WO1998029362A1 - Complexes semicarbazide-metal et agent generateur de gaz pour airbag - Google Patents

Complexes semicarbazide-metal et agent generateur de gaz pour airbag Download PDF

Info

Publication number
WO1998029362A1
WO1998029362A1 PCT/JP1997/004839 JP9704839W WO9829362A1 WO 1998029362 A1 WO1998029362 A1 WO 1998029362A1 JP 9704839 W JP9704839 W JP 9704839W WO 9829362 A1 WO9829362 A1 WO 9829362A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
semicarbazide
gas generating
nitrate
weight
Prior art date
Application number
PCT/JP1997/004839
Other languages
English (en)
French (fr)
Inventor
Tadao Yoshida
Shiro Chijiwa
Yasuo Shimizu
Kazuo Hara
Takashi Kazumi
Keisuke Matsuda
Kenichi Fukase
Original Assignee
Otsuka Kagaku Kabushiki Kaisha
Nippon Koki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Kagaku Kabushiki Kaisha, Nippon Koki Co., Ltd. filed Critical Otsuka Kagaku Kabushiki Kaisha
Priority to EP97950402A priority Critical patent/EP0968986A4/en
Publication of WO1998029362A1 publication Critical patent/WO1998029362A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages

Definitions

  • the present invention relates to a metal complex of semicarbazide and a gas generating agent for an airbag.
  • an azide-based gas generating agent using sodium azide as a gas generating base has been widely used.
  • azide-based gas generating agents have the drawback of high impact ignitability, and care must be taken during their production and other operations.
  • sodium azide is toxic and requires protective equipment during handling.
  • the treatment of wastewater for work using sodium azide requires special treatment equipment.
  • azide-based gas generating agents Under the current situation where the emphasis is on environmental protection and the safety of workers and users, azide-based gas generating agents with the above-mentioned disadvantages are not preferred. However, there is a strong demand for the development of non-azide gas generating agents to replace azurized sodium.
  • non-azide gas generating bases include amide groups containing large amounts of nitrogen, tetrazole rings or BACKGROUND ART High nitrogen-containing organic compounds having a liazole ring, organic carboxylic acids, nitro compounds, polymer compounds, and triaminoguanidine nitrates are known.
  • a high nitrogen-containing organic compound having a tetrazole ring or a triazole ring include, for example, tetrala having a melting point of 90 ° C or more and a decomposition point of 140 ° C or more.
  • Zole derivatives US Pat. No. 3,468,730
  • transition metal salts of amino derivatives of tetrazole and triazole US Pat. No. 5,197,758
  • a mixture of tetrazole, Z or a triazole compound and a water-soluble compound such as aminoguanidine nitrate or semicarbazide nitrate (JP-A-7-257) No. 9886).
  • organic carboxylic acids include, for example, carboxylic acid salts (U.S. Pat. No. 3,964,225), and specific examples of nitro compounds include, for example, Examples of high molecular compounds such as tribalbylate, nitrolotinate, and nitroprazil (Japanese Patent Application Laid-Open No. Hei 2-302388) include, for example, triacetate ( Japanese Unexamined Patent Publication No. Sho 49-9-74165).
  • triaminoquinazine nitrate as a gas generating base for air-logging is disclosed, for example, in Japanese Patent Application Laid-Open No. 5-254977.
  • One object of the present invention is to produce a cleaner gas, generate a larger amount of gas per unit weight than the conventional non-azide airbag gas generating agent, and increase the combustion temperature.
  • the purpose is to provide a gas generator for airbags having a low air-fuel ratio.
  • Another object of the present invention is to significantly reduce the rate at which residues generated during combustion pass through a finalizer within an inflator and exit the air nozzle.
  • For airbags To provide gas generating agents.
  • Another object of the present invention is to provide a novel metal complex of semicarbazide which can be used as a base for the gas generating agent for airbags.
  • an airbag gas generating agent containing at least one base selected from metal complexes of semicarbazide as an active ingredient (hereinafter referred to as “airbag gas generating agent A”) ) Is provided.
  • an airbag gas generating agent containing at least two types of bases as active ingredients selected from metal complexes of hydrazine derivatives having different metal types (hereinafter referred to as “ A gas generating agent for vacuum B ”) is provided.
  • M represents a metal atom which is Mg, Al, Ca, Mn, Cu, Zn or Fe.
  • X represents a group H 2 NNHCONH 2 . 1 represents 2 or 3
  • m represents an integer of 1 to 3
  • n represents an integer of 0 to 2.
  • m + n is assumed to be equal to the ion value of the metal atom represented by M.
  • a metal complex of semicarbazide represented by is provided.
  • the metal complex of semicarbazide of the present invention is useful as a gas generating base of a gas generating agent for airbag.
  • Metal complexes have two favorable properties: a remarkably high gas generation and a low combustion temperature.
  • the metal complex of semicarbazide of the present invention has a remarkably large amount of generated gas and a low combustion temperature of about 180 to 230 K.
  • the metal complex of semicarbazide of the present invention also has a favorable property of high thermal stability (heat resistance).
  • the front of the vehicle, in which the airbag inflator is housed becomes extremely hot, especially in summer, so its high thermal stability is highly preferred as a gas generator for airbags. That is it.
  • the metal complex of the chemical carbide of the present invention is excellent in safety, such as low impact ignition performance.
  • the airbag gas generating agent A of the present invention has the following remarkable effects.
  • the composition of the present invention has two favorable characteristics that a large amount of gas is generated and the combustion temperature is low (for example, the composition of the present invention has a unit weight (100 g). )
  • the amount of generated gas is about 2.5 to 3.0 mol or more, and the composition of the present invention has a low combustion temperature, and is usually 180 to 230. It is about K or less.
  • composition of the present invention has a low risk of igniting and burning due to decomposition or external impact to cause a fire, and is toxic. The risk of handling during the manufacturing process is very low.
  • composition of the present invention has a relatively low combustion temperature, similarly to the gas generator based on sodium azide, it may cause burns to the occupants or holes in the bag. There is little danger of burning the bag.
  • the metal complex which is the gas generating base of the composition of the present invention, has a low carbon content and therefore a low CO concentration in the generated gas. .
  • the composition of the present invention has a favorable property of high heat stability (heat resistance). Since the front of the car in which the air-notched inflator is stored becomes extremely hot, especially in summer, high thermal stability is desirable as a gas generating agent for airbags. It is.
  • the gas generating agent B for an air bag of the present invention also has the above (1) to
  • At least one selected from metal complexes of semicarbazide is used as the gas generating base.
  • the metal species constituting the metal complex of semicarbazide is not particularly limited, but is usually at least one selected from the third and fourth period elements of the periodic table of the elements. . Among them, at least one selected from Mg, Al, Ca, Mn, Cu, Zn, Fe and the like is preferable.
  • a metal complex of semicarbazide represented by the following general formula (1) is particularly preferred.
  • M represents a metal atom which is Mg, Al, Ca, Mn, Cu, Zn or Fe.
  • X represents a group H 2 NNHCONH 2 . 1 represents 2 or 3
  • m represents an integer of 1 to 3
  • n represents an integer of 0 to 2.
  • m + n is assumed to coincide with the ion value of the metal atom represented by M.
  • Preferred specific examples of the metal complex of the present invention are as follows.
  • Etc. are particularly preferred.
  • the metal complex of the present invention can be produced according to a known method.
  • a metal nitrate and semicarbazide may be reacted in a suitable solvent. More specifically, a solution of a metal nitrate and a solution of semicarbazide are mixed, and the reaction mixture is cooled or a poor solvent is added to precipitate and separate the desired metal complex.
  • the metal complex represented by the general formula (1) can be synthesized.
  • the solvent for dissolving the metal nitrate examples include water, lower alcohols such as methanol and ethanol, dimethylformamide, and a mixed solvent thereof.
  • a solvent for dissolving semicarbazide examples include water, lower alcohols such as methanol and ethanol, acetonitril, dioxane, dimethylformamide, a mixed solvent thereof and the like can be used.
  • the metal nitrate examples include copper nitrate (11), zinc nitrate, calcium nitrate, aluminum nitrate, manganese nitrate (11), and magnesium nitrate.
  • the ratio of the metal nitrate to the semicarbazide is not particularly limited, and may be appropriately selected according to the type of the metal nitrate.
  • the semicarbazide is added to 1 mol of the metal nitrate.
  • the reaction between metal nitrate and semicarbazide is usually about 10 to 100 ° C, preferably about 20 ° C. The reaction is carried out at a temperature of about 50 ° C.
  • the reaction mixture is cooled, or a poor solvent (for example, lower alcohols, nitriles such as acetonitrile, etc.) is added to the reaction mixture to precipitate a target metal complex.
  • a poor solvent for example, lower alcohols, nitriles such as acetonitrile, etc.
  • the metal complex of the present invention is purified according to ordinary purification means.
  • At least one of the above-mentioned semicarbazide metal complexes can be used alone as an airbag gas generating agent, and an oxidizing agent can be used in combination. And also it can.
  • any oxidizing agent commonly used in this type of field can be used, and examples thereof include nitrates, oxohalogenates, peroxides and the like, preferably nitrates. it can.
  • alkali metal salts such as lithium nitrate, sodium nitrate, and potassium nitrate, barium nitrate, and strontium nitrate
  • alkaline earth metal salts such as, and ammonium salts such as ammonium nitrate.
  • alkali metal salts and alkaline earth metal salts are preferred, and potassium nitrate, strontium nitrate and the like are particularly preferred.
  • oxohalogenate conventionally known oxohalogenates can be widely used, and examples thereof include perhalates and halogenates.
  • perhalates include, for example, lithium perchlorate, potassium perchlorate, sodium perchlorate, lithium perbromate, potassium perbromate, perbromine.
  • Alkali metal salts such as sodium acid, alkaline earth metal salts such as barium perchlorate, calcium perchlorate, barium perbromate, calcium perbromate, ammonium perchlorate And ammonium salts such as ammonium perbromate.
  • halogenates include, for example, Alkali metal salts such as lithium chlorate, potassium chlorate, sodium chlorate, lithium bromate, potassium bromate, sodium bromate, etc .; Examples thereof include alkaline earth metal salts such as calcium chlorate-calcium bromide, and ammonium salts such as ammonium chlorate and ammonium bromate. Of these, alkali metal salts of perhalic acids and halogenic acids are preferred.
  • alkali metal peroxides such as lithium peroxide, potassium peroxide, and sodium peroxide
  • calcium peroxide alkali metal peroxides
  • alkaline earth metals such as strontium peroxide, potassium peroxide and lithium.
  • the above oxidizing agents can be used alone or as a mixture of two or more.
  • the oxidizing agent can be used as it is in the market. ⁇ Further, the shape, particle size, etc. of the oxidizing agent are not particularly limited. It may be appropriately selected from a wide range according to the capacity and the like.
  • the compounding amount of the oxidizing agent may be a stoichiometric amount capable of completely oxidizing and burning the gas generating base on the basis of the oxygen amount.
  • the combustion speed, combustion temperature (gas temperature), combustion gas composition, etc. can be adjusted arbitrarily. can do.
  • about 100 to 400 parts by weight, preferably about 30 to 200 parts by weight, of the oxidizing agent is added to 100 parts by weight of the gas generating base.
  • the gas generating agent B for airbag of the present invention at least two types selected from metal complexes of hydrazine derivatives having different metal types are used as the gas generating base.
  • hydrazine derivative examples include semicarbazide, carbohydrazide, hydrazine, and holminolehydrazine. Of these, semicarbazide and sclerocahydrazide are preferred, and semiicalpa and zide are particularly preferred.
  • the metal species constituting the metal complex of the hydrazine derivative is not particularly limited. Usually, at least one selected from the third and fourth period elements of the periodic table of the elements. One kind. Among these, at least two kinds selected from Mg, Al, Ca, Mn, Cu, Zn, Fe, etc. are preferred, and particularly, Mg and Al are preferred. M n is preferred.
  • hydrazine derivatives represented by the following general formula (2)
  • M is a metal atom which is M g, Al, Ca, M n, Cu, Zn, or Fe.
  • Y represents a group H 2 NNHCONH 2 or a group H 2 NNHCONHNH 2 . 1 represents 2 or 3
  • p represents an integer of 1 to 3
  • n represents an integer of 0 to 2.
  • m + n is assumed to be the same as the ion value of the metal atom represented by M.
  • Preferred specific examples of the metal complex of the present invention are as follows.
  • the metal complex of the present invention can be produced according to a known method.
  • a metal nitrate and a hydrazine derivative may be reacted in an appropriate solvent. More specifically, a solution of a metal nitrate and a solution of a hydrazine derivative are mixed, and the reaction mixture is cooled or a poor solvent is added to precipitate and separate the desired metal complex.
  • the metal complex represented by the general formula (2) can be synthesized.
  • Examples of the solvent for dissolving the metal nitrate include water, lower alcohols such as methanol and ethanol, dimethylformamide, and a mixed solvent thereof. Further, even as a solvent for dissolving the hydrazine derivative, for example, water, lower alcohols such as methanol, ethanol, etc., acetonitrile, dioxane, dimethylformamide And mixed solvents thereof can be used.
  • Specific examples of the metal nitrate include copper nitrate (11), zinc nitrate, calcium nitrate, aluminum nitrate, manganese nitrate (11), and magnesium nitrate.
  • the ratio of the metal nitrate to the hydrazine derivative used is not particularly limited, and may be appropriately selected according to the type of the metal nitrate, but usually, the hydrazine is used per mole of the metal nitrate. About 1 to 6 moles, preferably about 2 to 4 moles, of the pyridine derivative may be used.
  • the reaction between the metal nitrate and the hydrazine derivative is usually carried out at a temperature of about 10 to 100 ° C, preferably about 20 to 50 ° C, and usually within 4 hours. It takes about 0.5 to 1 hour.
  • the reaction mixture is cooled, or a poor solvent (for example, a lower alcohol, a nitrile such as acetonitrile) is added to the reaction mixture to precipitate a target metal complex, By fractionating this, the metal complex of the present invention can be obtained.
  • the metal complex of the present invention is purified according to ordinary purification means.
  • the mixing ratio is usually one kind of hydrazine. 100 to 400 parts by weight, preferably 100 to 400 parts by weight, of a metal complex of a hydrazine derivative having a different metal type per 100 parts by weight of the metal complex of the derivative
  • the content is preferably about 50 to 200 parts by weight.
  • At least two of the metal complexes of the above hydrazine derivatives can be used alone as an airbag gas generating agent, and the oxidizing agent can be used in combination. You can do it.
  • any oxidizing agent commonly used in this kind of field can be used, and examples thereof include nitrates, oxohalogenates, peroxides and the like, preferably nitrates. You.
  • nitrate conventionally known ones can be widely used.
  • alkali metal salts such as lithium nitrate, sodium nitrate, and potassium nitrate, barium nitrate, and sodium nitrate can be used.
  • Alkaline earth metal salts such as ammonium, ammonium salts such as ammonium nitrate and the like can be mentioned. Among them, alkali metal salts and alkaline earth metal salts are preferred, and potassium nitrate, strontium nitrate and the like are particularly preferred.
  • perhalates include, for example, lithium perchlorate, potassium perchlorate, sodium perchlorate, lithium perbromate, potassium perbromate, and potassium perchlorate.
  • Alkali metal salts such as sodium bromate, perchlorate bali Alkaline earth metal salts, such as aluminum, calcium perchlorate, barium perbromate, calcium perbromate, and ammonium salts, such as ammonium perchlorate and ammonium perbromate And the like.
  • halogenates include, for example, lithium chlorate, potassium chlorate, sodium chlorate, lithium bromate, potassium bromate, sodium bromate.
  • Alkaline earth metal salts such as alkali metal salts such as triamium, barium chlorate, calcium chlorate-calcium bromate, ammonium chlorate, ammonium bromate, etc. Ammonium salts and the like. Of these, metal salts of perhalic acids and halogenic acids are preferred.
  • alkali metal peroxides such as lithium peroxide, potassium peroxide, and sodium peroxide
  • calcium peroxide alkali metal peroxides
  • peroxides of alkaline earth metals such as strontium peroxide and barium peroxide.
  • the above oxidizing agents can be used alone or in combination of two or more.
  • As the oxidizing agent a commercially available product can be used as it is.
  • the shape and particle size of the oxidizing agent are not particularly limited.For example, the amount of the oxidizing agent itself, the mixing ratio with other components, the airbag, etc.) May be appropriately selected from a wide range according to the capacity and the like.
  • the amount of the oxidizer is usually determined based on the amount of oxygen.
  • the stoichiometric amount may be sufficient to completely oxidize and burn the raw base.
  • the oxidizing agent is used in an amount of about 100 to 400 parts by weight, preferably 100 to 100 parts by weight of the gas generating base, preferably.
  • One embodiment of a preferred composition of the gas generant B of the present invention is a complex of semicarno, zide, a Mg complex of semicanolebaside, a complex of canolevo hydrazide and a complex of canolebohydrazide. At least two different metal species selected from the Mn complex of the razide are used as a base, and an oxidizing agent is blended.
  • the proportions of the components to be mixed are as follows: semi-carbazide Mn complex and di- or carbohydrazide Mn complex 100 parts by weight Of the Mg complex of Z and carbohydrazide with 10 to
  • One embodiment of a particularly preferred composition of the gas generant B of the present invention is a Mg complex of semicarnozide, a Mn complex of semicarnozide, a Mg complex of carbohydrazide and a carbohydrazide.
  • a base a base
  • stotium nitrate is blended as an oxidizing agent.
  • the ratio of each of the components to be blended was as follows: the semicarbazide Mn complex and the carbohydrazide Mn complex 100 parts by weight, The Mg complex and / or the carbohydrazide Mg complex are
  • the airbag gas generating agent A and the airbag gas generating agent B of the present invention contain, in addition to the gas generating base and the oxidizing agent, at least one selected from an exhaust gas improving agent and a binder. May be present.
  • the exhaust gas improver mainly has an action of reducing the concentration of toxic components such as CO and NO x in the exhaust gas.
  • silicide of the fourth period element examples include, for example, titanium silicide and chromium silicide.
  • element silicide examples include zirconium silicide, niobium silicide, and molybdenum silicide.
  • c exhaust enhancer can and this include silicosis hardness rental, a silicide data tungsten or the like, alone or in admixture of two or more thereof Can be used. Commercial exhaust gas improvers can be used as they are.
  • the particle size of the exhaust gas improver is not particularly limited.
  • the particle size may be appropriately selected from a wide range according to the amount of the exhaust gas improver itself, the mixing ratio with other components, the capacity of the airbag, and the like. Good.
  • the amount of the exhaust gas enhancer is not particularly limited, and can be appropriately selected from a wide range according to various conditions such as the mixing ratio with other components and the capacity of the airbag.
  • the exhaust gas improver is usually added in an amount of about 0.1 to 20 parts by weight, preferably about 1 to 10 parts by weight, based on 100 parts by weight of the total amount.
  • the binder is mainly used as a binder when formulating a gas generating agent, but also has a function of lowering the combustion temperature or adjusting the combustion speed.
  • binder examples thereof include a cellulose compound, a thermoplastic resin, an organic polymer compound, and an inorganic binder.
  • cellulosic compounds include, for example, carboxymethinoresorenolose, hydroxymethinoresorenolose, ethers thereof, and microcrystalline cellulose powder. And so on.
  • microcrystalline cellulose powder can be preferably used. Examples of the microcrystalline cellulose powder include those commercially available under the trade name “Avicel” (manufactured by Asahi Kasei Corporation).
  • thermoplastic resin examples include, for example, polypropylene carbonate, polyethylene vinyl acetate copolymer, polystyrene polypropylene, polyester polymer, and polyethylene.
  • Carboxyl-terminated polybutadiene-based polyester acrylates Polybutadiene, polybutadiene Esters of carboxylic acid and hydroxy-terminated polybutadiene, acryl-based latex suspensions and the like can be mentioned.
  • poly (ethylene polyvinyl acetate copolymer), poly (vinyl ether), poly (vinyl butyral) and the like can be preferably used.
  • organic high molecular compound include soluble starch, polyvinyl alcohol and its partially genated product, polyethylene glycol, polypropylene glycol, and polyvinyl alcohol. Mouth lidone, polysaccharides, sodium polyacrylate, ammonium polyacrylate and the like can be mentioned.
  • soluble starch, polyvinyl alcohol and the like can be preferably used.
  • examples of the inorganic binder include silica sol, alumina sol, and zirconia sol.
  • a cellulose compound, a thermoplastic resin and the like are preferable.
  • binder may be used alone, or two or more types may be used in combination.
  • Commercially available binders can be used as they are.
  • the particle size of the binder is not particularly limited, and may be appropriately selected from a wide range according to, for example, the blending amount of the binder itself, the blending ratio with other components, the capacity of the airbag, and the like.
  • the compounding amount of the binder is not particularly limited. For example, a force that can be appropriately selected from a wide range according to various conditions such as a mixing ratio with other components and a capacity of an air bag, etc. Quantity
  • the binder is usually added in an amount of about 0.1 to 20 parts by weight, preferably about 1 to 10 parts by weight, based on 100 parts by weight.
  • an additive for a gas generating agent which has been conventionally used can be blended.
  • the additive include carbonates of alkali metals, such as sodium carbonate, potassium carbonate, sodium silicate, and potassium silicate, silicates, bentonites, and aluminum salts. Oxides of the second to third periodic elements of the periodic table, such as mina, silicon dioxide, silicon dioxide and boron oxide, can be mentioned. These additives have a function of further improving various properties of the gas generating agent of the present invention, a function of further facilitating formulation of the gas generating agent of the present invention, and the like.
  • the amount of the additive is not particularly limited and can be appropriately selected from a wide range. Usually, the amount of the additive is 0.01 to 10: 1 based on 100 parts by weight of the total amount of the gas generating base and the oxidizing agent. The amount may be about parts by weight, preferably about 0.05 to 5 parts by weight.
  • the gas generating base conventionally used, and other gas generating bases as long as the desired effects of the present invention are not impaired. Additives can be added.
  • the airbag gas generating agent A and the airbag gas generating agent B of the present invention are manufactured by mixing a gas generating base or a gas generating base and an oxidizing agent with other components as necessary. Is done.
  • the gas generant B can be used after being formulated into an appropriate form.
  • an appropriate amount of a binder may be mixed with the airbag gas generating agent of the present invention, followed by tableting or tableting and drying. At that time, a small amount of water, hot water, etc. may be added to facilitate the work or enhance the work safety.
  • the binder is as described above. There is no particular limitation on the formulation, and examples include pellets, discs, spheres, rods, hollow cylinders, sugary sugars, tetrapods, and the like. It may be perforated or perforated (for example, briquette).
  • a pellet-shaped or disk-shaped one may be provided with one to several projections on one or both sides.
  • the shape of the projection is not particularly limited, and examples thereof include a columnar shape, a conical shape, a polygonal pyramid shape, and a polygonal columnar shape.
  • a solution prepared by dissolving 25.6 g (0.1 mol) in 30 ml of methanol was added. After stirring for 10 minutes, the solution was concentrated. After cooling, 50 ml of ethanol was added to suspend the mixture, and the solid was separated by filtration. Washed with a small amount of ethanol and dried to obtain a white solid.
  • a wet powder is produced by mixing a composition consisting of 58 parts by weight of semicarbazide zinc complex, 34 parts by weight of potassium nitrate, 5 parts by weight of copper oxide and 3 parts by weight of crystalline cellulose (binder). did.
  • the wet powder is granulated by a granulator, and the obtained wet granules are dried and pressed by a cam-type tableting machine to form a gas generating pellet (diameter 4 mm, height). 1.5 mm and a mass of 0.05 g) were produced.
  • a pellet of the gas generating agent of the present invention was produced in the same manner as in Example 1 except that ferric oxide was used instead of copper oxide.
  • a pellet of the gas generating agent of the present invention was produced in the same manner as in Example 1 except that manganese dioxide was used instead of copper oxide.
  • a pellet of the gas generating agent of the present invention was produced in the same manner as in Example 1.
  • a pellet of the gas generating agent of the present invention was prepared in the same manner as in Example 1 by using 63 parts by weight of the semicarnodido manganese complex, 34 parts by weight of nitric acid lithium and 34 parts by weight of crystalline cellulose. Manufactured.
  • a pellet of the gas generating agent of the present invention was produced in the same manner as in Example 1 using 44 parts by weight of the semicarbazide zinc complex, 53 parts by weight of calcium peroxide, and 3 parts by weight of crystalline cellulose.
  • 44 parts by weight of the semicarbazide zinc complex 53 parts by weight of calcium peroxide, and 3 parts by weight of crystalline cellulose.
  • Example 2 Using 61.8 parts by weight of semicarba and the zinc zinc complex, 30.2 parts by weight of sodium stodium nitrate, 5 parts by weight of manganese dioxide and 3 parts by weight of crystalline cellulose, the same procedure as in Example 1 was repeated. A pellet of the invention gas generating agent was manufactured.
  • the combustion chamber of an inflator equipped with a gas outlet of 4 mm in diameter was charged with boron-potassium nitrate 2.0 Og as a transfer agent, and the gas generation obtained in Examples 1 to 9 was carried out.
  • the pellet of the agent was filled.
  • An aluminum tape with a thickness of 0.15 mm was attached to the outlet, and pressure was maintained.
  • This inflator was installed in a 60-litre tank, and the igniter was energized and operated, and the pressure in the combustion chamber and the 60-litre tank was measured.
  • the gas in the 60 liter tank after combustion was collected in a Tedlar bag of 10 liter tank, and the C0 and NOX concentrations in the gas were measured using a detector tube. Table 1 shows the results.
  • the linear burning velocity was measured using the burning velocity measuring velvets (30 mm ⁇ 5 mm ⁇ 5 mm) of Examples 4, 5 and 6.
  • the linear burning velocity was measured under an arbitrary pressure of 8 MPa using a Chimney type 1 type strand burner. Pressurization was performed using nitrogen gas, and the test temperature was set at 22 ° C. The results are shown in Table 2.
  • Example 1 Using 31.5 parts by weight of a semicarbazide zinc complex, 31.5 parts by weight of a semicarbazide manganese complex, 34 parts by weight of potassium nitrate and 3 parts by weight of crystalline cellulose. A pellet of the gas generating agent of the present invention was produced in the same manner as described above.
  • Example 1 2 The same as in Example 1 using 43 parts by weight of seminodium domigandigan complex, 20 parts by weight of semicarbazide magnesium complex, 34 parts by weight of potassium nitrate and 3 parts by weight of crystalline cellulose. Thus, a pellet of the gas generating agent of the present invention was produced.
  • Example 1 2 The same as in Example 1 using 43 parts by weight of seminodium domigandigan complex, 20 parts by weight of semicarbazide magnesium complex, 34 parts by weight of potassium nitrate and 3 parts by weight of crystalline cellulose. Thus, a pellet of the gas generating agent of the present invention was produced.
  • Example 1 2 The same as in Example 1 using 43 parts by weight of seminodium domigandigan complex, 20 parts by weight of semicarbazide magnesium complex, 34 parts by weight of potassium nitrate and 3 parts by weight of crystalline cellulose. Thus, a pellet of the gas generating agent of the present invention was produced.
  • Example 1 2 The same as in Example 1 using 43 parts by weight of semin
  • Example 2 Same as Example 1 using 31 parts by weight of semicarbazide zinc complex, 31 parts by weight of semicarbazide magnesium complex, 35 parts by weight of potassium nitrate and 3 parts by weight of crystalline cellulose As a result, a pellet of the gas generating agent of the present invention was produced.
  • pellets of the gas generating agent of the present invention were prepared in the same manner as in Example 1. Was manufactured.
  • Carbohydrazine domane complex 42 2 parts by weight, carbohydrate A pellet of the gas generating agent of the present invention was prepared in the same manner as in Example 1 by using 20 parts by weight of drazidomagnesium complex, 35 parts by weight of strontium nitrate and 3 parts by weight of crystalline cellulose. Was manufactured.
  • the combustion chamber of an inflator provided with a gas ejection hole having a diameter of 4 mm was charged with 3.0 g of boron boron nitrate as a transfer agent, and Example 4 to Example 6 and Example 10 were performed.
  • Each of the gas generating agents obtained in Examples 16 to 16 was filled with 45 g of pellets.
  • An aluminum tape with a thickness of 0.15 mm was attached to the outlet, and pressure was maintained.
  • This inflation system was installed in a 60 liter tank and operated by energizing the igniter. The pressure in the combustion chamber was measured. In addition, the amount of residue in the combustion chamber was measured overnight after inflation after combustion. Table 3 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Air Bags (AREA)
  • Catalysts (AREA)

Description

明 細 書
セ ミ カルバジ ドの金属錯体及びエアバッ グ用ガス発生剤
技 術 分 野
本発明は、 セ ミ カルバジ ドの金属錯体及びエアバッ グ 用ガス発生剤に関する。
背 景 技 術
従来からエアバッ グ用ガス発生剤と しては、 アジ化ナ ト リ ゥ ムをガス発生基剤とする アジ ド系ガス発生剤が汎 用されている。 しか しながら、 アジ ド系ガス発生剤には 衝撃着火性が高いという欠点があ り、 その製造作業等に おける取り扱いに注意を要する。 また、 アジ化ナ ト リ ウ ムは毒性を有するため、 取り扱い作業においては防護設 備等が必要になる。 更に、 アジ化ナ ト リ ウ ムを使っ た作 業用の排水の処理には専用の処理設備が必要となる等の 欠点がある。
環境保全及び作業者や使用者の安全性を重視する考え 方が主流である現状にあっては、 上記のよ う な欠点を有 するアジ ド系ガス発生剤は好ま し く ない ものであ り、 ァ ジ化ナ ト リ ゥムに代る非アジ ド系ガス発生剤の開発が強 く 要望されている。
現在提案されている非アジ ド系ガス発生基剤と しては 窒素が多量に含まれるア ミ ド基、 テ トラ ゾ一ル環又は ト リ アゾール環を有する高窒素含有有機化合物、 有機カル ボン酸、 ニ ト ロ化合物、 高分子化合物及び ト リ ア ミ ノ グ ァニジ ン硝酸塩が知られている。
ア ミ ド基を有する含窒素有機化合物の具体例と しては、 例えば、 化学構造式 H 2 N C 0 N = N C O N H 2で表され るァゾジカルボンア ミ ド (特開平 6 — 3 2 6 8 9 号公報、 特開平 6 — 3 2 6 9 0 号公報、 特開平 6 — 2 2 7 8 8 4 号公報、 国際公開公報 W 0 9 4 / 0 1 3 8 1 号等) 、 化 学構造式 H 2N C O N H N H C O N H 2で表される ビス力 ノレバモ イ ノレ ヒ ド ラ ジ ン (特開平 7 — 3 0 0 3 8 3 号公報、 ドイ ツ公開公報第 1 9 5 1 6 8 1 8 号) 、 化学構造式 H 2 N C ( = N H ) N H C Nで表される ジシア ンジア ミ ド (米国特許第 4 3 8 6 9 7 9 号明細書) 、 カルボヒ ドラ ジ ド及びその誘導体等を挙げる こ とができ る。
テ ト ラゾール環又は ト リ アゾ一ル環を有する高窒素含 有有機化合物の具体例と しては、 例えば、 融点が 9 0 °C 以上で分解点が 1 4 0 °C以上のテ ト ラ ゾール誘導体 (米 国特許第 3 4 6 8 7 3 0号明細書) 、 テ ト ラ ゾール、 ト リ アゾールのァ ミ ノ 誘導体の遷移金属塩 (米国特許第 5 1 9 7 7 5 8 号明細書) 、 テ ト ラ ゾール及び Z又は ト リ ァゾ一ル化合物と硝酸ア ミ ノ グァ二ジン、 硝酸セ ミ カル バ ジ ド等の水溶性化合物との混合物 (特開平 7 — 2 5 7 9 8 6 号公報) 等を挙げる こ とができ る。
有機カルボン酸の具体例と しては、 例えば、 力ルボン 酸塩 (米国特許第 3 9 6 4 2 2 5 号明細書) 等が、 ニ ト 口化合物の具体例と しては、 例えば、 ニ ト ロバルビッル 酸塩、 ニ ト ロォロチ ン酸塩及びニ ト ロ ゥラ シル (特開平 2 - 3 0 2 3 8 8 号公報) 等が、 高分子化合物と しては、 例えば、 ト リ アセテー ト (特開昭 4 9 — 7 4 1 6 5 号公 報) 等が、 それぞれ挙げられる。
更に、 ト リ ア ミ ノ グァ二ジ ン硝酸塩のエアノ ッ グ用ガ ス発生基剤の用途は、 例えば、 特開平 5 — 2 5 4 9 7 7 号公報等に開示されている。
また、 最近各自動車メ ーカ一において全車種へのエア バッ グの標準装備が進め られる と共に、 エアバッ グ用ィ ン フ レ ー夕一の よ り 一層の小型化が求め られ、 そのため に、 エアバッ グ用ガス発生剂の充填室乃至燃焼室を小さ く した り、 イ ン フ レ一ターを構成する金属を薄肉化する こ とが必要にな っ ている。 このよ う な現状においては、 上記の従来の非アジ ド系エアバッ グ用ガス発生剤よ り も 更に、 発生するガスがク リ ー ンで、 単位重量当た り のガ ス発生量が多 く、 燃焼温度の低いエアバッ グ用ガス発生 剤の開発が要望されている。
最近、 斯かる要望を満足するエアバッ グ用ガス発生剤 と して ト リ ス (カルボヒ ドラ ジ ド一 0, N ) マグネシゥ ム( I I )硝酸塩錯体をガス発生基剤とするエアバッ グ用ガ ス発生剤が提案されている (特開平 9 一 1 0 4 6 8 7 号 公報) 。 しかしながら、 該公報に記載のエアバッ グ用ガ ス発生剤では、 ト リ ス ( カ ノレポ ヒ ドラ ジ ド ー 0, N ) マ グネ シゥム( 1 1 )硝酸塩錯体が燃焼する際に発生する残渣 (スラ グ) がイ ンフ レ一夕一内のフ イ ノレタ ーを通過 し、 これがエアバッ グ内に出てきてバッ グを損傷させ、 ひい ては使用者 (乗員) に火傷等を負わせる危険性が大きい c このよ う なガス発生基剤の燃焼残渣がィ ンフ レーター内 の フ イ ノレターを通過する という欠点は、 特開平 9 — 1 0 4 6 8 7 号公報に記載のエアバッ グ用ガス発生剤に限ら ず、 従来の非ァジ ド系エアバッ グ用ガス発生剤に共通す る欠点でもあ っ た。
発 明 の 開 示
本発明の一つの 目的は、 従来の非アジ ド系エアバッ グ 用ガス発生剤よ り も更に、 発生するガスがク リ ー ンで、 単位重量当た り のガス発生量が多 く、 燃焼温度が低いェ アバッ グ用ガス発生剤を提供する こ とにある。
本発明の他の一つの目的は、 燃焼の際に発生する残渣 が、 イ ン フ レ一夕一内の フ ィ ノレターを通過 してエ アノ ッ グ内に出て く る割合を大幅に減少させ得るエアバッ グ用 ガス発生剤を提供する こ とにある。
本発明の他の一つの目的は、 上記エアバッ グ用ガス発 生剤の基剤とな り 得る新規なセ ミ カルバジ ドの金属錯体 を提供する こ とにある。
本発明によれば、 セ ミ カルバジ ドの金属錯体から選ば れる少な く と も 1 種の基剤を有効成分とするエアバッ グ 用ガス発生剤 (以下これを 「エアバッ グ用ガス発生剤 A」 という ) が提供される。
また、 本発明によれば、 金属種の異なる ヒ ドラ ジ ン誘 導体の金属錯体から選ばれる少な く と も 2 種の基剤を有 効成分とするエアバッ グ用ガス発生剤 (以下これを 「ェ ァバッ グ用ガス発生剤 B」 という ) が提供される。
本発明によれば、 一般式
[ M ( X ) !] ( N 03) m ( 0 H ) n ( 1 )
[式中、 Mは M g、 A l、 C a、 M n、 C u、 Z n又は F e である金属原子を示す。 Xは基 H 2N N H C O N H 2 を示す。 1 は 2又は 3、 mは 1 〜 3の整数、 nは 0 〜 2 の整数を示す。 但し、 m + nは Mで示される金属原子の イオ ン価と一致する ものとする。 ]
で表されるセ ミ カルバジ ドの金属錯体が提供される。
本発明のセ ミ カルバジ ドの金属錯体は、 ェアバッ グ用 ガス発生剤のガス発生基剤と して有用である。 本発明の 金属錯体は、 ガス発生量が顕著に多 く 且つ燃焼温度が低 いという 2 つの好ま しい特性を兼備している。 例えば、 本発明のセ ミ カルバジ ドの金属錯体は、 ガス発生量が著 し く 多 く、 燃焼温度も 1 8 0 0 〜 2 3 0 0 K程度と低い ものである。 また、 本発明のセ ミ カルバジ ドの金属錯体 は、 熱安定性 (耐熱性) が高いという好ま しい特性をも 有 している。 エアバッ グイ ンフ レ一ターが収納される 自 動車のフ ロ ン ト は、 特に夏季には非常に高温になるので、 熱安定性が高いというのはエアバッ グ用ガス発生剤と し て極めて好ま しいこ とである。 更に、 本発明のセ ミ カル バジ ドの金属錯体は、 衝撃着火性が低い等、 安全性の面 でも優れている。
本発明のエアバッ グ用ガス発生剤 Aは、 次のよ う な顕 著な効果を有 している。
( 1 ) 本発明組成物は、 ガス発生量が顕著に多 く 且つ燃 焼温度が低いという 2つの好ま しい特性を兼備している ( 例えば、 本発明組成物は、 単位重量 ( 1 0 0 g ) 当た り のガス発生量が約 2 . 5 〜 3 . 0 モル又はそれ以上であ る。 ま た、 本発明組成物は、 燃焼温度も低 く、 通常 1 8 0 0 〜 2 3 0 0 K程度又はそれ以下である。
( 2 ) 本発明組成物は、 分解も し く は外部からの衝撃に よ り着火燃焼して火災を引き起こす危険性が低 く、 毒性 も低いので、 製造工程における取り扱い上の危険性も非 常に少ない。
( 3 ) 本発明組成物はアジ化ナ ト リ ウムを基剤とするガ ス発生剤と同様に燃焼温度が比較的低いので、 乗員に火 傷を負わせた り、 バッ グに穴が開いた りバッ グが燃える 様な危険性が少ない。
( 4 ) 本発明組成物のガス発生基剤である金属錯体は、 炭素含有量が低いので発生ガス中の C 0濃度が低い。 .
( 5 ) 本発明組成物は、 熱安定性 (耐熱性) が高いとい う好ま しい特性を有 している。 エアノ ッ グィ ンフ レータ 一が収納される 自動車のフ ロ ン ト は、 特に夏季には非常 に高温になるので、 熱安定性が高いという のはエアバッ グ用ガス発生剤と して好ま しいこ とである。
( 6 ) 本発明組成物を使用すれば、 燃焼の際に発生する 残渣 (スラグ) 力、'、 イ ンフ レ一ター内のフ イ ノレターを通 過してエアバッ グ内に出て く る割合を大幅に減少させる こ とができる。
本発明のエアバッ グ用ガス発生剤 B も、 上記 ( 1 ) 〜
( 6 ) の効果を有 している。 特に ( 6 ) の効果において 顕著である。
【発明の実施の形態】
まず、 本発明のエアバッ グ用ガス発生剤 Aにっき、 説 明する。
本発明のエアバッ グ用ガス発生剤 Aにおいては、 ガス 発生基剤と して、 セ ミ カルバジ ドの金属錯体から選ばれ る少な く と も 1 種を使用する。
セ ミ カルバジ ドの金属錯体を構成する金属種と しては 特に制限されないが、 通常は、 元素周期律表の第 3 周期 元素及び第 4 周期元素から選ばれる少な く と も 1 種であ る。 これらの中でも、 M g、 A l、 C a、 M n、 C u、 Z n、 F e 等から選ばれる少な く と も 1 種の ものが、 好 ま しい。
更に、 下記一般式 ( 1 ) で表されるセ ミ カルバジ ドの 金属錯体が、 特に好ま しい。
[ M ( X ) 1 ] ( N 03) m ( 0 H ) „ ( 1 )
[式中、 Mは M g、 A l、 C a、 M n、 C u、 Z n又は F e である金属原子を示す。 Xは基 H 2N N H C O N H 2 を示す。 1 は 2又は 3、 mは 1 〜 3 の整数、 n は 0 〜 2 の整数を示す。 但 し、 m + n は Mで示される金属原子の イオ ン価と一致する ものとする。 ]
本発明の金属錯体の好ま しい具体例を示せば、 次の通 り である。
[ M g ( H 2 N N H C O N H 2) 3](N 0 3 ) 2
[ A 1 ( H 2 N N H C O N H 2) 2](N 0 3)(O H ) 2 [ C a ( H 2N N H C O N H 2) 2](N 0 3) 2
[ M n ( H 2N N H C O N H 2) 3](N O 3) 2
[ C u ( H 2N N H C O N H 2) 2](N O 3) 2
[ Z n ( H 2N N H C O N H 2) 3](N O 3) 2
[ F e ( H 2N N H C O N H 2) 3](N 0 3) 2
これ らの中でも、 耐熱性、 安全性、 燃焼性能等を考慮 する と、
[ M g ( H 2N N H C O N H 2) 3](N 0 3) z
[ M n ( H 2N N H C O N H 2) 3](N O 3) 2
[ Z n ( H 2N N H C O N H 2) 3](N O 3) 2
等が特に好ま しい。
本発明の金属錯体は、 公知の方法に従っ て製造できる c 例えば、 金属硝酸塩とセ ミ カルバジ ドとを適当な溶媒中 にて反応させればよい。 よ り具体的には金属硝酸塩の溶 液とセ ミ カルバジ ドの溶液とを混合 し、 反応混合物を冷 却するか又は貧溶媒を加えて目 的とする金属錯体を析出 させ、 分取する こ とによ り、 上記一般式 ( 1 ) の金属錯 体を合成する こ とができる。
金属硝酸塩を溶解する溶媒と しては、 例えば、 水、 メ 夕 ノ ール、 エタ ノ ール等の低級アルコール類、 ジメ チル ホルムア ミ ド、 これらの混合溶媒等を挙げる こ とができ る。 また、 セ ミ カルバジ ドを溶解する溶媒と しても、 例 えば、 水、 メ タ ノ ール、 エタ ノ ール等の低級アルコール 類、 ァセ トニ ト リ ル、 ジォキサン、 ジメ チルホルムア ミ ド、 これらの混合溶媒等を使用でき る。
金属硝酸塩と しては、 具体的には硝酸銅 ( 1 1 ) 、 硝酸 亜鉛、 硝酸カルシ ウ ム、 硝酸アル ミ ニウム、 硝酸マ ンガ ン ( 1 1 ) 、 硝酸マグネ シウム等を例示でき る。 金属硝酸 塩とセ ミ カルバジ ドとの使用割合と しては特に制限され ず、 金属硝酸塩の種類等に応 じて適宜選択すればよいが、 通常金属硝酸塩 1 モルに対して、 セ ミ カルバジ ドを 1 〜 6 モル程度、 好ま し く は 2 〜 4 モル程度使用すればよい < 金属硝酸塩とセ ミ カルバジ ドとの反応は、 通常 1 0 〜 1 0 0 °C程度、 好ま し く は 2 0 〜 5 0 C程度の温度下に 行われ、 通常 4 時間以内、 好ま し く は 0 . 5 〜 1 時間程 度で終了する。 反応終了後、 反応混合物を冷却するか又 は反応混合物に貧溶媒 (例えば低級アルコール類、 ァセ トニ 卜 リ ル等の二 ト リ ル類等) を加えて目的とする金属 錯体を析出させ、 これを分取する こ とによ り、 本発明の 金属錯体を収得する こ とができ る。 本発明の金属錯体は. 通常の精製手段に従い、 精製される。
本発明においては、 上記のセ ミ カルバジ ドの金属錯体 の少な く と も 1 種を単独でエアバッ グ用ガス発生剤と し て用いる こ とができ る力、'、 更に酸化剤を併用する こ と も でき る。
酸化剤と しては、 こ の種の分野で通常使用されている 酸化剤をいずれも使用する こ とができ、 硝酸塩、 ォキソ ハロゲン酸塩、 過酸化物等を、 好ま し く は硝酸塩を例示 でき る。
硝酸塩と しては、 従来公知の ものを広 く 使用でき、 例 えば、 硝酸 リ チウ ム、 硝酸ナ ト リ ウム、 硝酸カ リ ウム等 のアルカ リ 金属塩、 硝酸バリ ウム、 硝酸ス ト ロ ンチウム 等のアルカ リ 土類金属塩、 硝酸ア ンモニゥム等のア ンモ 二ゥム塩等を挙げる こ とができ る。 その中でも、 アル力 リ 金属塩、 アルカ リ 土類金属塩等が好ま し く、 硝酸カ リ ゥム、 硝酸ス ト ロ ンチウム等が特に好ま しい。
ォキソハロゲン酸塩と しては、 従来公知のものを広 く 使用でき、 例えば過ハロゲン酸塩、 ハロゲン酸塩等を挙 げる こ とができ る。 過ハロゲン酸塩の具体例と しては、 例えば、 過塩素酸 リ チウム、 過塩素酸カ リ ウム、 過塩素 酸ナ ト リ ウム、 過臭素酸 リ チウム、 過臭素酸カ リ ウム、 過臭素酸ナ ト リ ウム等のアルカ リ 金属塩、 過塩素酸バ リ ゥム、 過塩素酸カルシウム、 過臭素酸バリ ウム、 過臭素 酸カルシウム等のアルカ リ 土類金属塩、 過塩素酸アンモ 二ゥム、 過臭素酸ア ンモニゥム等のア ンモニゥム塩等が 挙げられる。 ハロゲン酸塩の具体例と しては、 例えば、 塩素酸 リ チウム、 塩素酸カ リ ウ ム、 塩素酸ナ ト リ ウム、 臭素酸 リ チウム、 臭素酸カ リ ウム、 臭素酸ナ ト リ ウム等 のアルカ リ 金属塩、 塩素酸バ リ ウ ム、 塩素酸カルシウ ム- 臭素酸カルシ ウ ム等のアルカ リ 土類金属塩、 塩素酸ア ン モニゥム、 臭素酸ア ンモニゥム等のア ンモニゥム塩等が 挙げられる。 これ らの中でも、 過ハロゲン酸及びハロゲ ン酸のアル力 リ 金属塩が好ま しい。
過酸化物と しては、 従来公知の ものを広 く 使用でき、 例えば、 過酸化 リ チウム、 過酸化カ リ ウム、 過酸化ナ 卜 リ ウム等のアルカ リ 金属の過酸化物、 過酸化カルシウム- 過酸化ス ト ロ ンチウム、 過酸化パ、リ ウム等のアルカ リ 土 類金属の過酸化物等を挙げる こ とができ る。
上記酸化剤は 1 種を単独で又は 2種以上を混合して使 用でき る。 また、 酸化剤は市販品をそのま ま使用できる < 更に、 酸化剤の形状、 粒径等は特に制限されず、 例えば. 酸化剤 自体の配合量、 他の成分との配合比率、 エアバッ グの容量等に応 じて広い範囲から適宜選択すればよい。
酸化剤の配合量は、 通常、 酸素量を基準と してガス発 生基剤を完全に酸化燃焼し得る化学量論量とすればよい が、 ガス発生基剤及び酸化剤の配合量を適宜変更する こ とによ り、 燃焼速度、 燃焼温度 (ガス温度) 、 燃焼ガス 組成等を任意に調整でき るので、 広い範囲から適宜選択 する こ とができ る。 通常、 ガス発生基剤 1 0 0 重量部に 対 して酸化剤を 1 0 〜 4 0 0 重量部程度、 好ま し く は 3 0 〜 2 0 0 重量部程度配合すればよい。
次に、 本発明のエアバ ッ グ用ガス発生剤 B にっ き、 説 明する。
本発明のエアバ ッ グ用ガス発生剤 B においては、 ガス 発生基剤 と して、 金属種の異な る ヒ ドラ ジ ン誘導体の金 属錯体か ら選ばれる少な く と も 2 種を使用する。
ヒ ドラ ジ ン誘導体と しては、 例えばセ ミ カルバジ ド、 カルボ ヒ ドラ ジ ド、 ヒ ドラ ジ ン、 ホル ミ ノレ ヒ ドラ ジ ン等 を挙げる こ とができ る。 こ の中で も、 セ ミ カルバジ ド及 び力ノレボ ヒ ドラ ジ ドが好ま し く、 セ ミ カルパ、ジ ドが特に 好ま しい。
ヒ ドラ ジ ン誘導体の金属錯体を構成する金属種と して は特に制限さ れないカ^ 通常は、 元素周期律表の第 3 周 期元素及び第 4 周期元素か ら選ばれる少な く と も 1 種で あ る。 こ れ らの中で も、 M g、 A l、 C a、 M n、 C u、 Z n、 F e 等か ら選ばれる少な く と も 2 種の ものが好ま し く、 特に M g 及び M n が好ま しい。
更に、 下記一般式 ( 2 ) で表される ヒ ドラ ジ ン誘導体 の少な く と も 2 種をガス発生基剤と して用 いる のが特に 好ま しい。 [ M ( Y ) ■ ] ( N O a) m ( 0 H ) n ( 2 ) [式中、 Mは M g、 A l、 C a、 M n、 C u、 Z n又は F e である金属原子を示す。 Yは基 H 2N N H C O N H 2 又は基 H 2N N H C O N H N H 2を示す。 1 は 2 又は 3、 p は 1 ~ 3 の整数、 n は 0 〜 2 の整数を示す。 但し、 m + n は Mで示される金属原子のィォ ン価と一致する もの とする。 ]
本発明の金属錯体の好ま しい具体例を示せば、 次の通 り である。
[ M g ( H 2 N N H C O N H 2) 3](N O 3 ) 2
[ A 1 ( H 2 N N H C O N H 2) 2](N 0 3)(O H ) 2 [ C a ( H 2 N N H C O N H 2) 2](N O 3) 2
[ M n ( H 2N N H C O N H 2) 3](N O 3 ) 2
[ C u ( H 2N N H C O N H 2) 2](N 0 3 ) 2
[ Z n ( H 2N N H C O N H 2) 3](N 0 3 ) 2
[ F e ( H 2N N H C O N H 2) 3](N O 3 ) 2
[ M g ( H 2N N H C O N H N H 2)3](N 03) 2
[ A 1 (H 2 N N H C O N H N H 2)2](N 0 3)(O H ) 2 [ C a ( H 2N N H C O N H N H 2) 2](N 0 3) 2
[ M n ( H 2 N N H C O N H N H 2) 3](N 0 3 ) 2
[ C u ( H 2N N H C O N H N H 2) 2](N O 3 ) 2
[ 2 n ( H 2N N H C O N H N H 2) 3](N O 3) 2 [ F e ( H 2N N H C O N H N H z) 3](N 03) 2 これ らの中でも、 耐熱性、 安全性、 燃焼性能等を考慮 する と、
[ M g ( H 2N N H C O N H 2) 3](N 0 3) 2
[ M n ( H 2N N H C O N H 2) 3](N 0 3) 2
[ M g ( H 2N N H C O N H N H 2) 3](N O 3) 2
[ M n ( H 2 N N H C O N H N H 2) 3](N 0 3) 2 等が特に好ま しい。
本発明の金属錯体は、 公知の方法に従っ て製造でき る c 例えば、 金属硝酸塩と ヒ ドラ ジ ン誘導体とを適当な溶媒 中にて反応させればよい。 よ り具体的には金属硝酸塩の 溶液と ヒ ドラ ジ ン誘導体の溶液とを混合 し、 反応混合物 を冷却するか又は貧溶媒を加えて目的とする金属錯体を 析出させ、 分取する こ と によ り、 上記一般式 ( 2 ) の金 属錯体を合成する こ とができ る。
金属硝酸塩を溶解する溶媒と しては、 例えば、 水、 メ 夕 ノ ール、 エタ ノ ール等の低級アルコール類、 ジメ チル ホルムア ミ ド、 これらの混合溶媒等を挙げる こ とができ る。 ま た、 ヒ ドラ ジ ン誘導体を溶解する溶媒と して も、 例えば、 水、 メ タ ノ ール、 エタ ノ ール等の低級アルコー ル類、 ァセ トニ ト リ ル、 ジォキサン、 ジメ チルホルムァ ミ ド、 これらの混合溶媒等を使用でき る。 金属硝酸塩と しては、 具体的には硝酸銅 ( 11) 、 硝酸 亜鉛、 硝酸カルシ ウ ム、 硝酸アル ミ ニウ ム、 硝酸マ ンガ ン ( 11) 、 硝酸マグネシウム等を例示でき る。 金属硝酸 塩と ヒ ドラ ジ ン誘導体との使用割合と しては特に制限さ れず、 金属硝酸塩の種類等に応 じて適宜選択すればよい が、 通常金属硝酸塩 1 モルに対 して、 ヒ ドラ ジ ン誘導体 を 1 〜 6 モル程度、 好ま し く は 2 〜 4 モル程度使用すれ ばよい。
金属硝酸塩と ヒ ドラ ジ ン誘導体との反応は、 通常 1 0 〜 1 0 0 °C程度、 好ま し く は 2 0 〜 5 0 °C程度の温度下 に行われ、 通常 4 時間以内、 好ま し く は 0. 5 〜 1 時間 程度で終了する。 反応終了後、 反応混合物を冷却するか 又は反応混合物に貧溶媒 (例えば低級アルコール類、 ァ セ トニ ト リ ル等の二 ト リ ル類等) を加えて 目的とする金 属錯体を析出させ、 これを分取する こ とによ り、 本発明 の金属錯体を収得する こ とができ る。 本発明の金属錯体 は、 通常の精製手段に従い、 精製される。
ガス発生基剤と して、 金属種の異なる ヒ ドラ ジ ン誘導 体の金属錯体から選ばれる少な く と も 2 種を用いる場合. その配合割合と しては、 通常 1 種の ヒ ドラ ジ ン誘導体の 金属錯体 1 0 0 重量部に対して、 金属種の異なる ヒ ドラ ジ ン誘導体の金属錯休 1 0 〜 4 0 0 重量部、 好ま し く は 5 0 〜 2 0 0 重量部程度とするのがよい。
本発明においては、 上記ヒ ドラ ジ ン誘導体の金属錯体 の少な く と も 2 種を単独でエアバッ グ用ガス発生剤と し て用いる こ とができ る力、'、 更に酸化剤を併用する こ と も でき る。
酸化剤と しては、 この種の分野で通常使用されている 酸化剤をいずれも使用する こ とができ、 硝酸塩、 ォキソ ハロゲン酸塩、 過酸化物等を、 好ま し く は硝酸塩を例示 でき る。
硝酸塩と しては、 従来公知の ものを広 く 使用でき、 例 えば、 硝酸 リ チウム、 硝酸ナ ト リ ウム、 硝酸カ リ ウム等 のアルカ リ 金属塩、 硝酸バ リ ウ ム、 硝酸ス ト ロ ンチウ ム 等のアルカ リ 土類金属塩、 硝酸ア ンモニゥム等のア ンモ 二ゥム塩等を挙げる こ とができ る。 その中でも、 アル力 リ 金属塩、 アルカ リ 土類金属塩等が好ま し く、 硝酸カ リ ゥム、 硝酸ス ト ロ ンチウム等が特に好ま しい。
ォキソハロゲン酸塩と しては、 従来公知の ものを広 く 使用でき、 例えば過ハロゲン酸塩、 ハロゲン酸塩等を挙 げる こ とができ る。 過ハロゲン酸塩の具体例と しては、 例えば、 過塩素酸 リ チウム、 過塩素酸カ リ ウム、 過塩素 酸ナ ト リ ウム、 過臭素酸 リ チウ ム、 過臭素酸カ リ ウム、 過臭素酸ナ ト リ ウム等のアルカ リ 金属塩、 過塩素酸バリ ゥ ム、 過塩素酸カルシ ウ ム、 過臭素酸バ リ ウ ム、 過臭素 酸カルシウム等のアルカ リ 土類金属塩、 過塩素酸ア ンモ 二ゥム、 過臭素酸ア ンモニゥム等のア ンモニゥム塩等が 挙げられる。 ハロゲン酸塩の具体例と しては、 例えば、 塩素酸 リ チウ ム、 塩素酸カ リ ウ ム、 塩素酸ナ ト リ ウ ム、 臭素酸 リ チウ ム、 臭素酸カ リ ウ ム、 臭素酸ナ ト リ ウ ム等 のアルカ リ 金属塩、 塩素酸バ リ ウ ム、 塩素酸カルシ ウ ム- 臭素酸カルシ ウ ム等のアルカ リ 土類金属塩、 塩素酸ア ン モニゥム、 臭素酸ア ンモニゥム等のア ンモニゥム塩等が 挙げられる。 これらの中でも、 過ハロゲン酸及びハロゲ ン酸のアル力 リ 金属塩が好ま しい。
過酸化物と しては、 従来公知の ものを広 く 使用でき、 例えば、 過酸化 リ チウム、 過酸化カ リ ウム、 過酸化ナ ト リ ウム等のアルカ リ 金属の過酸化物、 過酸化カルシウム. 過酸化ス ト ロ ンチ ウ ム、 過酸化バ リ ウ ム等のアルカ リ 土 類金属の過酸化物等を挙げる こ とができ る。
上記酸化剤は 1 種を単独で又は 2 種以上を混合して使 用でき る。 また、 酸化剤は市販品をそのま ま使用でき る ( 更に、 酸化剤の形状、 粒径等は特に制限されず、 例えば- 酸化剤自体の配合量、 他の成分との配合比率、 エアバッ グの容量等に応じて広い範囲から適宜選択すればよい。
酸化剤の配合量は、 通常、 酸素量を基準と してガス発 生基剤を完全に酸化燃焼し得る化学量論量とすればよい 力^ ガス発生基剤及び酸化剤の配合量を適宜変更する こ とによ り、 燃焼速度、 燃焼温度 (ガス温度) 、 燃焼ガス 組成等を任意に調整でき るので、 広い範囲から適宜選択 する こ とができ る。 通常、 ガス発生基剤 1 0 0 重量部に 対 して酸化剤を 1 0 〜 4 0 0 重量部程度、 好ま し く は
3 0 〜 2 0 0 重量部程度配合すればよい。
本発明のガス発生剤 B の好ま しい組成の一実施態様は, セ ミ カ ルノ 、ジ ドの M g錯体、 セ ミ カノレバジ ドの M n錯体, カノレボ ヒ ドラ ジ ドの M g錯体及びカノレボ ヒ ド ラ ジ ドの M n錯体から選ばれた金属種の異なる少な く と も 2 種を 基剤と して用い、 且つ酸化剤が配合された も のである。
この組成において、 配合される各成分の割合と しては- セ ミ カルバジ ドの M n錯体及びノ又はカルボヒ ドラ ジ ド の M n錯体 1 0 0 重量部に対 してセ ミ カルノくジ ドの M g 錯体及び Z又はカルボヒ ドラ ジ ドの M g錯体を 1 0 〜
4 0 0 重量部程度と し、 更にガス発生基剤の合計量
1 0 0 重量部に対して酸化剤を 1 0 〜 4 0 0 重量部程度 配合するのがよい。
本発明のガス発生剤 Bの特に好ま しい組成の一実施態 様は、 セ ミ カルノくジ ドの M g錯体、 セ ミ カルノ ジ ドの M n錯体、 カルボヒ ドラ ジ ドの M g錯体及びカルボヒ ド ラ ジ ドの M n錯体から選ばれた金属種の異なる少な く と も 2 種を基剤と して用い、 且つ酸化剤と して硝酸ス ト 口 ンチウムが配合された ものであ る。
こ の組成において、 配合される各成分の割合と しては、 セ ミ カルバジ ドの M n錯体及びノ又はカルボヒ ドラ ジ ド の M n錯体 1 0 0 重量部に対してセ ミ カルノ ジ ドの M g 錯体及び 又はカルボヒ ドラ ジ ドの M g錯体を 1 0 〜
4 0 0 重量部程度と し、 更にガス発生基剤の合計量
1 0 0 重量部に対 して硝酸ス ト ロ ンチウムを 1 0 〜
4 0 0 重量部程度配合するのがよい。
本発明のエアバッ グ用ガス発生剤 A及びエアバッ グ用 ガス発生剤 B には、 ガス発生基剤及び酸化剤の他に、 排 ガス向上剤及び結合剤から選ばれる少な く と も 1 種が含 有されていて もよい。
排ガス向上剤は、 主に、 排ガス中の C O、 N O x等の 有毒成分濃度を低減化する作用等を有する ものと考え ら れる。
排ガス向上剤と しては、 この種の分野で従来公知の も のを広 く 使用でき、 例えば、 元素周期律表の第 4 〜 6 周 期元素の珪化物等を挙げる こ とができる。
第 4 周期元素の珪化物の具体例と しては、 例えば、 珪 化チタ ン、 珪化ク ロム等を挙げる こ とができ、 第 5 周期 元素の珪化物の具体例と しては、 例えば、 珪化ジルコニ ゥム、 珪化ニオブ、 珪化モ リ ブデン等を挙げる こ とがで き る。 また第 6 周期元素の珪化物の具体例と しては、 珪 化タ ンタル、 珪化タ ングステン等を挙げる こ とができる c 排ガス向上剤は、 1 種を単独で又は 2 種以上を混合し て使用でき る。 排ガス向上剤は、 市販品をそのま ま使用 でき る。 また、 排ガス向上剤の粒径は特に制限はな く、 例えば、 排ガス向上剤自体の配合量、 他の成分との配合 比率、 エアバッ グの容量等に応 じて広い範囲から適宜選 択すればよい。 排ガス向上剤の配合量も特に制限されず、 例えば、 他の成分との配合比率、 エアバッ グの容量等の 各種条件に応じて広い範囲から適宜選択でき るが、 ガス 発生基剤及び酸化剤の合計量 1 0 0 重量部に対 して排ガ ス向上剤を通常 0 . 1 〜 2 0 重量部程度、 好ま し く は 1 〜 1 0 重量部程度配合すればよい。
結合剤は、 主にガス発生剤を製剤化する際のバイ ンダ 一 と して用いられるが、 燃焼温度を下げた り又は燃焼速 度を調節する機能も有している。
結合剤と しては、 こ の種の分野で従来公知の ものを広 く 使用でき、 例えば、 セルロース系化合物、 熱可塑性樹 脂、 有機高分子化合物、 無機系結合剤等を挙げる こ とが でき る。 セル ロ ー ス系化合物の具体例 と しては、 例えば、 カル ボキ シ メ チノレセノレ ロ ー ス、 ヒ ド ロ キ シ メ チノレセノレ ロ ー ス 等や こ れ らのエーテル、 微結晶性セルロ ー ス粉末等を挙 げる こ とができ る。 こ れ らの中で も、 微結晶性セルロ ー ス粉末を好ま し く 使用でき る。 微結晶性セルロ ース粉末 と しては、 例えば、 「ア ビセル」 とい う 商品名で市販さ れてい る もの (旭化成工業 (株) 製) 等を挙げる こ とが でき る。
熱可塑性樹脂の具体例 と しては、 例えば、 ポ リ プロ ピ レ ンカ ーボネー ト、 ポ リ エチ レ ン ポ リ ビニルァセテ一 ト コ ポ リ マー、 スチ レ ンノポ リ エステノレコ ポ リ マー、 ポ リ エチ レ ンイ ミ ド、 ポ リ ビニルエーテル、 ポ リ ビ二ルブ チラ 一ル、 ポ リ ア ク リ ノレア ミ ド、 マ レイ ン酸ポ リ マー、 ヒ ド ロ キシ末端ポ リ ブタ ジエ ンベースの熱可塑性ポ リ ウ レタ ン、 ポ リ ブタ ジエ ン Zァ ク リ ロニ ト リ ノレコ ポ リ マ一. カルボキシル末端ポ リ ブタ ジエ ンベースのポ リ エステル ア タ リ レー ト末端ポ リ ブタ ジエ ン、 ポ リ ブタ ジエ ンポ リ カルボ ン酸と ヒ ド ロキ シ末端ポ リ ブタ ジエ ン とのエステ ル、 ア ク リ ル系ラ テ ッ ク ス懸濁液等を挙げる こ とができ る。 こ れ らの中で も、 ポ リ エチ レ ンノポ リ ビニルァセテ 一 ト コ ポ リ マー、 ポ リ ビニルエーテル、 ポ リ ビニルブチ ラ ール等を好ま し く 使用でき る。 有機高分子化合物と しては、 例えば、 可溶性デンプン、 ポ リ ビニルアルコール及びその部分ゲ ン化物、 ポ リ ェチ レ ング リ コ一ル、 ポ リ プロ ピレ ングリ コ一ル、 ポ リ ビ二 ノレピ口 リ ドン、 多糖類、 ポ リ アク リ ル酸ナ ト リ ウム、 ポ リ アク リ ル酸ア ンモニゥム等を挙げる こ とができ る。 こ れらの中でも、 可溶性デンプン、 ポ リ ビニルアルコール 等を好ま し く 使用でき る。
無機系結合剤と しては、 例えば、 シ リ カ ゾル、 アル ミ ナゾル、 ジルコニァゾル等を挙げる こ とができ る。
これ らの中でも、 セルロ ース系化合物、 熱可塑性樹脂 等が好ま しい。
結合剤は、 1 種を単独で又は 2 種以上を混合 して使用 でき る。 結合剤は、 市販品をそのまま使用でき る。 また- 結合剤の粒径は特に制限はな く、 例えば、 結合剤自体の 配合量、 他の成分との配合比率、 エアバッ グの容量等に 応 じて広い範囲から適宜選択すればよい。 結合剤の配合 量も特に制限されず、 例えば、 他の成分との配合比率、 エアバッ グの容量等の各種条件に応じて広い範囲から適 宜選択できる力^ ガス発生基剤及び酸化剤の合計量
1 0 0 重量部に対 して結合剤を通常 0 . 1 〜 2 0 重量部 程度、 好ま し く は 1 〜 1 0 重量部程度配合すればよい。
更に本発明のエアバッ グ用ガス発生剤 A及びエアバッ グ用ガス発生剤 B においては、 従来から常用されている ガス発生剤用添加剤を配合する こ とができ る。 該添加剤 と しては、 例えば、 炭酸ナ ト リ ウム、 炭酸カ リ ウム、 珪 酸ナ ト リ ウム、 珪酸カ リ ウム等のアルカ リ 金属の炭酸塩 ゃ珪酸塩、 ベン ト ナイ ト、 アル ミ ナ、 ケイ ソゥ土、 二酸 化珪素、 酸化硼素等の周期律表第 2 〜 3 周期元素の酸化 物等を挙げる こ とができ る。 これらの添加剤は本発明ガ ス発生剤の諸性能を更に向上させる機能、 本発明ガス発 生剤の製剤化を更に容易にする機能等を有 している。 該 添加剤の配合量は特に制限されず、 広い範囲から適宜選 択でき るが、 通常ガス発生基剤及び酸化剤の合計量 1 0 0 重量部に対 して 0 . 0 1 〜 : 1 0 重量部程度、 好ま し く は 0 . 0 5 〜 5 重量部程度とすればよい。
更に本発明のエアバッ グ用ガス発生剤 A及びエアバッ グ用ガス発生剤 B においては、 本発明の所期の効果を損 なわない範囲内で、 従来から常用されているガス発生基 剤、 その他の添加剤等を配合する こ とができ る。
本発明のエアバッ グ用ガス発生剤 A及びエアバッ グ用 ガス発生剤 B は、 ガス発生基剤又はガス発生基剤と酸化 剤に、 必要に応じてその他成分を混合する こ とによ り、 製造される。
本発明のエアバッ グ用ガス発生剤 A及びエアバッ グ用 ガス発生剤 B は、 適当な形状に製剤化して使用する こ と もでき る。 例えば、 本発明のエアバッ グ用ガス発生剤に 結合剤を適量混合 して打錠又は打錠乾燥すればよい。 そ の際、 少量の水、 温水等を加えて、 作業の円滑化を図つ た り又は作業の安全性を高めた り してもよい。 結合剤は 上述の ものである。 製剤形状は特に制限はな く、 ペレ ツ ト状、 ディ スク状、 球状、 棒状、 中空円筒状、 こ んぺい 糖状、 テ ト ラポ ッ ト状等を挙げる こ とができ、 無孔の も のでも よい し、 有孔状のもの (例えば煉炭状の もの) で もよい。 更に、 ペレ ッ ト状、 ディ スク状の ものは、 片面 又は両面に 1 〜数個程度の突起を設けても よい。 突起の 形状は特に制限されず、 例えば、 円柱状、 円錐状、 多角 錐状、 多角柱状等を挙げる こ とができ る。
発明 実施するための最良の形態
以下に参考例 (金属錯体の合成例) 、 実施例及び試験 例を挙げ、 本発明を具体的に説明する。
参考例 1 (セ ミ カルバジ ドの調製)
水酸化ナ ト リ ウム 4 0 . 0 g ( 1 . 0 モル) をェタ ノ ール 1 0 0 0 m 1 に溶解し、 室温下で撹拌 しながら塩酸 セ ミ カルノくジ ド 1 1 1 . 5 g ( 1 . 0 モル ) を加えた後- 6 0 °Cに昇温し、 2 時間反応させた。 中性にな ったこ と 確認 した後熱時濾過し、 濾液を 1 0 °C以下に冷却した < 析出 した固形物を濾別 し、 少量のエタ ノ ールで洗浄し、 乾燥 し、 白色固形物のセ ミ カルバジ ド 6 3. 8 gを得た
(収率 8 5 % ) 。
元素分析 ( H 2N N H C O N H 2と して
C H N
理論値% 1 5. 9 9 6. 7 1 5 5. 9 5 実測値% 1 5. 6 8 6. 5 0 5 6. 0 0
1 R ( c m -1) : 5 5 1, 7 7 2, 9 3 Ί , 9 8 3, 1 1 0 2, 1 1 7 5, 1 3 6 4, 1 4 6 9, 1 6 6 8 3 3 4 0, 3 4 4 7
減量開始温度 ( T G ) : 1 6 4
参考例 2 (セ ミ カルバジ ド亜鉛錯体の合成)
硝酸亜鉛六水和物 2 9. 7 g ( 0. 1 モ ノレ) をェタ ノ ール 5 0 m 1 に溶解し、 室温下で撹拌しながら予めセ ミ カ ノレノ ジ ド 2 2. 5 g ( 0. 3 モ ノレ) を水 5 0 m 1 に溶 かした溶液を加えた。 この際一部固形物が生成した。 更 に 1 0 °Cに冷却 し、 析出 した固形物を濾別 した。 濾別 し た固形物を少量のェタ ノ 一ルで洗浄し、 乾燥し、 白色固 形物 3 6. 7 gを得た。
濾液及び洗浄液を合わせて濃縮 し、 冷却後エタ ノ ール
2 0 m 1 を加えて懸濁した後白色固形物を濾別 した。 少 量のエタ ノ ールで洗浄し、 乾燥 した。 収量 3. 7 g。 こ の固形物は反応液から得られた固形物と減量開始温度が 同 じであ っ た。
生成物は [ Z n ( H 2N N H C O N H 2) 3](N 03 ) 2で あ っ た。 総収量 4 0. 4 g、 収率 9 7 %
元素分析 ( [ Z n ( H 2N N H C O N H 2) 3](N O 3 ) 2と して)
C H N
理論値% 8 6 8 3. 5 9 3 7. 1 4 実測値% 8 9 4 3. 5 7 3 7. 4 8 II RR (( cc mmー"1) : 5 4 4, 7 2 5, 8 2 4, 9 7 6, 1 0 4 7, 1 0 9 4, 1 1 2 4, 1 2 0 9, 1 2 9 8, 1 3 8 5, 1 5 4 5, 1 5 7 4, 1 5 9 7, 1 6 3 2, 1 6 5 7, 2 9 5 0, 3 2 2 0, 3 2 9 7, 3 3 3 9, 3 4 2 9, 3 4 6 7
減量開始温度 ( T G ) : 2 3 0 °C
参考例 3 (セ ミ カルバジ ド亜鉛錯体の合成)
セ ミ カノレノ ジ ド 2 2. 5 g ( 0. 3 モノレ) を水 5 0 m l に溶解し、 室温下で撹拌しながら、 予め硝酸亜鉛六 水和物 2 9. 7 g ( 0. 1 モル) を水 5 0 m 1 に溶かし た溶液を加えた。 こ の際一部固形物が生成した。 更に 1 0 °Cに冷却 し、 析出 した固形物を濾別 した。 濾別 した 固形物を少量のエタ ノ ールで洗浄し、 乾燥 し、 白色固形 物 3 2. 0 gを得た。
濾液及び洗浄液を合わせて濃縮 し、 冷却後エタ ノ ール
2 0 m 1 を加えて懸濁 した後白色固形物を濾別 した。 少 量のエタ ノ ールで洗浄し、 乾燥 した。 収量 5. 8 g
得られた生成物は参考例 2 で得られた ものと同一の化 合物であ っ た。 総収量 3 7. 8 g、 収率 9 1 %
参考例 4 (セ ミ カルバジ ドマグネシウム錯体の合成)
セ ミ カルノ ジ ド 2 2. 5 g ( 0. 3 モノレ ) をメ タ ノ ー ノレ 5 0 m 1 及び水 2 0 m 1 の混合溶媒に溶解し、 室温下 で撹拌 しながら、 予め硝酸マ グネ シ ウ ム六水和物
2 5. 6 g ( 0. 1 モル) をメ タ ノ ーノレ 3 0 m l に溶か した溶液を加えた。 1 0分撹拌後、 こ の溶液を濃縮した。 冷却後エタ ノ ール 5 0 m l を加えて懸濁 した後、 固形物 を濾別 した。 少量のエタ ノ ールで洗浄し、 乾燥し、 白色 固形物を得た。
生成物は [ M g ( H 2 N N H C O N H 2) 3](N 0 3 ) 2で あ っ た。 収量 3 4 g、 収率 9 1 %
元素分析 ( [ M g ( H 2N N H C O N H 2) 3](N O 3 ) 2と して)
C H N
理論値% 9. 6 5 4. 0 5 4 1. 2 5 実測値% 9. 9 2 3. 9 7 4 1. 2 7 I R ( c m—1) 5 5 0, 7 1 5, 8 2 4, 1 1 0,
1 2 1 0, 3 8 5, 1 5 4 9, 6 5 6, 2 4 2 8, 3 3 3 6
減量開始温度 ( T G ) : 2 1 7 °C
参考例 5 (セ ミ カルバジ ドマ ンガン錯体の合成)
硝酸マ ンガン ( 11 ) · 6水和物 2 8. 7 g ( 0. 1 モ ル) を水 1 0 0 m 1 に溶解し、 室温下で撹拌しながら、 予めセ ミ カノレバジ ド 2 2. 5 g ( 0. 3 モル) を水 5 0 m 1 に溶かした溶液を加えた。 1 0分撹拌後、 こ の溶液 を濃縮 した。 冷却後メ タ ノ ール 5 0 m l を加えて懸濁し た後固形物を濾別 した。 少量のメ タ ノ ールで洗浄し、 乾 燥し、 薄紫色固形物を得た。
生成物は [ M n ( H 2N N H C O N H 2) 3 ]( N 0 3 ) 2で あ った。 収量 3 4 g、 収率 8 4 %
元素分析 ( [ M n ( H 2 N N H C O N H 2) 3](N O 3 ) 2と して)
C H N
理論値% 8. 9 1 3. 7 1 3 8. 1 0 実測値% 9. 1 9 3. 5 9 3 8. 0 3 I R ( c m -1) 5 6 3, 7 1 5, 7 6 6 8 3 3, 1 0 8 6, 1 1 2 1 1 1 9 8, 1 3 8 5 1 5 4 7, 1 5 9 0, 1 6 5 5 1 6 3 4, 2 4 2 8 3 1 7 4, 3 2 5 0, 3 4 4 5
減量開始温度 ( T G ) : 2 1 0 °C
参考例 6 (セ ミ カルバジ ドカルシウム錯体の合成)
セ ミ カ ノレバジ ド 1 5. 0 g ( 0. 2 モル) を水 5 0 m 1 に溶解し、 室温下で撹拌しながら、 予め硝酸カルシ ゥム · 6水和物 2 3. 6 g ( 0. 1 モル) を水 1 0 0 m 1 に溶かした溶液を加えた。 3 0分撹拌後、 こ の溶液 を濃縮 した。 冷却後メ タ ノ ール 5 0 m l を加えて懸濁 し た後固形物を濾別 した。 濾別 した固形物を少量のメ タ ノ ールで洗浄し、 乾燥 し、 白色固形物を製造した。
生成物は、 [ C a ( H 2N N H C O N H 2) 2](N O 3) z であっ た。 収量 3 0. 2 g、 収率 9 6 %
元素分析 ( [ C a ( H 2N N H C O N H 2) 2](N O 3) 2と して)
C H N
理論値 (% ) 7. 6 4 3. 1 8 3 5. 5 6 実測値 (% ) 3. 1 1 7. 7 0 3 5. 7 7 I R ( c m "1) 4 8 5, 7 0 3, 8 2 1, 1 0 6 6, 1 1 1 6, 1 2 8, 3 8 5, 5 5 0, 5 9 4, 1 6 3 7, 1 6 6 2, 3 2 1 3, 3 2 8 0, 3 3 3 8, 3 4 2 9, 3 4 5 8
減量開始温度 ( T G ) : 2 1 4 °C 参考例 7 (セ ミ カルバジ ドアル ミ ニウム錯体の合成) セ ミ カ ノレバジ ド 1 5. 0 g ( 0. 2 モル) をェ タ ノ 一 ノレ 1 リ ッ ト ルに溶解し、 室温下で撹拌 しながら、 予め硝 酸アル ミ ニ ウ ム · 9水和物 3 7. 5 g ( 0. 1 モル) を エタ ノ ール 2 0 0 m 1 に溶かした溶液を徐々 に滴下した < こ の際白色固形物が生成した。 1 時間撹拌後、 析出 した 固形物を濾別 した。 濾別 した固形物をエタ ノ ールで洗浄 し、 乾燥し、 白色固形物を製造した。
生成物は、 [A l (H 2N N H C O N H 2) 2] (N 0 3) ( Ο Η ) 2 · Η 20であ った。 収量 2 5. 6 g、 収率 8 5 %
元素分析 ( [ A l ( H 2N N H C O N H 2) 2](N 0 3) ( Ο Η ) 2 · Η 20 と して)
C Η Ν
理論値 (% ) 8. 2 5 4. 8 5 3 3. 6 7 実測値 (% ) 8. 1 5 4. 6 0 3 3. 9 8
I R ( c m "1) : 6 0 3, 7 4 2, 7 7 0, 8 2 5, 9 8 9, 1 1 3 2, 1 2 2 5, 1 3 8 5, 1 5 6 0, 1 6 6 4, 3 4 2 3
減量開始温度 ( T G ) : 2 4 7 °C
参考例 8 (セル力ルバジ ド鉄(I I)錯体の合成)
セ ミ カ ノレバジ ド 3 0 · 0 g ( 0. 4 モノレ) を水 1 5 0 m l に溶解し、 室温下で撹拌 しながら、 予め硝酸鉄(III) • 9 水和物 4 0. 4 g ( 0. 1 モノレ) を水 1 2 0 m l に 溶かした溶液を徐々 に滴下した。 1 時間撹拌後、 不溶物 を濾過 して除き、 濾液を濃縮した。 冷却後エタ ノ ール 1 0 0 m 1 を加えて懸濁 した後固形物を濾別 した。 濾別 した固形物をエタ ノ ールで洗浄し、 乾燥 し、 淡緑〜白色 の固形物を製造した。
生成物は、 [F e ( H 2N N H C O N H 2) 3](N 03) 2 であ っ た。 収量 3 7. 3 g、 収率 9 2 %
元素分析 ( [ F e ( H 2N N H C O N H 2) 3](N O 3) と して)
C H N
理論値 (% ) 8. 8 9 3. 7 0 3 8. 0 2 実測値 (% ) 9. 1 3 3. 4 5 3 8. 2 9
I R ( c m—1) 5 4 5, 7 1 7, 8 2 3, 1 0 4 5 1 0 8 6, 1 1 2 1, 1 2 0 6, 1 3 8 5, 1 5 9 1
1 6 3 6, 1 6 5 3, 2 9 2 9, 3 2 9 3 2 9 6 3 3 6 2, 3 4 2 3, 3 4 6 4
減量開始温度 ( T G ) : 1 6 8 °C
参考例 9 (セル力ルバジ ド銅(Π)錯体の合成)
セ ミ カノレバ ジ ド 1 5. 0 g ( 0. 2 モノレ) を水 2 0 0 m 〗 に溶解し、 室温下で撹拌しながら、 予め硝酸銅(II) • 3 水和物 2 4. 2 g ( 0. 1 モノレ) を水 1 0 0 m l に 溶か した溶液を滴下した。 こ の際、 一部固形物が生成し た。 1 時間撹拌し、 更に 1 0 °Cに冷却 し、 析出 した固形 物を濾別 した。 濾別 した固形物を少量の冷水、 エタノ ー ルで洗浄し、 乾燥 し、 青色固形物 2 6. 6 gを製造した。
濾液及び洗浄液を合わせて濃縮し、 冷却後エタ ノ ール 2 O m l を加えて懸濁した後青色固形物を濾別 した。 濾 別 した固形物を少量のエタ ノ ールで洗浄し、 乾燥 した。 収量 6. 3 g。 こ の固形物は反応液から得られた固形物 と減量開始温度が同 じであ っ た。
生成物は、 [ C u ( H 2N N H C O N H 2) 2](N 0 3) 2 であ っ た。 総収量 3 2. 9 g、 収率 9 7 %
元素分析 ( [ C u ( H 2N N H C O N H 2) 2](N O 3) 2と して)
C H N
理論値 (% ) 7. 1 1 2. 9 9 3 3. 8 3 実測値 (% ) 7. 1 6 2. 9 1 3 3. 7 6
I R ( c m - 1) : 5 2 3, 5 7 3, 8 2 5, 1 0 5 1, 1 1 0 7, 1 1 8 6, 1 2 8 1, 1 3 8 5, 1 5 3 7,
5 7 4, 1 6 3 2, 6 4 4, 6 7 8, 3 2 5
3 3 2 1, 3 4 2 1
減量開始温度 ( T G ) : 1 6 6 °C 実施例 1
セ ミ カルバジ ド亜鉛錯体 5 8 重量部、 硝酸カ リ ウム 3 4 重量部、 酸化銅 5 重量部及び結晶セルロ ース (結合 剤) 3 重量部の組成物を配合し、 湿状粉体を製造した。 こ の湿状粉体を造粒機によ り造粒し、 得られた湿状顆粒 を乾燥 し、 カム式打錠機にて押圧 し、 ガス発生剤ペレ ツ ト (径 4 m m、 高さ 1. 5 m m、 質量 0. 0 5 g ) を製 造した。
実施例 2
酸化銅を酸化第二鉄に変更する以外は実施例 1 と同様 に して本発明ガス発生剤のペレ ツ トを製造した。
実施例 3
酸化銅を二酸化マ ンガンに変更する以外は実施例 1 と 同様に して本発明ガス発生剤のペレ ツ トを製造した。
実施例 4
セ ミ カルバジ ド亜鉛錯体 6 0 重量部、 硝酸カ リ ウム 3 7. 5 重量部及び結晶セルロ ース 2. 5 重量部を用い. 実施例 1 と同様に して本発明ガス発生剤のペレ ツ トを製 した。
実施例 5
セ ミ カルバジ ドマグネ シウム錯体 6 0 重量部、 硝酸力 リ ゥム 3 7 重量部及び結晶セル b—ス 3 重量部を用い、 実施例 1 と同様に して本発明ガス発生剤のペレ ツ トを製
OELした。
実施例 6
セ ミ カルノ ジ ドマ ンガン錯体 6 3 重量部、 硝酸力 リ ウ ム 3 4 重量部及び結晶セルロ ー ス 3 重量部を用い、 実施 例 1 と同様に して本発明ガス発生剤のペレ ツ トを製造し た。
実施例 7
セ ミ カルバジ ド亜鉛錯体 4 4 重量部、 過酸化カルシゥ ム 5 3 重量部及び結晶セルロ ー ス 3 重量部を用い、 実施 例 1 と同様に して本発明ガス発生剤のペレ ツ トを製造し た。
実施例 8
セ ミ カルバ、ジ ド亜鉛錯体 6 1 . 8 重量部、 硝酸ス ト 口 ンチウム 3 0 . 2 重量部、 二酸化マンガン 5 重量部及び 結晶セルロース 3 重量部を用い、 実施例 1 と同様に して 本発明ガス発生剤のペレ ツ トを製造した。
実施例 9
セ ミ カルバジ ドマグネ シウム錯体 6 1 . 8 重量部、 硝 酸ス ト ロ ンチウム 3 0 . 2 重量部、 二酸化マ ンガン 5 重 量部及び結晶セルロース 3 重量部を実施例 1 と同様に し て本発明ガス発生剤のペレ ツ トを製造した。 試験例 1
径 4 m mのガス噴出孔を備えたィ ンフ レーターの燃焼 室に、 伝火薬と してボロ ン—硝酸カ リ ウム 2 . O gを装 填 し、 実施例 1 〜 9 で得られたガス発生剤のペ レ ッ トを 充填 した。 噴出孔には板厚 0 . 1 5 m mのアルミ ニウム テープを貼付け、 圧力保持を行った。 こ のイ ン フ レ一夕 一を、 6 0 リ ッ トノレタ ンク 内に設置 し、 点火具に通電し て作動させ、 燃焼室及び 6 0 リ ッ トルタ ンク 内の圧力を 測定した。 また燃焼後の 6 0 リ ッ トルタ ンク 内のガスを 1 0 リ ッ トノレのテ ドラーバッ グに採集し、 ガス中の C 0 濃度及び N O X濃度を検知管を用いて測定 した。 結果を 第 1 表に示す。
第 1 表
Figure imgf000038_0001
第 1 表中、 「最大燃焼室圧到達時間」 及び 「最大タ ン ク圧到達時間」 の単位は 「 m s 」 である。 試験例 2
実施例 4、 実施例 5 及び実施例 6 の燃焼速度測定用べ レ ッ ト ( 3 0 m m x 5 m m x 5 m m ) を用いて、 線燃焼 速度の測定を行っ た。 線燃焼速度はチムニ一型ス ト ラ ン ドバー ナー装置を用い、 8 M P a の任意の圧力下で測定 を行っ た。 加圧は窒素ガスを用い、 試験温度は 2 2 °Cに 設定した。 結果を第 2表に示す。
第 2 表
Figure imgf000039_0001
実施例 1 0
セ ミ カルバジ ド亜鉛錯体 3 1. 5 重量部、 セ ミ カルバ ジ ドマ ンガン錯体 3 1. 5 重量部、 硝酸カ リ ウム 3 4 重 量部及び結晶セルロ ース 3 重量部を用い、 実施例 1 と同 様に して本発明ガス発生剤のペ レ ツ トを製造した。
実施例 1 1
セ ミ 力ノレノ ジ ドマ ンガン錯体 4 3 重量部、 セ ミ カルバ ジ ドマグネ シウム錯体 2 0 重量部、 硝酸カ リ ウム 3 4 重 量部及び結晶セルロ ース 3 重量部を用い、 実施例 1 と同 様に して本発明ガス発生剤のペレ ツ 卜を製造した。 実施例 1 2
セ ミ カルバジ ド亜鉛錯体 3 1 重量部、 セ ミ カルバジ ド マ グネ シウ ム錯体 3 1 重量部、 硝酸カ リ ウ ム 3 5 重量部 及び結晶セルロ ース 3 重量部を用い、 実施例 1 と 同様に して本発明ガス発生剤のペ レ ツ ト を製造 した。
実施例 1 3
セ ミ カルノくジ ドマ ンガ ン錯体 4 2 重量部、 セ ミ カルバ ジ ドマ グネ シウ ム錯体 2 0 重量部、 硝酸ス ト ロ ンチウ ム 3 5 重量部及び結晶セルロ ース 3 重量部を用い、 実施例 1 と 同様に して本発明ガス発生剤のペ レ ツ ト を製造 した < 実施例 1 4
セ ミ カルバジ ドマグネ シウ ム錯体 6 2 重量部、 硝酸ス ト ロ ンチウ ム 3 5 重量部及び結晶セルロ ース 3 重量部を 用い、 実施例 1 と 同様に して本発明ガス発生剤のペ レ ツ ト を製造 した。
実施例 1 5
セ ミ カルバジ ドマ ンガン錯体 6 2 重量部、 硝酸ス ト ロ ンチウ ム 3 5 重量部及び結晶セルロ ース 3 重量部を用い. 実施例 1 と同様に して本発明ガス発生剤のペ レ ツ ト を製 造 した。
実施例 1 6
カルボ ヒ ドラ ジ ドマ ンガン錯体 4 2 重量部、 カルボ ヒ ドラ ジ ドマグネ シウム錯体 2 0 重量部、 硝酸ス ト ロ ンチ ゥム 3 5 重量部及び結晶セルロ ース 3 重量部を用い、 実 施例 1 と同様に して本発明ガス発生剤のペレ ツ トを製造 した。
試験例 3
径 4 m mのガス噴出孔を備えたィ ン フ レーターの燃焼 室に、 伝火薬と してボロ ン硝酸カ リ ウム 3 . O gを装填 し、 実施例 4 〜実施例 6及び実施例 1 0 〜実施例 1 6 で 得られた各ガス発生剤のペレ ツ ト 4 5 gを充填 した。 噴 出孔には板厚 0 . 1 5 m mのアル ミ ニウムテープを貼り 付け、 圧力保持を行った。 こ のイ ンフ レ一夕一を、 6 0 リ ッ トルタ ンク 内に設置 し、 点火具に通電して作動させ. 燃焼室内の圧力を測定した。 ま た燃焼後のイ ン フ レ一夕 一燃焼室内の残渣量を測定した。 結果を第 3 表に示す。
Figure imgf000041_0001
第 3 表中、 「最大燃焼室圧到達時間」 の単位は 「 m s 」 であ る。

Claims

請 求 の 範 囲
1 一般式
[ M ( X ) . ] ( N 03) m ( 0 H ) n
[式中、 Mは M g、 A l、 C a、 M n、 C u、 Z n又は F e である金属原子を示す。 Xは基 H 2N N H C O N H 2 を示す。 1 は 2又は 3、 mは 1 〜 3 の整数、 nは 0〜 2 の整数を示す。 但し、 m + n は Mで示される金属原子の イオン価と一致する ものとする。 ]
で表されるセ ミ カルバジ ドの金属錯体。
2 セ ミ カルバジ ドの金属錯体から選ばれる少な く と も 1 種の基剤を有効成分とするエアバッ グ用ガス発生剤。 3 セ ミ カルバジ ドの金属錯体から選ばれる少な く と も 1 種の基剤、 並びに、 ォキソハロゲン酸塩及び硝酸塩か ら選ばれる少な く と も 1 種の酸化剤を有効成分とするェ アバッ グ用ガス発生剤。
4 セ ミ カルバジ ドの金属錯体の金属種が、 元素周期律 表の第 3周期元素及び第 4周期元素から選ばれる少な く と も 1 種である請求の範囲第 2項又は第 3項に記載のェ アバッ グ用ガス発生剤。
5 セ ミ カルバジ ドの金属錯体の金属種が、 M g、 A 1 C a、 M n、 C u、 Z n及び F eカヽら選ばれる少な く と も 1 種である請求の範囲第 4項に記載のエアバッ グ用ガ ス発生剤。
6 セ ミ カルバジ ドの金属錯体が、 一般式
[ M ( X ) 1 ] ( N 03) m ( 0 H ) n
[式中、 Mは M g、 A l、 C a、 M n、 C u、 Z n又は F e である金属原子を示す。 Xは基 H 2N N H C O N H 2 を示す。 1 は 2又は 3、 mは 1 〜 3 の整数、 n は 0 〜 2 の整数を示す。 但し、 m + n は Mで示される金属原子の イオン価と一致する ものとする。 ]
で表される金属錯体である請求の範囲第 5 項に記載のェ アバッ グ用ガス発生剤。
7 金属種の異なる ヒ ドラ ジ ン誘導体の金属錯体から選 ばれる少な く と も 2 種の基剤を有効成分とするエアバッ グ用ガス発生剤。
8 金属種の異なる ヒ ドラ ジ ン誘導体の金属錯体から選 ばれる少な く と も 2 種の基剤、 並びに、 ォキソハロゲン 酸塩及び硝酸塩から選ばれる少な く と も 1 種の酸化剤を 有効成分とするエアバッ グ用ガス発生剤。
9 ヒ ドラ ジ ン誘導体が、 セ ミ カルバジ ド及び/ /又は力 ルボヒ ドラ ジ ドである請求の範囲第 7項又は第 8項に記 載のエアバッ グ用ガス発生剤。
1 0 ヒ ドラ ジ ン誘導体の金属錯体の金属種が、 マグネ シゥム及びマ ンガンである請求の範囲第 7 項、 第 8項又 は第 9 項に記載のエアバッ グ用ガス発生剤。
1 1 酸化剤が硝酸塩である請求の範囲第 7 項、 第 8項. 第 9項又は第 1 0 項に記載のエアバッ グ用ガス発生剤。 1 2 硝酸塩が硝酸ス ト ロ ンチウムである請求の範囲第 1 1 項に記載のエアバッ グ用ガス発生剤。
1 3 ヒ ドラ ジン誘導体の金属錯体の金属種がマグネ シ ゥ ム及びマ ンガンであ り、 酸化剤が硝酸ス ト ロ ンチウム である請求の範囲第 9 項に記載のエアバッ グ用ガス発生 剤。
PCT/JP1997/004839 1996-12-26 1997-12-25 Complexes semicarbazide-metal et agent generateur de gaz pour airbag WO1998029362A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97950402A EP0968986A4 (en) 1996-12-26 1997-12-25 SEMICARBAZIDE METAL COMPLEXES AND GAS GENERATING AGENT FOR AIRBAGS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/347715 1996-12-26
JP34771596 1996-12-26
JP13335497 1997-05-23
JP9/133354 1997-05-23

Publications (1)

Publication Number Publication Date
WO1998029362A1 true WO1998029362A1 (fr) 1998-07-09

Family

ID=26467734

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP1997/004733 WO1998029425A1 (fr) 1996-12-26 1997-12-22 Complexe constitue par manganese et semicarbazide et generateur de gaz pour airbag
PCT/JP1997/004740 WO1998029426A1 (fr) 1996-12-26 1997-12-22 Complexe carbohydrazide/manganese et agent generateur de gaz pour coussin d'air
PCT/JP1997/004839 WO1998029362A1 (fr) 1996-12-26 1997-12-25 Complexes semicarbazide-metal et agent generateur de gaz pour airbag

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP1997/004733 WO1998029425A1 (fr) 1996-12-26 1997-12-22 Complexe constitue par manganese et semicarbazide et generateur de gaz pour airbag
PCT/JP1997/004740 WO1998029426A1 (fr) 1996-12-26 1997-12-22 Complexe carbohydrazide/manganese et agent generateur de gaz pour coussin d'air

Country Status (4)

Country Link
US (1) US6127564A (ja)
EP (2) EP0949267A4 (ja)
AU (2) AU7890898A (ja)
WO (3) WO1998029425A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949267A1 (en) * 1996-12-26 1999-10-13 Otsuka Kagaku Kabushiki Kaisha Semicarbazide/manganese complex and gas generator for air bag
JP2007131503A (ja) * 2005-11-14 2007-05-31 Nippon Kayaku Co Ltd ガス発生剤組成物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302010A (ja) * 2001-04-04 2002-10-15 Daicel Chem Ind Ltd ハイブリッドインフレータの窒素酸化物の低減法
US6854395B2 (en) 2001-08-10 2005-02-15 Daicel Chemical Industries, Ltd. Inflator for an air bag
WO2003016244A1 (fr) * 2001-08-10 2003-02-27 Daicel Chemical Industries, Ltd. Gonfleur pour coussin gonflable de securite
US7232001B2 (en) 2004-08-24 2007-06-19 Sam Hakki Collision air bag and flotation system
JP5058540B2 (ja) * 2006-09-14 2012-10-24 株式会社ダイセル ガス発生剤組成物
JP5394040B2 (ja) * 2008-10-29 2014-01-22 株式会社ダイセル ガス発生剤組成物
JP4961458B2 (ja) * 2009-06-10 2012-06-27 協立化学産業株式会社 ヒドラジド化合物及びその製造方法、並びにそれを用いた硬化剤、樹脂組成物及び硬化体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020147A1 (fr) * 1994-12-28 1996-07-04 Daicel Chemical Industries, Ltd. Agent generateur de gaz

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740645B1 (en) * 1994-01-19 2012-08-22 Alliant Techsystems Inc. Metal complexes for use as gas generants
JPH09104687A (ja) * 1995-10-06 1997-04-22 Daicel Chem Ind Ltd トリス(カルボヒドラジド−o,n)マグネシウム(ii)硝酸塩錯体とその製造方法及びガス発生剤組成物
US6127564A (en) * 1996-12-26 2000-10-03 Otsuka Kagaku Kabushiki Kaisha Semicarbazine/manganese complex and gas generator for air bag

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020147A1 (fr) * 1994-12-28 1996-07-04 Daicel Chemical Industries, Ltd. Agent generateur de gaz

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chemical Abstracts Service (C A S); 17 November 1980 (1980-11-17), ADZHEMYAN V YA, ET AL: "Study of the Combustion of Complexes of Nitrates of Metals of Variable Valence", XP002947468, Database accession no. 93:192809K *
Chemical Abstracts Service (C A S); 27 December 1976 (1976-12-27), NIKOLAEV A V, ET AL: "Complexes of Manganese(II), Nickel(II) and Copper(II) Nitrates and Perchlorates with Semicarbazide", XP002947467, Database accession no. 85:201412Q *
See also references of EP0968986A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949267A1 (en) * 1996-12-26 1999-10-13 Otsuka Kagaku Kabushiki Kaisha Semicarbazide/manganese complex and gas generator for air bag
EP0949267A4 (en) * 1996-12-26 2001-09-05 Otsuka Kagaku Kk MANGANESE AND SEMICARBAZIDE COMPLEX AND GAS GENERATOR FOR AIRBAG
JP2007131503A (ja) * 2005-11-14 2007-05-31 Nippon Kayaku Co Ltd ガス発生剤組成物

Also Published As

Publication number Publication date
WO1998029426A1 (fr) 1998-07-09
EP0968986A4 (en) 2001-09-12
EP0949267A1 (en) 1999-10-13
WO1998029425A1 (fr) 1998-07-09
EP0968986A1 (en) 2000-01-05
AU7890798A (en) 1998-07-31
EP0949267A4 (en) 2001-09-05
AU7890898A (en) 1998-07-31
US6127564A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JP3913786B2 (ja) 非アジドガス発生組成物
JP4034355B2 (ja) 熱安定な非アジド系の、自動車用エアバッグ用の推進剤
US6074502A (en) Smokeless gas generant compositions
US5670740A (en) Heterogeneous gas generant charges
JPH10501516A (ja) ビルトイン触媒を含有する非アジドガス発生組成物
CN1132501A (zh) 气体发生器的推进剂
KR20020048419A (ko) 염기성 금속 질산염, 그 제조법 및 가스 발생제 조성물
JP4641130B2 (ja) ガス発生剤組成物およびそれを使用したガス発生器
US8097103B2 (en) Copper complexes with oxalyldihydrazide moieties
WO1998029362A1 (fr) Complexes semicarbazide-metal et agent generateur de gaz pour airbag
JP2000103691A (ja) ガス発生剤組成物
JP3907548B2 (ja) メラミンシアヌレートを含むインフレータ用ガス発生剤組成物
JP3641343B2 (ja) 低残渣エアバッグ用ガス発生剤組成物
WO2000014032A1 (fr) Composition emettant du gaz
JP2002160992A (ja) ガス発生剤
CZ20003417A3 (cs) Pohonná látka pro generátory plynů a její použití
JP4294331B2 (ja) ガス発生剤の製造法
JP3953187B2 (ja) ガス発生剤組成物
JP2002265293A (ja) ガス発生剤組成物
JP4794728B2 (ja) 塩基性金属硝酸塩及びその製造法
JP2001010888A (ja) ガス発生剤組成物
JP2000154086A (ja) ガス発生剤組成物
CA2190167C (en) Nonazide gas generating compositions with a built-in catalyst
JPH11310489A (ja) ガス発生剤用燃料及びガス発生剤組成物
JP2001278868A (ja) 中性配位子含有化合物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09331776

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997950402

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997950402

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997950402

Country of ref document: EP