) 1998-07-16

Family

ID=26640362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/000021 WO1998030345A1 (de) 1997-01-08 1998-01-05 Verfahren zum herstellen einer kühlplatte für öfen zur eisen- und stahlerzeugung

Country Status (13)

Country Link
US (1) US6470958B1 (de)
EP (1) EP0951371B1 (de)
JP (1) JP3907707B2 (de)
AT (1) ATE203941T1 (de)
AU (1) AU6207198A (de)
BR (1) BR9806859A (de)
CA (1) CA2274861C (de)
CZ (1) CZ293516B6 (de)
DE (1) DE59801166D1 (de)
ES (1) ES2159935T3 (de)
PL (1) PL185392B1 (de)
RU (1) RU2170265C2 (de)
WO (1) WO1998030345A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2344639A (en) * 1998-12-08 2000-06-14 British Steel Plc Cooling panels for blast furnaces
WO2000037870A1 (en) * 1998-12-22 2000-06-29 Outokumpu Oyj Pyrometallurgical reactor cooling element and its manufacture
WO2000045978A1 (en) * 1999-02-03 2000-08-10 Outokumpu Oyj Casting mould for manufacturing a cooling element and cooling element made in said mould
EP1156124A1 (de) * 2000-05-19 2001-11-21 KM Europa Metal Aktiengesellschaft Kühlplatte und Verfahren zur Herstellung einer Kühlplatte
WO2012136796A3 (en) * 2011-04-08 2013-01-24 Bhp Billiton Aluminium Technologies Limited Heat exchange elements for use in pyrometallurgical process vessels
WO2014121213A2 (en) * 2013-02-01 2014-08-07 Berry Metal Company Stave with external manifold
US9869515B2 (en) 2010-06-29 2018-01-16 Outotec Oyj Suspension smelting furnace and a concentrate burner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI115251B (fi) * 2002-07-31 2005-03-31 Outokumpu Oy Jäähdytyselementti
EP1391521A1 (de) * 2002-08-20 2004-02-25 Voest-Alpine Industrieanlagenbau GmbH & Co. Kühlplatte für metallurgische Öfen
DE102004035963A1 (de) 2004-07-23 2006-02-16 Km Europa Metal Ag Kühlplatte
EP2370603A4 (de) * 2008-12-29 2017-05-17 Luvata Espoo OY Verfahren zur herstellung eines kühlelements für einen pyrometallurgischen reaktor und kühlelement
KR101019794B1 (ko) 2009-05-11 2011-03-04 주식회사 경동나비엔 보일러의 연소실 냉각구조
US8268233B2 (en) * 2009-10-16 2012-09-18 Macrae Allan J Eddy-free high velocity cooler
RU2600046C2 (ru) * 2015-01-12 2016-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Чувашский государственный университет имени И.Н. Ульянова" Способ изготовления охлаждающего поддона металлургической печи

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1161664B (de) * 1956-10-31 1964-01-23 Ver Leichtmetallwerke Gmbh Aus Gussbarren gewalzte Waermeaustauschplatte
FR1432629A (fr) * 1965-02-04 1966-03-25 Elément pour paroi tubulaire étanche et sa fabrication
GB1571789A (en) * 1976-12-30 1980-07-16 Brown & Sons Ltd James Furnace cooling element
DE2907511A1 (de) * 1979-02-26 1980-09-11 Gutehoffnungshuette Sterkrade Kuehlplatte fuer schachtoefen und verfahren zur herstellung derselben
EP0365757A2 (de) * 1988-10-25 1990-05-02 Emitec Gesellschaft für Emissionstechnologie mbH Verfahren zur Herstellung von Einzelnocken aus Gusswerkstoff
DE4035893C1 (en) * 1990-11-12 1992-01-30 Hampel, Heinrich, Dr., Moresnet, Be Cooling box for blast furnace - with groove for cooling medium in base, with cover attached by explosive welding to form closed channel
DE29611704U1 (de) * 1996-07-05 1996-10-17 Gutehoffnungshuette Man Kühlplatte für metallurgische Öfen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136008A (en) * 1960-06-20 1964-06-09 Continental Can Co Apparatus and method for continuous casting of ingots having longitudinal channels and spacer member therein
JPS59141347A (ja) * 1983-02-01 1984-08-14 Kuroki Kogyosho:Kk 連続鋳造用鋳型

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1161664B (de) * 1956-10-31 1964-01-23 Ver Leichtmetallwerke Gmbh Aus Gussbarren gewalzte Waermeaustauschplatte
FR1432629A (fr) * 1965-02-04 1966-03-25 Elément pour paroi tubulaire étanche et sa fabrication
GB1571789A (en) * 1976-12-30 1980-07-16 Brown & Sons Ltd James Furnace cooling element
DE2907511A1 (de) * 1979-02-26 1980-09-11 Gutehoffnungshuette Sterkrade Kuehlplatte fuer schachtoefen und verfahren zur herstellung derselben
EP0365757A2 (de) * 1988-10-25 1990-05-02 Emitec Gesellschaft für Emissionstechnologie mbH Verfahren zur Herstellung von Einzelnocken aus Gusswerkstoff
DE4035893C1 (en) * 1990-11-12 1992-01-30 Hampel, Heinrich, Dr., Moresnet, Be Cooling box for blast furnace - with groove for cooling medium in base, with cover attached by explosive welding to form closed channel
DE29611704U1 (de) * 1996-07-05 1996-10-17 Gutehoffnungshuette Man Kühlplatte für metallurgische Öfen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. COOLIDGE: "Iron Parts Without Patterns", MACHINE DESIGN., vol. 57, no. 26, November 1985 (1985-11-01), CLEVELAND, OHIO, US, pages 79 - 82, XP002064871 *
W. KLEIN: "Stranggegossene Werkstücke .....", WERKSTATT UND BETRIEB., vol. 115, no. 10, October 1982 (1982-10-01), MÜNCHEN, DE, pages 672 - 674, XP002064872 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2344639A (en) * 1998-12-08 2000-06-14 British Steel Plc Cooling panels for blast furnaces
WO2000037870A1 (en) * 1998-12-22 2000-06-29 Outokumpu Oyj Pyrometallurgical reactor cooling element and its manufacture
WO2000045978A1 (en) * 1999-02-03 2000-08-10 Outokumpu Oyj Casting mould for manufacturing a cooling element and cooling element made in said mould
EP1156124A1 (de) * 2000-05-19 2001-11-21 KM Europa Metal Aktiengesellschaft Kühlplatte und Verfahren zur Herstellung einer Kühlplatte
US9869515B2 (en) 2010-06-29 2018-01-16 Outotec Oyj Suspension smelting furnace and a concentrate burner
WO2012136796A3 (en) * 2011-04-08 2013-01-24 Bhp Billiton Aluminium Technologies Limited Heat exchange elements for use in pyrometallurgical process vessels
WO2014121213A2 (en) * 2013-02-01 2014-08-07 Berry Metal Company Stave with external manifold
WO2014121213A3 (en) * 2013-02-01 2014-10-23 Berry Metal Company Stave with external manifold
US10222124B2 (en) 2013-02-01 2019-03-05 Berry Metal Company Stave with external manifold

Also Published As

Publication number Publication date
BR9806859A (pt) 2000-04-18
AU6207198A (en) 1998-08-03
JP3907707B2 (ja) 2007-04-18
ES2159935T3 (es) 2001-10-16
ATE203941T1 (de) 2001-08-15
CZ293516B6 (cs) 2004-05-12
DE59801166D1 (de) 2001-09-13
JP2001507630A (ja) 2001-06-12
EP0951371A1 (de) 1999-10-27
CA2274861A1 (en) 1998-07-16
PL185392B1 (pl) 2003-05-30
EP0951371B1 (de) 2001-08-08
PL334628A1 (en) 2000-03-13
US6470958B1 (en) 2002-10-29
RU2170265C2 (ru) 2001-07-10
CZ242599A3 (cs) 2000-07-12
CA2274861C (en) 2005-04-12

Similar Documents

Publication Publication Date Title
EP0974414B1 (de) Giessform und Giessverfahren zur Herstellung eines Motorblocks
EP0951371B1 (de) Verfahren zum herstellen einer kühlplatte für öfen zur eisen- und stahlerzeugung
EP2091678B1 (de) Giessform zum giessen eines gussteils und verwendung einer solchen giessform
WO2000036154A1 (de) Kühlplatte für einen ofen zur eisen- oder stahlerzeugung
DE3610856C2 (de) Verbund-Metallgußgegenstand
DE102007002208B4 (de) Ausbildung eines Trennwandfensters eines Zylinderblockgiessteils
DE2907511A1 (de) Kuehlplatte fuer schachtoefen und verfahren zur herstellung derselben
DE3322424C2 (de)
DE10150999C2 (de) Verfahren zum Profilieren der äußeren Umfangsfläche von Zylinderlaufbuchsen
DE10033271A1 (de) Wassermantelkern
EP0899042B1 (de) Verfahren zur Herstellung eines gegossenen Zylinderkopfes
EP2454037B1 (de) Formeinlage für einen giesskern und/oder eine giessform sowie giesskern und/oder giessform mit einer formeinlage
DE102006045729A1 (de) Kolben für einen Verbrennungsmotor und Verfahren zu seiner Herstellung
DE3120221C2 (de) Herstellung von dickwandigen Abschirmtransport- und Lagerbehältern aus sphärolitischem Gußeisen
LU90146A7 (de) Verfahren zum Herstellen einer Kuehlplatte fuer Schachtoefen
DE10024587A1 (de) Kühlplatte
EP1855824B1 (de) Verfahren zum herstellen einer stranggiesskokille und stranggiesskokille
WO2009092530A2 (de) Kompressorzylinderkopf und verfahren zur herstellung eines kompressorzylinderkopfs
DE102005030814B4 (de) Gussform für den Metallguss
DE10034506C1 (de) Verfahren zum Herstellen von Kühlkanälen in betrieblich thermisch belasteten Formgebungswerkzeugen und zugehöriges Formgebungswerkzeug
DE102004034802B4 (de) Metallische Dauerform zur Herstellung von Großgussteilen aus Metalllegierungen
DE3111586C2 (de) Kombinierte Gießform zur Herstellung von Walzen
DE19515974A1 (de) Herstellung von hohlen Formkörpern im Kernschmelzverfahren und hierbei verwendete Hohlkörperkerne
EP1247601A2 (de) Verfahren zum Herstellen eines Wärmetauschers für einen Brennwertkessel durch Giessen sowie bei der Durchführung des Verfahrens anzuwendender Kern für eine Giessform
DE423183C (de) Einrichtung zur Herstellung von Walzen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2274861

Country of ref document: CA

Ref country code: CA

Ref document number: 2274861

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998904032

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 530523

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: PV1999-2425

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 09341057

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998904032

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV1999-2425

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1998904032

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV1999-2425

Country of ref document: CZ