WO1998029552A1 - Nouveau gene de serine-threonine kinase - Google Patents

Nouveau gene de serine-threonine kinase Download PDF

Info

Publication number
WO1998029552A1
WO1998029552A1 PCT/JP1997/004855 JP9704855W WO9829552A1 WO 1998029552 A1 WO1998029552 A1 WO 1998029552A1 JP 9704855 W JP9704855 W JP 9704855W WO 9829552 A1 WO9829552 A1 WO 9829552A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
leu
lys
seq
gly
Prior art date
Application number
PCT/JP1997/004855
Other languages
English (en)
French (fr)
Inventor
Jun-Ichi Nezu
Asuka Oku
Original Assignee
Chugai Research Institute For Molecular Medicine, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Research Institute For Molecular Medicine, Inc. filed Critical Chugai Research Institute For Molecular Medicine, Inc.
Priority to JP52985598A priority Critical patent/JP4121155B2/ja
Priority to AU53406/98A priority patent/AU5340698A/en
Priority to EP97950408A priority patent/EP0960938A4/en
Publication of WO1998029552A1 publication Critical patent/WO1998029552A1/ja
Priority to US09/344,700 priority patent/US6265194B1/en
Priority to US09/563,997 priority patent/US6677437B1/en
Priority to US10/434,588 priority patent/US7186536B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01037Protein kinase (2.7.1.37)

Definitions

  • the present invention relates to a novel serine / threonine kinase gene.
  • Fetal tissue contains many undifferentiated cells that are actively growing, highly activated cells, and neovascular endothelial cells.
  • the activity of these cells in fetal tissue is under strict control, and the fetal tissue is in a state of solid tumors, except that it is subject to force control that is suppressed as the individual matures. It can be said that they are in a similar state. Therefore, some genes specifically or more strongly expressed in fetal tissues (fetal genes) are characteristic of solid tumors such as abnormally proliferative, immortalized, invasive, metastatic and angiogenic. There is a possibility that the gene is involved in the phenomenon. It is also presumed that some diseases other than tumors are caused by abnormal activation of fetal genes, which are suppressed in normal organisms. Therefore, by isolating fetal genes and analyzing them, it would be possible to search for genes involved in various diseases, including tumors.
  • An object of the present invention is to isolate a gene specifically expressed in fetal tissue and search for a disease-related gene.
  • the present inventors believe that the state of cells in fetal tissues can be a model of the state of cells in solid tumors, and can isolate and analyze fetal genes to search for genes involved in diseases such as tumors. I thought. Furthermore, it is thought that by designing drugs targeting the gene, it is possible to develop drugs with a new mechanism of action. Was. Thus, the present inventors have attempted to isolate a fetal gene based on such a concept. Specifically, the present inventors have prepared a subtraction library containing a large number of genes expressed specifically in fetal liver (or stronger than in adult liver) by the subtraction subtractive hybridization method. The clones were extracted at random and their structure was analyzed.
  • the present inventors succeeded in isolating a novel gene (VRK1) containing a consensus sequence for the active site of serine / threonine kinase. Further, the present inventors conducted a database search based on the amino acid sequence deduced from the isolated gene. As a result, they found that this gene product showed significant homology to B1R kinase, which is thought to be involved in vaccinia virus DNA replication. Further, the present inventors have found a human EST having extremely high homology to this gene on a database, and isolated the full-length cDNA (VRK2).
  • the present invention relates to novel human serine / threonine kinase genes “VM1” and “VRK2”, more specifically,
  • a protein comprising the amino acid sequence of SEQ ID NO: 2, or a protein having a sequence in which one or several amino acids are added, deleted or substituted, and having a serine / sleonin kinase activity;
  • a protein comprising the amino acid sequence of SEQ ID NO: 4, or a protein having a sequence in which one or several amino acids have been added, deleted or substituted, and having serine / sleonin kinase activity;
  • step (b) comparing the kinase activity detected in the step (a) with the kinase activity detected in the absence of the test compound, and obtaining the protein kinase according to any one of (1) to (4). Selecting a compound that reduces activity.
  • the present invention relates to novel serine / threonine kinases “VRK1” and “VRK2”.
  • the nucleotide sequence of the cDNA of “VRK1” is shown in SEQ ID NO: 1, and the amino acid sequence of the protein is shown in SEQ ID NO: 2.
  • the nucleotide sequence of the cDNA of "VRK2” is shown in SEQ ID NO: 3, and the amino acid sequence of the protein is shown in SEQ ID NO: 4.
  • “VRK1” cDNA has significant homology to B1R kinase, which is suggested to be involved in NA replication of vaccinia virus, and its gene is propagated in fetal liver, testis, various cancer cell lines, etc.
  • VRK1 is particularly involved in the control mechanism of cell proliferation. Since the “VRK1” protein has protein kinase activity, this activity is thought to play an important role in controlling cell proliferation.
  • VRK2 has high homology with “VM1”, and particularly shows high homology in the serine / threonine kinase region.
  • VRK2 Has significant homology to B1R kinase, similar to “VRK1,” and its gene is characterized by strong expression in highly proliferative cells such as fetal liver, testis, and various cancer cell lines. From these facts, it is considered that “VRK2” has the same function as “VRK1”.
  • VRK1 and “VRK2” proteins can be prepared as recombinant proteins using genetic recombination techniques or as natural proteins.
  • Recombinant proteins can be prepared, for example, by culturing cells transformed with DNAs encoding these proteins, as described below.
  • natural proteins can be obtained by methods known to those skilled in the art, for example, by performing affinity chromatography using the antibody of the present invention described later, such as fetal liver, testis, and HeLa S3, which have high expression of these proteins. It can be isolated from cell lines.
  • the antibody may be a polyclonal antibody or a monoclonal antibody.
  • these proteins are immunized to small animals such as egrets to obtain serum, which is then subjected to, for example, ammonium sulfate precipitation, protein A, protein G columns, DEAE ion exchange chromatography, and these proteins.
  • serum is then subjected to, for example, ammonium sulfate precipitation, protein A, protein G columns, DEAE ion exchange chromatography, and these proteins.
  • Ammonium sulfate precipitation protein A
  • protein G columns protein G columns
  • DEAE ion exchange chromatography DEAE ion exchange chromatography
  • spleen is excised from the mice, crushed into cells, and fused with mouse smear cells and reagents such as polyethylene glycol. Then, clones that produce antibodies against these proteins are selected from the resulting fused cells (hybridomas).
  • hybridoma is transplanted into the peritoneal cavity of a mouse, ascites is recovered from the mouse, and the obtained monoclonal antibody is subjected to, for example, ammonium sulfate precipitation, protein A, protein G column, DEAE ion exchange chromatography, and the like.
  • "VRK1" protein or “VRK2” protein can be prepared by purification using an affinity column coupled thereto.
  • an affinity column coupled thereto When the obtained antibody is used for the purpose of administration to the human body (antibody therapy or the like), it is effective to use a humanized antibody or a human antibody to reduce immunogenicity.
  • Methods for humanizing antibodies include CDR grafting, which involves cloning antibody genes from monoclonal antibody-producing cells and transplanting the antigen-determined site into existing human antibodies. Is mentioned.
  • a human antibody can be produced directly by immunizing a mouse in which the immune system has been replaced with a human one, similarly to a normal monoclonal antibody.
  • Examples of methods for modifying amino acids known to those skilled in the art include, for example, a site-directed mutagenesis system using PCR (GIBC0-BRL, Gaitherrsburg, Mary 1 and), a site-directed mutagenesis method using oligonucleotides (Kramer , W. and Fritz, HJ (1987) Methods in Enzymol., 154: 350-367), the Kunkel method (Methods Enzymo 1.85, 2763-2766 (1988)), and the like.
  • the substitution of amino acids is usually within 10 amino acids, preferably within 6 amino acids, and more preferably within 3 amino acids.
  • serine / threonine kinase activity is maintained.
  • Amino acid additions, deletions or substitutions may be in regions other than the region corresponding to the consensus sequence of the serine / threonine kinase active site and the region corresponding to the consensus sequence of the protein kinase ATP binding site. Is preferred in terms of activity.
  • the serine / threonine kinase activity of the protein can be detected, for example, by the method described in Example 9 below. Further, those skilled in the art can use the hybridization technology (Sajnbrook, J et al., Molecular Cloning 2nd ed.
  • Proteins having zealase activity are also included in the protein of the present invention.
  • a DNA encoding a protein having substantially the same function as the “VM1” or “VRK2” protein isolated by this method is usually a DNA encoding a “VRK1” protein or a “VRK2” protein ( It has high homology to SEQ ID NO: 1 or 3). High homology refers to sequence identity of at least 40% or more, preferably 60% or more, more preferably 80% or more at the amino acid level.
  • Examples of conditions for hybridization for isolating such DNA are as follows. That is, after performing prehybridization at 55 ° C for 30 minutes or more using ExpressHyb Hybridization Solution j (manufactured by CLONTECH), a labeled probe was added, and the mixture was incubated at 37 ° C to 55 ° C. Incubate for more than 3 hours by incubating for 2 hours at room temperature in 2xSSC, 0.13 ⁇ 4 SDS, then 20 minutes at 37 ° C in lxSSC, 0.1% SDS.
  • Washing is performed once More preferably, pre-hybridization is performed using ExpressHyb Hybridization Solution j (manufactured by CLONTECH) at 60 ° C for 30 minutes or more, and a labeled probe is added. Hybridization is carried out by keeping the temperature for at least 1 hour at 60 ° C, followed by three washes in 2xSS in 0.1% SDS for 20 minutes at room temperature, followed by lxSSC in 0.1% SDS. Wash twice for 20 minutes at ° C.
  • ExpressHyb Hybridization Solution j manufactured by CLONTECH
  • Hybridization is carried out by keeping the temperature for at least 1 hour at 60 ° C, followed by three washes in 2xSS in 0.1% SDS for 20 minutes at room temperature, followed by lxSSC in 0.1% SDS. Wash twice for 20 minutes at ° C.
  • More preferable conditions are “ExpressHyb Hybr After performing prehybridization at 68 ° C for 30 minutes or more using idization Solutionj (manufactured by CLONTECH), add a labeled probe, and incubate at 68 ° C for 1 hour or more. Then, wash twice in 2xSSC, 0.13 ⁇ 4 SDS at room temperature for 20 minutes, and then wash twice in 0.1xSSC, 0.1% SDS at 50 ° C for 20 minutes. .
  • the present invention also relates to a DNA encoding the protein of the present invention.
  • the DNA of the present invention includes not only cDNA but also genomic DNA and synthetic MA as long as it can encode the protein of the present invention.
  • the DNA of the present invention can be used for producing a recombinant protein. That is, a transformant obtained by inserting the DNA of the present invention (for example, the DNA of SEQ ID NO: 1 or 3) into an appropriate expression vector and introducing the vector into an appropriate cell is cultured. It is possible to prepare a recombinant protein by purifying the expressed protein.
  • Examples of cells used for producing a recombinant protein include mammalian cells such as COS cells, CH0 cells, and NIH3T3 cells, insect cells such as Sf9 cells, yeast cells, and E. coli.
  • the vector for expressing the recombinant protein in the cell varies depending on the host cell.
  • Examples of the vector for mammalian cells include pcDNA3 (manufactured by Invitrogen) and pEF-BOS (Nucleic Acids. Res. 1990, 18 (17), p5322), etc.
  • one of the insect cell vectors is "BAC-to-BAC baculovirus expression systenu (GIBCO BRL)", etc.
  • the yeast cell vector is "Pichia Expression Kit".
  • Escherichia coli vectors examples include pGEX-5X-1 (Pharmacia) and "QIAexpress systemj (Qiagen)".
  • the calcium phosphate method, the DEAE dextran method, the method using Cationic Ribosome D0TAP (manufactured by Behringer Mannheim), the electroporation method, the calcium chloride method, etc. can be used. Purification of the recombinant protein from the transformant can be carried out by a conventional method, for example, the method described in the literature “The Qiaexpressionist handbook, Qiagen, Children, Germany”.
  • the DNA of the present invention may be used for gene therapy for diseases caused by mutations in genomic DNA.
  • the DNA of the present invention is inserted into an adenovirus vector (for example, pAdexLcw) / retrovirus vector (for example, pZIPneo) and administered in vivo.
  • the administration method may be an ex vivo method or an in vivo method.
  • the antisense DNA against the DNA of the present invention or a part thereof can be used as a cell growth inhibitor or an antitumor agent. is there.
  • Antisense DNA is administered directly into a living body or inserted into the above vector.
  • Antisense DNA can be synthesized by a method known to those skilled in the art.
  • the present invention also provides a method for inhibiting the serine / threonine kinase activity of the protein of the present invention.
  • the present invention relates to a method for screening a compound having an harmful activity. This screening method comprises the steps of: (a) contacting a protein of the present invention with a substrate that is phosphorylated by these proteins in the presence of a test compound to detect the kinase activity of the protein of the present invention; and (b) Comparing the kinase activity detected in step (a) with the kinase activity detected in the absence of the test compound to select a compound that reduces the kinase activity of the protein of the present invention.
  • the test compound used in this screening method is not particularly limited, and includes a low-molecular compound, a protein (including the antibody of the present invention), a peptide and the like.
  • the test compound may be artificially synthesized or natural.
  • the substrate include casein and IkB protein.
  • the kinase activity of the protein of the present invention can be determined, for example, by adding ATP having a radiolabeled phosphate to a reaction system containing the protein of the present invention and a substrate, and measuring the radioactivity of the phosphate bound to the substrate. It can be detected in a specified manner. Specifically, it can be detected according to the method described in Example 9. The compound isolated in this way can be used as a cytostatic or antitumor agent.
  • the “VRK1” protein phosphorylates the IkB protein.
  • IkB is thought to undergo rapid degradation upon phosphorylation, thereby releasing bound NF-kB and activating NF-kB.
  • NF-kB is a central transcriptional regulator that causes a wide range of immune and inflammatory responses. Therefore, the compound of the present invention that inhibits the kinase activity of the protein may be used as an anti-inflammatory agent and an anti-immune agent.
  • FIG. 1 is a diagram showing an adapter used for preparing a subtraction library.
  • FIG. 2A is a diagram showing a consensus sequence of the active site of serine / threonine kinase
  • FIG. 2B is a diagram showing a consensus sequence of the protein kinase ATP binding site.
  • FIG. 3 shows the nucleotide sequence and amino acid sequence of the fls223 clone.
  • FIG. 4 is an electrophoretic image showing the results of RT-PCR analysis for detecting the expression of VRK1 and VRK2 in fetal liver and adult liver.
  • A indicates an adult liver (Aduliver) and “F” indicates a fetal liver (Fetal liver).
  • “Low”, “medium” and “high” indicate the level of the PCR cycle.
  • FIG. 5 is a diagram showing a comparison of the amino acid sequences of VRK1 and B1R.
  • FIG. 6 is a diagram showing a comparison of the amino acid sequences of VRK1 and VRK2.
  • FIG. 7 is a diagram showing a comparison of the amino acid sequences of VRK2 and B1R.
  • FIG. 8 is an electrophoretic image showing the result of analyzing the expression of VRK1 and VRK2 genes in various cells by Northern printing.
  • FIG. 9 is an electrophoretic image showing Western plotting analysis using an anti-c_Myc antibody. 1 was detected using a cell extract of C0S7 cells transfected with pcDNA3 plasmid DNA and 2 with pcDNA3 / Vlmyc plasmid DNA, respectively.
  • FIG. 10 is an electrophoresis image showing Northern analysis using VRK1 cDNA as a probe.
  • 1 is pCOS plasmid DNA
  • 2 is total RNA prepared from NIH3T3 cells transfected with pCOS / VRKlw plasmid DNA
  • 3 is total RNA prepared from human liver cancer cell line HepG2 cells. did.
  • FIG. 11 is a photomicrograph showing the results of the colony attachment.
  • PC0S detected pCOS plasmid DNA
  • pCOS / VMlw detected cell pools obtained by transfection of pCOS / VMlw plasmid DNA into NIH3T3 cells.
  • FIG. 12 shows an electrophoresis image (CBB staining) of the purified GST fusion protein. 1 was detected using the wild-type VRK1 protein, and 2 was detected using the mutant VRK1 protein.
  • FIG. 13 shows an electrophoresis image showing the results of the kinase assay.
  • the added protein is indicated by a “+” at the top.
  • Arrows indicate “A” for phosphorylated GST-VRK1 (autophosphorylation), “C” for phosphorylated casein, “I” for phosphorylated GST-IkB, and “P” for phosphorylation.
  • the C-terminal peptides of IkB were shown.
  • FIG. 14 shows an electrophoresis image showing the results of the kinase assay. The reaction was performed in the presence of the divalent cations of the type and concentration shown on the right. Arrows indicate “A” for phosphorylated GST-VRK1 (autophosphorylation) and “C” for phosphorylated casein.
  • FIG. 15 is an electrophoretic image showing the results of pelleting using a K562 cell extract with an anti-VM1 peptide antibody. BEST MODE FOR CARRYING OUT THE INVENTION
  • the subtraction library was prepared using the PCR-Select TM cDNA Subtraction kit (manufactured by CLONT ECH) and the method of Luda Diatchenko et al. (Proc. Natl. Acad. Sci. USA, Vol. 93, 6025-6030, 1996).
  • double-stranded cDNA was synthesized from polyA + MA derived from human fetal liver and polyA + RNA derived from human adult liver by a standard method using MLV reverse transcriptase.
  • the cDNA end was blunt-ended with T4 DNA polymerase, and further cut with Rsal.
  • a part of the fetal liver-derived cDNA (tester) was divided into two parts, and adapter-1 and adapter-2 (Fig.
  • PCR primer 1 SEQ ID NO: 5
  • PCR primer 2 SEQ ID NO: 6
  • This product was purified using the “QIAquick PCR Purification Kit” (manufactured by QIAGEN) and cloned into the pT7Blue-T vector (manufactured by Novagen) using the TA cloning method to obtain a subtraction library.
  • QIAquick PCR Purification Kit manufactured by QIAGEN
  • cloned into the pT7Blue-T vector manufactured by Novagen
  • Sequencing is performed using plasmid DNA prepared by the alkaline SDS method or a colony PCR product as type III, and cycle sequencing using the ABI PRISM TM Dye Terminator Cycle Sequencing Rapid Reaction Kit With AmplyTaq DNA Polymerase, FS. And analyzed by ABI 377 DNA Sequencer.
  • the colony PCR was performed by placing the recombinant in a PCR reaction solution containing the vector primers “M13 P4-22 primer” (SEQ ID NO: 9) and “M13 P5-22 primer” (SEQ ID NO: 10). This was performed by directly suspending the colonies having the colonies. After the PCR reaction, unreacted primers, nucleotides, and the like were removed from the amplified insert DNA by gel filtration or the like, and used as a sequencing type III.
  • the fls223 clone (261 bp) (later renamed “VRK1”) has a consensus sequence of the active site of serine / threonine kinase ([Leu, Ile, Val, Met, Phe, Tyr, Cys] -Xaa- [His, Tyr] -Xaa-Asp- [Leu, Ile, Val, Met, Phe, Tyr] -Lys-Xaa-Xaa-Asn- [Leu, Ile, Val, Met, Phe, Tyr, Cys, Thr] -[Leu, Ile, Val, Met, Phe, Tyr, Cys, Thr]-[Leu, He, Val, Met, Phe, Tyr, Cys, Thr]) (173 to 185 of the amino acid described in SEQ ID NO: 2) (Fig. 2A) (Fig. 3A).
  • a gene completely matching the nucleotide sequence of this clone was not
  • Single-stranded cDNA was synthesized from polyA + RNA extracted from fetal liver and adult liver by the standard method using SUPERSCRIPT TM II RNase H Reverse Transcriptase (GIBCO BRL). It was used as type II of PCR assay.
  • TaqRaTaq (TaKaRa) was used as a Taq polymerase for PCR, and a hot-start method was performed by adding TaqStart TM Antibody (CLONTECH) to this.
  • "FLS223 SI primer” SEQ ID NO: 11
  • FLS223 A1 primer 1 SEQ ID NO: 12
  • G3PDH glycosyde 3-phosphate dehydrogenase
  • the G3PDH was used. G3PDH was amplified using "hG3PDH5, primer-1" (SEQ ID NO: 13) and "hG3PDH3'primer-1" (SEQ ID NO: 14). From this RT-PCR analysis, it was confirmed that fls223 clone was expressed more strongly in fetal liver, although its expression was observed in adult liver (Fig. 4). Then, the cloning of the full-length cDNA was carried out for the purpose of further detailed analysis of this gene.
  • a cDNA prepared with a Marathon TM Ready cDNA (CLONTECH) or a cDNA produced by a Marathon TM cDNA Amplification Kit (CLONTECH) is used as type III, and 5, RACE and 3, RACE (Chenchik A. et al., CLONTECHniques X, 1, 5-8, 1995).
  • the PCI was hot-started using TaKaRa Ex Taq (TaKaRa) and TaqStart TM Antibody (CLONTECH). After the reaction, the band that appeared was recovered using a QIAquick Gel Extraction Kit (manufactured by QIAGEN) and subcloned into pT7Blue-T vector-1 (manufactured by Novagen).
  • fls223 full-length cDNA encodes an open reading frame consisting of 396 amino acids (see SEQ ID NO: 1).
  • the consensus sequence of the protein kinase ATP binding site [Leu, Ile, Val] -Gly-Xaa-Gly-Xaa- [Phe, Tyr, Trp, Met, Gly, Ser, Thr, Asn, His]-[Ser, Gly, Ala] -Xaa- [Leu, Ile, Val, Cys, Ala, Thr] -Xaa-Xaa- [Gly, Ser, Thr, Ala, Cys, Leu, Ile, Val , Met, Phe, Tyr] -Xaa (5 times or 18 times)-[Leu, lie, Val, Met, Phe, Tyr, Trp, Cys, Ser, Thr, Ala, Arg]-[Ala, Ile, Val
  • the B1R gene encodes a protein consisting of 300 amino acids, and contains a protein kinase ATP binding site-like sequence and a consensus sequence for the serine / threonine kinase active site.
  • B1R kinase is an early gene that is expressed as early as several hours after infection with vaccinia virus and then repressed. It has been clarified that mutants with point mutations in this gene stop virus growth during DNA replication, suggesting that B1R kinase controls the replication mechanism of viral DNA. A hypothesis has been proposed (J. Biol. Chem., 264, 21458-21461, 1989).
  • VRK1 also shows clear homology with B1R kinase in regions other than the serine / threonine kinase region. Therefore, it may be involved in the control mechanism of DNA replication of cells, or in a broader sense, the control mechanism of cell proliferation, as in the case of viruses. This is supported by the fact that VRK1 is more strongly expressed in highly proliferative cells-rich tissues such as fetal liver and testis.
  • this gene is also a new serine / thread. It was thought to encode onin kinase. This amino acid sequence showed extremely high homology with VRK1, especially near the kinase region (FIG. 6), and also showed high homology with vaccinia virus B1R kinase (FIG. 7). Based on these facts, it was presumed that this kinase was also closely related to B1R kinase, and was named "Vaccinia virus B1R kinase Related Kinase 2" (VRK2).
  • VRK2 had stronger expression in fetal liver than in adult liver (Fig. 4).
  • RK S2 primer SEQ ID NO: 18
  • RK A2 primer SEQ ID NO: 16
  • VRK2 A primer SEQ ID NO: 19
  • VRK2 B primer SEQ ID NO: 20
  • PCR was carried out under the conditions of “1 minute at 60 ° C, 2 minutes at 72 ° C” for 30 cycles and 5 minutes at 72 ° C.
  • the obtained pattern was analyzed on the Internet (http: // www-genome. Wi.mit. Edu / cgi-bin / contig / rhmapper.pi) on the Internet to obtain a map.
  • VRK1 was located between STS markers ⁇ D14S265 '' and ⁇ AFM063XE7 '' on chromosome 14, and VRK2 was sandwiched between STS markers ⁇ CHL GATA23H01 '' and ⁇ D2S357j '' on chromosome 2. was moved to the position where it was set.
  • the 5 'fragment of VRK1 cDNA (the upstream part from the 546th Hindlll site) and the 5' fragment of the VRK2 cDNA (the upstream part from the 426th EcoRI site) were prepared using Ready-to-Go DNA labeling beads ( by the random primer method using the Pharmacia) Non - 3 2 P] with dCTP It was labeled and used as a probe.
  • the final wash was performed at 50 ° C with 0.1 X SSC, 0.1% SDS, and the image on the filter after hybridization was analyzed using a BAS-2000I I bioimaging analyzer (Fuji Photo Film) (Manufactured by the company).
  • G361 is a cell derived from malignant melanoma
  • A549 is a cell derived from lung cancer
  • SW480 is a cell derived from colon adenocarcinoma
  • Raji is a cell derived from Burkitt lymphoma
  • M0LT-4 is a cell derived from acute lymphoblastic leukemia (T cell)
  • K-562 is a cell derived from chronic myeloid leukemia
  • HeLaS3 is a cell derived from cervical cancer.
  • HL60 is a cell derived from promyelocytic leukemia.
  • VRK1 expression was relatively high in fetal tissues, and very strong expression was observed particularly in fetal liver.
  • Weak VM1 expression was found in most adult tissues, but particularly strong in testis and thymus.
  • the expression pattern of VRK2 was basically the same as that of VRK1, and strong expression was also observed in fetal liver and testis.
  • the expression pattern of VRK1 was different from that of VRK1 in that expression was similarly observed in cancer cell lines, but not in M0LT4.
  • V1S1 primer — (SEQ ID NO: 21), VM1 A1 primer (SEQ ID NO: 22), and VRK2 S1 primer (SEQ ID NO: 23), respectively.
  • the amplified product was cut at the Notl site added to the end of the primer, and a DNA fragment having the correct size was purified by agarose gel electrophoresis.
  • This vector has the EF1 promoter and can express the integrated cDNA strongly in a wide range of mammalian cell lines.
  • clones without mutations such as PCR errors (pCOS / VRKlw, pC0S / VRK2w) are selected for subsequent forced expression and construction of plasmid DNA for further expression.
  • An expression plasmid having an anti-C-Myc antibody epitope sequence (SEQ ID NO: 25) added to the C-terminus was constructed as follows. That is, about 50 ng of the pCOS / VRKlw and pC0S / VRK2w plasmid DNAs were type I, each of which was V1MYC1 primer (SEQ ID NO: 26), VRK1 MYC2 primer (SEQ ID NO: 27), and VRK2 MYC1 primer.
  • a cDNA having a coding sequence with an anti-c-Myc antibody epitope added to the C-terminus was amplified by PCR using I (SEQ ID NO: 28) and VRK2 MYC2 primer (SEQ ID NO: 29).
  • KOD MA polymerase manufactured by Toyobo Co., Ltd.
  • This amplification product was cut with a BajnHI site added to the end of the primer, and a DNA fragment having the correct size was purified by agarose gel electrophoresis. This was cut in advance with BamHI, and incorporated into pcDNA3 vector (Invitrogen) whose terminal was dephosphorylated with Alfa rifophosphatase / CIAP (Takara Shuzo).
  • pcDN A3 / VRKlmyc, pcDNA3 / VRK2myc By sequencing the obtained subclones, clones (pcDN A3 / VRKlmyc, pcDNA3 / VRK2myc) having no mutation such as PCR error were selected and used for the subsequent experiments.
  • Plasmid DNA for expression as a fusion protein with glutathione-S-transferase (GST) protein by Escherichia coli was constructed as follows. That is, pCOS / VRKlw and pC0S / VM2w plasmid DNAs were designated as type I, and they were VRK1 H3 primer (SEQ ID NO: 30), VRK1 H4 primer (SEQ ID NO: 31), and VRK2 H3 primer (sequence). The coding region was amplified by PCR using No. 32) and VRK2 H4 primer (SEQ ID NO: 33).
  • This amplification product was cut with a BamHI site added to the end of the primer, and a DNA fragment having the correct size was purified by agarose gel electrophoresis. This was cut with BajnHI in advance and incorporated into pGEX-5X-l vector (Pharmacia) whose terminal was dephosphorylated with alkaline phosphatase / CIAP (Takara Shuzo). By sequencing the obtained subclones, clones (pGEX / VRKlw, pGEX / VRK2w) having no mutation such as PCR error were selected and used for the subsequent experiments.
  • clones in which a mutation was introduced into the putative ATP-binding site was carried out as follows using Chameleon 1 "Double-Stranded Site-Directed Mutagenesis Kit (manufactured by STRATAGENE). Approximately 1 g of pGEX / VRKlw plasmid DNA, VRK1 KW1 primer (SEQ ID NO: 34), and a selection primer, Selectl primer (SEQ ID NO: 35), are mixed for 5 minutes.
  • pcDNA3 / VRKlmyc plasmid DNA and pcDNA3 plasmid DNA were introduced (transfection) into C0S7 cells by a method using SuperFect (manufactured by Qiagen). That is, about 10 f C0S7 cells were sown in a 10 cm dish, cultured overnight, added with a mixture of 10 ⁇ g of plasmid DNA and 601 SuperFect, and cultured for about 3 hours. After that, the culture solution was replaced with a new one, and after further culturing for 2 days, the cells were removed with a trypsin-EDTA solution and collected.
  • SuperFect manufactured by Qiagen
  • pCOS / VRKlw plasmid DNA and pCOS plasmid DNA were ligated to NIH by a method using a force-ionic phospholipid D0TAP (Boehringer-Mannheim). It was introduced into 3T3 cells. After the transfection, transformed cells were selected by adding G418 (manufactured by GIBC0-BRL) at a final concentration of 500 ⁇ g / ml to the culture solution. From the thus obtained pools of transformed cells, total RNA was prepared by a method using IS0GEN (manufactured by Wako Pure Chemical Industries, Ltd.), and Northern blotting was performed using VRK1 cDNA as a probe.
  • G418 manufactured by GIBC0-BRL
  • Example 9 Expression of VRK1 Protein in Escherichia coli and Kinase Atsushi Wild-type and mutant VRK1 proteins were expressed as a fusion protein with GST protein by Escherichia coli and purified. That is, after cultivating the above-mentioned pGEX / VRKlw and PGEX / VRK1K71W plasmid DNA in Escherichia coli DH5 strain at 37 ° C overnight in 10 ml of 2xYT medium, a part of this was cultured in a new 2xYT medium. After diluting 100-fold, culture was continued at 37 ° C until the 0D at 600 nm became 0.6.
  • IPTG isopropyl-/?-D (-)-thiogalactovyranoside
  • a final concentration of O. lmM was added to a final concentration of O. lmM
  • Escherichia coli was collected by centrifugation, suspended in 13 ⁇ 4 Triton X-100, 13 ⁇ 4 Tween 20, and PBS, and subjected to sonication to disrupt the cells and solubilize the protein. From this solubilized sample, wild-type and mutant VRK1 proteins expressed as fusion proteins with GST protein were purified by affinity purification using glutathione Sepharose 4B (Pharmacia). Purified.
  • Kinase Attay contains wild-type or mutant VRK1 protein 0.2 / g, 50 mM Tris-HCl (PH7.2), ImM dithiothreitol (DTT), 2 mM or 10 mM divalent cathon (Mg, Mn, Zn, Ca), Substrate protein ⁇ 5 ⁇ g, [ ⁇ : 2 P] ATP 3000 Ci / mM, 10 mCi / m 1 (manufactured by Amersham) 1 ⁇ 1 and the total amount was 50 ⁇ 1.
  • a buffer system 40 mM buffer pH 7.4, ImM DTT, and 2.5 mM EGTA were used as a buffer system.
  • histone manufactured by Nakarai
  • casein manufactured by Sigma
  • myelin basic protein / MBP manufactured by Sigma
  • GST GST-IkBa
  • C-terminal of IkB Using the side peptide (SEQ ID NO: 36), a reaction was carried out at 37 ° C. for 30 minutes in the presence of lOrnM Mg.
  • the reaction solution was subjected to SDS-PAGE, and the radioactivity of the phosphorylated protein was analyzed using a BAS200011 Bioimaging Analyzer-1 (Fuji Photo Film Co., Ltd.). The results showed that wild-type VM1 protein phosphorylates casein and GST-1 kB (Fig. 13).
  • a mutant VRK1 in which a mutation was introduced into the putative ATP binding site was used, no phosphorylation was observed, indicating that VM1 is a protein kinase having a general catalytic site.
  • GST protein was not phosphorylated at all by VRK1, phosphorylation in the GST-IkB protein was considered to be occurring not in the GST site but in the IkB protein.
  • IkB is thought to be a factor that negatively regulates the function of NF-kB by forming a complex with NF-kB, a transcriptional regulator. It is widely accepted that IkBa is inactivated by being phosphorylated and rapidly degraded by proteolysis, and activated by releasing NF-kB. NF-kB is thought to be a central transcriptional regulator that triggers a wide range of immune and inflammatory responses, and kinases that phosphorylate IkB are therefore important as target molecules for anti-inflammatory drugs. Since VRK1 has an activity to strongly phosphorylate IkB in vitro, it is possible that VRK1 also participates in the activation of NF-kB by phosphorylating IkB in vivo. Therefore, it was considered that an anti-inflammatory effect or an anti-immune effect could be expected by inhibiting the kinase activity of VRK1 or reducing the amount of protein.
  • a peptide corresponding to the C-terminal sequence of the deduced amino acid sequence of VM1 was synthesized (Suddy Technology I) and mediated by m-maleimide benzoinole-N-hydroxysuccinimide ester (MBS). According to the method described above, the amino-terminal cysteine was bound to keyhole lysate and to mothocyanin (KLH). This was used as an antigen to immunize the egret and obtain an antiserum. From this antiserum, an antibody specifically reacting with the peptide was affinity purified using an affinity column prepared by binding the peptide to Cell mouth fine (manufactured by Seikagaku Corporation).
  • the serine / threonine kinase gene isolated by the present inventors has significant homology to the vaccinia virus gene which has been suggested to be involved in DNA replication and is strongly expressed in highly proliferative cells. Is shown. Furthermore, overexpression of the protein encoded by the gene significantly enhances the proliferative activity of the cells. Therefore, the isolated serine / threonine kinase gene is considered to be particularly involved in the control of cell proliferation and the like. Therefore, a drug targeting the gene of the present invention (such as antisense DNA) or a drug capable of regulating its expression, or a drug capable of controlling the activity of the protein encoded by the gene of the present invention is required. By screening, it is possible to develop cell growth inhibitors and antitumor drugs based on a new mechanism of action. Sequence listing
  • Sequence type nucleic acid
  • AGT TAC AGG TTT ATG ATA ATG GAT CGC TTT GGG AGT GAC CTT CAG AAA 495 Ser Tyr Arg Phe Met lie Met Asp Arg Phe Gly Ser Asp Leu Gin Lys
  • Leu Ser Leu Arg lie Leu Asp lie Leu Glu Tyr lie His Glu His Glu
  • Glu Glu Ala lie Gin Thr Arg Ser Arg Thr Arg Lys Arg Val Gin Lys
  • Sequence type nucleic acid
  • TCC TAC AGA TAT TGT CCC AAT GGG AAC CAC AAA CAG TAT CAG GAA AAT 745 Ser Tyr Arg Tyr Cys Pro Asn Gly Asn His Lys Gin Tyr Gin Glu Asn
  • ATA CCT GTC CTT TTG ATG TTA GTA TTT CTT GCT TTA TTT TTT CTC 1654 lie Pro Val Leu Leu Met Leu Val Phe Leu Ala Leu Phe Phe Leu
  • Cys Glu lie Ala Gin Phe Leu Val Cys Ala His Ser Leu Ala Tyr Asp
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • AAAAATTATC AAAAGGAATT TTGG 24 SEQ ID NO: 20
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid Number of chains: single strand
  • Sequence type nucleic acid

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

明細書
新規なセリン /スレオニンキナーゼ遺伝子 技術分野
本発明は、 新規なセリン /スレオニンキナーゼ遺伝子に関する。 背景技術
胎児の組織には、 活発に増殖を行っている未分化細胞、 高度に活性化されてい る細胞、 また新生血管内皮細胞等が多く含まれている。 胎児の組織におけるこれ ら細胞の活動は厳密な制御下にあり、 個体の成熟に応じて抑制されていく力 制 御を受けるかどうかという点を除けば、 胎児の組織は固形腫癟における状態に類 似した状態にあるといえる。 従って、 胎児の組織に特異的、 あるいはより強く発 現している遺伝子(胎児遺伝子: fetal gene )の一部は、 異常増殖性や、 不死化、 浸潤、 転移、 血管新生といった固形腫瘍に特徴的な現象に関与する遺伝子である 可能性が存在する。 また腫瘍以外の疾病についても、 正常な生体では抑制されて V、る胎児遺伝子が、 異常に活性化されることにより起こるものがあると推測され る。 従って、 胎児遺伝子を単離し、 それらを解析することによって、 腫瘍をはじ めとする様々な疾病に関与する遺伝子を探索し得ると考えられる。
しかし、 このような視点に立った、 胎児遺伝子にのみ着目した組織的な解析に ついては未だほとんど報告例がなく、 これらの遺伝子群についての完全な理解に は遠いというのが現状である。 発明の開示
本発明は、 胎児組織に特異的に発現している遺伝子を単離し、 疾病に関連する 遺伝子を探索することを課題とする。
本発明者らは、 胎児組織の細胞の状態が固形腫瘍の細胞の状態の一つのモデル になり得ると考え、 胎児遺伝子を単離し解析することによって、 腫瘍など疾病に 関与する遺伝子を探索し得ると考えた。 さらに、 その遺伝子を標的にした薬剤等 を設計することにより、 新たな作用機序による医薬品の開発が可能であると考え た。 そこで、 本発明者らは、 かかる考えに基づき、 胎児遺伝子の単離を試みた。 具体的には、 本発明者らは、 サブレッシヨン サブトラクティブ ハイブリダ ィゼーシヨン法により、 胎児肝臓特異的に (あるいは成人肝臓より強く) 発現し ている遺伝子を多く含むサブトラクシヨンライブラリーを作製し、 このライブラ リーよりランダムにクローンを抽出し、 その構造の解析を行った。 これにより、 本発明者らは、 セリン /スレオニンキナーゼ活性部位のコンセンサス配列を含む新 規な遺伝子 (VRK1 ) を単離することに成功した。 また、 本発明者らは、 単離した 遺伝子から推定されるァミノ酸配列を基にデータ一ベース検索を行った。 この結 果、 この遺伝子産物が、 ワクシニアウィルスの DNA複製に関与していると考えられ ている B1Rキナーゼと有意な相同性を示すことを見出した。 さらに、 本発明者らは 、 この遺伝子と非常に高い相同性を持つヒト ESTをデータベース上に見出し、 その 全長 cDNA (VRK2) を単離した。 ノーザンプロット解析により、 種々の細胞におけ る単離した 2つの遺伝子の発現を解析したところ、 これら遺伝子はヒト胎児肝臓 、 精巣や種々の癌細胞株など特に増殖性の高い細胞で強く発現していた。 さらに 、 本発明者等は、 VRK1タンパク質が実際にプロテインキナーゼ活性を有すること を見いだした。
即ち、 本発明は、 新規なヒトセリン/スレオニンキナーゼ遺伝子 「VM1」 およ び 「VRK2」 に関し、 より具体的には、
( 1 ) 配列番号 2に記載のアミノ酸配列からなるタンパク質、 またはその 1も しくは数個のアミノ酸が付加、 欠失もしくは置換された配列を有しセリン /スレ ォニンキナーゼ活性を有するタンパク質、
( 2 ) 配列番号 4に記載のアミノ酸配列からなるタンパク質、 またはその 1も しくは数個のァミノ酸が付加、 欠失もしくは置換された配列を有しセリン /スレ ォニンキナーゼ活性を有するタンパク質、
( 3 ) 配列番号 1に記載の DNA配列またはその相補配列にハイプリダイズする D NA配列によりコードされ、 セリン /スレオニンキナ一ゼ活性を有するタンパク質
( ) 配列番号 3に記載の DNA配列またはその相補配列にハイプリダイズする D NA配列によりコードされ、 セリン /スレオニンキナーゼ活性を有するタンパク質 (5) ( 1) 乃至 (4) のいずれかに記載のタンパク質をコードする DNA、
(6) (5) に記載の DNAを含むベクター、
(7) (6) に記載のベクターを保持する形質転換体、
(8) (7) に記載の形質転換体を培養する工程を含む、 ( 1) 乃至 (4) の いずれかに記載の夕ンパク質の製造方法、
(9) ( 1) 乃至 (4) のいずれかに記載のタンパク質に結合する抗体、
( 10) (5 ) に記載の DNAもしくはその一部に対するアンチセンス DNA、
( 1 1) ( 1 ) 乃至 (4) のいずれかに記載のタンパク質のセリン /スレオニ ンキナーゼ活性を阻害する活性を有する化合物のスクリーニング方法であって、
(a) 被検化合物の存在下で、 ( 1) 乃至 (4) のいずれかに記載のタンパク質 とこれらタンパク質によりリン酸化を受ける基質とを接触させ、 ( 1) 乃至 (4 ) のいずれかに記載のタンパク質のキナーゼ活性を検出する工程、
(b) 工程 (a) において検出されたキナーゼ活性を、 被検化合物非存在下にお いて検出したキナーゼ活性と比較し、 ( 1) 乃至 (4) のいずれかに記載のタン パク質のキナーゼ活性を低下させる化合物を選択する工程、 を含む方法、 に関する。
本発明は、 新規なセリン/スレオニンキナーゼ 「VRK1」 および 「VRK2」 に関す る。 「VRK1」 の cDNAの塩基配列を配列番号: 1に、 タンパク質のアミノ酸配列を配 列番号: 2に示す。 また 「VRK2」 の cDNAの塩基配列を配列番号: 3に、 タンパク質 のアミノ酸配列を配列番号: 4に示す。 「VRK1」 cDNAは、 ワクシニアウィルスの!) NA複製に関与していることが示唆される B1Rキナーゼと有意な相同性を有し、 また その遺伝子は胎児肝臓、 精巣、 種々の癌細胞株など増殖性の高い細胞において強 い発現を示すという特徴を有する。 また、 「VRK1」 タンパク質の過剰発現は NIH3 T3細胞の増殖活性を顕著に増大させる。 これら事実は、 「VRK1」 が、 特に細胞増 殖の制御機構に関与していることを示唆するものである。 「VRK1」 タンパク質は プロティンキナーゼ活性を有するため、 この活性が細胞増殖の制御において重要 な役割を担っていると考えられる。 一方、 「VRK2」 は 「VM1」 と高い相同性を有 し、 特にセリン/スレオニンキナ一ゼ領域において高い相同性を示す。 「VRK2」 は 「VRK1」 と同様に、 B1Rキナーゼと有意な相同性を有し、 またその遺伝子は胎児 肝臓、 精巣、 種々の癌細胞株など増殖性の高い細胞において強い発現を示すとい う特徴を有する。 これら事実から 「VRK2」 も 「VRK1」 と同様の機能を担っている と考えられる。
「VRK1」 タンパク質および 「VRK2」 タンパク質は、 遺伝子組み換え技術を利用 した組換えタンパク質として、 また天然のタンパク質として調製することができ る。 組換えタンパク質は、 例えば、 後述するようにこれらタンパク質をコードす る DNAで形質転換した細胞を培養することにより調製することが可能である。 一方 、 天然のタンパク質は、 当業者に周知の方法、 例えば、 後述の本発明の抗体を用 いたァフィニティ一クロマトグラフィ一を行うことにより、 これらタンパク質の 発現の高い胎児肝臓や精巣、 HeLa S3などの癌細胞株から単離することが可能であ る。 抗体は、 ポリクロ一ナル抗体であってもモノクローナル抗体であってもよい 。 ポリクロ一ナル抗体であれば、 例えば、 これらタンパク質をゥサギなどの小動 物に免疫し血清を得て、 これを、 例えば、 硫安沈殿、 プロテイン A、 プロテイン G カラム、 DEAEイオン交換クロマトグラフィー、 これらタンパク質をカップリング したァフィ二ティ一カラムなどにより精製することで調製することが可能である
。 また、 モノクローナル抗体であれば、 これらタンパク質をマウスなどの小動物 に免疫を行い、 同マウスより脾臓を摘出し、 これをすりつぶして細胞にし、 マウ スミエロ一マ細胞とポリエチレングリコ一ルなどの試薬により融合させ、 これに よりできた融合細胞 (ハイプリ ドーマ) の中から、 これらタンパク質に対する抗 体を産生するクロ一ンを選択する。 次いで、 得られたハイプリ ドーマをマウス腹 腔内に移植し、 同マウスより腹水を回収し、 得られたモノクローナル抗体を、 例 えば、 硫安沈殿、 プロテイン A、 プロテイン Gカラム、 DEAEイオン交換クロマトグ ラフィ一、 「VRK1」 タンパク質または 「VRK2」 タンパク質をカップリングしたァ フィニティーカラムなどにより精製することで調製することが可能である。 なお 、 得られた抗体を人体に投与する目的 (抗体治療など) で使用する場合には、 免 疫原性を低下させるため、ヒト型化抗体またはヒト抗体を用いると有効である。抗 体をヒト型化する方法としては、モノクロナール抗体生産細胞から抗体遺伝子をク ローニングし、その抗原決定部位を既存のヒト抗体に移植する CDRグラフト法など が挙げられる。 また、 免疫系をヒトのものと入れ換えたマウスを免疫して、通常の モノクロナール抗体と同様に直接ヒト抗体を作製こともできる。
また、 当業者であれば、 天然型の 「VRK1」 タンパク質および 「VRK2」 タンパク 質 (配列番号: 2および配列番号: 4) のみならず、 公知の方法を用いてこれら夕 ンパク質中のアミノ酸の置換などを適宜行い、 天然型のタンパク質と実質的に同 一の機能を有するタンパク質を調製することが可能である。 また、 タンパク質の アミノ酸の変異は自然界においても生じうる。 このようにアミノ酸の置換、 欠失 、 付加により天然型のタンパク質に対してアミノ酸配列が変異した変異体であつ て、 セリン /スレオニンキナーゼ活性を有するタンパク質もまた本発明のタンパ ク質に含まれる。 当業者に公知のアミノ酸を改変する方法としては、 例えば、 PC Rによる部位特異的変異誘発システム ( G I BC0-BRL , Gai thersburg , Mary 1 and) 、 ォ リゴヌクレオチドによる部位特異的変異誘発法 (Kramer, W. and Fritz , HJ ( 1987) Methods in Enzymol . , 154: 350-367) 、 Kunkel法 (Methods Enzymo 1.85 , 2763-27 66( 1988 ) ) などが挙げられる。 なお、 アミノ酸の置換は、 通常、 10アミノ酸以内 であり、 好ましくは 6アミノ酸以内であり、 さらに好ましくは 3アミノ酸以内であ る。 置換、 欠失、 付加がなされる部位はセリン/スレオニンキナーゼ活性が保持 される限り特に制限はない。 アミノ酸の付加、 欠失もしくは置換は、 セリン/ス レオニンキナーゼ活性部位のコンセンサス配列に相当する領域及びプロテインキ ナ一ゼ ATP結合部位のコンセンサス配列に相当する領域以外の領域であることが夕 ンパク質の活性上好ましい。 なお、 タンパク質のセリン/スレオニンキナーゼ活 性は、 例えば、 後述の実施例 9に記載の方法により検出することが可能である。 また、 当業者であれば、 ハイブリダィゼーシヨン技術 (Sajnbrook,J et al . ,Mo lecular Cloning 2nd ed.9.47-9.58, Cold Spring Harbor Lab. press, 1989) など を用いて、 「VRK1」 タンパク質または 「VRK2」 タンパク質をコードする DNA (配列 番号: 1または 3) またはその一部を基に、 これと相同性の高い DNAを単離して、 該 DNAから 「VRK1」 タンパク質または 「VRK2」 タンパク質 (配列番号: 2または 4) と 実質的に同一の機能を有するタンパク質を得ることも通常行いうることである。 このように 「VRK1」 タンパク質または 「VRK2」 タンパク質をコードする DNAとハイ プリダイズする DNAがコードするタンパク質であって、 セリン /スレオニンキナー ゼ活性を有するタンパク質も本発明のタンパク質に含まれる。 ハイブリダィズす る DNAを他の生物から単離する場合には、 例えば、 マウス、 ラット、 ゥサギ、 ゥシ などが用いられ、 特に胎児肝臓や精巣などの組織が単離に適している。 これによ り単離される 「VM1」 タンパク質または 「VRK2」 タンパク質と実質的に同一の機 能を有するタンパク質をコードする DNAは、 通常、 「VRK1」 タンパク質または 「V RK2」 タンパク質をコードする DNA (配列番号: 1または 3) と高い相同性を有する 。 高い相同性とは、 アミノ酸レベルにおいて少なくとも 40%以上、 好ましくは 60 %以上、 さらに好ましくは 80%以上の配列の同一性を指す。 特に、 セリン /スレ ォニンキナーゼ活性部位のコンセンサス配列に相当する領域及びプロテインキナ —ゼ ATP結合部位のコンセンサス配列に相当する領域について高い相同性を有する ことが、 タンパク質の活性上好ましい。
このような DNAを単離するためのハイプリダイゼ一シヨンの条件の例を示せば、 以下の如くである。 即ち、 「ExpressHyb Hybridization Solution j ( CLONTECH社 製)を用い、 55°Cで 30分以上プレハイブリダィゼーシヨンを行った後、 標識したプ ローブを添加し、 37°Cから 55°Cで 1時間以上保温することによりハイプリダイゼ一 シヨンを行う。 その後、 2xSSC、 0. 1¾ SDS中、 室温で 20分の洗浄を 3回、 次いで、 lxSSC、 0. 1% SDS中、 37°Cで 20分の洗浄を 1回行う。 より好ましい条件としては、 「ExpressHyb Hybridization Solution j (CLONTECH社製)を用い、 60°Cで 30分以上 プレハイブリダィゼーシヨンを行った後、 標識したプローブを添加し、 60°Cで 1時 間以上保温することによりハイブリダィゼ一シヨンを行う。 その後、 2xSS 0. 1 % SDS中、 室温で 20分の洗浄を 3回、 次いで、 lxSSC、 0. 1% SDS中、 50°Cで 20分の洗 浄を 2回行う。 さらに好ましい条件としては、 「ExpressHyb Hybridization Solu tionj (CLONTECH社製)を用い、 68°Cで 30分以上プレハイブリダィゼ一シヨンを行 つた後、 標識したプローブを添加し、 68°Cで 1時間以上保温することによりハイブ リダィゼ一シヨンを行う。 その後、 2xSSC、 0. 1¾ SDS中、 室温で 20分の洗浄を 3回 、 次いで、 0. 1xSSC、 0. 1% SDS中、 50°Cで 20分の洗浄を 2回行う。
また、 本発明は、 上記本発明のタンパク質をコードする DNAに関する。 本発明の DNAは、 上記本発明のタンパク質をコードしうる限り、 cDNAの他、 ゲノム DNAや合 成 MAなども含まれる。 本発明の DNAは、 組換えタンパク質の生産に利用しうる。 即ち、 本発明の DNA (例えば、 配列番号: 1または 3に記載の DNA) を適当な発現べ クタ一に挿入し、 該ベクタ一を適当な細胞に導入して得た形質転換体を培養し、 発現させたタンパク質を精製することにより組換えタンパク質を調製することが 可能である。 組換えタンパク質の生産に用いる細胞としては、 例えば、 COS細胞、 CH0細胞、 NIH3T3細胞などの哺乳類細胞、 Sf 9細胞などの昆虫細胞、 酵母細胞、 大 腸菌 (E. coli) が挙げられる。 また、 細胞内で組換えタンパク質を発現させるた めのベクターは、 宿主細胞に応じて変動するが、 例えば、 哺乳類細胞のベクター としては pcDNA3 ( Invitrogen社製) や pEF- BOS (Nucleic Acids. Res.1990, 18( 17) , p5322) などが、 昆虫細胞のベクタ一としては 「BAC- to- BAC baculovirus expre ssion systenu (GIBCO BRL社製) などが、 酵母細胞のベクターとしては 「Pichi a Expression Kit」 ( Invitrogen社製) などが、 大腸菌のベクタ一としては pGEX -5X-1 (Pharmacia社製) 、 「QIAexpress systemj (Qiagen社製) などが挙げられ る。 宿主細胞へのベクターの導入は、 例えば、 リン酸カルシウム法、 DEAEデキス トラン法、 カチォニックリボソーム D0TAP (ベ一リンガーマンハイム社製)を用いた 方法、 エレクロポレ一シヨン法、 塩化カルシウム法など用いて行うことができる 。 得られた形質転換体からの組換えタンパク質の精製は、 常法、 例えば、 文献 「 The Qiaexpressionist handbook,Qiagen,Hi lden,Germany」 記載の方法を用いて行 うことが可能である。
なお、 本発明の DNAは、 ゲノム DNAの変異に起因する疾患の遺伝子治療に用いる ことも考えられる。 遺伝子治療に用いる場合には、 本発明の DNAをアデノウイルス ベクタ一 (例えば、 pAdexLcw) ゃレトロウィルスベクター (例えば、 pZIPneo) な どに挿入して、 生体内に投与する。 投与方法は、 ex vivo法であっても、 in vivo 法であってもよい。
また、 本発明のタンパク質は細胞増殖の制御に関与していると考えられるため 、 本発明の DNAもしくはその一部に対するアンチセンス DNAを、 細胞増殖抑制剤や 抗腫瘍薬として利用することも可能である。 アンチセンス DNAは生体内に直接、 ま たは上記ベクターに挿入して投与する。 アンチセンス DNAは当業者に公知の方法で 合成することができる。
また、 本発明は、 本発明のタンパク質のセリン/スレオニンキナ一ゼ活性を阻 害する活性を有する化合物のスクリーニング方法に関する。 このスクリーニング 方法は、 (a ) 被検化合物の存在下で、 本発明のタンパク質とこれらタンパク質 によりリン酸化を受ける基質とを接触させ、 本発明のタンパク質のキナーゼ活性 を検出する工程、 および (b ) 工程 (a ) において検出されたキナーゼ活性を、 被検化合物非存在下において検出したキナーゼ活性と比較し、 本発明のタンパク 質のキナーゼ活性を低下させる化合物を選択する工程を含む。
このスクリーニング方法に用いる被検化合物には特に制限はなく、 低分子化合 物、 タンパク質 (上記本発明の抗体も含む) 、 ペプチドなどが挙げられる。 被検 化合物は、 人工的に合成したものであっても天然のものであってもよい。 基質と しては、 例えば、 カゼイン、 IkBひタンパク質などが挙げられる。 本発明のタンパ ク質のキナーゼ活性は、 例えば、 放射標識したリン酸を持つ ATPを、 本発明のタン パク質および基質を含む反応系に添加し、 基質に結合したリン酸の放射活性を測 定する方法で検出することが可能である。 具体的には、 実施例 9に記載の方法に従 つて検出することができる。 これにより単離された化合物は、 細胞増殖抑制剤や 抗腫瘍薬としての利用が考えられる。 また、 本発明者らは 「VRK1」 タンパク質が 、 IkBひタンパク質をリン酸化することを見いだした。 IkBひはリン酸化されると 速やかな分解を受け、 これにより結合している NF-kBを解放し、 NF-kBが活性化す ると考えられている。 そして、 この NF- kBは広範囲の免疫反応、 炎症反応を引き起 こす中心的な転写調節因子であることもよく知られている。 このため本発明の夕 ンパク質のキナーゼ活性を阻害する化合物は抗炎症剤ゃ抗免疫剤としての利用も 考えられる。 図面の簡単な説明
図 1は、 サブトラクシヨンライブラリー作製に用いたアダプターを示す図であ る。
図 2 Aは、 セリン /スレオニンキナーゼの活性部位のコンセンサス配列を示す図 であり、 図 2 Bは、 プロテインキナーゼ ATP結合部位のコンセンサス配列を示す図 である。
図 3は、 fls223クローンの塩基配列及びアミノ酸配列を示す図である。 図 4は、 胎児肝臓及び成人肝臓における VRK1、 VRK2の発現を検出するための RT -PCR解析の結果を示す電気泳動像である。 図中、 「A」 は成人肝臓 (Adu l ive r) を示 し、 「F」 は胎児肝臓 (Fetal l iver) を示す。 また、 「低」 、 「中」 、 「高」 は、 PCRのサイクルのレベルを示す。
図 5は、 VRK1と B1Rのアミノ酸配列の比較を示す図である。
図 6は、 VRK1と VRK2のアミノ酸配列の比較を示す図である。
図 7は、 VRK2と B1Rのアミノ酸配列の比較を示す図である。
図 8は、 ノーザンプロティングにより、 種々の細胞における VRK1及び VRK2遺伝 子の発現を解析した結果を示す電気泳動像である。
図 9は、 抗 c_Myc抗体によるウエスタンプロッティング解析を示す電気泳動像で ある。 1は pcDNA3プラスミ ド DNA、 2は pcDNA3/V lmycプラスミ ド DNAをそれぞれト ランスフエクシヨンした C0S7細胞の細胞抽出液を用いて検出した。
図 1 0は、 VRK1 cDNAをプローブとしたノ一ザン解析を示す電気泳動像である。 1は pCOSプラスミ ド DNA、 2は pCOS/VRKlwプラスミ ド DNAをそれそれトランスフエク シヨンした NIH3T3細胞より調製した全 RNA、 3はヒト肝臓癌細胞株である HepG2細胞 より調製した全 RNAを用いて検出した。
図 1 1は、 コロニーアツセィの結果を示す顕微鏡写真である。 「pC0S」 は pCOS プラスミ ド DNA、 「pC0S/VMlw」 は pCOS/VMlwプラスミ ド DNAをそれそれ NIH3T3細 胞にトランスフエクシヨンして得られた細胞プールを検出した。
図 1 2は、 精製された GST融合タンパク質の電気泳動像 (CBB染色) を示す。 1は 野生型 VRK1タンパク、 2は変異型 VRK1タンパクを用いて検出した。
図 1 3は、 キナーゼアツセィの結果を表す電気泳動像を示す。 加えたタンパク を上部に 「+」 で示した。 矢印は、 「A」 はリン酸化された GST- VRK1 (自己リン酸 化) 、 「C」 はリン酸化されたカゼイン、 「I」 はリン酸化された GST- IkBひ、 「P 」 はリン酸化された IkBひの C末側べプチドをそれそれ示す。
図 1 4は、 キナーゼアツセィの結果を表す電気泳動像を示す。 それそれ右側に 示した種類と濃度の二価カチオンの存在下で反応を行った。 矢印は、 「A」 はリン 酸化された GST- VRK1 (自己リン酸化) 、 「C」 はリン酸化されたカゼインをそれそ れ示す。 図 1 5は、 抗 VM1ペプチド抗体による、 K562細胞抽出液を用いたゥェ ロッティングの結果を示す電気泳動像である。 発明を実施するための最良の形態
以下、 本発明を実施例によりさらに具体的に説明するが、 本発明は以下の実施 例に制限されるものではない。
[実施例 1 ] サブトラクシヨンライブラリ一の作製
サブトラクシヨンライブラリ一は PCR- SelectT M cDNA Subtraction kit ( CLONT ECH社製)を用い、 ルダ 'ディアチェンコ (Luda Diatchenko) らの方法(Proc . Na tl . Acad. Sc i . USA, Vol . 93, 6025-6030, 1996 )に基本的に従って作製した。 まず、 ヒト胎児肝臓由来 polyA+ MA及びヒト成人肝臓由来 polyA+ RNAより MLV 逆転写酵素を用いた標準的な方法で二本鎖 cDNAを合成した。 次に T4 DNAポリメラ ーゼによりこの cDNA末端を平滑化し、 さらに Rsalにより切断した。 胎児肝臓由来 cDNA (テスター)の一部を 2分割し、 アダプタ一 1とアダプター 2 (図 1 ) をそれそれ 別々にライゲートした。 これにそれそれ過剰量の成人肝臓由来 cDNA(ドライバー) を添加し、 熱変性を行った後、 68°Cで 8時間の 1次ハイブリダイゼーシヨンを行つ た。 次にこれを熱変性せずに混合し、 さらに熱変性した過剰量のドライバ一を添 加し 68°Cで約 16時間の 2次ハイブリダイゼーシヨンを行った。 これを希釈用バッフ ァ一にて希釈し、 75°Cで 7分インキュベートし、 アダプタ一の短い方の鎖を除去し たものを PCRの銪型として用いた。 アダプタ一に対応するプライマ一である 「PCR プライマ一 1」 (配列番号: 5 ) 、 「PCRプライマー 2」 (配列番号: 6 ) を用いた PCRを行うことにより、 両端に異なるアダプタ一を持った cDNA (サブトラクシヨン された cDNA) のみを選択的に増幅した (サブレッシヨン PCR) 。 この一部を銪型と し、 「PCRプライマ一 1」 (配列番号: 5 ) 、 「PCRプライマ一 2」 (配列番号: 6 ) のさらに内側に位置するプライマ一である 「Nested PCRプライマ一 1」 (配列番 号: 7 ) と 「Nested PCRプライマー 2」 (配列番号: 8 ) を用いた PCRを行うこと により、 さらに選択性を増した生成物を得た。 この生成物を 「QIAquick PCR Pur ification kitj (QIAGEN社製)を用いて精製し、 pT7Blue-Tベクタ一(Novagen社製 )に TAクローニング法によりクローニングし、 サブトラクシヨンライブラリ一とし た。
[実施例 2] シークェンスの解読
シークェンシングは、 アルカリ SDS法によって調製したプラスミ ド DNA、 または コロニー PCR産物を銪型とし、 ABI PRISM™ Dye Terminator Cycle Sequencing R eady Reaction Kit With AmplyTaq DNA Polymerase, FSを用いたサイクルシークェ ンシング法により行い、 ABI 377 DNA Sequencerにより解読した。
なお、 コロニー PCRは、 ベクタープライマーである 「M13 P4-22プライマー」 (配 列番号: 9)及び 「M13 P5-22プライマー」 (配列番号: 10 )を含む PCR反応溶液の 中に、 組み換え体を持つコロニーを直接懸濁することにより行った。 PCR反応後、 増幅されたインサート DNAから、 ゲル濾過法などにより未反応のプライマー、 ヌク レオチド等を除き、 シークェンシングの錡型として用いた。
この結果、 fls223クローン(261bp) (後に 「VRK1」 と改名する) は、 セリン/ス レオニンキナーゼの活性部位のコンセンサス配列 ([Leu,Ile,Val,Met,Phe,Tyr,C ys]-Xaa-[His,Tyr」-Xaa-Asp-[Leu, I le , Val , Met , Phe , Tyr ] -Lys-Xaa-Xaa-Asn- [Leu ,Ile,Val,Met,Phe,Tyr,Cys,Thr]-[Leu,Ile,Val,Met,Phe,Tyr,Cys,Thr]-[Leu, He ,Val,Met,Phe,Tyr,Cys,Thr] ) (配列番号: 2に記載のアミノ酸の 173〜185番目 に相当する) (図 2A) を含むアミノ酸配列をコードし得ることが見いだされた (図 3)。 また、 このクローンの塩基配列と完全一致する遺伝子はデータベースに 登録されておらず、 これは未知の遺伝子であった。
[実施例 3] RT- PCRアツセィ
胎児肝臓及び成人肝臓より抽出した polyA+ RNAから、 SUPERSCRIPT™ II RNase H Reverse Transcriptase(GIBCO BRL社製)を用いた標準的な方法により 1本鎖 c DNAを合成し、 その一部を fls223の RT- PCRアツセィの錶型として用いた。 PCRには TaKaRa Taq(TaKaRa社製)を Taqポリメラ一ゼとして用い、 これに TaqStartTM Anti body(CLONTECH社製)を加えることによるホッ 卜スタート法を行った。 fls223増幅 用のプライマーには、 「FLS223 SIプライマー」 (配列番号: 1 1) 及び 「FLS22 3 A1プライマ一」 (配列番号: 12) を用いた。
なお、 対照として、 様々な組織でほぼ均等に発現しているハウスキーピング遺 伝子であり、 様々な誘導物質によっても発現量に影響を受けにくいことが知られ てレヽる G3PDH (glyceraldehyde 3— phosphate dehydrogenase) 遺伝子を用 、た。 G 3PDHは、 「hG3PDH5,プライマ一」 (配列番号: 13 ) 及び 「hG3PDH3'プライマ一 」 (配列番号: 14) を用いて増幅した。 この RT- PCR解析により、 fls223クロ一 ンは成人肝臓にもその発現が見られるものの、 胎児肝臓により強く発現している ことが確認された (図 4) 。 そこで、 次にこの遺伝子のより詳細な解析を目指し 、 全長 cDNAのクローニングを行った。
[実施例 4] RACE (Rap id Amplification of cDNA End)法によるクロ一ニング
Marathon™ Ready cDNA(CLONTECH社製)、 あるいは MarathonTM cDNA Amplifica tion Kit(CLONTECH社製)により作製した cDNAを銪型とし、 5, RACE及び 3, RACE(C henchik A. et al., CLONTECHniques X, 1, 5-8, 1995)を行った。
VRKl/fls223については、 上記 「FLS223 SIプライマ一」 (配列番号: 1 1) 及 び 「FLS223 A1プライマー」 (配列番号: 12 ) を 5' RACE及び 3, RACEのプライマ —として用いた。 これらのプライマーと、 銪型 cDNAのアダプタ一に対応するブラ イマ一 API (配列番号: 15)との組み合わせで、 基本的に 94°Cで 2分、 「94°Cで 30 秒、 68°Cで 4分」 を 5サイクル、 「94°Cで 30秒、 62°Cで 1分、 72°Cで 3分」 を 30サイ クル、 72°Cで 10分の反応を行った。 PCIこは TaKaRa Ex Taq(TaKaRa社製)を用い、 TaqStart™ Antibody(CLONTECH社製)を加えたホットスタート法を行った。 反応後 、 現れたバンドを QIAquick Gel Extraction Kit(QIAGEN社製)を用いて回収し、 p T7B lue- Tベクタ一( Novagen社製)にサブクローニングした。
全塩基配列を解読した結果、 fls223全長 cDNAは 396アミノ酸からなるオープンリ —デイングフレームをコードしていることが明らかとなった (配列番号: 1参照 ) 。 このアミノ酸配列中には、 前半にプロテインキナーゼ ATP結合部位のコンセン サス配列 ([Leu,Ile,Val]-Gly-Xaa-Gly-Xaa-[Phe,Tyr,Trp,Met,Gly,Ser,Thr,Asn ,His]-[Ser,Gly,Ala]-Xaa-[Leu,Ile,Val,Cys,Ala,Thr]-Xaa-Xaa-[Gly,Ser,Thr,A la,Cys,Leu, Ile,Val,Met,Phe,Tyr]-Xaa(5 times or 18 times)- [Leu, lie, Val, Me t,Phe,Tyr,Trp,Cys,Ser,Thr,Ala,Arg]-[Ala,Ile,Val,Pro]-[Leu,Ile,Val,Met,Ph e,Ala,Gly,Cys,Lys,Arg]-Lys) (配列番号: 2に記載のアミノ酸配列の 43〜71番 目に相当する) (図 2 B) と、 オリジナルクローンにも含まれていたセリン/スレ ォニンキナーゼ活性部位のコンセンサス配列が存在し、 この遺伝子産物は 新規の セリン /スレオニンキナーゼであると考えられた。
また、 全デ一夕ベースに対してホモロジ一検索を行ったところ、 この遺伝子は ワクシニアウィルスの MR遺伝子産物(J. Gen. Virol . , 70, 3187-3201, 1989; J . Gen. Virol . , 72, 1349-1376, 1991 )と高い相同性を示すことが判明した (図 5 )。 B1R遺伝子は 300アミノ酸からなるタンパク質をコードしており、 その配列中 にプロティンキナ一ゼ ATP結合部位様配列、 及びセリン /スレオニンキナーゼ活性 部位のコンセンサス配列を含むことから、 セリン /スレオニンキナーゼをコ一ドし ていると考えられている。 fls223全長 cDNAと B1R遺伝子は、 キナーゼ部位のみなら ず、 全体的に比較的高い相同性を示した(Blast searchにおける Smallest Sum pr obabil ity= 2.7e-78) 。 このことから、 この遺伝子を 「Vaccinia virus B1R kin ase Related Kinase 1」 (VRK1 )と命名した。
B1Rキナーゼはワクシニアウィルスの感染後数時間といった初期に発現し、 その 後抑制される初期遺伝子である。 この遺伝子中に点変異を持つ変異株は DNA複製の 過程でウィルスの増殖が停止することが解明されており、 この事実から、 B1Rキナ —ゼがウィルス DNAの複製機構を制御しているのではないかという仮説が提唱され ている(J. Biol . Chem.,264, 21458-21461, 1989)。
VRK1は、 セリン /スレオニンキナーゼ領域以外の部分においても B1Rキナーゼと 明らかな相同性を示している。 従って、 ウィルスにおける場合と同様に細胞の DN A複製の制御機構、 あるいはより広い意味での細胞増殖の制御機構に関与している ことが考えられる。 このことは、 VRK1が胎児肝臓や精巣などの増殖性の高い細胞 が多い組織でより強く発現しているという事実からも裏付けられる。
さらにデーターベース検索において、 VRK1と非常に高いホモロジ一を持つパブ リックの 「human EST - H80169j が存在することも明らかとなった。 5' RACE及び 3, RACEのプライマ一として、 「RK A2プライマー」 (配列番号: 1 6 ) 及び 「RK SIプライマ一」 (配列番号: 1 7 ) を用い、 この遺伝子の全長 cDNAのクロ一ニン グを VRK1と同様の方法で行ない全塩基配列を決定したところ、 この遺伝子は 508ァ ミノ酸からなるオープンリーディングフレームをコードしており (配列番号: 3 参照) 、 そのアミノ酸配列中にセリン/スレオニンキナーゼ活性部位のコンセンサ ス配列が存在することが判明した。 このことから、 この遺伝子も新規セリン/スレ ォニンキナーゼをコードするものであると考えられた。 このアミノ酸 配列は、 特 にキナーゼ領域付近において VRK 1と非常に高い相同性を示し(図 6 )、 またワクシ ニァウィルス B1Rキナーゼとも高い相同性を示した(図 7 )。 これらの事実から、 このキナーゼも B 1Rキナーゼと密接な関係にあることが推測されたため、 「Vacc i nia virus B1R kinase Related Kinase 2」 (VRK2 )と命名した。
なお、 VRK2においても RT-PCR法において胎児肝臓に成人肝臓よりも強い発現が あることが確かめられた (図 4 ) 。 RT- PCRのプライマ一には、 「RK S2プライマー 」 (配列番号: 1 8 ) 及び 「RK A2プライマ一」 (配列番号: 1 6 ) を用いた。
[実施例 5 ] クロモゾームマッピング
GENEBRIDGE 4 Radiation Hybrid Panel (Research Genetics, In )を用い、 V Ml及び VRK2のクロモゾームマッピング(Nature Genetics, 7, 22-28, 1994)を行 つた。 このパネルの DNAを踌型とし、 VRK1の場合は上記の 「FLS223 SIプライマ一 」 (配列番号: 9 ) と 「FLS223 A1プライマ一」 (配列番号: 1 2 ) の組み合わせ により、 94°Cで 5分、 「94°Cで 30秒、 72°Cで 2分」 を 5サイクル、 「94 °Cで 30秒、 68°Cで 2分」 を 30サイクル、 72°Cで 3分の条件で PCRを行った。 また VRK2については 、 「VRK2 Aプライマー」 (配列番号: 1 9 )と、 「VRK2 Bプライマー」 (配列番号: 2 0 )の組み合わせにより、 94°Cで 3分、 「94°Cで 30秒、 60°Cで 1分、 72°Cで 2分」 を 30サイクル、 72°Cで 5分の条件で PCRを行った。 得られたパターンをインターネ ッ卜上のデ一夕べ一ス (http : //www - genome. wi .mit. edu/cgi- bin/contig/ rhmappe r. pi )において解析し、 マップを得た。
この結果、 VRK1は第 14番染色体の STSマ一カー 「D14S265」 と 「AFM063XE7」 に挟 まれた位置に、 また VRK2は、 第 2番染色体の STSマ一カー 「CHL GATA23H01」 と 「 D2S357j に挟まれた位置にマツビングされた。
[実施例 6 ] ノーザン解析
様々なヒト正常組織と癌細胞株における VRK1及び VRK2 mMAの発現を、 ノーザン プロッ ト法により解析した(図 8 )。
VRK1 cDNAの 5'側断片 (546番目の Hindl l lサイ 卜より上流部分) 及び VRK2 cDNA の 5,側断片 (426番目の EcoRIサイ 卜より上流部分) を、 Ready- to Go DNA label 1 ing beads (Pharmacia社製)を用いたランダムプライマー法により [ひ-3 2 P]dCTPで ラベルし、 プローブとして用いた。 Multiple Tissue Northern ( TN) Blot - Hu man, Human I I , Human Fetal I I , Human Cel l line (CLONTECH社製)を用い、 Expr essHyb Hybridization Solution (CLONTECH社製)中で、 メーカ一推奨の方法に従 い、 68°Cでハイブリダィゼーシヨンを行った。 最終的な洗浄は、 0. 1 X SSC, 0.1 % SDSにて 50°Cで行い、 ハイブリダィゼーシヨンを行ったフィル夕一上のイメージ を、 BAS-2000I Iバイオイメージングアナライザー (富士写真フィルム社製) によ つて解析した。
なお、 図 8中の 「G361」 は悪性黒色腫由来細胞であり、 「A549」 は肺癌由来細 胞であり、 「SW480」 は結腸腺癌由来細胞であり、 「Raji」 はバーキットリンパ腫 由来細胞であり、 「M0LT-4」 は急性リンパ芽球性白血病 (T細胞) 由来細胞であり 、 「K- 562」 は慢性骨髄性白血病由来細胞であり、 「HeLaS3」 は子宮頸部癌由来細 胞であり、 「HL60」 は前骨髄性白血病由来細胞である。
この結果、 VRK1の発現は胎児の組織において比較的高く、 特に胎児肝臓に非常 に強い発現がみられた。 ほとんどの成人の組織に弱い VM1の発現が見られたが、 精巣、 及び胸腺には特に強い発現が見られた。 また癌細胞株では、 調べた 8種の細 胞のうち 6種の細胞において非常に強い発現が観察された。
また、 VRK2の発現パターンも基本的には VRK1の場合と同様であり、 やはり胎児 肝臓及び精巣に強い発現が見られた。 癌細胞株にも同様に強い発現が見られたが 、 M0LT4には全く発現が見られない点で、 VRK1の発現パターンと異なっていた。
[実施例 7 ] 発現用ブラスミ ド DNAの構築
VRK1および VRK2の全コーディング領域を含む cDNAを、 それぞれ V 1 S1プライマ —(配列番号: 2 1 )と、 VM1 A1プライマー(配列番号: 2 2 )、 および VRK2 S1プ ライマー(配列番号: 2 3 )と、 VRK2 A1プライマ一(配列番号: 2 4 )を用いた PCR により、 ヒト胎児肝臓由来 polyA+RNAより合成した cDNAから増幅した。 この増幅産 物を、 プライマ一の末端に付加した Notlサイ 卜で切断し、 ァガロースゲル電気泳 動によって正しいサイズを持つ DNA断片を精製した。 これを、 あらかじめ Notlで切 断し、 アル力リフォスファタ一ゼ /CIAP (宝酒造社製)により末端を脱リン酸ィ匕した pCOSベクタ一に組み込んだ。 このべクタ一は EF1ひプロモーターを持ち、 広範な哺 乳動物細胞株において、 組み込んだ cDNAを強く発現することができる。 得られた サブクロ一ンをシークェンシングすることにより、 PCRエラ一などの変異がないク ローン(pCOS/VRKlw, pC0S/VRK2w)を選択し、 以降の強制発現や、 さらなる発現用 プラスミ ド DNAの構築に用いた。
C末端に抗 C- Myc抗体のェピト一プ配列(配列番号: 2 5 )を付加した発現用ブラ スミ ドは、 以下の様にして構築した。 すなわち、 pCOS/VRKlwおよび pC0S/VRK2wプ ラスミ ド DNA約 50ngを銪型とし、 それそれ V 1 MYC1プライマー(配列番号: 2 6 ) と VRK1 MYC2プライマ一(配列番号: 2 7 )、 および VRK2 MYC1プライマ一(配列番号 : 2 8 )と VRK2 MYC2プライマー(配列番号: 2 9 )を用いた PCRによって C末に抗 c- Myc抗体のェピトープが付加されたコ一ディング配列を持つ cDNAを増幅した。 この 際 DNAポリメラーゼとして、 KOD MAポリメラ一ゼ (東洋紡績社製) を用いた。 こ の増幅産物を、 プライマーの末端に付加した BajnHIサイ トで切断し、 ァガロースゲ ル電気泳動により正しいサイズを持つ DNA断片を精製した。 これを、 あらかじめ B amHIで切断し、 アル力リフォスファタ一ゼ /CIAP (宝酒造社製)により末端を脱リン 酸化した pcDNA3ベクタ一( Inv i trogen社製)に組み込んだ。 得られたサブクローン をシ一クェンシングすることにより、 PCRェラーなどの変異がないクロ一ン( pcDN A3/VRKlmyc , pcDNA3/VRK2myc )を選択し以降の実験に用いた。
大腸菌による、 グル夕チオン- S-トランスフェラ一ゼ(GST )タンパク質との融合 タンパク質としての発現用プラスミ ド DNAは以下のようにして構築した。 すなわち 、 pCOS/VRKlwおよび pC0S/VM2wプラスミ ド DNAを錶型とし、 それそれ VRK1 H3ブラ イマ一(配列番号: 3 0 )と VRK1 H4プライマ一(配列番号: 3 1 )、 および VRK2 H3 プライマー(配列番号: 3 2 )と VRK2 H4プライマ一(配列番号: 3 3 )を用いた PCR によって、 コーディング領域を増幅した。 この増幅産物を、 プライマ一の末端に 付加した BamHIサイ 卜で切断し、 ァガロース電気泳動により正しいサイズを持つ D NA断片を精製した。 これを、 あらかじめ BajnHIで切断し、 アルカリフォスファタ一 ゼ /CIAP (宝酒造社製)により末端を脱リン酸化した pGEX-5X-lベクタ一(Pharmacia 社製)に組み込んだ。 得られたサブクローンをシークェンシングすることにより、 PCRエラーなどの変異がないクローン(pGEX/VRKlw, pGEX/VRK2w)を選択し以降の実 験に用いた。
また、 キナーゼ触媒部位における推定 ATP結合サイ 卜へ変異を導入したクローン (配列番号: 2のアミノ酸配列の 71番目の Lysを Trpに置換)の作製は、 Chameleon1" Double- Stranded Site-Directed Mutagenesis Kit( STRATAGENE社製)を用い、 以 下の様に行った。 すなわち、 pGEX/VRKlwプラスミ ド DNA約 1 gと、 VRK1 KW1プライ マ一(配列番号: 3 4 )、 および選択用プライマ一である Selectlプライマ一(配列 番号: 3 5 )を混合し、 これを 5分間煮沸することによって熱変性した。 これを、 室温で 30分保温することにより変異を含む両プライマーとプラスミ ド DNAとをァニ 一リングさせた。 次に、 基質塩基と DNAポリメラーゼ等を加えることにより、 この プライマ一から新しい DNA鎖を合成した。 これを Pstlで切断することにより野生型 のプラスミ ド MAを切断し、 XLmutSコンビテント細胞に導入した。 一晩液体培養し た後プラスミ ド DNAを抽出し、 さらに混在する野生型プラスミ ド DNAを Pstlにより 切断した後、 再びコンビテント細胞に導入した。 シングルコロニーをいくつか単 離し、 それそれをシークェンシングすることにより、 変異が導入されたクローン (PGEX/VRK1K71W)を選択した。
[実施例 8 ] 哺乳類細胞株での発現
pcDNA3/VRKlmycプラスミ ド DNA、 および pcDNA3プラスミ ド DNAの約 10〃gを、 Sup erFect (Qiagen社製) を用いた方法により、 C0S7細胞に導入 (トランスフエクシ ヨン) した。 すなわち、 約 10f個の C0S7細胞を 10cmディッシュに蒔き、 一晩培養し た後、 10〃gのプラスミ ド DNAと 60 1の SuperFectの混合物を添加し、 約 3時間培養 を行った。 その後培養液を新しいものに交換し、 さらに 2日間培養した後、 細胞を トリプシン- EDTA液ではがして回収した。 PBSで細胞を一度洗浄した後、 RIPAバッ ファー(1% NP- 40、 10mM トリス-塩酸 ρΗ7· 2、 0. 1 デォキシコール酸ナトリウム、 0. 1% SDS, 0. 15 塩化ナトリウム、 ImM EDTA, 10〃g/mlァプロチニン、 ImM P SF )中で細胞を破壊し、 これを遠心する事によって細胞抽出液を得た。 この細胞抽出 液を SDSゲル電気泳動(SDS- PAGE )により分離し、 抗 c- Myc抗体 ( SANTA CRUZ社製) を用いてウエスタンブロッテイングを行うと、 pcDNA3/VRKlmycプラスミ ド DNAをト ランスフエクシヨンした場合に特異的に約 50kDaのバンドが現れ、 VRKlmycタンパ ク質が発現しているものと考えられた (図 9) 。
次に、 pCOS/VRKlwプラスミ ド DNA、 および pCOSプラスミ ド DNAの約 7. 5〃gを、 力 チォニックリン脂質 D0TAP (ベーリンガ一マンハイム社製)を用いた方法により NIH 3T3細胞に導入した。 トランスフエクシヨン後、 培養液に終濃度 500〃g/mlの G418 ( GIBC0- BRL社製) を添加することにより、 形質転換された細胞の選択を行った。 こうして得られたそれぞれの形質転換細胞のプールより、 全 RNAを IS0GEN (和光純 薬社製)を用いた方法により調製し、 VRK1 cDNAをプローブとしてノーザンプロッ ティングを行った。 その結果、 pCOS/VRKlwプラスミ ド DNAをトランスフエクシヨン して得られた細胞プールには、 VRK1 mRNAが発現していることが確認された (図 1 0) 。 これらの細胞プールを用い、 軟寒天培地中におけるコロニー形成能を調べた (コロニーアツセィ) 。 すなわち、 2x10 '個の細胞を、 融解した 0.4% SeaPlaqueァ ガロース (宝酒造社製) を含む 10 ゥシ胎児血清、 DMEM (ダルベッコ変法イーグル 培養液) 中に懸濁し、 これを 0.53% SeaPlaqueァガロース、 10%ゥシ胎児血清、 DM EMによって作製したボトムァガロースの上に重層した。 2週間ほど培養を行った後 観察すると、 pCOS/VRKlwプラスミ ド DNAをトランスフエクシヨンすることによって 得られた細胞プールの場合、 pCOSプラスミ ド DNAの場合に比較し、 明らかにサイズ の大きい細胞コロニーが多数形成されていた。 このことから、 VRK1を過剰発現す ることにより、 細胞に異常な増殖活性が与えられることが示唆された (図 11 ) 。
[実施例 9 ] 大腸菌における VRK1タンパク質の発現とキナーゼアツセィ 大腸菌により、 GSTタンパク質との融合タンパク質として、 野生型および変異型 の VRK1タンパク質を発現させ、 精製を行った。 すなわち、 上記 pGEX/VRKlw、 およ び PGEX/VRK1K71Wプラスミ ド DNAを保持している大腸菌 DH5ひ株を、 2xYT培地 10ml中 で 37°C—晩培養した後、 この一部を新たな 2xYT培地で 100倍に希釈し、 600nmにお ける 0Dが 0.6になるまで 37°Cで培養を続けた。 その後 IPTG (イソプロピル-/? -D ( - ) -チォガラクトビラノシド) を終濃度 O. lmMになるように添加し、 さらに培養を数 時間続けた。 大腸菌を遠心により集め、 1¾ TritonX- 100、 1¾ Tween 20、 PBSに懸 濁し、 超音波処理を施すことにより、 細胞を破壊し、 夕ンパク質を可溶化させた 。 この可溶化サンプルより、 グル夕チオンセファロ一ス 4B(Pharmac ia社製)を用い たァフィ二ティ一精製によって、 GSTタンパク質との融合タンパク質として発現さ れた野生型、 および変異型の VRK1タンパク質を精製した。 これらのタンパク質を SDS- PAGEにかけ、 クーマシ一(CBB )染色を行い、 純度を確認した (図 12) 。 また同 様にして、 GSTタンパク質、 および GST- IkB o:タンパク質もそれそれ調製した。 キナーゼアツセィは、 野生型または変異型 VRK1タンパク質 0.2 /g、 50mM トリ ス塩酸 (PH7.2 ) 、 ImM ジチオスレィ トール(DTT)、 2mM あるいは 10mM 二価カチォ ン(Mg, Mn, Zn, Ca)、 基質タンパク質 〜5〃g、 [ァ- :2P]ATP 3000Ci/mM, 10mCi/m 1 (アマシャム社製) 1〃1で全量 50〃1として行った。 また、 いくつかの実験におい てはバッファ一系として、 40mM へぺス pH7.4、 ImM DTT、 2.5mM EGTAを用いた。 具体的には、 まず、 基質タンパク質としてヒストン (ナカライ社製) 、 カゼィ ン (Sigma社製) 、 ミエリン塩基性タンパク質/ MBP( Sigma社製)、 GST、 GST- IkB a 、 並びに IkBひの C末側ペプチド(配列番号: 36) を用い、 lOrnM Mgの存在下で 37°C 、 30分間の反応を行った。 反応液を SDS- PAGEにかけ、 リン酸化されたタンパク質 の放射活性を BAS20001 1バイオイメージングアナライザ一(富士写真フィルム社製 )によって解析した。 その結果、 野生型 VM1タンパク質は、 カゼインおよび GST - 1 kBひをリン酸化する事が示された (図 13) 。 一方、 推定 ATP結合部位に変異を導入 した変異 VRK1を用いた場合にはリン酸化は観察されず、 このことから VM1が一般 的な触媒部位を持つプロテインキナーゼであることが示された。 また、 VRK1によ つて GST夕ンパク質は全くリン酸化されないことから、 GST- IkBひタンパク質にお けるリン酸化は、 GST部位ではなく、 IkBひタンパク質内で起こっているものと考 えられた。
IkBひは転写調節因子である NF-kBと複合体を形成することにより NF-kBの機能を 負に制御している因子であると考えられている。 また、 IkB aは自身がリン酸化さ れることにより速やかなタンパク質分解を受けて失活し、 NF-kBが解放されること により活性化するという機構が広く受け入れられている。 NF- kBは広範囲の免疫反 応、 炎症反応を引き起こす中心的な転写調節因子であると考えられており、 従つ て IkBひをリン酸化するキナーゼは抗炎症薬の標的分子として重要である。 VRK1は in vitroにおいて IkBひを強く リン酸化する活性を有することから、 in vivoにお いても IkBひをリン酸化することにより、 NF-kBの活性化に関与している可能性が 考えられる。 よって、 VRK1のキナーゼ活性を阻害すること、 あるいはタンパク質 量を減少することなどにより、 抗炎症効果、 あるいは抗免疫効果が期待できるも のと考えられた。
次に、 VRK1リン酸化における二価カチオンの要求性を検討した (図 14) 。 終濃 度 2mM、 あるいは lOmMの各種二価カチオン(Mg, Mn, Zn, Ca)の存在下で、 基質タン パク質としてカゼインを用いてキナーゼ反応を行った。 その結果、 Zn以外の二価 カチオンにおいては、 VRK1はリン酸化活性を持つことが示された。 しかしその程 度は異なっており、 特に Mn存在下に強い活性を示すことが明らかとなった。
[実施例 1 0 ] VM1夕ンパク質に対する抗体の作製
VM1推定アミノ酸配列の C末端の配列に相当するべプチド (配列番号: 37) を合 成し (サヮディテクノロジ一) 、 m-マレイミ ドベンゾィノレ- N-ヒドロキシスクシ二 ミ ドエステル(MBS )を介した方法により、 そのアミノ末端のシスティンでキーホー ルリンぺッ 卜へモシァニン(KLH)に結合させた。 これを抗原としてゥサギに免疫し 、 抗血清を得た。 この抗血清より、 ペプチドに特異的に反応する抗体を、 ぺプチ ドをセル口ファイン (生化学工業社製) に結合して作製したァフィ二ティカラム を用いてァフィ二ティ精製した。 VRK1を強く発現していることがノーザン解析に より示されている K562細胞の細胞抽出液を用いてウエスタン解析を行ったところ 、 分子量約 50kDaのシングルバンドが染色され、 VRK1タンパク質を特異的に認識し ているものと考えられた (図 15 ) 。 産業上の利用可能性
本発明者らにより単離されたセリン /スレオニンキナーゼ遺伝子は、 DNA複製に 関与していることが示唆されているワクシニアウイルス遺伝子と有意な相同性を 有し、 また増殖性の高い細胞で強い発現を示す。 さらに該遺伝子がコードする夕 ンパク質の過剰発現は細胞の増殖活性を顕著に高める。 このため単離したセリン /スレオニンキナーゼ遺伝子は、 特に、 細胞増殖の制御などに関与していると考 えられる。 従って、 本発明の遺伝子を標的とした薬剤 (アンチセンス DNAなど) や その発現を調節することが可能な薬剤、 あるいは本発明の遺伝子によりコードさ れるタンパク質の活性を調節することが可能な薬剤をスクリーニングすることに より、 新しい作用機序に基づく細胞増殖阻害剤ゃ抗腫瘍薬の開発を行うことが可 能であると考えられる。 配列表
( 1 ) 出願人氏名 :株式会社中外分子医学研究所
(2) 発明の名称:新規なセリン /スレオニンキナーゼ遺伝子
( 3 ) 整理番号: C I— 805 PCT
( 4 ) 出願番号:
(5) 出願日 :
( 6 ) 優先権のもととなった出願をした国名および出願番号: 日本国、 特願平 8 一 357864号
(7) 優先日 :平成 8年 12月 26曰
(8) 配列の数: 37 配列番号 : 1
配列の長さ : 1662
配列の型 : 核酸
鎖の数 : 二本鎖
トポロジー : 直鎖状
配列の種類 : cDNA to mRNA
配列の特徴
特徴を表す記号: CDS
存在位置: 76..1266
西己 列
CCGAGTTACG AGTCGGCGAA AGCGGCGGGA AGTTCGTACT GGGCAGAACG CGACGGGTCT 60 GCGGCTTAGG TGAAA ATG CCT CGT GTA AAA GCA GCT CAA GCT GGA AGA CAG 111
Met Pro Arg Val Lys Ala Ala Gin Ala Gly Arg Gin
1 5 10
AGC TCT GCA AAG AGA CAT CTT GCA GAA CAA TTT GCA GTT GGA GAG ATA 159 Ser Ser Ala Lys Arg His Leu Ala Glu Gin Phe Ala Val Gly Glu lie
15 20 25
ATA ACT GAC ATG GCA AAA AAG GAA TGG AAA GTA GGA TTA CCC ATT GGC 207 l ie Thr Asp Met Ala Lys Lys Glu Trp Lys Val Gly Leu Pro l ie Gly
30 35 40
CAA GGA GGC TTT GGC TGT ATA TAT CTT GCT GAT ATG AAT TCT TCA GAG 255 Gin Gly Gly Phe Gly Cys l ie Tyr Leu Ala Asp Met Asn Ser Ser Glu
45 50 55 60
TCA GTT GGC AGT GAT GCA CCT TGT GTT GTA AAA GTG GAA CCC AGT GAC 303 Ser Val Gly Ser Asp Ala Pro Cys Val Val Lys Val Glu Pro Ser Asp
65 70 75
AAT GGA CCT CTT TTT ACT GAA TTA AAG TTC TAC CAA CGA GCT GCA AAA 351 Asn Gly Pro Leu Phe Thr Glu Leu Lys Phe Tyr Gin Arg Ala Ala Lys
80 85 90
CCA GAG CAA ATT CAG AAA TGG ATT CGT ACC CGT AAG CTG AAG TAC CTG 399 Pro Glu Gin l ie Gin Lys Trp l ie Arg Thr Arg Lys Leu Lys Tyr Leu
95 100 105
GGT GTT CCT AAG TAT TGG GGG TCT GGT CTA CAT GAC AAA AAT GGA AAA 447 Gly Val Pro Lys Tyr Trp Gly Ser Gly Leu His Asp Lys Asn Gly Lys
110 115 120
AGT TAC AGG TTT ATG ATA ATG GAT CGC TTT GGG AGT GAC CTT CAG AAA 495 Ser Tyr Arg Phe Met l ie Met Asp Arg Phe Gly Ser Asp Leu Gin Lys
125 130 135 140
ATA TAT GAA GCA AAT GCC AAA AGG TTT TCT CGG AAA ACT GTC TTG CAG 543 l ie Tyr Glu Ala Asn Ala Lys Arg Phe Ser Arg Lys Thr Val Leu Gin
145 150 155
CTA AGC TTA AGA ATT CTG GAT ATT CTG GAA TAT ATT CAC GAG CAT GAG 591 Leu Ser Leu Arg l ie Leu Asp l ie Leu Glu Tyr l ie His Glu His Glu
160 165 170
TAT GTG CAT GGA GAT ATC AAG GCC TCA AAT CTT CTT CTG AAC TAC AAG 639 Tyr Val His Gly Asp He Lys Ala Ser Asn Leu Leu Leu Asn Tyr Lys
175 180 185 AAT CCT GAC CAG GTG TAC TTG GTA GAT TAT GGC CTT GCT TAT CGG TAC 687 Asn Pro Asp Gin Val Tyr Leu Val Asp Tyr Gly Leu Ala Tyr Arg Tyr
190 195 200
TGC CCA GAA GGA GTT CAT AAA GAA TAC AAA GAA GAC CCC AAA AGA TGT 735 Cys Pro Glu Gly Val His Lys Glu Tyr Lys Glu Asp Pro Lys Arg Cys
205 210 215 220
CAC GAT GGC ACT ATT GAA TTC ACG AGC ATC GAT GCA CAC AAT GGT GTG 783 His Asp Gly Thr l ie Glu Phe Thr Ser l ie Asp Ala His Asn Gly Val
225 230 235
GCC CCA TCA AGA CGT GGT GAT TTG GAA ATA CTT GGT TAT TGC ATG ATC 831 Ala Pro Ser Arg Arg Gly Asp Leu Glu l ie Leu Gly Tyr Cys Met l ie
240 245 250
CAA TGG CTT ACT GGC CAT CTT CCT TGG GAG GAT AAT TTG AAA GAT CCT 879 Gin Trp Leu Thr Gly His Leu Pro Trp Glu Asp Asn Leu Lys Asp Pro
255 260 265
AAA TAT GTT AGA GAT TCC AAA ATT AGA TAC AGA GAA AAT ATT GCA AGT 927 Lys Tyr Val Arg Asp Ser Lys l ie Arg Tyr Arg Glu Asn l ie Ala Ser
270 275 280
TTG ATG GAC AAA TGT TTT CCT GAG AAA AAC AAA CCA GGT GAA ATT GCC 975 Leu Met Asp Lys Cys Phe Pro Glu Lys Asn Lys Pro Gly Glu l ie Ala
285 290 295 300
AAA TAC ATG GAA ACA GTG AAA TTA CTA GAC TAC ACT GAA AAA CCT CTT 1023 Lys Tyr Met Glu Thr Val Lys Leu Leu Asp Tyr Thr Glu Lys Pro Leu
305 310 315
TAT GAA AAT TTA CGT GAC ATT CTT TTG CAA GGA CTA AAA GCT ATA GGA 1071 Tyr Glu Asn Leu Arg Asp l ie Leu Leu Gin Gly Leu Lys Ala l ie Gly
320 325 330
AGT AAG GAT GAT GGC AAA TTG GAC CTC AGT GTT GTG GAG AAT GGA GGT 1119 Ser Lys Asp Asp Gly Lys Leu Asp Leu Ser Val Val Glu Asn Gly Gly
Figure imgf000026_0001
Figure imgf000026_0002
遨ヽ
裏一
ίs u一 30 35 40
Gin Gly Gly Phe Gly Cys He Tyr Leu Ala Asp Met Asn Ser Ser Glu 45 50 55 60
Ser Val Gly Ser Asp Ala Pro Cys Val Val Lys Val Glu Pro Ser Asp
65 70 75
Asn Gly Pro Leu Phe Thr Glu Leu Lys Phe Tyr Gin Arg Ala Ala Lys
80 85 90
Pro Glu Gin l ie Gin Lys Trp l ie Arg Th Arg Lys Leu Lys Tyr Leu
95 100 105
Gly Val Pro Lys Tyr Trp Gly Ser Gly Leu His Asp Lys Asn Gly Lys
110 115 120
Ser Tyr Arg Phe Met l ie Met Asp Arg Phe Gly Ser Asp Leu Gin Lys 125 130 135 140 l ie Tyr Glu Ala Asn Ala Lys Arg Phe Ser Arg Lys Thr Val Leu Gin
145 150 155
Leu Ser Leu Arg l ie Leu Asp l ie Leu Glu Tyr l ie His Glu His Glu
160 165 170
Tyr Val His Gly Asp l ie Lys Ala Ser Asn Leu Leu Leu Asn Tyr Lys
175 180 185
Asn Pro Asp Gin Val Tyr Leu Val Asp Tyr Gly Leu Ala Tyr Arg Tyr
190 195 200
Cys Pro Glu Gly Val His Lys Glu Tyr Lys Glu Asp Pro Lys Arg Cys 205 210 215 220
His Asp Gly Thr l ie Glu Phe Thr Ser He Asp Ala His Asn Gly Val
225 230 235
Ala Pro Ser Arg Arg Gly Asp Leu Glu l ie Leu Gly Tyr Cys Met lie
240 245 250
Gin Trp Leu Thr Gly His Leu Pro Trp Glu Asp Asn Leu Lys Asp Pro
255 260 265 Lys Tyr Val Arg Asp Ser Lys l ie Arg Tyr Arg Glu Asn l ie Ala Ser
270 275 280
Leu Met Asp Lys Cys Phe Pro Glu Lys Asn Lys Pro Gly Glu l ie Ala
285 290 295 300
Lys Tyr Met Glu Thr Val Lys Leu Leu Asp Tyr Thr Glu Lys Pro Leu
305 310 315
Tyr Glu Asn Leu Arg Asp l ie Leu Leu Gin Gly Leu Lys Ala l ie Gly
320 325 330
Ser Lys Asp Asp Gly Lys Leu Asp Leu Ser Val Val Glu Asn Gly Gly
335 340 345
Leu Lys Ala Lys Thr H e Thr Lys Lys Arg Lys Lys Glu He Glu Glu
350 355 360
Ser Lys Glu Pro Gly Val Glu Asp Thr Glu Trp Ser Asn Thr Gin Thr
365 370 375 380
Glu Glu Ala l ie Gin Thr Arg Ser Arg Thr Arg Lys Arg Val Gin Lys
385 390 395 配列番号 : 3
配列の長さ : 1833
配列の型 : 核酸
鎖の数 : 二本鎖
トポロジー : 直鎖状
配列の種類 : cDNA to mRNA
配列の特徴
特徴を表す記号: CDS
存在位置: 131. . 1657
西己 列
CTGCACTGCG AGGCCGACGC AGCTGGAGAG AAGTTAGGCA GGTCCTAGGG AGGGCAGGCT 60 CGAGTGCTGG GCCCGCCTCC CCGCGGGACT GTAGGCCCGG GGGCTCCGCC TCGTCGCAGC 120 GGCAGAAGTG ATG CCA CCA AAA AGA AAT GAA AAA TAC AAA CTT CCT ATT 169 Met Pro Pro Lys Arg Asn Glu Lys Tyr Lys Leu Pro l ie 1 5 10
CCA TTT CCA GAA GGC AAG GTT CTG GAT GAT ATG GAA GGC AAT CAG TGG 217
Pro Phe Pro Glu Gly Lys Val Leu Asp Asp Met Glu Gly Asn Gin Trp
15 20 25
GTA CTG GGC AAG AAG ATT GGC TCT GGA GGA TTT GGA TTG ATA TAT TTA 265
Val Leu Gly Lys Lys He Gly Ser Gly Gly Phe Gly Leu l ie Tyr Leu
30 35 40 45
GCT TTC CCC ACA AAT AAA CCA GAG AAA GAT GCA AGA CAT GTA GTA AAA 313
Ala Phe Pro Thr Asn Lys Pro Glu Lys Asp Ala Arg His Val Val Lys
50 55 60
GTG GAA TAT CAA GAA AAT GGC CCG TTA TTT TCA GAA CTT AAA TTT TAT 361
Val Glu Tyr Gin Glu Asn Gly Pro Leu Phe Ser Glu Leu Lys Phe Tyr
65 70 75
CAG AGA GTT GCA AAA AAA GAC TGT ATC AAA AAG TGG ATA GAA CGC AAA 409
Gin Arg Val Ala Lys Lys Asp Cys He Lys Lys Trp l ie Glu Arg Lys
80 85 90
CAA CTT GAT TAT TTA GGA ATT CCT CTG TTT TAT GGA TCT GGT CTG ACT 457
Gin Leu Asp Tyr Leu Gly l ie Pro Leu Phe Tyr Gly Ser Gly Leu Thr
95 100 105
GAA TTC AAG GGA AGA AGT TAC AGA TTT ATG GTA ATG GAA AGA CTA GGA 505
Glu Phe Lys Gly Arg Ser Tyr Arg Phe Met Val Met Glu Arg Leu Gly
110 115 120 125
ATA GAT TTA CAG AAG ATC TCA GGC CAG AAT GGT ACC TTT AAA AAG TCA 553 l ie Asp Leu Gin Lys He Ser Gly Gin Asn Gly Thr Phe Lys Lys Ser
130 135 140
ACT GTC CTG CAA TTA GGT ATC CGA ATG TTG GAT GTA CTG GAA TAT ATA 601
Thr Val Leu Gin Leu Gly He Arg Met Leu Asp Val Leu Glu Tyr l ie 145 150 155
CAT GAA AAT GAA TAT GTT CAT GGT GAT GTA AAA GCA GCA AAT CTA CTT 649 His Glu Asn Glu Tyr Val His Gly Asp Val Lys Ala Ala Asn Leu Leu
160 165 170
TTG GGT TAC AAA AAT CCA GAC CAG GTT TAT CTT GCA GAT TAT GGA CTT 697 Leu Gly Tyr Lys Asn Pro Asp Gin Val Tyr Leu Ala Asp Tyr Gly Leu
175 180 185
TCC TAC AGA TAT TGT CCC AAT GGG AAC CAC AAA CAG TAT CAG GAA AAT 745 Ser Tyr Arg Tyr Cys Pro Asn Gly Asn His Lys Gin Tyr Gin Glu Asn
190 195 200 205
CCT AGA AAA GGC CAT AAT GGG ACA ATA GAG TTT ACC AGC TTG GAT GCC 793 Pro Arg Lys Gly His Asn Gly Thr l ie Glu Phe Thr Ser Leu Asp Ala
210 215 220
CAC AAG GGA GTA GCC TTG TCC AGA CGA AGT GAC GTT GAG ATC CTC GGC 841 His Lys Gly Val Ala Leu Ser Arg Arg Ser Asp Val Glu l ie Leu Gly
225 230 235
TAC TGC ATG CTG CGG TGG TTG TGT GGG AAA CTT CCC TGG GAA CAG AAC 889 Tyr Cys Met Leu Arg Trp Leu Cys Gly Lys Leu Pro Trp Glu Gin Asn
240 245 250
CTG AAG GAC CCT GTG GCT GTG CAG ACT GCT AAA ACA AAT CTG TTG GAC 937 Leu Lys Asp Pro Val Ala Val Gin Thr Ala Lys Thr Asn Leu Leu Asp
255 260 265
GAG CTC CCC CAG TCA GTG CTT AAA TGG GCT CCT TCT GGA AGC AGT TGC 985 Glu Leu Pro Gin Ser Val Leu Lys Trp Ala Pro Ser Gly Ser Ser Cys
270 275 280 285
TGT GAA ATA GCC CAA TTT TTG GTA TGT GCT CAT AGT TTA GCA TAT GAT 1033 Cys Glu l ie Ala Gin Phe Leu Val Cys Ala His Ser Leu Ala Tyr Asp
290 295 300
GAA AAG CCA AAC TAT CAA GCC CTC AAG AAA ATT TTG AAC CCT CAT GGA 1081 09 9S OS an ^19 J¾ J9s ΪΒΛ jqi J8S jqi J s ^ J cui s OJ^ J9s SJV
ST9T 3XV 999 93V 3DV 319 VOV 031 I0V OVI VW IVI 091 131 V33 131 V9V o ge ost s s ^i s 9i|d 9Π dsy OJJ jgg J¾ dsy STH OJJ nig αΧχ S9W V3I DW DW Oil VIV丄 V3 VOO I9V D3V Ul IVD WO IVD 133 DVD IVI
SZ^ 0 lf
9¾ J9S USV OJd U{9 jq J J9S i sA^ u{g OJJ 9 J9S usy ζΐίΊ m vox 3w voo on m oov oiv vw m DII XDV DW
oi so 00 ΐ¾Λ nis usy Π3Ί OJJ nig uia J9S nig u|g J uio Say SJV Sjy
69£ΐ VXD W3 丄 W 0X1 ID3 W9 WD 丄 DVD WO IVI VW 0V3 VDV VOV DOV
96S 062 S8S
j J8S nig uio ¾iv ¾TV usy usy d { ΠΘΊ ΘΠ n9q
ΙΖεΐ VDV 39V W9 9V3 X33 V39 WG IW 3W 9XV 0X1 V99 XXV 3X3 VW 9V3
Figure imgf000031_0001
ηΐ9 s^i uio 八 s^I dJi J¾ ¾iv s s ¾iv s S y nio J8S m\ 3V9 VW 9V3 319 VW 991 V3V VD9 101 DDI 9VD I3D 33V V9V 3V0 X3V
99C 09S 9SC 09S
S TH ΐ¾Λ s d \ \ naq Sjy usy STH ^IV USY l^A UID sA
SZZl 3V3 319 VW VW WO OIV VII 99V XW 3V0 V30 3W OW DID W3 9W
2K OK 9CC jqi ^IV BIV sXi uio J9s dsy ΡΛ s q J9S usy OJJ J¾ S TH ΐ¾Λ Π VOV VD9 1D9 9W W3 V3I IVD 119 VW WO IDV 3W V33 I3V IV3 019
Figure imgf000031_0002
usy 8Ϊ Ι J9S ui3 {9 s^ J¾ J aqd dsy Π9Ί OJJ ig n OJJ ΘΠ 6ΖΠ IW VIV I9V 0V3 V VW VDV DDI III DV9 313 V33 V99 VII 133 VIV
9TS OtC 90S
STH OJd usy naq 9{ i s ^ s q ηθΠ[ BIV u^g α^ί usy OJJ s ^ n^g
SS8難 6dr/ID«I ZSS6Z/86 OAV ACA GAC TTA GAA AGT TCA ACT GGA CTT TGG CCT ACA ATT TCC CAG TTT 1561 Thr Asp Leu Glu Ser Ser Thr Gly Leu Trp Pro Thr l ie Ser Gin Phe
465 470 475
ACT CTT AGT GAA GAG ACA AAC GCA GAT GTT TAT TAT TAT CGC ATC ATC 1609 Thr Leu Ser Glu Glu Thr Asn Ala Asp Val Tyr Tyr Tyr Arg l ie He
480 485 490
ATA CCT GTC CTT TTG ATG TTA GTA TTT CTT GCT TTA TTT TTT CTC 1654 l ie Pro Val Leu Leu Met Leu Val Phe Leu Ala Leu Phe Phe Leu
495 500 505
TGAAGATGAT ACCAAAATTC CTTTTGATAA TTTTTTAAGT TTCCAGCTCT TCACCGAAAT 1714 GTTGTATTCT TATTTCAGTG TTTCCTTCCA GACATTTTTA AGGTAATTGG CTTTAAAAAG 1774 AGAACATATT TTAACAAAGT TTGTGGACAC TCTAAAAAAT AAAATTGCTT TGTACTAGT 1833 配列番号 : 4
配列の長さ : 508
配列の型 : アミノ酸
トポロジー : 直鎖状
配列の種類 : タンパク質
西己 列
Met Pro Pro Lys Arg Asn Glu Lys Tyr Lys Leu Pro l ie 1 5 10
Pro Phe Pro Glu Gly Lys Val Leu Asp Asp Met Glu Gly Asn Gin Trp
15 20 25
Val Leu Gly Lys Lys l ie Gly Ser Gly Gly Phe Gly Leu He Tyr Leu
30 35 40 45
Ala Phe Pro Thr Asn Lys Pro Glu Lys Asp Ala Arg Hi s Val Val Lys
50 55 60
Val Glu Tyr Gin Glu Asn Gly Pro Leu Phe Ser Glu Leu Lys Phe Tyr
65 70 75 Gin Arg Val Ala Lys Lys Asp Cys l ie Lys Lys Trp l ie Glu Arg Lys
80 85 90
Gin Leu Asp Tyr Leu Gly l ie Pro Leu Phe Tyr Gly Ser Gly Leu Thr
95 100 105
Glu Phe Lys Gly Arg Ser Tyr Arg Phe Met Val Met Glu Arg Leu Gly 110 115 120 125 l ie Asp Leu Gin Lys He Ser Gly Gin Asn Gly Thr Phe Lys Lys Ser
130 135 140
Thr Val Leu Gin Leu Gly l ie Arg Met Leu Asp Val Leu Glu Tyr l ie
145 150 155
His Glu Asn Glu Tyr Val His Gly Asp Val Lys Ala Ala Asn Leu Leu
160 165 170
Leu Gly Tyr Lys Asn Pro Asp Gin Val Tyr Leu Ala Asp Tyr Gly Leu
175 180 185
Ser Tyr Arg Tyr Cys Pro Asn Gly Asn His Lys Gin Tyr Gin Glu Asn 190 195 200 205
Pro Arg Lys Gly His Asn Gly Thr l ie Glu Phe Thr Ser Leu Asp Ala
210 215 220
His Lys Gly Val Ala Leu Ser Arg Arg Ser Asp Val Glu l ie Leu Gly
225 230 235
Tyr Cys Met Leu Arg Trp Leu Cys Gly Lys Leu Pro Trp Glu Gin Asn
240 245 Z50
Leu Lys Asp Pro Val Ala Val Gin Thr Ala Lys Thr Asn Leu Leu Asp
255 260 265
Glu Leu Pro Gin Ser Val Leu Lys Trp Ala Pro Ser Gly Ser Ser Cys 270 275 280 285
Cys Glu l ie Ala Gin Phe Leu Val Cys Ala His Ser Leu Ala Tyr Asp
290 295 300
Glu Lys Pro Asn Tyr Gin Ala Leu Lys Lys l ie Leu Asn Pro His Gly mm: m m τι :
SOS 009 6^ ΠΘΊ aqj 9 ΤΙΘ^ Biv naq aqj 八 ΠΘ^ na^ Π9ΐ OJJ d\\
06 98^ 08
9ii d\\ Sjy J J J in dsy BIV usy J¾ nig nig JGS naq J
9 0 59^
aqd J9S ΘΠ J¾ OJd dJ naq Xio J¾ J9S JQS Wf) ngq dsy J¾
09 S9^ 0
9ΐΙ ^19 J¾ J8S A J¾ J8S J J J dJi J9 OJJ JQS Sjy
0^ 0
J8S s q l^ dm d\[ dsy OJJ J3s jq aqj dsy STH OJd j
SZ OZ S
sqd J9S usv OJd gqd UID J¾ J J9S 9ΐΙ υΐΰ OJd 9qd J8S usy
OT SOfr 00t ΐ¾Λ nio usy rial OJJ ujg jgs uig α/χ uig Say Say Say
%£ 06C 98S
J J9S MS ui9 BIV ¾iv nig usy usy ^ΐΰ 3Π s q
08ε ζε ο丄 ε
ηΐ9 s ui9 Ι¾Λ dj丄 J¾ ¾IV s J3S nio ¾IV J3S S^V J3
99ε 09ε 99ε ose
STH 1¾Λ s ^ s q an ngq Say usy STH ^IV s q usy A ^19 s ^
K QK see
J BIV ¾IV s^I UI9 J8S dsy ΐ¾Λ UI3 J9S USV OJd J¾ STH ΐ¾Λ
Figure imgf000034_0001
usv 9Π J9 ui9 Χΐ9 s jq JGS sqd dsy n9 OJJ OJJ 9Π
sic οιε sos l d S6Z786 OAV 鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
CTAATACGAC TCACTATAGG GC 22 配列番号 : 6
配列の長さ : 21
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
TGTAGCGTGA AGACGACAGA A 21 配列番号 : 7
配列の長さ : 21
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
TCGAGCGGCC GCCCGGGCAGG T 21 配列番号 : 8
配列の長さ : 21
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状 配列の種類 : その他の核酸 合成 DNA
配 列
AGGGCGTGGT GCGGAGGGCGG T 21 配列番号 : 9
配列の長さ : 22
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
酉己 歹 iJ
CCAGGGTTTT CCCAGTCACG AC 22 配列番号 : 10
配列の長さ : 22
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
TCACACAGGA AACAGCTATG AC 22 配列番号 : 11
配列の長さ : 24
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 MA
酉己 列 TGTAGTTCAG AAGAAGATTT GAGG 24 配列番号 : 12
配列の長さ : 24
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 MA
配 列
ATAATGGATC GCTTTGGGAG TGAC 24 配列番号 : 13
配列の長さ : 26
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
西己 歹 ij
TGAAGGTCGG AGTCAACGGA TTTGGT 26 配列番号 : 14
配列の長さ : 24
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 MA
配 列
CATGTGGGCC ATGAGGTCCA CCAC 24 配列番号 : 15
配列の長さ : 27
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
CCATCCTAAT ACGACTCACT ATAGGGC 27 配列番号 : 16
配列の長さ : 24
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
GGATTTTCCT GATACTGTTT GTGG 24 配列番号 : 17
配列の長さ : 24
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
西 2 列
ACCACAAACA GTATCAGGAA AATC 24 配列番号 : 18
配列の長さ : 24 配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
酉己 歹 ij
ACCTTTAAAA AGTCAACTGT CCTG 24 配列番号 : 19
配列の長さ : 24
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
酉己 列
AAAAATTATC AAAAGGAATT TTGG 24 配列番号 : 20
配列の長さ : 25
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
西己 列
TTACTCTTAG TGAAGAGACA AACGC 25 配列番号: 21
配列の長さ : 36
配列の型 : 核酸
鎖の数 : 一本鎖 トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
酉己 歹 ij
AGCTGCGGCC GCGGTCTGCG GCTTAGGTGA AAATGC 36 配列番号: 22
配列の長さ : 36
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
AGCTGCGGCC GCAAAACAAA GAAAAGGAAA TCTGGT 36 配列番号: 23
配列の長さ : 37
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
酉己 列
AGCTGCGGCC GCAAGTGATG CCACCAAAAA GAAATGA 37 配列番号: 24
配列の長さ : 36
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 MA 配 列
AGCTGCGGCC GCTGGAAGGA AACACTGAAA TAAGAA 36 配列番号: 25
配列の長さ : 10
配列の型 : アミノ酸
トポロジー : 直鎖状
配列の種類 : タンパク質
西 S 列
Glu Gin Lys Leu l ie Ser Glu Glu Asp Leu
1 5 10 配列番号: 26
配列の長さ : 33
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DM
配 列
GATGGATCCG GTCTGCGGCT TAGGTGAAAA TGC 33 配列番号: 27
配列の長さ : 60
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
GATGGATCCT TAGAGGTCTT CTTCTGAGAT GAGCTTCTGC TCCTTCTGGA CTCTCTTTCT 60 配列番号: 28
配列の長さ : 33
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 MA
配 列
GATGGATCCA GTGATGCCAC CAAAAAGAAA TGA 33 配列番号: 29
配列の長さ : 60
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
GATGGATCCT TAGAGGTCTT CTTCTGAGAT GAGCTTCTGC TCGAGAAAAA ATAAAGCAAG 60 配列番号: 30
配列の長さ : 31
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
GATGGATCCC CATGCCTCGT GTAAAAGCAG C 31 配列番号: 31 配列の長さ : 31
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
GATGGATCCC CCAAAGAAAA GGAAATCTGG T 31 配列番号: 32
配列の長さ : 31
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
西己 列
GATGGATCCC CATGCCACCA AAAAGAAATG A 31 配列番号: 33
配列の長さ : 31
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
酉己 列
GATGGATCCC CACAACATTT CGGTGAAGAG C 31 配列番号: 34
配列の長さ : 29
配列の型 : 核酸 鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
配 列
CCTTGTGTTG TATGGGTGGA ACCCAGTGA 29 配列番号: 35
配列の長さ : 31
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : その他の核酸 合成 DNA
西己 列
ACACCACGAT GCCTGGAGCA ATGGCAACAA C 31 配列番号: 36
配列の長さ : 25
配列の型 : アミノ酸
トポロジー : 直鎖状
配列の種類 : ペプチド
西己 列
Met Leu Pro Glu Ser Glu Asp Glu Glu Ser Tyr Asp Thr Glu Ser Glu Phe Thr
1 5 10 15
Glu Phe Thr Glu Asp Glu Leu
20 25 配列番号: 37
配列の長さ : 19
配列の型 : アミノ酸 トポロジー : 直鎖状
配列の種類 : ぺプチド
配 列
Cys Gin Thr Glu Glu Ala l ie Gin Thr Arg Ser Arg Thr Arg Lys Arg Val Gin
1 5 10 15
Lys

Claims

請求の範囲
I . 配列番号 2に記載のアミノ酸配列からなるタンパク質またはその 1もしくは 数個のアミノ酸が付加、 欠失もしくは置換された配列を有しセリン /スレオニン キナーゼ活性を有するタンパク質。
2 . 配列番号 4に記載のァミノ酸配列からなるタンパク質またはその 1もしくは 数個のアミノ酸が付加、 欠失もしくは置換された配列を有しセリン /スレオニン キナーゼ活性を有するタンパク質。
3 . 配列番号 1に記載の DNA配列またはその相補配列にハイブリダイズする DNA配 列によりコードされ、 セリン /スレオニンキナーゼ活性を有するタンパク質。
4 . 配列番号 3に記載の DNA配列またはその相補配列にハイプリダイズする DNA配 歹 ϋによりコ一ドされ、 セリン /スレオニンキナーゼ活性を有するタンパク質。
5 . 請求項 1乃至 4のいずれかに記載のタンパク質をコードする DNA。
6 . 請求項 5に記載の DNAを含むベクター。
7 . 請求項 6に記載のベクターを保持する形質転換体。
8 . 請求項 7に記載の形質転換体を培養する工程を含む、 請求項 1乃至 4のいず れかに記載の夕ンパク質の製造方法。
9 . 請求項 1乃至 4のいずれかに記載のタンパク質に結合する抗体。
1 0 . 請求項 5に記載の DNAもしくはその一部に対するアンチセンス DNA。
I I . 請求項 1乃至 4のいずれかに記載のタンパク質のセリン/スレオニンキナ —ゼ活性を阻害する活性を有する化合物のスクリーニング方法であって、
( a ) 被検化合物の存在下で、 請求項 1乃至 4のいずれかに記載のタンパク質と これらタンパク質によりリン酸化を受ける基質とを接触させ、 請求項 1乃至 4の いずれかに記載のタンパク質のキナーゼ活性を検出する工程、
( b ) 工程 (a ) において検出されたキナーゼ活性を、 被検化合物非存在下にお いて検出したキナーゼ活性と比較し、 請求項 1乃至 4のいずれかに記載のタンパ ク質のキナーゼ活性を低下させる化合物を選択する工程、
を含む方法。
PCT/JP1997/004855 1996-12-27 1997-12-25 Nouveau gene de serine-threonine kinase WO1998029552A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP52985598A JP4121155B2 (ja) 1996-12-27 1997-12-25 新規なセリン/スレオニンキナーゼ遺伝子
AU53406/98A AU5340698A (en) 1996-12-27 1997-12-25 Novel serine-threonine kinase gene
EP97950408A EP0960938A4 (en) 1996-12-27 1997-12-25 NEW GENE OF SERINE-THREONINE KINASE
US09/344,700 US6265194B1 (en) 1996-12-27 1999-06-25 Serine-threonine kinase gene
US09/563,997 US6677437B1 (en) 1996-12-27 2000-05-03 Serine-threonine kinase gene
US10/434,588 US7186536B2 (en) 1996-12-27 2003-05-09 Serine-threonine kinase gene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/357864 1996-12-27
JP35786496 1996-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/344,700 Continuation-In-Part US6265194B1 (en) 1996-12-27 1999-06-25 Serine-threonine kinase gene

Publications (1)

Publication Number Publication Date
WO1998029552A1 true WO1998029552A1 (fr) 1998-07-09

Family

ID=18456329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004855 WO1998029552A1 (fr) 1996-12-27 1997-12-25 Nouveau gene de serine-threonine kinase

Country Status (5)

Country Link
US (1) US6265194B1 (ja)
EP (1) EP0960938A4 (ja)
JP (1) JP4121155B2 (ja)
AU (1) AU5340698A (ja)
WO (1) WO1998029552A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011794A2 (en) * 1997-09-04 1999-03-11 Incyte Pharmaceuticals, Inc. New vrk1 kinase
WO2000015770A2 (en) * 1998-09-16 2000-03-23 Incyte Pharmaceuticals, Inc. Human serine/threonine protein kinases
WO2000056754A1 (en) * 1999-03-19 2000-09-28 Human Genome Sciences, Inc. 48 human secreted proteins
WO2001011086A2 (en) * 1999-08-11 2001-02-15 Eos Biotechnology, Inc. Methods of screening for angiogenesis modulators
DE10011530A1 (de) * 2000-03-13 2001-09-27 Robert Elez Hochwirksame Antisense-Oligodesoxynucleotide gegen Polio-like Kinasel
WO2006038289A1 (ja) * 2004-10-01 2006-04-13 Oncorex, Inc. Pim-1活性/蛋白阻害医薬品
CN117106090A (zh) * 2023-08-15 2023-11-24 十堰市太和医院(湖北医药学院附属医院) 一种靶向GSK3β的纳米抗体及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1242616A2 (en) * 1999-12-06 2002-09-25 Axxima Pharmaceuticals Aktiengesellschaft Method for identification and quantification of kinase inhibitors
WO2002055713A2 (en) * 2000-12-08 2002-07-18 Millennium Pharm Inc 58848, a human protein kinase family member and uses therefor
ES2255811B1 (es) * 2004-05-12 2007-07-16 Laboratorios Indas, S.A. Metodo para el diagnostico de cancer y/o pronostico de tratamientos oncologicos.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925557A (en) * 1994-09-29 1999-07-20 The Regents Of The University Of California DNA encoding mitogen activated protein kinase, FRK
EP0816501B1 (en) * 1995-03-16 2005-06-01 Chugai Seiyaku Kabushiki Kaisha Dna encoding protein kinase
US5885803A (en) * 1997-06-19 1999-03-23 Incyte Pharmaceuticals, Inc. Disease associated protein kinases
WO1999011794A2 (en) * 1997-09-04 1999-03-11 Incyte Pharmaceuticals, Inc. New vrk1 kinase

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAIER A. A.: "OPTICAL SWITCHES, TRANSISTORS, AND MULTIVIBRATORS, STABLE TO PHASE INSTABILITY OF THE SIGNAL.", SOVIET PHYSICS DOKLADY., AMERICAN INSTITUTE OF PHYSICS. NEW YORK., US, vol. 35., no. 06., 1 June 1990 (1990-06-01), US, pages 544 - 546., XP000203365 *
NEZU J.-I., ET AL.: "IDENTIFICATION OF TWO NOVEL HUMAN PUTATIVE SERINE/THREONINE KINASESVRK1 AND VRK2, WITH STRUCTURAL SIMILARITY TO VACCINIA VIRUS B1R KINASE.", GENOMICS, ACADEMIC PRESS, SAN DIEGO., US, vol. 45., no. 02., 15 October 1997 (1997-10-15), US, pages 327 - 331., XP000872493, ISSN: 0888-7543, DOI: 10.1006/geno.1997.4938 *
See also references of EP0960938A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011794A2 (en) * 1997-09-04 1999-03-11 Incyte Pharmaceuticals, Inc. New vrk1 kinase
WO1999011794A3 (en) * 1997-09-04 1999-07-08 Incyte Pharma Inc New vrk1 kinase
WO2000015770A2 (en) * 1998-09-16 2000-03-23 Incyte Pharmaceuticals, Inc. Human serine/threonine protein kinases
WO2000015770A3 (en) * 1998-09-16 2000-07-06 Incyte Pharma Inc Human serine/threonine protein kinases
WO2000056754A1 (en) * 1999-03-19 2000-09-28 Human Genome Sciences, Inc. 48 human secreted proteins
WO2001011086A2 (en) * 1999-08-11 2001-02-15 Eos Biotechnology, Inc. Methods of screening for angiogenesis modulators
WO2001011086A3 (en) * 1999-08-11 2002-03-07 Eos Biotechnology Inc Methods of screening for angiogenesis modulators
DE10011530A1 (de) * 2000-03-13 2001-09-27 Robert Elez Hochwirksame Antisense-Oligodesoxynucleotide gegen Polio-like Kinasel
WO2006038289A1 (ja) * 2004-10-01 2006-04-13 Oncorex, Inc. Pim-1活性/蛋白阻害医薬品
CN117106090A (zh) * 2023-08-15 2023-11-24 十堰市太和医院(湖北医药学院附属医院) 一种靶向GSK3β的纳米抗体及其制备方法
CN117106090B (zh) * 2023-08-15 2024-02-09 十堰市太和医院(湖北医药学院附属医院) 一种靶向GSK3β的纳米抗体及其制备方法

Also Published As

Publication number Publication date
US6265194B1 (en) 2001-07-24
JP4121155B2 (ja) 2008-07-23
AU5340698A (en) 1998-07-31
EP0960938A4 (en) 2001-12-05
EP0960938A1 (en) 1999-12-01

Similar Documents

Publication Publication Date Title
JP4234319B2 (ja) 前立腺腫瘍ポリヌクレオチドおよび抗原組成物
Kim et al. Molecular cloning and characterization of a novel cbl-family gene, cbl-c
JPH08509504A (ja) プロテインキナーゼ
WO1998029552A1 (fr) Nouveau gene de serine-threonine kinase
US5989885A (en) Specific mutations of map kinase 4 (MKK4) in human tumor cell lines identify it as a tumor suppressor in various types of cancer
Perelman et al. Molecular cloning of a novel human gene encoding a 63-kDa protein and its sublocalization within the 11q13 locus
Liu et al. Molecular cloning and characterization of the human ASB-8 gene encoding a novel member of ankyrin repeat and SOCS box containing protein family
JP2001509018A (ja) P53応答マウス遺伝子ei124に類似なdnaがコードするヒトアポトーシス関連タンパク質
JP4270548B2 (ja) Cdc7−ASKキナーゼ複合体、該キナーゼ複合体の基質、及び該基質に特異的な抗体、並びにこれらを用いたCdc7−ASKキナーゼ阻害能を有する化合物のスクリーニング方法
US6677437B1 (en) Serine-threonine kinase gene
JP2002236125A (ja) タンパク質リン酸化酵素活性の測定方法、測定用キット及び測定に用いる抗体
JP2002527028A (ja) ヒトアポトーシス調節タンパク質
EP1148125B1 (en) Human nucleoprotein having a ww domain and polynucleotide encoding the same
JP2001517944A (ja) 新規なヒトサイトカイン/ステロイド受容体タンパク質
US6300473B1 (en) SLM-1: a novel Sam68-like mammalian protein
JP2002503469A (ja) D52遺伝子ファミリーのメンバー
JP2001511015A (ja) サイクリン依存性プロテインキナーゼ
US20040023227A1 (en) Dna encoding squalene epoxidase promoter
Facilitates The Second-Largest Subunit of the Mouse DNA
WO2000061744A1 (fr) Nouveaux genes de foetus
WO2000026382A1 (fr) Thioredoxine reductase ii
EP1251178A1 (en) Novel polypeptide-human shc protein 43 and polynucleotide encoding it
JP2000504201A (ja) 細胞質性チロシンキナーゼ
JPH10262680A (ja) Rho標的タンパク質ヒトmDiaおよびその遺伝子
JPWO2002099110A1 (ja) 細胞周期調節因子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09344700

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997950408

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997950408

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997950408

Country of ref document: EP