CN117106090A - 一种靶向GSK3β的纳米抗体及其制备方法 - Google Patents

一种靶向GSK3β的纳米抗体及其制备方法 Download PDF

Info

Publication number
CN117106090A
CN117106090A CN202311022743.4A CN202311022743A CN117106090A CN 117106090 A CN117106090 A CN 117106090A CN 202311022743 A CN202311022743 A CN 202311022743A CN 117106090 A CN117106090 A CN 117106090A
Authority
CN
China
Prior art keywords
nanobody
gsk3 beta
yeast
culture medium
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311022743.4A
Other languages
English (en)
Other versions
CN117106090B (zh
Inventor
张敏
董志强
李兰
段超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiyan Taihe Hospital
Original Assignee
Shiyan Taihe Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiyan Taihe Hospital filed Critical Shiyan Taihe Hospital
Priority to CN202311022743.4A priority Critical patent/CN117106090B/zh
Publication of CN117106090A publication Critical patent/CN117106090A/zh
Application granted granted Critical
Publication of CN117106090B publication Critical patent/CN117106090B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开一种靶向GSK3β的纳米抗体及其制备方法,属于生物技术领域。该靶向GSK3β的纳米抗体的核酸序列如Seq ID No.1所示。本发明还提出一种上述纳米抗体的制备方法,包括:S1、构建多样性为109的全合成纳米抗体酵母展示文库;S2、将转化后接种于液体培养基的酵母细胞接种于SD‑Trp培养基中二次传代培养;S3、取二次传代的细胞接种于SD‑Trp培养基培养至OD=0.5‑1;以GSK3β的eIF4E2结合域为抗原,偶联羧基磁珠,通过三轮磁珠筛选和三轮流式筛选得到所述纳米抗体。本发明提出的纳米抗体能够成功特异性激活GSK3β的S/T‑P激酶活性。

Description

一种靶向GSK3β的纳米抗体及其制备方法
技术领域
本发明涉及生物技术领域,具体涉及一种靶向GSK3β的纳米抗体及其制备方法。
背景技术
GSK3是一种进化保守的丝氨酸-苏氨酸激酶,分为两种亚型:GSK3α、GSK3β,是葡萄糖代谢中的调节酶。GSK3功能异常与多种神经系统疾病有关,主要包括帕金森病(PD)、阿尔茨海默病(AD)、双相情感障碍(BPD)和脑卒中。GSK3β在细胞生长、发育、炎症和细胞凋亡过程中起重要作用,抑制GSK3β表现出明显的神经保护作用,是治疗神经退行性等疾病的潜在靶点。抑制GSK3β在治疗神经退行性疾病方面具有重要意义,但针对GSK3的抑制剂要么特异性不够高,要么难以区分GSK3α和GSK3β这两种同工酶,为GSK3β抑制剂的开发和应用带来了巨大的挑战。开发特异性靶向GSK3β的调控剂,从而进一步精准调控GSK3β的激酶活性,是神经退行性疾病相关机制研究和临床治疗的关键。
GSK3β底物需要预磷酸化(引发基序)或脯氨酸定向,但如何区分这两种不同的底物特征却知之甚少。本申请人前期研究发现eIF4E2通过保守基序(RLLFQNLWKPRL)与GSK3β相互作用,以激活其脯氨酸定向的激酶活性。eIF4E2的GSK3β结合基序只存在于哺乳动物中,eIF4E2/GSK3β信号通路可通过抑制细胞衰老来抵抗缺氧对组织的损伤。eIF4E2-GSK3β信号通路直接调控RNA结合蛋白Rbm38的Ser195(pro196)磷酸化和p53的多点S/T-P磷酸化。缺氧显著抑制eIF4E2和GSK3β互作,抑制GSK3βS/T-P激酶活性,继而抑制Rbm38Ser195的磷酸化和p53的多点S/T-P磷酸化。本申请人进一步发现S/T-P磷酸化可以保护肝脏免受缺氧损伤。缺氧条件下抑制该通路导致明显的衰老相关分泌表型(SASP),介导促炎因子IL-1β和IL-6的分泌增加。探究GSK3βS/T-P激酶活性在神经退行性疾病中的相关机制,并进一步开发特异性靶向GSK3βS/T-P激酶活性的调控剂,对于神经退行性疾病的治疗和预后具有重要义,且为靶向性药物开发奠定基础。
纳米抗体(Nanobody,Nb)由骆驼重链抗体的抗原结合区组成。由于纳米抗体只有常规抗体的十分之一大小,并且通常带有正电荷,纳米抗体能够与带负电荷的细胞膜融合,从而被大脑摄取。纳米抗体具有一个长且凸的抗原结合表位(CDR3),因此能更有效地通过干预蛋白互作拮抗参与信号转导的受体和中和促炎介质。纳米抗体的这些优点使其适用于干预神经退行性疾病中的氧化应激和神经炎症过程。利用纳米抗体特异性调控GSK3βS/T-P激酶活性,并进一步探究应用纳米抗体治疗神经退行性疾病的科学方案。
发明内容
本发明的目的在于克服上述技术不足,提供一种靶向GSK3β的纳米抗体及其制备方法,解决现有技术中缺乏靶向GSK3β的纳米抗体的技术问题。
为达到上述技术目的,本发明的技术方案提供一种靶向GSK3β的纳米抗体,所述纳米抗体的核酸序列如Seq ID No.1所示。
进一步地,所述纳米抗体靶向调控GSK3β的S/T-P激酶活性。
此外,本发明还提出一种分子表达载体,所述载体中含有如No.Seq ID No.1所示的核酸序列。
此外,本发明还提出一种含有上述分子表达载体的宿主细胞,所述宿主细胞包括原核细胞、酵母细胞或病毒。
进一步地,所述宿主细胞包括人胚肾细胞或者人宫颈癌细胞。
此外,本发明还提出一种上述纳米抗体的制备方法,包括以下步骤:
S1、通过同源臂引物连续扩增纳米抗体DNA文库以用于酵母转化,将纳米抗体文库序列与Aga2的C端融合,实现纳米抗体在酵母细胞表面的展示,构建多样性为109的全合成纳米抗体酵母展示文库;
S2、将转化后接种于液体培养基的酵母细胞接种于SD-Trp培养基中二次传代培养;
S3、取二次传代的细胞接种于SD-Trp培养基培养至OD=0.5-1,细胞重悬于SG-Trp培养基以诱导纳米抗体的表达,诱导至少36h;以GSK3β的eIF4E2结合域为抗原,偶联羧基磁珠,通过三轮磁珠筛选和三轮流式筛选得到所述纳米抗体。
与现有技术相比,本发明的有益效果包括:本发明提出的纳米抗体能够成功特异性激活GSK3β的S/T-P激酶活性。
附图说明
图1是本发明实施例1靶向调控GSK3βS/T-P激酶活性的纳米抗体筛选的结果,其中图1(a)为结合酵母展示筛选获得识别GSK3β的纳米抗体;图1(b)为筛选到的前十名GSK3β纳米抗体序列。
图2是本发明实施例1排列前四的纳米抗体联合bio-PROTAC系统靶向降解GSK3β的结果图;其中,图2(a)、(b)和(c)为基于调控GSK3βS/T-P激酶活性的纳米抗体构建bio-PROTAC系统,可实现细胞过表达mCherry-GSK3β的降解;图2(d)和(e)为基于调控GSK3βS/T-P激酶活性的纳米抗体构建bio-PROTAC系统,可实现内源GSK3β的降解。
图3为靶向调控GSK3βS/T-P激酶活性纳米抗体的功能验证结果图。
具体实施方式
本具体实施方式提供了一种靶向GSK3β的纳米抗体,所述纳米抗体的核酸序列如Seq ID No.1所示;进一步地,所述纳米抗体靶向调控GSK3β的S/T-P激酶活性。
本具体实施方式还提出一种分子表达载体,所述载体中含有如No.Seq ID No.1所示的核酸序列。
本具体实施方式还提出一种含有上述分子表达载体的宿主细胞,所述宿主细胞包括原核细胞、酵母细胞或病毒;进一步地,所述宿主细胞包括人胚肾细胞或者人宫颈癌细胞。
本具体实施方式还提出一种上述纳米抗体的制备方法,包括以下步骤:
S1、通过同源臂引物连续扩增纳米抗体DNA文库以用于酵母转化,将纳米抗体文库序列与Aga2的C端融合,实现纳米抗体在酵母细胞表面的展示,构建多样性为109的全合成纳米抗体酵母展示文库;
S2、将转化后接种于液体培养基的酵母细胞接种于SD-Trp培养基中二次传代培养;
S3、取二次传代的细胞(接种于SD-Trp培养基培养至OD=0.5-1,细胞重悬于SG-Trp培养基以诱导纳米抗体的表达,诱导至少36h;以GSK3的eIF4E2结合域为抗原,偶联羧基磁珠,通过三轮磁珠筛选和三轮流式筛选得到所述纳米抗体。
本发明以GSK3β的S/T-P激酶活性为靶标,成功建立了全合成纳米抗体酵母展示文库,筛选到了靶向GSK3β且特异性调控其S/T-P激酶活性的纳米抗体Nb.29E9。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
1)全合成纳米抗体酵母展示文库的构建
三核苷酸诱变技术是基于三联体密码子特性,利用对应20种氨基酸的三核苷酸磷酰胺。根据所需的氨基酸频率与CDR区域的长度,设计不同氨基酸组合的引物(P1_for、P2_rev、……、P10_rev),形成引物池。再通过PCR技术对模板进行扩增,达到连续氨基酸序列突变的目的。
酵母展示系统分为絮凝素系统与凝集素系统。本发明采用凝集素系统的展示技术。酵母的a-凝集素具有两个亚基,核心亚基Aga-1与结合亚基Aga-2。其中核心亚基Aga-1由725个氨基酸组成,其C端与酵母细胞壁葡聚糖共价结合。结合亚基Aga-2由69个氨基酸组成,与Aga1通过二硫键相连。基于此系统,我们将目的蛋白序列即纳米抗体文库序列与Aga2的C端融合,实现纳米抗体在酵母细胞表面的展示。
本发明以已有的纳米抗体基因为模板(美洲驼的IGHV1S1-IGHV1S1S5基因),通过简并引物和三核苷酸诱变技术构建全合成纳米抗体文库,并进一步改造酵母展示载体pNACP,构建多样性为109的全合成纳米抗体酵母展示文库。
2)应用bio-PROTAC验证纳米抗体的功能
靶向嵌合体的蛋白水解酶(PROTAC)有三个主要结构:与靶蛋白结合的配体,与E3泛素连接酶结合的配体以及用于缀合这两个配体的接头。它可以通过泛素-蛋白酶体系统降解目标蛋白。PROTAC可在低水平下促进靶蛋白降解,发挥催化作用。bio-PROTAC与一般的PROTAC不同,bio-PROTAC不是用小分子连接配体和E3连接酶,而是通过用结合目标蛋白(POI)的肽或小蛋白直接替换E3连接酶的底物识别结构域,从而对其进行改造。改造后的融合蛋白bio-PROTAC在细胞中表达,以驱动POI的定向降解。本发明将识别GSK3β的纳米抗体替代结合目标蛋白(POI)的肽或小蛋白,实现细胞内过表达和内源GSK3β的降解。
1)实验菌株
大肠杆菌DH5α和酵母菌株EBY100为实验室保存菌株。
2)细胞系
表1实验用细胞信息表
3)载体与质粒
真核表达载体pcDNA3.1、pcDNA3.1-3×Flag、酵母展示载体pNACP均为实验室保存,其他所用质粒均由本发明构建。
1)引物
表2实验用引物信息表
表3筛选到的部分纳米抗体序列
表3中的序列分别对应序列表中的Seq ID No.1-Seq ID No.10。
详细的纳米抗体的制备方法如下:
1)全合成纳米抗体文库的构建和靶向GSK3βS/T-P激酶活性纳米抗体的筛选
纳米抗体文库的构建:纳米抗体文库的构建如前所述。简而言之,纳米抗体的DNA文库是通过两步重叠延伸PCR构建的。将一组十个引物(见表2)溶解并混合以制备短、中、长三个混合池,其中CDR3区域分别为7、11和15个随机残基。将三个混合池的全长纳米抗体DNA产物以1:2:1的摩尔比混合,即为纳米抗体DNA文库池,通过同源臂引物连续扩增纳米抗体DNA文库以用于酵母转化,将目的蛋白序列即纳米抗体文库序列与Aga2的C端融合,实现纳米抗体在酵母细胞表面的展示,构建多样性为109的全合成纳米抗体酵母展示文库;上表2中,WMT、TYT、RST、RVT、RSTANT、WAT等大写字母代表三核苷酸组合对对应的氨基酸序列,#代表任意氨基酸。
将转化后接种于液体培养基的酵母细胞接种于SD-Trp培养基中二次传代培养以去除死细胞,30℃、250rpm培养过夜(约20h)。以初始浓度OD=1接种于1L培养基,30℃、250rpm培养3d。2,500g离心5min收集细胞,分装冻存于-80℃。取冻存的细胞于SD-Trp培养基,30℃、225rpm过夜培养。取二次传代的细胞(初始OD为0.1-0.2,细胞量为文库多样性的10倍)接种于SD-Trp(含2%葡萄糖)培养基,30℃、225rpm培养至OD=0.5-1。2,500g离心5min收集细胞,细胞重悬于SG-Trp(含2%半乳糖)培养基以诱导纳米抗体的表达,在20℃下诱导至少36h。以GSK3β的eIF4E2结合域(G3-I,CSRLLEYTPTARL)为抗原,偶联羧基磁珠,通过三轮磁珠筛选和三轮流式筛选,富集高亲和力纳米抗体,并进行初步功能验证。
2)靶向GSK3βS/T-P激酶活性纳米抗体的功能验证
bio-PROTAC质粒的构建
质粒1:通过BamHⅠ、AgeⅠ将纳米抗体插入bio-PROTAC载体(pCDNA3-Flag-SPOP(E3))。质粒2:通过XholⅠ、EcoRⅠ将靶标(GSK3β)插入过表达载体(pCDNA3-Flag-mCherry-SPOP(E3));
细胞实验(以293T为例)
细胞铺板至12孔板(60%-70%),培养12h后进行转染实验。转染24h后收样,通过WesternBlot和细胞免疫荧光检测纳米抗体降解细胞内过表达和内源GSK3β的能力;
在细胞内过表达纳米抗体,通过检测RBM38S195、HIF1αS589磷酸化检测其对GSK3βS/T-P激酶活性的调控作用;
通过在细胞内过表达纳米抗体,在常氧、缺氧条件下,探究纳米抗体调控GSK3βS/T-P激酶活性对细胞缺氧响应的调控。
靶向调控GSK3βS/T-P激酶活性纳米抗体的筛选
利用全合成纳米抗体酵母展示文库,通过三轮FACS富集,在抗原浓度降低到10nM时,得到了64.7%的阳性率。并通过测序鉴定了纳米抗体的序列多样性,选择亲和力排名第一的纳米抗体进行功能验证。结合图1,靶向调控GSK3βS/T-P激酶活性的纳米抗体筛选结合酵母展示筛选获得识别GSK3β的纳米抗体,第三轮10nM抗原流式细胞仪筛选结果显示获得识别GSK3β的高亲和力纳米抗体,展示了筛选到的前十名GSK3β纳米抗体序列。
纳米抗体联合bio-PROTAC系统靶向降解GSK3β
结合图2,通过纳米抗体(Nb.BV025为对照纳米抗体,Nb.29D8、Nb.29E9、Nb.29A2、Nb.29B3为筛选到的前四名纳米抗体)融合E3蛋白酶构建bio-PROTAC质粒,转染293T、Hela细胞,靶向降解细胞内过表达的mCherry-GSK3β和内源GSK3β,通过细胞免疫荧光和WesternBlot验证纳米抗体靶向降解GSK3β的能力。
靶向调控GSK3βS/T-P激酶活性纳米抗体的功能验证
结合图3,通过在293T、Hela中过表达纳米抗体29E9,Western Blot检测GSK3β下游靶标RBM38的变化,鉴定纳米抗体调控GSK3βS/T-P激酶活性的能力。在常氧、低氧条件下过表达Nb.29E9,Nb.29E9可以充当GSK3β的配体,激活GSK3β的S/T-P激酶活性,从而激活下游靶标RBM38(S195)的磷酸化。
本发明成功构建了库容量约109的全合成纳米抗体酵母展示文库,并以GSK3β的eIF4E2结合域(G3-I)为抗原,通过多轮MACS和FACS筛选,成功筛选到靶向GSK3β的高亲和力纳米抗体。通过bio-PROTAC系统在细胞水平验证了纳米抗体Nb.29E9即序列表中的Seq IDNo.1靶向降解外源和内源GSK3β体Nb.29E9的能力。进一步地,通过在细胞内过表达纳米抗体Nb.29E9,我们发现,在常氧、低氧条件下,纳米抗体可以充当GSK3β的配体,从而特异性地激活GSK3β的S/T-P激酶活性。
总的来说,本发明成功筛选到了特异性激活GSK3β的S/T-P激酶活性的纳米抗体Nb.29E9,可以通过该纳米抗体进一步探究GSK3β的S/T-P激酶活性在神经退行性疾病中功能,为神经退行性疾病的治疗提供科学方案。
以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (6)

1.一种靶向GSK3β的纳米抗体,其特征在于,所述纳米抗体的核酸序列如Seq ID No.1所示。
2.根据权利要求1所述的靶向GSK3β的纳米抗体,其特征在于,所述纳米抗体靶向调控GSK3β的S/T-P激酶活性。
3.一种分子表达载体,其特征在于,所述载体中含有如No.Seq ID No.1所示的核酸序列。
4.一种含有权利要求3所述分子表达载体的宿主细胞,其特征在于,所述宿主细胞包括原核细胞、酵母细胞或病毒。
5.根据权利要求4所述的宿主细胞,其特征在于,所述宿主细胞包括人胚肾细胞或者人宫颈癌细胞。
6.一种权利要求1-2任一项所述的纳米抗体的制备方法,其特征在于,包括以下步骤:
S1、通过同源臂引物连续扩增纳米抗体DNA文库以用于酵母转化,将纳米抗体文库序列与Aga2的C端融合,实现纳米抗体在酵母细胞表面的展示,构建多样性为109的全合成纳米抗体酵母展示文库;
S2、将转化后接种于液体培养基的酵母细胞接种于SD-Trp培养基中二次传代培养;
S3、取二次传代的细胞接种于SD-Trp培养基培养至OD=0.5-1,细胞重悬于SG-Trp培养基以诱导纳米抗体的表达,诱导至少36h;以GSK3β的eIF4E2结合域为抗原,偶联羧基磁珠,通过三轮磁珠筛选和三轮流式筛选得到所述纳米抗体。
CN202311022743.4A 2023-08-15 2023-08-15 一种靶向GSK3β的纳米抗体及其制备方法 Active CN117106090B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311022743.4A CN117106090B (zh) 2023-08-15 2023-08-15 一种靶向GSK3β的纳米抗体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311022743.4A CN117106090B (zh) 2023-08-15 2023-08-15 一种靶向GSK3β的纳米抗体及其制备方法

Publications (2)

Publication Number Publication Date
CN117106090A true CN117106090A (zh) 2023-11-24
CN117106090B CN117106090B (zh) 2024-02-09

Family

ID=88812075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311022743.4A Active CN117106090B (zh) 2023-08-15 2023-08-15 一种靶向GSK3β的纳米抗体及其制备方法

Country Status (1)

Country Link
CN (1) CN117106090B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029552A1 (fr) * 1996-12-27 1998-07-09 Chugai Research Institute For Molecular Medicine, Inc. Nouveau gene de serine-threonine kinase
WO2000005362A1 (en) * 1998-07-21 2000-02-03 Aventis Pharma S.A. Mekk1(serine threonine kinases)-interacting fha (forkhead associated domain) protein 1 (mif1)
WO2000034464A1 (fr) * 1998-12-09 2000-06-15 Institut National De La Sante Et De La Recherche Medicale Procede de criblage en levure de modulateurs de proteine-kinases specifiques de cellules eucaryotes superieures, y compris les cellules humaines
CN102703508A (zh) * 2012-05-18 2012-10-03 边红 靶向GSK3β基因RNA干扰重组慢病毒载体及其构建、筛选方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029552A1 (fr) * 1996-12-27 1998-07-09 Chugai Research Institute For Molecular Medicine, Inc. Nouveau gene de serine-threonine kinase
WO2000005362A1 (en) * 1998-07-21 2000-02-03 Aventis Pharma S.A. Mekk1(serine threonine kinases)-interacting fha (forkhead associated domain) protein 1 (mif1)
WO2000034464A1 (fr) * 1998-12-09 2000-06-15 Institut National De La Sante Et De La Recherche Medicale Procede de criblage en levure de modulateurs de proteine-kinases specifiques de cellules eucaryotes superieures, y compris les cellules humaines
CN102703508A (zh) * 2012-05-18 2012-10-03 边红 靶向GSK3β基因RNA干扰重组慢病毒载体及其构建、筛选方法

Also Published As

Publication number Publication date
CN117106090B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
US7795411B2 (en) Vectors for expressing in vivo biotinylated recombinant proteins
US8591893B2 (en) Paratope and epitope of anti-mortalin antibody
KR20120051603A (ko) 항카드헤린 항체
CN112601546B (zh) Plap-car-效应细胞
WO2011057435A1 (zh) 抗表皮生长因子受体的抗体及其应用
AU2019216086A1 (en) PD-1 variant having improved binding to PD-L1
WO2011057436A1 (zh) 抗表皮生长因子受体的抗体及其应用
WO2023186061A1 (zh) 抗pd-1纳米抗体、其应用及其治疗疾病的方法
CN106928363B (zh) 一种FAP纳米抗体Nb12
CN117106090B (zh) 一种靶向GSK3β的纳米抗体及其制备方法
JP2002518001A (ja) G3bpタンパク質に対するモノクローナル抗体及びその使用
JPH06505011A (ja) erbB−2受容体タンパク質に結合し且つ細胞性応答を誘導するリガンド成長因子
CN117186230B (zh) 包含亲水性氨基酸的抗人bcma纳米抗体的双特异性抗体及应用
EP1773994B1 (en) Polypeptide
CN111410695A (zh) 基于自噬机制介导Tau蛋白降解的嵌合分子及其应用
WO2002031198A2 (en) Cancer-linked genes as targets for chemotherapy
CN109627313B (zh) 一种突变的irs-1的ptb结构域蛋白及其编码序列和应用
CN106928355B (zh) 一种CD105纳米抗体Nb184
CN106928368B (zh) 一种FAP纳米抗体Nb57
CN117186218B (zh) 一种靶向rbm47的纳米抗体及其制备方法
CN116496392B (zh) 抗新型冠状病毒n蛋白单域抗体、融合蛋白及其编码基因和应用
CN115850483A (zh) 抗CEACAM6单域抗体、人源化单域抗体及其Fc融合蛋白和应用
Miura et al. Domain swapping of complementarity-determining region in nanobodies produced by Pichia pastoris
KR102154177B1 (ko) 세포질 침투성이 증진된 항체의 스크리닝 방법
CN106928360B (zh) 一种CD105纳米抗体Nb68

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant