WO1998025849A1 - Dispositif de commande d'ascenseur et dispositif de commande destine a un convertisseur de puissance - Google Patents

Dispositif de commande d'ascenseur et dispositif de commande destine a un convertisseur de puissance Download PDF

Info

Publication number
WO1998025849A1
WO1998025849A1 PCT/JP1996/003613 JP9603613W WO9825849A1 WO 1998025849 A1 WO1998025849 A1 WO 1998025849A1 JP 9603613 W JP9603613 W JP 9603613W WO 9825849 A1 WO9825849 A1 WO 9825849A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
solar cell
voltage
capacitor
converter
Prior art date
Application number
PCT/JP1996/003613
Other languages
English (en)
French (fr)
Inventor
Nobuyoshi Mutoh
Sadao Hokari
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1996/003613 priority Critical patent/WO1998025849A1/ja
Priority to KR1019990705195A priority patent/KR20000057507A/ko
Priority to TW086117853A priority patent/TW421905B/zh
Publication of WO1998025849A1 publication Critical patent/WO1998025849A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general

Definitions

  • Elevator control device and power converter control device are Elevator control device and power converter control device
  • the present invention relates to an improvement in an elevator control device that supplies power to an AC motor using a converter and a VVVF (variable voltage * variable frequency) inverter, and particularly to an elevator control device including a solar cell.
  • VVVF variable voltage * variable frequency
  • Japanese Patent Application Laid-Open No. 2-100973 discloses an apparatus in which a battery (storage battery) is prepared and energy generated in a solar cell is charged to the storage battery while the elevator is stopped.
  • Japanese Patent Application Laid-Open No. 59-153778 discloses that the average power required to operate the elevator is supplied from an AC power supply or a solar battery (primary battery), and the acceleration and deceleration operation is performed. It discloses that pulsating power is supplied from an energy storage device (secondary battery).
  • This conventional technology also has a poor utilization rate of solar cells, and is expected to save much power. Absent. That is, if the energy storage device is sufficiently charged, it cannot receive energy from the solar cell, and acceleration and deceleration are frequently repeated, and the state in which regenerative energy is returned to the energy storage device frequently occurs. Is particularly serious. Elevator acceleration time usually ends within a few minutes. If pulsating power generated during acceleration and deceleration is supplied from the solar cell within this time, the energy generated by the solar cell must be able to charge the energy storage device within this time. On the other hand, the power generated by solar cells fluctuates every moment depending on the amount of sunshine, so it is not always possible to supply the required energy in this short time.
  • This conventional technology switches between different types of power sources (solar cells and commercial power sources) with different output characteristics, causing transient voltage fluctuations at the time of switching, causing torque vibration and deteriorating the ride comfort of the elevator.
  • the energy generated by the solar cells is temporarily stored in the storage battery, and there is a problem in the maintainability of the storage battery.
  • Storage batteries use a chemical reaction to accumulate electric energy, so the ability to charge varies depending on the state of the storage battery.
  • solar batteries can be used within a few minutes of the completion of elevator acceleration / deceleration.
  • the generated instantaneous energy cannot be charged. Only the average energy generated by the solar cell can be charged.
  • the storage battery is overcharged, it can hardly be charged. If the battery is forcibly charged in such a state, the deterioration of the storage battery progresses rapidly.
  • the original energy storage function of a storage battery is greatly reduced.
  • using a storage battery whose charging characteristics vary depending on various conditions as a means of accumulating generated energy of a solar cell whose output characteristics vary with the amount of sunlight every moment is not effective in terms of energy storage efficiency. Absent.
  • An object of the present invention is to provide an elevator control device that can efficiently use electric power generated from a solar cell. Disclosure of the invention
  • a converter for converting AC power from a power supply into DC power, a capacitor connected to an output side of the converter, and a DC power of a variable voltage and a variable frequency
  • An inverter control device provided with an electric motor which is supplied with the inverter and drives the elevator car to move up and down, comprising: a solar cell; and means for injecting electric power generated by the solar cell into the capacitor.
  • a means is provided for controlling the converter so as to regenerate the power of the capacitor to the power supply.
  • the computer control means includes: A voltage control system for maintaining the voltage of the capacitor in a predetermined voltage range, and a means for reversibly controlling the converter so as to inject power from the power supply to the capacitor or to reverse-flow the power of the capacitor to the power supply. It is characterized by having.
  • a power capacitor having a capacity capable of absorbing the instantaneous output power is provided on the output side of the solar cell,
  • a power conversion means is provided for converting the power of the power capacitor into a power state capable of being injected into the smoothing capacitor.
  • FIG. 1 is a system configuration diagram of an embodiment of the present invention.
  • FIG. 2 is a front view illustrating the operation of the converter system shown in FIG.
  • FIG. 3 is a diagram explaining how to extract maximum instantaneous power from solar cells.
  • FIG. 4 is a flowchart for explaining processing executed in the solar cell system.
  • Fig. 5 is a control block diagram of the converter controller in Fig. 1.
  • Fig. 6 is a control block diagram of the inverter controller in Fig. 1.
  • Fig. 7 shows an example of injecting solar cell energy into multiple elevator systems with one converter.
  • FIG. 8 is a flowchart illustrating processing of the power supply system management system of FIG. 7;
  • FIG. 9 shows an embodiment in which the energy of the solar cell is supplied to the multiple elevator drive system.
  • BEST MODE FOR CARRYING OUT THE INVENTION The output terminal of the solar cell is provided with instantaneous power storage means such as a large-capacity power capacitor capable of storing instantaneous energy.
  • an output voltage and an output current detecting means for detecting the output voltage of the power capacitor and the output current of the solar cell are provided, and the current generated by the solar cell from the product of the detected output voltage and the output current.
  • a solar cell instantaneous power calculation means for calculating the instantaneous power being used and obtaining a condition under which the maximum power can always be extracted from the solar cell.
  • the above is the means for accumulating the energy of the solar cell and making the maximum use of the energy of the solar cell.
  • the energy stored in the above instantaneous power storage means is injected into an additional smoothing capacitor on the output side of the converter.
  • the following means are provided for this purpose.
  • a large-capacity power capacitor in this application has a capacity of several F (farad) or more, and a large current (several tens A) at a low voltage (about several tens V).
  • This capacitor can absorb instantaneous power, and hardly changes over time within the useful life of the elevator.
  • a solar cell In general, a solar cell is not composed of a single cell, but is composed of a plurality of cells. Therefore, solar cells are constructed by arbitrarily combining unit cells, and their output voltages are also various. Can take the value of However, since the voltage of the unit cell is very small, even if it is modularized, the output voltage of the solar cell is about several tens of volts, which is relatively low.
  • the instantaneous power storage means it is a necessary condition for the instantaneous power storage means to have a capacity large enough to store power equivalent to a storage battery, that is, a capacity of several F or more.
  • a capacity large enough to store power equivalent to a storage battery that is, a capacity of several F or more.
  • Such a power capacitor is difficult to achieve a high withstand voltage due to its characteristics, and has characteristics of low voltage and large capacity.
  • electric double-layer capacitors are available as this type of capacitor.
  • the voltage of the solar cell module is substantially equal to the output voltage of the instantaneous power storage means, and is lower than the voltage of the smoothing capacitor on the converter output side. Therefore, in order to be able to continuously inject the instantaneous energy generated from the solar cell and stored in the instantaneous power storage means into the smoothing capacitor, the level of the output voltage of the instantaneous power storage means is determined by the output of the smoothing capacitor. It is necessary to amplify more than the voltage. For this purpose, a booster is provided on the output side of the instantaneous power storage.
  • the voltage of the smoothing capacitor is constantly changing due to the acceleration / deceleration operation state of the elevator, the load state, and fluctuations in the commercial power supply.
  • a means for insulating the smoothing capacitor and the boosting means should be provided on the output side of the boosting means. (Backflow prevention means) must be provided so that no backflow of energy occurs from the smoothing capacitor side to the boosting means side in any case.
  • a diode is effective as the simplest means. By adding this insulating means, the booster simply performs the amplification operation to always increase the voltage above the voltage level of the smoothing capacitor, and the instantaneous energy generated in the solar cell naturally becomes smoother. Flows unilaterally and accumulates.
  • the operation of the booster stops naturally.
  • the converter performs an operation of returning the energy generated by the solar cell to the commercial power supply side, whereby the energy of the solar cell flows backward to the power supply side.
  • the instantaneous energy generated in the solar cell is constantly stored in the instantaneous power storage unit even while the operation of the boosting unit is stopped.
  • the above boosting means only unilaterally injects energy into the smoothing capacitor.
  • the converter supplies the energy obtained from the solar cell to the load side or returns it to the commercial power side only by monitoring the voltage of the smoothing capacitor regardless of the operation of the boosting means. (Reverse power flow), which eliminates the need for conventional storage batteries.
  • the conditions for injecting energy from the booster into the smoothing capacitor are determined by the power generation status determination means of the solar cell and the solar cell energy storage An amount determination means is provided, and the determination is made based on these means. That is, in the instantaneous power storage means, whether or not energy is always secured as an emergency power source is determined by the power generation status determination means of the solar cell and the solar cell energy storage amount determination means. Check whether the instantaneous power storage means has enough energy to move the elevator to the nearest floor in the event of a power outage. As a result, if the energy is not stored, the operation of injecting the energy from the boosting means into the smoothing capacitor is stopped until the energy that can be used as the emergency power supply is stored in the instantaneous power storage means.
  • the emergency energy is always stored in the instantaneous power storage means, and the storage battery conventionally provided for an emergency power supply is not required.
  • control means necessary for controlling the boosting means having the above characteristics will be described.
  • the output characteristics (voltage-current) of a solar cell vary depending on the amount of sunlight irradiated on the solar cell every day. Therefore, first, the boosting means extracts the generated energy of the solar cell stably even if the output of the solar cell fluctuates as described above with the highest efficiency corresponding to the amount of sunlight at that time, and It allows solar cell energy to be injected into the capacitor.
  • the boosting means includes a current sensor for detecting the output current of the solar cell, and a voltage sensor for detecting the voltage output from the instantaneous power storage means.
  • the means for determining the amount of accumulated solar cell energy, the means for calculating the instantaneous output power of the solar cell, the means for calculating the current command, the means for controlling the current, and the means for calculating the conduction ratio are implemented by soft processing by a microcomputer.
  • the power generation status determination means of the solar cell has a function of determining the power generation status of the solar battery in which the amount of solar radiation fluctuates every moment, and determines that a predetermined amount or more of power is being generated by the solar cell, and When it is determined by the solar cell energy storage amount determining means that emergency energy is secured in the instantaneous power storage means, energy is injected into the smoothing capacitor through the above-described boosting means.
  • the energy injection to the smoothing capacitor is completely stopped and the energy is stored only in the instantaneous power storage means.
  • the energy stored as a result is used as an energy source for an emergency power supply when the power generation capacity of the solar cell is lost, for example, at night or in rain.
  • the operation of injecting solar cell energy into the smoothing capacitor is performed by the following process.
  • the solar cell instantaneous output power calculation means determines the condition of the output current that can be extracted from the solar cell, that is, the current command, so that the energy of the solar cell can be always maximized regardless of the amount of sunlight. . That is, the instantaneous output power calculating means of the solar cell obtains the current instantaneous power from the output current of the solar cell and the voltage output from the instantaneous power storage means. Then, a condition for generating the maximum instantaneous power is searched for based on the sign (polarity) of the time-varying component of the instantaneous power, and the result is sent to the above-mentioned current command calculating means. To determine.
  • the current control means operates so that the output current of the solar cell coincides with the current command, and determines an operation amount for controlling the switching means.
  • the duty ratio calculating means determines the duty ratio based on the manipulated variable, controls the flow angle of the switching means, and injects energy into the smoothing capacitor. In this way, the energy generated by the solar cell at the highest efficiency is always transferred instantaneously to the smoothing capacitor. Since energy is transferred from one capacitor to another, there is no loss in principle in this energy transfer.
  • the energy generated by the solar cell is accumulated in the smoothing capacitor without any excess.
  • the energy stored in the smoothing capacitor can be freely selected by the converter to be regenerated on the power supply side or used on the load side, so that the storage battery that was conventionally required can be omitted.
  • the booster When starting the drive system using the converter and inverter, the booster is operated to charge the smoothing capacitor initially (preliminarily) using the energy of the solar cell. Inrush current to the smoothing capacitor as seen when the power is turned on can also be prevented. As a result, the converter can be operated quickly and safely.
  • FIG. 1 shows an embodiment of the present invention. Equipped with a converter that can convert surplus energy during deceleration by itself into a power supply.
  • the output voltage (DC voltage) of the converter is converted to an AC variable voltage and variable frequency by an inverter to drive the elevator.
  • FIG. 1 shows a case where power can be exchanged with a three-phase power source, it is naturally possible to exchange power with a single-phase power source.
  • the essential matter of the invention is not changed at all, only the configuration of the transformer and the converter described later in the present embodiment is for a single-phase power supply. Since it is needless to say, the description in this case is omitted, and in the present embodiment, only the case where power is exchanged with the three-phase power supply system will be described.
  • the distribution board has a value (k) that is an integrated value of the power returned to the input side of the power consumption meter 20 and the system power supply 10 (kWh) indicating the integrated value (kWh) of the power consumed by the energy from the system power supply.
  • the output side of the power purchase camera 30 displaying W h) is connected to the system power supply 10 side.
  • the output side of the power consumption meter 20 and the input side of the power purchase meter 30 are connected to the input terminals of the contactors 31, 32, 33, respectively.
  • Output terminal 3 is connected to the primary side of transformer 40.
  • the contactor cutoff signal is issued from a converter controller 150 and an impeller controller 160 described later.
  • the shut-off signal is output from the controller 150, 160 when an emergency condition such as a failure on the converter / inverter side or a disconnection of the system power supply 10 occurs in the elevator drive system. Is output.
  • the transformer 40 is installed to electrically insulate the power consumption meter 20 and the power meter 30 for electric power, the system power supply 10 and the elevator drive system side.
  • a transformer having a shield structure is used as the transformer 40, and a large amount of high-order harmonic components generated by the operation of the converter 70 connected to the secondary side of the transformer 40 are converted to the primary of the transformer 40. Side, that is, to prevent leakage to the system power supply 10.
  • the system power supply 10 contactors 31, 32, 33
  • the converter 70 are isolated from each other, and the leakage of the harmonic current is eliminated, and the contactors 31, 32, 3 3 malfunctions can be prevented.
  • the secondary side of transformer 40 is connected to converter 70.
  • the trans An AC reactor is required between 40 and the converter ⁇ ⁇ ⁇ ⁇ ⁇ 0 to control the power factor to 1, but is omitted in this embodiment.
  • the reactor may be configured to be included in the transformer 40.
  • the converter 70 is a commonly used power converter composed of a power switching element with a built-in freewheel diode such as a power transistor and an IGIG (gate insulated transistor) in the 6 arms. Is omitted.
  • the converter 70 is controlled by a converter controller 150.
  • the controller uses the power supply voltage detected by the voltage sensor 50, the power supply current detected by the current sensors 61, 62, 63 from the secondary side of the transformer, and the voltage detector 81 of the smoothing capacitor.
  • the control to make the power factor equal to 1 by controlling the power switching element in the converter so that the power supply current phase coincides with the power supply voltage phase using the voltage of the smoothing capacitor detected in the above control is performed by the controller. Performed by La 150. This control will be described later.
  • the smoothing capacitor 80 is connected to the output terminal of the converter 70 and the input terminal of the PWM inverter 90.
  • the DC voltage obtained by converting the AC voltage to the DC voltage by the converter 70 is smoothed by the smoothing capacitor 80 and is converted by the PWM inverter 90 into a variable voltage / variable frequency AC voltage.
  • the PWM inverter 90 is connected to the induction motor 110 to supply the variable voltage ⁇ variable frequency AC power to the induction motor 110, and the AC power enables the induction motor 110 to operate. Variable speed drive is performed.
  • variable speed control of the induction motor 110 is executed by an inverter controller 160.
  • the inverter interface To the three-phase AC current flowing through the primary winding of the induction motor 110 and the rotor of the induction motor 110 by the current sensors 101, 102, 103.
  • a pulse generated in proportion to the rotation frequency of the rotor is captured by the connected speed detector 104.
  • the inverter controller 160 calculates the rotation speed of the induction motor 110 using the captured pulses.
  • the speed control system is constructed using the rotation speed calculated in this way.
  • As the speed command of the speed control system an elevator determined in consideration of riding comfort is applied.
  • a torque command or a slip frequency is output from the speed control system, and a vector control calculation is performed based on this value.
  • An excitation current and a torque current are obtained by a vector calculation, and a primary current command which is a reference of a primary current to be passed through the primary winding of the induction motor 110 is generated from the currents.
  • a current control system is configured such that the primary current follows the primary current command.
  • the current control system generates a modulated wave serving as a voltage reference generated by a PWM inverter 90.
  • the modulated wave is compared with a carrier wave (triangular wave) to obtain a PWM signal. 0 is applied to the gates of the six power switching elements.
  • a torque to follow the speed command of the elevator is generated from the induction motor 110.
  • the control method will be described later.
  • the torque generated by the induction motor 110 is transmitted to a sheave 120 via a gear (not shown) directly connected to the rotor of the induction motor 110, and the sheave 1 Raise and lower the car 140 and the counterweight 130 which is the counterweight of the car attached to both ends of the rope wound around the car 20.
  • the present embodiment is characterized in that instantaneous energy generated in a solar cell is injected into a smoothing capacitor 80 attached to the output side of the converter 70.
  • the solar cell module 170 is installed where outdoor sunlight is most exposed. At present, the pressure is relatively low at around 30 V generated from the solar module 70. This value can be further increased if a module is constructed by combining many unit cells. In this case, the size of the solar cell increases, but it is expected that the characteristics of the solar cell will be improved and the voltage of the unit cell will increase in the future, but the voltage is several times at most.
  • the output voltage generated from the solar cell module 170 is, in the case of a three-phase commercial power supply, a free wheel diode which is anti-parallel to the power switching element in the comparator 70.
  • the rectifier circuit is composed of, for example, a DC voltage obtained by rectifying the three-phase AC voltage of 200 V (a DC voltage of about 300 V is generated at the terminal voltage of the smoothing capacitor 80). In comparison, it is about 1 / 10th smaller.
  • the operation as the comparator 70 becomes possible only when the voltage becomes equal to or higher than the rectified voltage.
  • the output voltage of the solar cell module 170 is It is necessary to amplify until the voltage becomes equal to or higher than the above rectified voltage.
  • a booster 400 is provided on the output side of the solar cell module 170.
  • the boosting means 400 is connected with the boosting means 400 so as not to flow back from the smoothing capacitor 80 side to the solar cell module 1 ⁇ 0 side. Insulation means 200 is provided between the smoothing capacitor 80 and the smoothing capacitor 80.
  • the voltage of the smoothing capacitor 80 constantly fluctuates due to fluctuations in the system power supply 10 and transfer of energy with the smoothing capacitor 80 during acceleration / deceleration operation of the elevator. If the voltage transiently exceeds the output voltage of the booster 400, the instantaneous energy generated in the solar cell module 1 10, which should have been injected, flows back from the smoothing capacitor 80 to the booster 400. The fear of coming out comes out.
  • the insulating means 200 is a necessary means for preventing such a state from occurring and always making effective use of the energy of the solar cell.
  • the boosting means 400 can unilaterally continue to inject the instantaneous energy generated in the solar cell module 100 into the flat capacitor 80.
  • the simplest means of insulation is a diode.
  • the case where insulation is performed by a diode 211 is shown.
  • an isolation amplifier or the like may be used for insulation.
  • the energy obtained by the solar cell module 170 is always stored in the smoothing capacitor.
  • the use of this energy is determined by the converter 70. That is, until the voltage of the smoothing capacitor is within a predetermined voltage range higher than the voltage obtained by rectifying the voltage of the system power supply 10, the energy obtained from sunlight The lugi is supplied to the load side and used as a power supply for driving the motor.
  • converter 70 causes the energy stored in the smoothing capacitor to flow backward to system power supply 10 until the smoothing capacitor voltage reaches the predetermined voltage value.
  • the reverse flow power is accumulated by the power purchase camera 30 and purchased by the power supply company.
  • the user pays the difference between the power meter 20 and the power meter 30 for power purchase to the power supplier.
  • the energy obtained from the sunlight according to the configuration of the present application is used in any mode in which the power flows backward to the system power supply 10 side or supplied to the load side and used as a power source.
  • an instantaneous power storage means for storing the instantaneous power currently being generated is added.
  • a low-voltage / large-capacity power capacitor 180 is used as the instantaneous power storage means.
  • the capacitor 100 In order to store the instantaneous power generated by the solar cell, the capacitor 100 needs a large-capacity power capacitor capable of flowing a current of tens of A or more with a large capacity of several F or more. This is to ensure that the instantaneous power, which fluctuates every moment depending on the amount of sunlight, can be accumulated without excess.
  • large-capacity power capacitors of this type are difficult to withstand and have low voltage. For example, there is an electric double layer type capacitor as such a capacitor.
  • the output voltage of the large-capacity power capacitor 180 is input to the booster 400.
  • the configuration of the boosting means 400 will be described.
  • the output terminal of the large capacity power capacitor 180 is connected to one terminal of the current sensor 180, and the other terminal of the current sensor 180 is connected to the reactor 190.
  • the other terminal of the reactor 190 is connected to a terminal of the switching means 300.
  • the switching means 300 high-speed power switching elements such as IGBTs (gate-insulated transistors) and power M0SFETs are usually used so that switching operations at 10 kHz or more can be performed.
  • the terminal connected to the reactor 190 of the switching means 300 is connected to the anode side of the diode 210, and the anode terminal is connected to the smoothing capacitor 310.
  • the other terminals of the smoothing capacitor 310 are connected to the other terminal of the switching means 300 and the other terminal of the large capacity power capacitor 180, respectively.
  • the boosting means 400 configured as described above is controlled by the following control means, which is executed by the microcomputer.
  • Solar cell power generation status judgment means 401 solar cell energy storage amount judgment means 402, solar cell instantaneous output power calculation means 410, current command calculation means 420, current control means 440, communication
  • a flow rate calculating means 450 is provided.
  • the power generation status determination means 401 of the solar cell detects the output current of the solar cell module 170 by the current sensor 300. If the detected current is equal to or less than a predetermined value, the switching stop signal is passed. This is transmitted to 450, the flow angle is reduced, and the operation of the switching means 300 is stopped.
  • the energy stored in this way can be used as an emergency power source.
  • the amount of solar radiation increases from morning to daytime and decreases in the evening.
  • the processing for storing energy as an emergency power supply is always executed in the large-capacity capacitor 180, and then the smoothing capacitor 8
  • the operation of injecting energy into 1 is performed. That is, energy as an emergency power source is always secured.
  • the energy is injected into the smoothing capacitor 81 after the energy as the emergency power source is secured in the large-capacity power capacitor 180, so that even if the system power source 10 fails,
  • the advantage is that the energy stored in the large capacity capacitor 180 can be used.
  • the determination result by the power generation status determination means 401 of the solar cell is transmitted to the converter controller 150 as a power generation status determination signal.
  • the value of the voltage command for determining the magnitude of the voltage of the smoothing capacitor 80 is adjusted by the power generation status determination signal. That is, when energy from the solar cell is not injected, the voltage command is increased to replenish energy from the system power supply 10, and conversely, when energy from the solar cell is injected, the voltage command is changed. Lower it to make reverse flow more likely.
  • the solar cell energy storage amount judging means 402 is a product of the current I s detected by the current sensor 300 and the voltage E s detected by the voltage sensor 301.
  • the minimum energy means the energy that can move the elevator to the nearest floor.
  • the converter controller 150 can always grasp the amount of energy that can be used as an emergency power supply.
  • the current flowing from the solar cell module 170 is detected by the current sensor 300, and the terminal voltage of the large-capacity power capacitor 180 is detected by the voltage sensor 301, and these sensors detect the current.
  • the instantaneous output power — P s currently generated in the solar cell is calculated from the I s XE s by the solar cell instantaneous output power P s calculating means 410. In this means, the instantaneous output power P s and the derivative d P s Z dt of the P s are obtained, and the sign (d P s Zd t ⁇ 0, d P s / dt> 0) of the current command calculation means 4 is also obtained. 2 Enter 0.
  • the current command calculating means 420 obtains a current command value capable of extracting energy with the highest efficiency based on information from the solar cell instantaneous output power Ps calculating means 410.
  • the current command value is a command value that is a load current of the solar cell module 170.
  • IR I 1 / (1 + TlXs) (2) That is, in the current command calculation means 420, the magnitude of the current is increased according to the magnitude of the instantaneous output power Ps according to the equation (1).
  • the time constant T 1 is a value determined according to the output response time constant of the applied solar cell. That is, the constant T 1 is determined from the response characteristics of the output power when sunlight is incident.
  • the time constant T1 is selected to be a value that is slower than the response of the instantaneous output power (usually 3 to 5 times larger than the response time constant of the instantaneous output power).
  • the arithmetic processing of the above equations (1) and (2) determines whether the instantaneous output power Ps is temporally varied so that the instantaneous output power can always be drawn to the maximum. Then, the value of the current command is determined while searching for the maximum value of Ps. Details will be described later.
  • the current control means 440 operates so that the output current of the large-capacity power capacitor 180 detected from the current sensor 180 follows the current command obtained from the current command calculation means 420.
  • the current control means 440 comprises a P I (proportional + integral) compensator.
  • the signal output from the compensator is introduced into the duty ratio calculating means 450.
  • the duty ratio calculating means 450 generates a pulse signal (PWM signal) having a duty ratio (pulse width) proportional to the magnitude of the signal output from the current control means 440, and performs switching. Applied to means 300.
  • PWM signal pulse signal
  • Pulse width pulse width
  • the switching means 300 When the switching means 300 is turned off, the energy stored in the reactor 190 becomes a large-capacity power capacitor 180, a reactor 190, a diode 210, a smoothing capacitor 310, Current flows through the loop of the large power capacitor 180 and is stored in the smoothing capacitor 310. Since the on / off operation is repeatedly performed by the switching means 300 in this manner, the energy accumulated in the solar cell module is accumulated in the smoothing capacitor 310, so that the smoothing capacitor 31 The terminal voltage of 0 increases. As a result, when the terminal voltage of the smoothing capacitor 310 exceeds the terminal voltage of the smoothing capacitor 80, the energy of the solar cell is injected into the smoothing capacitor 80. By this injection operation, the energy of the solar cell is supplied to the converter 70 and the PWM inverter 90 side. One will move.
  • the voltage of the smoothing capacitor 80 is changed to a predetermined value from a value obtained by diode rectification of a commercial power supply (this value usually constitutes a PWM inverter 90). (Determined based on the value determined from the withstand voltage of the switching element) when the energy injected on the load side is being used effectively.
  • the energy injected into the smoothing capacitor 80 is converted by the PWM inverter 90 into an AC power source having a variable frequency and a variable voltage, and the power is supplied to the motor 110 to generate a driving force and the vehicle is driven. It is used as energy to raise and lower the basket.
  • converter 70 returns the surplus energy to power supply system 10.
  • the returned energy at this time is calculated by the power purchase electricity meter 30.
  • the returned energy includes the electric motor 110 regenerated by the vertical movement of the car 140 and regenerated to the smoothing capacitor 80, and the voltage of the smoothing capacitor 80 is applied to the predetermined voltage. Includes values that rise above the value of.
  • this returned energy is returned to the power system 10 by combining the regenerated energy and the energy injected from the solar cell.
  • Figure 2 shows the energy injection operation from the solar cell and the load side It summarizes the method of managing the voltage fluctuation of the smoothing capacitor driven by the motor by the motor.
  • the contactors 31, 32, and 33 are off.
  • the voltage of the input voltage of the PWM inverter (smoothing capacitor 80) becomes full-wave rectified commercial power. Check whether the value is larger than the specified value (predetermined value).
  • the above-mentioned contactors 31, 32, and 33 are turned on and connected to the commercial power supply side.
  • the inrush current from the commercial power supply to the smoothing capacitor 30 may damage the diode in the converter. There is no.
  • step 510 the power generation state of the solar cell is determined.
  • the large-capacity power capacitor 180 has enough energy to charge the smoothing capacitor 80 to a predetermined value.
  • the processes 542 and 570 are executed.
  • the solar cell is operated by operating the booster 400 until the voltage of the smoothing capacitor 800 reaches the above specified value. Energy is injected into the smoothing capacitor 80.
  • the above-described processes 531 and 5200 are executed to charge the smoothing capacitor 80 from the commercial power supply.
  • Such a state appears, for example, when the elevator is started when the amount of solar radiation in the morning and evening is small and the energy is not sufficiently stored in the large-capacity power capacitor 180 yet.
  • the contactor 3 is injected after the solar cell energy is injected into the smoothing capacitor 80. Turn on 1, 32, and 33 and connect to commercial power and converter ⁇ 0.
  • the solar cell does not generate power, or when the large-capacity power capacitor 180 does not store enough energy to raise the voltage of the smoothing capacitor to the full-wave rectified voltage value even if it does generate power. Then, it receives energy from a commercial power source and charges it so that the computer 70 can operate.
  • process 53 it is determined whether there is any abnormality in the system power supply based on the voltage obtained from the voltage sensor 50 by the converter controller 150 of the converter 70 and the magnitude of the voltage of the smoothing capacitor 80. ing. That is, when the three-phase AC voltage value detected by the voltage sensor 50 drops to zero or abnormally, or when the voltage of the smoothing capacitor drops below a predetermined value, the abnormality of the system power supply 10 occurs. It is determined that an error has occurred, and processing 532 and 535 are executed.
  • Such a state is considered an emergency state.
  • the elevator is located at the nearest location using the energy secured in the dog capacitance power capacitor 180 as the energy for the emergency power supply. After moving to the floor, locking and fixing the car, shut off the inverter's gate signal. If there is no abnormality on the system power supply 10 side by the processing 533, the processing 550, 560, 590 is executed. That is, in the process 550, control is performed so that the voltage of the smoothing capacitor becomes equal to the voltage command specified by the converter controller 150.
  • FIG. 3 shows a method of searching for the maximum value of the instantaneous output power — P s currently occurring in the solar cell module 170 according to the amount of sunlight.
  • the output current and output voltage that can be extracted from the solar cell module 170 are determined based on the temporal fluctuation dPsZdt of the instantaneous output power Ps.
  • the current command value is determined by the current command calculation means 420 so that the maximum value always becomes P liiiax, P 2max.
  • the current command determined by the above method is determined so that the maximum output power can be obtained from the solar cell module 170 even when the amount of sunlight changes.
  • the above description describes a method for obtaining the maximum output power from the solar cell module 170, focusing on the temporal variation dPs / dt of the instantaneous output power Ps.
  • the output voltage at which the maximum output power can be obtained is almost constant as a unique characteristic of the solar cell. Focusing on this, a voltage control system is configured by using the output voltage as a command instead of the above-described current command, and the boosting means is configured so that the output voltage of the large-capacity power capacitor 180 follows the voltage command.
  • the conduction ratio of the switching means 300 in 400 may be controlled.
  • FIG. 4 shows the processing of the solar cell system.
  • process 460 is a process for determining the power generation state of the solar cell module.
  • the processes 463 and 464 are executed.
  • the above-described switching operation signal is transmitted to the conduction ratio calculating means 450 in the boosting means 400, and the processing 463 is performed. That is, the boosting means 400 is activated, and the switching means 300 is turned on and off based on the duty ratio calculating means 450, and is stored in the large capacity power capacitor 180 as an emergency power supply. Energy is injected into the smoothing capacitor 80.
  • the energy injected by this operation is used for the emergency elevator operation described above.
  • the process 462 is executed. In this case, it is determined that the solar cell is not generating much power, the operation of the booster 400 is stopped, the power generation energy of the solar cell is stored in the large-capacity power capacitor 180, and the emergency power supply is stored. Perform the operation to secure the energy.
  • the above is the processing when it is determined that the energy generated by the solar cell is equal to or less than the predetermined value in the processing 460.
  • the process 466 is executed, and the energy generated by the booster 400 in the solar cell module 170 is performed.
  • the smoothing conde Into the sensor 80.
  • the energy generated by solar cells is used without exhaustion.
  • the energy of the solar cell is used firstly as an emergency power source and secondly as energy supplied to the load. If there is excess energy in the energy other than the first and second energies, the third energy is used. It is returned to the system power supply 10 for use. This has the effect that the solar cell can always be used with maximum utilization efficiency, and a conventional storage battery is not required.
  • FIG. 5 is a block diagram showing an embodiment of the converter control system described above. The outline is described below.
  • the reference voltage E d * of the converter is set. This voltage is a value larger than the value obtained by full-wave rectification of the commercial power supply, and is determined from the withstand voltage of the power element used on the inverter side.
  • a difference between the reference voltage Ed * and the voltage Ed of the smoothing capacitor 80 detected from the voltage sensor 81 is generated by a subtractor 157, and the difference is input to the voltage control means 151.
  • the magnitude I * of the power supply current is determined by the voltage control means 15 1 so that the voltage Ed of the smoothing capacitor 80 matches the reference voltage Ed *.
  • the magnitude I * of the power supply current is input to the three-phase AC current command generation means 152.
  • the three-phase AC current command generating means 15 52 obtains the phase from the power supply voltage detected by the voltage sensor 50, and determines the phase, the magnitude I * of the power supply current and the three-phase AC current command iu *, iv *, i (only U-phase commands are shown in the figure).
  • the subtractor 158 takes a deviation so that the three-phase AC current (power supply current) detected by the current sensors 61, 62, 63 is matched with the three-phase AC current command.
  • the three-phase modulated waves E u *, E v *, E w * are appear.
  • the three-phase modulated wave is compared with the carrier (triangular wave) generated from the carrier wave generating means 15 and the three-phase modulated wave and carrier comparing means 15 6 to generate a three-phase PWM signal.
  • the three-phase PWM signal generates a gate signal to be applied to the power element of the converter 70 by the gate signal forming means 157 of the converter 70, and outputs the gate signal to the gate of the power element of the converter 70. Applied.
  • the voltage of the smoothing capacitor 80 is maintained at the reference voltage Ed *.
  • the voltage control means 151 receives the energy supplied from the commercial power supply while adding the energy injected from the solar cell, and consumes the energy on the load side. The operation is performed so as to increase the voltage of the smoothing capacitor 80 by replenishing the energy to be supplied and to match the reference voltage Ed *.
  • the voltage control means 15 1 outputs the total energy of the solar cell energy and the energy regenerated from the load side to the system power supply 10. Then, the voltage is returned as surplus energy, and the voltage of the smoothing capacitor 80 is reduced so as to match the reference voltage Ed *.
  • the power supply current that matches the phase of the power supply voltage flows through the three-phase AC current command generation means 152. In other words, transmission and reception of power to and from the system power supply are performed at a power factor of 1.
  • a power supply abnormality detection means 154 is provided so as to be able to cope with an abnormality in the system power supply 10.
  • a power supply abnormality is examined by checking for an abnormal decrease in the smoothing capacitor voltage (occurs when an open phase occurs, etc.), and further detects a power supply abnormality such as a momentary power failure based on the magnitude of the three-phase AC power supply voltage detected by the voltage sensor 50. I do.
  • the power supply abnormality detection means 15 54 determines that there is an abnormality on the system power supply 10 side.
  • the converter first sends a converter gate signal cut-off signal to the converter 70 to stop the converter operation, and turns off the power contactors 31, 32, and 33 to protect the inverter.
  • a power failure detection signal is also sent to the inverter controller 150, and this signal is used by the inverter to move the elevator to the nearest floor using the energy stored in the smoothing capacitor 80. It is used as a trigger signal.
  • a switching operation signal is transmitted to the boosting means 400, and the switching means 30 in the boosting means 400 is transmitted. By operating 0, the operation of injecting solar cell energy into the smoothing capacitor 80 is started.
  • This operation is effective when the solar cell is not generating power, such as at night. This is because, when the solar cell is generating power as usual, there is no problem because the operation of injecting the energy of the solar cell into the smoothing capacitor 80 is performed in a predetermined manner.
  • FIG. 6 is a control block diagram for driving the electric motor 110 on the PWM inverter side.
  • An acceleration command is generated from the acceleration command pattern generating means 160b.
  • the speed command generator 160c integrates the acceleration command to form a speed command.
  • the speed command is obtained by a subtracter 161a so that the rotational speed ⁇ ⁇ of the motor detected from the speed detector 11 1 1 matches the above speed command wR.
  • the speed control means 160 e is operated so as to make it zero, and the torque command ⁇ R is determined.
  • the difference between the two is calculated by the adder / subtractor 161b so that the torque generated by the motor 110 in the torque command R is equal to the torque, and the manipulated variable of the torque command for making the difference zero is *. It is obtained by the torque control means 160 f.
  • the torque currently generated in the motor 110 is calculated by the torque calculating means 160g from the following equation.
  • the torque current It is the excitation current from the AC 3-phase primary current detected from the current sensors 101, 102, 103. This is a value obtained by performing coordinate conversion from the Z torque current detecting means 160 on the ⁇ - ⁇ axis rotating at the inverter angular frequency ⁇ . Further, the secondary magnetic flux ⁇ 2 is obtained from the following equation by the secondary magnetic flux computing means 160j using the exciting current Im obtained from the exciting current / torque current detecting means 160.
  • T2 L r / R 2: secondary time constant
  • the torque current command I t R is obtained from the following equation by the torque current command calculation means 160h.
  • the excitation current command ImR is determined by the ratio of the torque current command to the excitation current command so that the motor efficiency is maximized with respect to the operation amount * of the above torque command.
  • 3 2 Mean is determined based on the ratio 9 determined from 16 0 i.
  • the determination method can be obtained by using the method described in Japanese Patent Application No. 8-40916. The details are omitted.
  • the torque current It and the excitation current Im obtained from the torque current detection means 160 match the torque current command It R and the excitation current command I mR determined by the above operation.
  • the current deviation is obtained by the subtractors 161c and 161d, respectively, and the manipulated variable corresponding to each current command is determined by the torque current control means 160m and the excitation current control means 1601 so that the deviation becomes zero. , It *.
  • the manipulated variable I m It * of the current command is obtained by using the inverter angular frequency ⁇ ⁇ ⁇ , and the primary voltage commands V ⁇ *, V ⁇ * on the y- ⁇ axis are obtained from the non-interference means 160 ⁇ .
  • This calculation method is obtained by using the method disclosed in the aforementioned Japanese Patent Application No. 8-40916.
  • the inverter angular frequency ⁇ is obtained by calculating the slip angle frequency from the equation (6) by the slip frequency calculating means 160 ⁇ , and then performing the addition operation of the following equation by the adder 161 e. .
  • the PWM signal generating means 160p converts the above voltage commands V ⁇ *, V ⁇ * into three-phase primary voltage commands Vu *, Vv *, Vw * to obtain a modulated wave.
  • a PWM signal is generated by comparison with a square wave (carrier), and a gate signal is formed based on the PWM signal.
  • the gate signal is applied to a gate of a single element constituting the PWM inverter 90, and thereby the motor 110 is driven. Through these series of processes, a torque according to the acceleration command ⁇ * is efficiently generated from the motor.
  • the above is the operation of the elevator during normal elevator operation.
  • the acceleration command ⁇ * is corrected. This is because, when the acceleration correction means 160a in the inverter controller 160 receives the power supply abnormality detection signal from the converter controller 150, the load sensor 141, Calculate the weight of the counterweight 130 and the unbalanced part, and calculate the required load torque to move the unbalanced weight by one floor.
  • the acceleration command is reduced while observing the voltage of the smoothing capacitor 80. While such control is being performed, it is returned to the smoothing capacitor as regenerative energy.
  • the regenerative energy and the energy stored by the solar cell for an emergency power supply are also injected into the smoothing capacitor by operating the boosting means 400.
  • the energy stored in the smoothing capacitor is always obtained, and the energy stored in the smoothing capacitor is changed to the acceleration command ⁇ * until the motor can generate a torque corresponding to the load torque described above. Continue the operation to reduce.
  • the large-capacity power capacitor 180 has a capacity for moving the elevator by one floor under the maximum load state, always in case of emergency. Since energy is stored, the elevator can be moved to the nearest floor in an emergency even when regenerative energy is not available.
  • the energy stored in another battery for example, the fuel cell is temporarily stored in a large-capacity power capacitor
  • the same effect can be obtained by adding voltage adjusting means for adjusting the voltage level between the output voltage of the capacitor and the flat-f capacitor on the converter output side and means for insulating the capacitor from the smoothing capacitor.
  • the boosting means is used as a means for adjusting the voltage level between the output voltage generated from the solar cell module and the smoothing capacitor on the converter output side, but the voltage generated from the module is the voltage of the smoothing capacitor. If it becomes larger than the value obtained by diode rectification of the power supply voltage, adjust the voltage level using step-down means. That is, boosting means or Which of the voltage means is used can be determined as a means capable of adjusting the level of the output voltage on the battery side and the voltage of the smoothing capacitor on the converter output side. Good.
  • FIG. 7 is a modification of the embodiment shown in FIG.
  • a smoothing capacitor is connected to one converter 500 0, and a plurality of PWM inverter elevator driving systems 90 A to 90 C is connected, and a general load such as an inverter fluorescent lamp is also supplied.
  • a general load such as an inverter fluorescent lamp.
  • This can be considered as an example of a system that can be used in large-scale buildings.
  • the configuration of the solar cell system does not change, but if one solar cell module 170 cannot be used as an emergency power supply, prepare multiple units (not shown) and use the minimum number of emergency power supplies. It is assumed that a large-capacity power capacitor 180 having a power generation capacity enough to secure energy and having a capacity enough to store the energy is provided.
  • a power system management system 600 is provided because a plurality of loads are connected to the smoothing capacitor.
  • the elevators do not always operate with multiple elevators balancing regenerative energy and power energy.
  • FIG. 8 shows the processing of the power supply system management system 600.
  • the primary side of the transformer (system power supply) is detected from the voltage detected by the voltage sensor 50 in order to quickly detect the situation (open phase, momentary power failure, voltage drop, etc.).
  • the state of the voltage fluctuation on the transformer secondary side is determined from the value obtained by rectifying the voltage sensor 50. In this case, it can be considered that the value is smaller than the specified value or larger than the specified value.
  • processing 600D determines that the voltage has dropped significantly, that is, a momentary power failure, power failure, phase loss, etc., has occurred on the system power supply side, and converter operation stops in processing 600E. Then, the driving elevator is decelerated and the regenerative energy is collected in the smoothing capacitor. If this operation does not have enough energy to move the elevator to the nearest floor in the smoothing capacitor, the insufficient energy is injected from the solar cell system to stop the elevator at the nearest floor. Process 6 00 F is performed.
  • process 600 G the voltage on the secondary side of the transformer became larger than the specified value because the power generation energy from the solar cell was injected into the smoothing capacitor and most of the elevators were decelerating and the regenerative energy was reduced. It is presumed that such a situation occurred because a large amount of the capacitor was returned to the smoothing capacitor at the same time. This is handled by assigning priorities.
  • the elevator is in a stop operation.
  • the operation of the boosting means 400 is stopped to stop the injection of the energy generated by the solar cell into the smoothing capacitor.
  • the normal process 600B is executed. In this case, the deceleration operation of multiple elevators and the operation of injecting the energy generated by the solar cell overlapped, and the amount of energy injected (returned) to the smoothing capacitor increased sharply. This is because it was assumed that the energy on the secondary side increased temporarily and the voltage on the transformer secondary side temporarily exceeded the specified value.
  • the deceleration rate of the elevator during deceleration is reduced, and the amount of regenerative energy is reduced.
  • the number of persons in the car is estimated based on information from the load sensor, and the deceleration rate is reduced from the one with the smaller number of persons. This is because the smaller the number of passengers, the greater the unbalanced torque, the greater the inertia of the electric motor, the greater the regenerative energy is expected, and the less annoying the crew members are.
  • process 6001 the deceleration rate is reduced according to the priority (process 600I and 600H are used together), and when the process falls within the specified range, normal process 6001 is performed. Move to B.
  • the idea of the embodiment in FIG. 7 is an example in which the smoothing capacitor is regarded as a DC power supply line and various kinds of loads are connected to the DC power supply. That is, an element in which a plurality of PWM inverters are connected to the DC power supply line. If a DC voltage regulator such as a DC fever circuit is added to the DC power supply in addition to the beta drive system, the DC power supply can be used as a DC motor speed control / battery-one charger. If an inverter fluorescent lamp is attached to the DC power supply line, it can be used as an efficient lighting device.
  • FIG. 9 is a modified embodiment of the system of FIG.
  • the difference from FIG. 8 is the case where the elevators are driven by a plurality of converter / inverter systems.
  • the power supply system management system 600 is basically performed by the processing shown in FIG. 8, except that the reference voltage E d * of the smoothing capacitor is provided corresponding to each converter system.
  • the above-described reference voltage Ed * is increased, and the Reduce the amount of energy returned to the secondary side.
  • the upper limit of the increase of the reference voltage Ed * is determined by restrictions such as the withstand voltage of the power element on the PWM inverter side and the withstand voltage of the smoothing capacitor.
  • the feature of this system is that the reference voltage Ed * is controlled by the power supply system 600 so that the optimum reference voltage Ed * is not disturbed on the system power supply side.
  • the system power management system can use the system power management system.
  • the total energy for the grid power side (the energy generated by the solar cell, Since regenerative energy is managed, reverse power flow to the power source can be performed efficiently.
  • the generated power of the solar cell can be injected into the capacitor between the converter and the inverter and returned to the power supply system as the energy for the load side of the inverter, the utilization efficiency of the solar cell energy can be improved. it can.
  • storage batteries are no longer essential, and performance and reliability that are not affected by environmental conditions can be guaranteed, and complicated maintenance of storage batteries can be omitted, so that power conversion with an inverter control device, as well as converters and inverters It can be widely used as a control device for vessels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)

Description

明 細 書
エレベータ制御装置及び電力変換器制御装置 技術分野
本発明はコンバータと V V V F (可変電圧 * 可変周波数) イ ンバ一タ とによって交流電動機に給電するエレベータ制御装置の改良に関し、 特 に太陽電池を備えたエレベータ制御装置に関する。 背景技術
太陽電池をエレベータ装置に適用するという技術的思想は種々ある。 第 1 に、 特開平 2— 1 00973 号公報には、 パッテリ (蓄電池) を用意し、 エレベータが停止している間に太陽電池で発生したエネルギーを蓄電池 に充電するものが開示されている。
この従来技術は、 太陽電池の利用率が悪く、 節電効果は余り期待でき ない。
また、 蓄電池の充電能力は温度等の環境条件ゃ充放電状態 (電圧ゃ電 流の値) によって変化するため、 同一の充電条件 , 状態で太陽電池のェ ネルギ一を蓄積できるとは限らない。
さらに、 蓄電池の充電能力は、 経時的に変化していくため、 新たに保 守 · 点検等の余分な作業が発生する煩雑さもある。
第 2に、 特開昭 59— 1 53778号公報には、 エレべ一タを運転するのに必 要な平均電力を交流電源或いは太陽電池 ( 1次電池) から供給し、 加減 速運転時の脈動電力は蓄エネルギー装置 ( 2次電池) から供給するよう にしたものが開示されている。
この従来技術も、 太陽電池の利用率が悪く、 節電効果は余り期待でき ない。 すなわち、 蓄エネルギー装置が十分に充電されていると太陽電池 からのエネルギーを受け取ることができないからであり、 加減速が頻繁 に繰返され、 回生エネルギーを蓄エネルギー装置に戻す状態が頻繁に生 ずるエレベータでは特に深刻である。 エレベータの加速時間は通常数分 以内に終了する。 この時間内に加減速時に発生する脈動電力を太陽電池 から供給するとなると、 太陽電池で発生したエネルギーは、 この時間内 に蓄エネルギー装置に充電できなければならない。 一方、 太陽電池の発 生電力は日照量によって時々刻々と変動しているため、 この短時間内に 必要なエネルギーを供給できるとは限らないのである。
また、 蓄エネルギー装置として鉛蓄電池等の 2次電池を利用するため、 前記技術と同様、 保守 · 点検作業も必要である。
第 3に、 太陽電池と商用電源とを使ってエレベータを駆動させる他の 例として、 特開昭 6 1— 1 2579 号公報があり、 太陽電池の出力電圧が減少 した場合に商用電源に切り替えている。
この従来技術は、 出力特性が異なる異種電源 (太陽電池と商用電源) を切り替えるため、 切り替え時に過渡的な電圧変動を与え、 トルク振動 が発生してエレべ一タの乗り心地を悪化させる。
また、 太陽電池で発生したエネルギーを一旦蓄電池に蓄積しておリ、 蓄電池の保守性に問題がある。
以上述べた引例は何れも蓄電池を利用しており、 これにはつぎのよう な共通した問題がある。 蓄電池は、 化学反応を利用して電気工ネルギ一 を蓄積する方式のため蓄電池の状態によって充電できる能力が変わリ、 一般に、 エレベータの加減速が終了する数分以内という短時間には太陽 電池で発生している瞬時エネルギーを充電できない。 充電できるのは太 陽電池が発生した平均エネルギ一である。 また、 蓄電池が過充電の状態にある時は殆ど充電できない。 仮に、 こ のような状態で、 強制的に充電し続けると、 急激に蓄電池の劣化が進行 する。 更に、 高温や低温の設置環境下では、 蓄電池としての本来のエネ ルギ一蓄積機能が大幅に低下する。 このように、 種々の条件によって充 電特性が変わる蓄電池を、 時々刻々と日照量によってその出力特性が変 動する太陽電池の発生エネルギー蓄積手段として利用するのは、 ェネル ギー蓄積効率上、 有効ではない。
また、 耐用年数が 1 0年以上で非常に長いエレベータに適用するのは、 蓄電池は経時劣化という固有の特性があるためメンテナンスが不可欠に なり煩雑である。 同時に、 一般に、 蓄電池として利用するには、 蓄電池 のセルを複数個使用することになるため、 個々の特性にバラツキがあり、 信頼性にも問題がある。
本発明の目的は、 太陽電池から発生した電力を効率よく利用できるェ レベータ制御装置を提供することである。 発明の開示
本発明のある一面によれば、 電源からの交流電力を直流電力に変換す るコンバータと、 該コンバータの出力側に接続されたコンデンサと、 該 コンデンサの直流電力を可変電圧 · 可変周波数の交流電力に変換するィ ンバータと、 該ィンバ一タによって給電されエレベータ乗りかごを昇降 駆動する電動機を備えたエレベータ制御装置において、 太陽電池と、 該 太陽電池が発生する電力を前記コンデンサに注入する手段と、 前記コン デンサの電力を前記電源へ回生するように前記コンバータを制御する手 段を設けたことを特徴とする。
本発明の他の一面においては、 前記コンパ一タ制御手段は、 前記コン デンサの電圧が予定の電圧範囲を維持する電圧制御系を備え、 前記電源 から前記コンデンサに電力を注入し或いは前記コンデンサの電力を電源 に逆潮流させるように前記コンバータを可逆的に制御する手段を備えた ことを特徴とする。
本発明の他の一面においては、 コンバータの直流側に設けた平滑用の 前記コンデンサのほかに、 前記太陽電池の出力側にその瞬時出力電力を 吸収する能力を持つ容量の電力用コンデンサを設け、 この電力用コンデ ンサの電力を、 前記平滑コンデンサに注入できる電力状態に電力変換す る手段を設けたことを特徴とする。 図面の簡単な説明
第 1 図は本発明の実施例システム構成図。
第 2図は第 1 図のコンバータシステムにおける動作を説明するフ口一 図。
第 3図は太陽電池から最大瞬時電力を引き出す方法を説明する図。 第 4図は太陽電池系で実行される処理を説明するフロー図。
第 5図は第 1 図のコンバータコン トローラの制御プロック図。
第 6図は第 1 図のィンバータコント口ーラの制御ブロック図。
第 7図は一台のコンバータで複数のエレベータシステムに太陽電池の エネルギーを注入する実施例。
第 8図は第 7図の電源系統管理システムの処理を説明するフロー図。 第 9図は複数台エレベータ駆動システムに太陽電池のエネルギ一を供 給するようにした実施例をそれぞれ示す。 発明を実施するための最良の形態 太陽電池の出力端子に、.瞬時エネルギーを蓄えることができる大容量 電力用コンデンサような瞬時電力蓄積手段を具備する。
次に、 該電力用コンデンサの出力電圧と太陽電池の出力電流とを検出 する出力電圧及び出力電流検出手段を具備し、 検出された出力電圧と出 力電流との積から現時点で太陽電池で発生している瞬時電力を演算し、 常に太陽電池から最大の電力を引き出せる条件を求める太陽電池瞬時パ ヮ一演算手段を設ける。
そして、 太陽電池での発電状況を判断するための太陽電池の発電状況 判断手段、 更に上記瞬時電力蓄積手段に現状どの位のエネルギー (電力 量) が蓄積されているかを求め、 該エネルギーがエレベータの非常用電 源として利用できる量に達しているかを判断する太陽電池エネルギー蓄 積量判断手段を備える。
以上が太陽電池のエネルギーを蓄積し、 太陽電池のエネルギーを最大 限に利用できるようにするための手段である。
上記の瞬時電力蓄積手段に蓄積されたエネルギーをコンバータの出力 側の付加される平滑コンデンサに注入する。 このために次のような手段 をもつ。
即ち、 上記瞬時電力蓄積手段、 本願では大容量電力用コンデンサ, 通 常のコンデンサとは異なり、 数 F (ファラ ド) 以上の容量を持ち、 低圧 (数十 V程度) で大電流 (数十 A以上) が流せる大容量電力用コンデン サである。 このコンデンサは瞬時電力を吸収でき、 しかもエレべ一タの 耐用年数内では殆ど経時的変化はない。
一般に、 太陽電池は単体のセルの状態で構成されたものではなく、 各 セルを複数個モジュール化して構成される。 従って、 太陽電池は単位セ ルを任意に組み合わせて構成することになるため、 その出力電圧も種々 の値をと り得る。 しかし、 単位セルの電圧は非常に小さいため、 モジュ ール化しても、 太陽電池の出力電圧は、 数十 V程度で、 比較的低圧であ る。
一方、 上記の瞬時電力蓄積手段としては、 蓄電池相当の電力を蓄積で きる能力がある程の大容量、 即ち数 F以上の容量をもつことが必要条件 である。 このような電力用コンデンサは、 特性上高耐圧化が困難で、 低 圧 · 大容量の特性を有する。 現在、 この種のコンデンサとして電気 2重 層形のコンデンサが利用できる。
大容量を有する電力用コンデンサと太陽電池の両者の特性には、 比較 的低圧という共通性があって、 相互に接続し易いため、 瞬時電力蓄積手 段として利用できる。
このように構成される結果、 太陽電池のモジュールの電圧は、 上記瞬 時電力蓄積手段の出力電圧と同程度になリ、 上記のコンバータ出力側の 平滑コンデンサの電圧に比べて低くなる。 このため、 太陽電池から発生 して該瞬時電力蓄積手段に蓄積された瞬時エネルギ一を絶えず平滑コン デンサに注入できるようにするには、 瞬時電力蓄積手段の出力電圧のレ ベルを平滑コンデンサの出力電圧以上に増幅させてやる必要がある。 こ のために、 上記瞬時電力蓄積手段の出力側に昇圧手段を具備する。
また、 平滑コンデンサの電圧はエレベータの加減速運転状態, 負荷状 態, 商用電源の変動等によって絶えず変わっている。 このような平滑コ ンデンザの出力電圧の変動に係わらず、 平滑コンデンサに常に瞬時エネ ルギーを流れ続けるようにするには、 この昇圧手段の出力側には、 平滑 コンデンサと昇圧手段とを絶縁する手段 (逆流防止手段) を設け、 如何 なる場合でも平滑コンデンサ側から昇圧手段側にはエネルギーの逆流が 起こらないようにする必要がある。 この絶縁手段としては、 種々考えら れるが、 最も簡単な手段としてはダイオー ドが有効である。 この絶縁手 段を付加することによって、 昇圧手段では、 その電圧を平滑コンデンサ の電圧レベルよりも常に大きくする増幅の動作を行うだけで、 自然に太 陽電池で発生している瞬時エネルギーは平滑コンデンサに一方的に流れ、 蓄積される。
そして、 かかる動作によって平滑コンデンサの電圧が、 予定の (昇圧 手段の増幅できる) 電圧まで高められると、 昇圧手段の動作は自然に停 止する。
このような状態になると、 コンバータは、 太陽電池で発生したェネル ギーを商用電源側に戻す動作を行い、 これによつて、 太陽電池のェネル ギ一は電源側に逆潮流することになる。 なお、 昇圧手段の動作が停止し ている間も太陽電池で発生している瞬時エネルギーは上記瞬時電力蓄積 手段には絶えず蓄積されていく。
上記の昇圧手段は一方的に平滑コンデンサにエネルギー注入を行うだ けである。 一方、 コンバータは、 このような昇圧手段の動作とは無関係 に、 平'滑コンデンサの電圧を監視するだけで、 太陽電池から得られるェ ネルギ一を負荷側に供給したり、 商用電源側に返還 (逆潮流) したりす ることが自在にできるため、 従来のような蓄電池を設ける必要がなくな る。
なお、 太陽電池のエネルギーを非常用電源として利用できるようにす るために、 上述のように常に平滑コンデンサに太陽電池で発生したエネ ルギーを垂れ流すのではなく、 エネルギー注入には一定の制限を設けて いる。
即ち、 上記の昇圧手段から平滑コンデンサにエネルギーを注入する否 かの条件は、 太陽電池の発電状況判断手段及び太陽電池エネルギー蓄積 量判断手段を設け、 これらの手段に基づいて決定するようにしている。 つまり、 瞬時電力蓄積手段には、 非常用電源としてエネルギーが常に確 保されている否かを太陽電池の発電状況判断手段及び太陽電池エネルギ 一蓄積量判断手段によって判定している。 瞬時電力蓄積手段には、 停電 したような場合に、 エレベータを最寄りの階に移動させることができる 位のエネルギーが蓄積されているかをチェックする。 この結果、 蓄積さ れない場合は瞬時電力蓄積手段に非常用電源として利用できるだけのェ ネルギ一が蓄積されるまで、 上記の昇圧手段から平滑コンデンサにエネ ルギーを注入する動作を停止する。
この動作によって、 常に瞬時電力蓄積手段には非常用のエネルギーが 蓄積されていることになり、 従来非常時の電源用として装備していた蓄 電池が不要になる。
次に、 上記の特性を持つ昇圧手段を制御するに必要な制御手段につい て説明する。
太陽電池の出力特性 (電圧一電流) は日々刻々と太陽電池に照射され る日照量によって変わる。 そこで、 先ず、 上記の昇圧手段は、 このよう に太陽電池の出力が変動しても安定にかつその時点での日照量に対応し た最高の効率で太陽電池の発生エネルギーを取り出して、 上記平滑コン デンサに太陽電池エネルギーを注入できるようにしている。
そのために、 上記の昇圧手段では、 太陽電池の出力電流を検出する電 流センサ、 瞬時電力蓄積手段から出力される電圧を検出する電圧センサ を具備して、 上述した太陽電池の発電状況判断手段, 太陽電池エネルギ 一蓄積量判断手段及び太陽電池瞬時出力パワー演算手段, 電流指令演算 手段, 電流制御手段, 通流率演算手段等の手段をマイクロコンピュータ によるソフ 卜処理によって実行している。 太陽電池の発電状況判断手段は、 日射量が時々刻々と変動する太陽電 池での発電状況を判定する機能を有し、 所定以上の発電が太陽電池で行 われていると判断し、 かつ、 太陽電池エネルギー蓄積量判断手段での判 定により瞬時電力蓄積手段には非常時のエネルギーが確保されていると なると、 上記の昇圧手段を通して平滑コンデンサ側にエネルギーの注入 力行われる。
なお、 太陽電池の発電状況から発電能力が所定の以下の場合は、 平滑 コンデンサへのエネルギー注入を全面的に停止してひたすら上記の瞬時 電力蓄積手段にのみエネルギーの蓄積を行う。 この結果蓄積されたエネ ルギ一は、 太陽電池の発電能力が無くなった時、 例えば、 夜間, 雨等で の非常電源のエネルギー源として利用される。
上記の平滑コンデンサに太陽電池のエネルギーを注入する操作は次の 過程によって行われる。
先ず、 上記太陽電池瞬時出力パワー演算手段によって、 日照量に係わ らず、 常に太陽電池のエネルギーを最大限に引き出せるようにするため に太陽電池から取り出せる出力電流の条件、 即ち電流指令を決定する。 即ち、 上記太陽電池瞬時出力パワー演算手段では、 太陽電池の出力電流 と、 瞬時電力蓄積手段から出力される電圧とから現時点の瞬時電力を求 める。 そして、 瞬時電力の時間変動成分の符号 (極性) から最大瞬時電 力を発生させための条件を探索し、 その結果を上記の電流指令演算手段 に送り、 電流指令手段は現時点の最適な電流指令を決定する。 電流制御 手段は、 太陽電池の出力電流が電流指令に一致するように作動しスィッ チング手段を制御するための操作量を決定する。
通流率演算手段では操作量に基づいて通流率を決定し、 スィ ツチング 手段の通流角を制御して平滑コンデンサにエネルギーを注入していく。 このよう して、 常に、 最高効率で太陽電池で発生したエネルギーは平 滑コンデンサに瞬時に移動する。 コンデンサからコンデンサへの移動に よって行っているため、 このエネルギーの移動には、 原理的に損失はな い。
かく して、 平滑コンデンサには太陽電池で発生したエネルギーが余す ことなく蓄積されていく。 そして、 平滑コンデンサに蓄積されたェネル ギ一は、 コンバータによって、 電源側に回生するか、 負荷側で利用する か自在に選択されるため、 従来必要であった蓄電池は省略できる。
また、 コンバータ, インバ一タによる駆動システムを起動する際には、 上記の昇圧手段を動作させて太陽電池のエネルギーを使って平滑コンデ ンサを初期 (予備) 充電すれば、 コンバータ · インパータシステムで電 源投入時に見られるような平滑コンデンサへの突入電流も防止できる。 この結果、 コンバータを早く しかも安全に動作ができる状態にもってい ける。
第 1 図に本発明の実施例を示す。 自分自身でも可減速時の余剰エネル ギーを電源変換させることができるコンバータを具備し、 該コンバータ の出力電圧 (直流電圧) をインバ一タによって交流の可変電圧 · 可変周 波数変換してエレベータを駆動する装置に太陽電池を具備させてそのェ ネルギーを駆動源及び非常用電源として利用し、 更に余剰電源を電源側 に回生 (逆潮流) させることが可能な実施例を示したものである。
先ず、 第 1 図に記載した構成及び回路動作について説明する。
第 1 図では、 3相の電源と電力の授受を行える場合を示したものであ るが、 単相電源と電力の授受を行う場合も当然あり得る。 この場合、 本 実施例で後述する 卜ランス及びコンバータの構成が単相電源用となるだ けで発明の本質的なことは何ら変わりはないので、 単相電源系統に適用 できることは云うまでもないので、 この場合の説明は省略し、 本実施例 では、 3相電源系統との電力の授受を行う場合のみ説明する。
建て屋内に配線された系統電源 1 0から、 所定の電源が配電盤 (図示 せず) に導入される。 該配電盤には、 系統電源からのエネルギーを消費 した電力を積算した値 ( k W h ) を表示する消費電力メータ 2 0の入力 側及び系統電源 1 0側に返還した電力を積算した値 ( k W h ) を表示す る買電用電カメ一タ 3 0の出力側が系統電源 1 0側に接続される。
また、 消費電力メータ 2 0の出力側及び買電用電力メータ 3 0の入力 側は、 上記コンタクタ 3 1, 3 2, 3 3の入力端子に接続され、 該コン タクタ 3 1, 3 2, 3 3の出力端子はトランス 4 0の 1 次側に接続され る。 上記コンタクタ遮断信号は後述するコンバ一タコン トローラ 1 5 0 及びインパ一タコン 卜ローラ 1 6 0から発せられる。 該遮断信号はコン バ一タ · インバ一タ側での故障、 系統電源 1 0の寸断等の非常状態がェ レベータ駆動システム内に発生した場合に上記コン 卜ローラ 1 5 0, 1 6 0から出力される。
ここで、 トランス 4 0は消費電力メータ 2 0及び賈電用電力メータ 3 0, 系統電源 1 0とエレべ一タ駆動システム側とを電気的に絶縁する ために設置されている。 該トランス 4 0としてはシールド構造のものを 利用し、 卜ランス 4 0の 2次側に接続されるコンバータ 7 0の動作によ つて発生した多量の高次高調波成分がトランス 4 0の 1 次側、 即ち系統 電源 1 0に漏洩されないようにしている。 このようにすることによって、 系統電源 1 0 (コンタクタ 3 1, 3 2, 3 3 ) とコンバータ 7 0との絶 縁が図られ、 且つ高調波電流の漏洩がなくなりコンタクタ 3 1, 3 2, 3 3の誤動作を防止できる。
トランス 4 0の 2次側はコンバータ 7 0に接続される。 該卜ランス 4 0と該コンバータ Ί 0の間には力率を 1 に制御するため交流リァク 卜 ルが必要になるが、 本実施例では省略してある。 なお、 このリアク トル はトランス 4 0に含まれるように構成してもよい。
コンバータ 7 0は 6アームにパワー トランジスタ、 I G Β Τ (ゲ一 卜 絶縁形トランジスタ) 等のフリーホイールダイオー ド内蔵のパワースィ ツチング素子で構成される、 通常使われている電力変換器でありその構 成の詳細は省略する。
該コンバータ 7 0はコンバータコン トローラ 1 5 0で制御される。 該 コン トローラは卜ランスの 2次側から電圧センサ 5 0によって検出され た電源電圧及び電流センサ 6 1, 6 2, 6 3によって検出された電源電 流, 平滑コンデンサの電圧検出器 8 1 を使って検出された平滑コンデン ザの電圧を使って、 該電源電流位相が電源電圧の位相に一致するように コンバータ内のパワースイッチング素子を制御することによって力率を 1 にする制御が上記コン トロ一ラ 1 5 0によって実行される。 この制御 については後述説明する。
平滑コンデンサ 8 0はコンバータ 7 0の出力端子及び P W Mィンバー タ 9 0の入力端子に接続される。 コンバータ 7 0によって交流電圧から 直流電圧に変換された電圧を該平滑コンデンサ 8 0によって平滑した直 流電圧は該 P W Mィンバータ 9 0によつて可変電圧 . 可変周波数の交流 電圧に変換される。
該 P W Mインパ一タ 9 0は誘導電動機 1 1 0に接続され、 該可変電圧 ♦ 可変周波数の交流電源を該誘導電動機 1 1 0に供給し、 該交流電源に よって該誘導電動機 1 1 0が可変速駆動される。
該誘導電動機 1 1 0の可変速制御はィンパータコン ト一ラ 1 6 0によ つて実行される。 この制御をするにあたっては、 該イ ンバ一タコン 卜口 ーラ 1 6 0に、 電流センサ 1 0 1 , 1 0 2, 1 0 3によって該誘導電動 機 1 1 0の 1 次卷線に流れる 3相の交流電流及び該誘導電動機 1 1 0の ロータに接続された速度検出器 1 0 4によって該ロータの回転周波数に 比例して発生するパルスを取り込む。
上記ィ ンバ一タコン 卜一ラ 1 6 0では、 この取り込まれたパルスを使 つて該誘導電動機 1 1 0の回転速度を演算する。 このようにして演算さ れた回転速度を使って速度制御系を構成する。 該速度制御系の速度指令 はエレベータとして乗リ心地を配慮して決定されたものを適用する。 速 度制御系から トルク指令乃至すベり周波数が出力され、 この値に基づい てべク トル制御演算を行う。 べク トル演算によリ励磁電流と トルク電流 とを求め、 該電流から上記該誘導電動機 1 1 0の 1 次巻線に流すべき 1 次電流の基準となる 1 次電流指令を発生する。
該 1次電流が該 1次電流指令に追従するように電流制御系が構成され る。 該電流制御系から P W Mィンバ一タ 9 0で発生する電圧基準となる 変調波を発生し、 該変調波は搬送波 (三角波) と比較して P W M信号を 得、 該 P W M信号は P W Mィンパ一タ 9 0を構成する 6つのパワースィ ツチング素子のゲ一 トに印加される。
この操作によってエレベータの速度指令に追従させるべき トルクが誘 導電動機 1 1 0から発生される。 なお、 上記制御の手法は後述説明する。 誘導電動機 1 1 0で発生した トルクは、 該誘導電動機 1 1 0のロータ に直結されたギヤ (図示せず) を介してシ一ブ (網車) 1 2 0に伝達さ れ、 該シーブ 1 2 0に巻き付けられているロープの両端に取り付けられ ている、 乗りかご 1 4 0、 該乗りかごの釣り合い重りとなるカウンタウ エイ 卜 1 3 0を上下させる。
通常のエレベータシステムでは、 系統電源 1 0から得た商用電源をコ ンバ一タ 7 0及び P W Mインバ一タ 9 0通して交流の可変周波の交流電 源に変換して必要な電力を得て誘導電動機 1 1 0から発生した トルクに よって該乗りかご 1 4 0を上下に移動させている。
本実施例では、 上記コンバータ 7 0の出力側に取り付けられた平滑コ ンデンサ 8 0に太陽電池で発生した瞬時エネルギーを注入するようにし たことに特徴がある。
以下、 上記平滑コンデンサ 8 0に太陽電池で発生した瞬時エネルギー を注入する構成について説明する。
太陽電池のモジュール 1 7 0は、 屋外の太陽光が最も浴びる位置に取 り付けられる。 現状、 該太陽のモジュール 7 0から発生する 3 0 V前後 と比較的に低圧である。 この値は単位セルを多く組み合わせてモジユー ルを構成すれば更に電圧を高くできる。 この場合太陽電池の大きさは大 きくなるが、 今後太陽電池の特性が改善され単位セルの電圧が増加する ことも予想されるが、 せいぜいこの数倍の電圧である。
従って、 何れにしても太陽電池のモジュール 1 7 0から発生する出力 電圧は、 三相の商用電源の場合コンパ一タ 7 0内のパワースィツチング 素子と逆並列されているフリ一ホイールダイォ一 ドで構成される整流回 路で、 例えば、 2 0 0 Vの該 3相交流電圧を整流して得られる直流電圧 (平滑コンデンサ 8 0の端子電圧には 3 0 0 V前後の直流電圧が発生) と比較すると約 1 / 1 0位小さい。 コンパ一タ 7 0としての動作は上記 の整流電圧以上になって始めて可能になる。
そこで、 本発明の実施例では、 該平滑コンデンサの端子電圧と太陽電 池モジュール 1 7 0から得られる出力電圧と数倍以上の差があり、 太陽 電池モジュール 1 7 0で発生した瞬時エネルギーが常に該平滑コンデン サ側に流れるようにするには、 太陽電池モジュール 1 7 0の出力電圧を 上記の整流電圧以上になるまで増幅する必要がある。 このために太陽電 池モジュール 1 7 0の出力側に昇圧手段 4 0 0 を具備する。
そして、 太陽電池モジュール 1 7 0で発生した瞬時エネルギーが平滑 コンデンサ 8 0に一旦注入されたら、 該平滑コンデンサ 8 0側から太陽 電池モジュール 1 Ί 0側に逆流しないように、 昇圧手段 4 0 0 と平滑コ ンデンサ 8 0との間に絶縁手段 2 0 0を設ける。
該平滑コンデンサ 8 0の電圧は、 系統電源 1 0の変動やエレベータの 加減速運転時の平滑コンデンサ 8 0とのエネルギ一授受よつて絶えず変 動しており、 この変動によって平滑コンデンサ 8 0の電圧が過渡的に昇 圧手段 4 0 0の出力電圧を上回った場合は注入したはずの太陽電池モジ ユール 1 Ί 0で発生した瞬時エネルギーが平滑コンデンサ 8 0側から昇 圧手段 4 0 0側に逆流してくる恐れが出てくる。 上記絶縁手段 2 0 0は、 このような状態が発生するのを阻止して、 常に、 太陽電池のエネルギー を有効に活用できょうにするため必要な手段である。
該絶縁手段 2 0 0を設けることによって、 昇圧手段 4 0 0は一方的に 太陽電池モジュール 1 Ί 0で発生した瞬時エネルギーを平褙コンデンサ 8 0に注入し続けることができる。
最も簡易な絶縁手段としては、 ダイオー ドがあり、 ここではダイォ一 ド 2 1 1 で絶縁する場合を示している。 勿論、 この他にアイソレーショ ンアンプ等を使って絶縁してもよい。
以上述べた太陽電池系の構成によって、 太陽電池モジュール 1 7 0で 得られたエネルギーは、 常に平滑コンデンサに蓄えられることになる。 このエネルギーの利用は、 コンバータ 7 0によって決められる。 即ち、 平滑コンデンサの電圧が系統電源 1 0の電圧を整流して得られる電圧よ りも高い所定の電圧値の範囲内にあるまでは、 太陽光から得られたエネ ルギ一は負荷側に供給され、 電動機駆動用電源として利用される。 該所定の電圧値以上に到達したら、 コンバータ 7 0は該所定の電圧値 に平滑コンデンサ電圧が入るまで、 平滑コンデンサに蓄積されたェネル ギーを系統電源 1 0に逆潮流させる。 逆潮流された電力は買電用電カメ —タ 3 0で積算され、 電力供給事業者に買電される。
従って、 ユーザ側は電力メータ 2 0と該買電用電力メータ 3 0との差 額分を上記電力供給事業者に支払いすることになる。
以上の説明から分かるように、 本願の構成によって太陽光から得られ たエネルギーは系統電源 1 0側に逆潮流されるか、 負荷側に供給されて 動力源として利用される何れかの態様で利用されるため、 従来のような 太陽電池で発生したエネルギーを一旦蓄える蓄電池が必要なくなる。 太陽電池モジュール 1 7 0の出力側には、 現在発生している瞬時電力 を蓄える瞬時電力蓄積手段が付加される。
ここでは、 該瞬時電力蓄積手段として低圧 · 大容量電力用コンデンサ 1 8 0を利用する。
太陽電池発生している瞬時電力を蓄えるには、 該コンデンサ 1 0 0は 数 F以上の大容量で数十 A以上の電流が流せる大容量電力用コンデンサ が必要である。 これは、 日照量によって時々刻々変動している瞬時電力 を余すことなく蓄積できるようにするためである。 一般に、 この種の大 容量電力用コンデンサは、 高耐圧化が難しく低圧である。 例えば、 この ようなコンデンサとして電気 2重層形のコンデンサがある。
一方、 太陽電池モジュールの電圧は比較的低圧であるため、 該太陽電 池モジュールと大容量電力用コンデンサとの接続性はよい。 該大容量電 力用コンデンサ 1 8 0の出力電圧は該昇圧手段 4 0 0に入力される。 次に、 上記の昇圧手段 4 0 0の構成について説明する。 該大容量電力用コンデンサ 1 8 0の出力端子は電流センサ 1 8 0の一 方の端子に、 該電流センサ 1 8 0の他方の端子はリァク トル 1 9 0に接 続される。 該リアク 卜ル 1 9 0のもう一方の端子はスィ ツチング手段 3 0 0の端子に接続される。 該スィツチング手段 3 0 0は通常 1 0 k Hz 以上のスイッチング動作が可能なように、 I G B T (ゲー ト絶縁型トラ ンジスタ) , パワー M0SFET等の高速のパワースイッチング素子が使用さ れる。
上記スィツチング手段 3 0 0のリアク 卜ル 1 9 0に接続された端子は ダイオー ド 2 1 0のアノー ド側に、 該アノー ド端子は平滑コンデンサ 3 1 0に端子が接続される。 該平滑コンデンサ 3 1 0の他方の端子はそ れぞれ該スィツチング手段 3 0 0の他の端子及び大容量電力用コンデン サ 1 8 0の他の端子に接続される。
上記のように構成された昇圧手段 4 0 0は、 以下の制御手段によって 制御され、 これはマイコンで実行される。
太陽電池の発電状況判断手段 4 0 1 , 太陽電池エネルギー蓄積量判断 手段 4 0 2, 太陽電池瞬時出力パワー演算手段 4 1 0, 電流指令演算手 段 4 2 0, 電流制御手段 4 4 0, 通流率演算手段 4 5 0を具備する。 先ず、 太陽電池の発電状況判断手段 4 0 1 は太陽電池モジュール 170 の出力電流を電流センサ 3 0 0によって検出し、 該検出電流が所定の値 以下の場合はスィツチング停止信号を通流率演算手段 4 5 0に送信して、 通流角を絞リ込みスィツチング手段 3 0 0の動作を停止する。
このような状態では太陽電池モジュール 1 7 0の発電能力がなく、 昇 圧動作によって平滑コンデンサ 8 0にエネルギーを注入できないと判断 したためである。 この場合でも全く発電してないわけではない。
そこで、 余すことなく太陽電池で発生したエネルギーを利用できるよ 丄 うにするために、 太陽電池が発電している限り、 その発生エネルギ一は 大容量電力用コンデンサ 1 8 0に蓄積し続ける。 このようにすることに よって余すことなく太陽電池で発生したエネルギーを蓄積できる。
このように蓄積されたエネルギーは非常用電源として利川できる。 日 射量は朝から昼間となるにつれて増大し、 夕方になると減少する特性に なる。 この結果、 一日のうちには、 発電能力が低い状態が必ず存在し、 大容量 力用コンデンサ 1 8 0には非常 電源としてのエネルギーを蓄 積する処理が常に実行された後に、 平滑コンデンサ 8 1 へのェネルギ一 の注入動作が行われることになる。 即ち、 非常電源としてのエネルギー は常に確保される。
従って、 本方式には非常用電源としてのエネルギーが大容量電力用コ ンデンサ 1 8 0に確保されてから、 平滑コンデンサ 8 1 にエネルギーの 注入が行われるので、 系統電源 1 0が停電した場合でも大容量電力用コ ンデンサ 1 8 0に蓄積されたエネルギーが利用できるという特長がある。 なお、 太陽電池の発電状況判断手段 4 0 1 による判定結果は発電状況判 断信号としてコンバータコン トローラ 1 5 0に送信される。 該発電状況 判断信号によって平滑コンデンサ 8 0の電圧の大きさを決定する電圧指 令の値が調整される。 即ち、 太陽電池からのエネルギーが注入されない 場合、 該電圧指令を増加させて系統電源 1 0からエネルギーを補充する ようにし、 逆に太陽電池からのエネルギーが注入されてくる場合は該電 圧指令を低く して、 逆潮流が起こり易くする。
太陽電池エネルギー蓄積量判断手段 4 0 2は電流センサ 3 0 0から検 出された電流 I s と電圧センサ 3 0 1 で検出された電圧 E s との積
( 1 s · E s ) から太陽電池で現時点で発生している太陽電池の瞬時ェ ネルギー P s を求める。 更に、 大容量電力用コンデンサ 1 8 0に現時点 で蓄積されているエネルギー P { = C E S 2 / 2 , C ; 容量 [ F ] ) も求 める。 これは、 非常電源用として最低限のエネルギーが確保できている かを判定するためである。 つまり、 大容量電力用コンデンサ 1 8 0に最 小限のエネルギ一が確保できていないと判断したら、 スィッチング停止 信号を通流率演算手段 4 5 0に送信して上記の昇圧手段 4 0 0の動作を 停止し、 コンバータ 7 0の出力に取り付けられている平滑コンデンサ 8 0への太陽電池のエネルギーの注入動作を停止する。
この操作によって、 太陽電池で発生しているエネルギーは全て該大容 量電力用コンデンサ 1 8 0に蓄積されるため、 非常電源として利用する ための最低限のエネルギ—は確保される。 ここで、 最低限のエネルギー とは、 エレべ一タを最寄りの階まで移動できるエネルギーをいう。
上記太陽電池エネルギー蓄積量判断手段 4 0 2は上記のスィ ツチング 停止信号の他に、 蓄積されているエネルギー量の情報を知らせるために、 蓄積量検出信号をコンバータコン トローラ 1 5 0に送信している。
これによつて該コンバータコン トローラ 1 5 0は、 常に非常電源とし て利用できるエネルギー量を把握できることになる。
次に、 太陽電池瞬時出力パワー P s演算手段 4 1 0の動作について説 明する。 これは、 日照量に拘わらず、 太陽電池のエネルギーを常に最高 効率で、 太陽電池モジュール 1 7 0から取り出し平滑コンデンサ 8 0に エネルギーを注入できるようにするための手段である。
上述したように、 太陽電池モジュール 1 7 0から流れる電流を電流セ ンサ 3 0 0で検出し、 大容量電力用コンデンサ 1 8 0の端子電圧を電圧 センサ 3 0 1 で検出し、 これらのセンサで検出された電流 I s及び電圧 E s との積 : I s X E sから現在太陽電池で発生している瞬時出力パヮ — P s を太陽電池瞬時出力パワー P s演算手段 4 1 0で求める。 該手段では、 該瞬時出力パワー P s及び該 P sの微分 d P s Z d t を 求め、 その符号 ( d P s Zd t≤ 0, d P s / d t > 0 ) も電流指令演 算手段 4 2 0に入力する。
この符号から該瞬時出力パワー P sの最大値が決定される。
電流指令演算手段 4 2 0では、 太陽電池瞬時出力パワー P s演算手段 4 1 0からの情報に基づて最高の効率でエネルギーを取り出せる電流指 令値を求める。 なお、 該電流指令値は太陽電池モジュール 1 7 0の負荷 電流となる指令値である。
上記微分の符号が正の場合は、 電流指令の大きさ I 1 は瞬時出力パヮ — P sに比例させて (∞P s ) 増加させる。 逆に負またはゼロの場合は 増加することを停止する。
I 1 = k X P s 但し、 k : 比例定数 ( 1 )
I R= I 1 / ( 1 +T l X s ) ( 2 ) 即ち、 電流指令演算手段 4 2 0では、 ( 1 ) 式に従って電流の大きさ を瞬時出力パワー P sの大きさに応じて増加させ、 時定数 T 1 は適用す る太陽電池の出力応答時定数に対応して決定される値である。 つま り、 該定数 T 1 は太陽光を入射したときの出力パワーの応答特性から決定さ れる。
これは、 該応答特性に追従するように電流指令を発生しないと安定し て太陽電池モジュール 1 7 0から発生する瞬時出力パワーを取り出せな くなるからである。 このためには、 該時定数 T 1は瞬時出力パワーの応 答より遅くなるような値 (通常該瞬時出力パワーの応答時定数よリ 3〜 5倍大きな値) に選定する。
上記 ( 1 ) 及び ( 2 ) 式の演算処理は、 上述したように瞬時出力パヮ 一が常に最大に引き出せるように、 瞬時出力パワー P sの時間的変動か ら該 P sの最大値を探索しがら電流指令の値を決定していく。 その詳細 は後述する。
上記電流指令演算手段 4 2 0から得られた電流指令に電流センサ 180 から検出された大容量電力コンデンサ 1 8 0の出力電流が追従するよう に電流制御手段 4 4 0が作動する。 該電流制御手段 4 4 0は P I (比例 +積分) 補償器で構成される。 該補償器から出力された信号は通流率演 算手段 4 5 0に導入される。
該通流率演算手段 4 5 0では、 上記電流制御手段 4 4 0から出力され た信号の大きさに比例した通流率 (パルス幅) を持ったパルス信号(PWM 信号) を発生し、 スイッチング手段 3 0 0に印加される。 スイッチング 手段 3 0 0がオンした場合、 大容量電力コンデンサ 1 8 0に蓄積された エネルギーはリアタ トル 1 9 0, スイッチング手段 3 0 0, 大容量電力 コンデンサ 1 8 0のル一プ内に電流が流れ、 リアク トノレ 1 9 0にェネル ギーを蓄積する。
スィツチング手段 3 0 0がオフすると、 リアク 卜ル 1 9 0に蓄積され たエネルギーは、 大容量電力コンデンサ 1 8 0 , リアク 卜ル 1 9 0 , ダ ィオー ド 2 1 0, 平滑コンデンサ 3 1 0, 大容量電力コンデンサ 1 8 0 のループを通して電流が流れ、 平滑コンデンサ 3 1 0に蓄積される。 このようにスイッチング手段 3 0 0によって、 オン, オフ動作が繰リ 返し行われることによって、 太陽電池モジュールに蓄積されたエネルギ 一は平滑コンデンサ 3 1 0に蓄積されていくため、 該平滑コンデンサ 3 1 0の端子電圧は上昇していく。 この結果、 該平滑コンデンサ 3 1 0 の端子電圧が平滑コンデンサ 8 0の端子電圧よりも増加した場合、 太陽 電池のエネルギーは平滑コンデンサ 8 0に注入する。 この注入動作によ つて、 コンバータ 7 0, P W Mインバ一タ 9 0側に太陽電池のエネルギ 一が移動することになる。
このような注入操作が繰り返されることによって、 平滑コンデンサ 8 0の電圧が上昇していく。
このようなエネルギー注入にも拘わらず、 該平滑コンデンサ 8 0の電 圧が、 商用電源をダイオー ド整流して得られた値から所定の値 (通常、 この値は P W Mィ ンバータ 9 0を構成するスィ ツチング素子の耐圧から 決まる値を基に決められる) の範囲に入っている場合は、 負荷側で注入 されたエネルギ一が有効に利用されている場合である。
つまり、 この場合平滑コンデンサ 8 0に注入されたエネルギーは、 P WMインバータ 9 0で可変周波数 ' 可変電圧の交流電源に変換され、 電動機 1 1 0に電力を供給して駆動力を発生して乗りかごを上下させる エネルギーとして利用されている。
一方、 上記平滑コンデンサの電圧が所定の電圧値以上になったら、 負 荷側では、 注入動作に見合うだけのエネルギーを必要としないことにな る。 この場合、 コンバータ 7 0は、 余剰エネルギーとして電源系統 1 0 に返還する。 この時の返還したエネルギーは買電用電力メータ 3 0で稅 算されることになる。
当然のことながら、 この返還されるエネルギーには、 乗りかご 1 4 0 の上下運動によって電動機 1 1 0からが回生されて平滑コンデンサ 8 0 に回生されて、 該平滑コンデンサ 8 0の電圧が上記所定の値より上昇し た分も含まれる。
つま り、 この返還されるエネルギーは、 この回生エネルギーと太陽電 池から注入されたエネルギーとが一緒になつて電源系統 1 0に返還され ることになる。
第 2図は以上のように太陽電池からエネルギー注入動作と負荷側のィ ンパータによる電動機駆動による平滑コンデンサの電圧変動を管理する 方法について総括したものである。
先ず、 コンバータ · ィンバ一タシステムの起動から説明する。
コンバータ起動前は、 コンタクタ 3 1, 3 2, 3 3はオフの状態にあ る。 コンバータが起動されると、 コンタクタ 3 1, 3 2, 3 3 をオンに しないで、 先ず、 処理 5 0 0で P W Mインバータの入力電圧 (平滑コン デンサ 8 0 ) の電圧が商用電源を全波整流した値 (所定の値) より大き いか否かをチェックする。
この結果、 上記の所定の値が確保されている場合は上記のコンタクタ 3 1, 3 2 , 3 3 をオンして商用電源側と接続する。 この場合は、 既に 平滑コンデンサ 3 0には商用電源を全波整流した値が蓄積されているの で該平滑コンデンサ 3 0への商用電源からの突入する電流はコンバータ 内のダイォー ドを損傷することはない。
一方、 平滑コンデンサの電圧が上記所定の値以下の場合、 太陽電池で 発生したエネルギーを使って充電する。 この処理をするために、 先ず、 処理 5 1 0で太陽電池の発電状況を判断する。
太陽電池が発電してないと判断したら、 この場合商用電源からェネル ギーを貰って平滑コンデンサ 8 0の充電が処理 5 3 1, 5 2 0 を通して 実行される。
太陽電池が発電していると判断したら、 大容量電力コンデンサ 1 8 0 に平滑コンデンサ 8 0を所定の値にまで充電できるだけのエネルギーが 蓄積されているかどうかをチェックする。
エネルギーが大容量電力コンデンサ 1 8 0に確保されている場合は、 処理 5 4 2, 5 7 0が実行される。 この場合、 平滑コンデンサ 8 0の電 圧が上記の規定の値になるまで昇圧手段 4 0 0と動作させて太陽電池の エネルギーを該平滑コンデンサ 8 0に注入する。
エネルギーが大容量電力コンデンサ 1 8 0に確保されてない場合は、 上述した処理 5 3 1, 5 2 0 を実行して商用電源から平滑コンデンサ 8 0の充電を行う。 このような状態は、 例えば、 朝夕の日射量が少ない 場合で未だ大容量電力コンデンサ 1 8 0に十分にエネルギーが蓄積され てない場合にエレベータを起動するような場合に出現する。
以上から分かるように、 太陽電池が発電状態にあり、 大容量電力コン デンサ 1 8 0に十分にエネルギーが蓄積されている場合には、 太陽電池 のエネルギーを平滑コンデンサ 8 0に注入した後にコンタクタ 3 1, 3 2 , 3 3 をオンして、 商用電源とコンバータ Ί 0に接続する。
一方、 太陽電池が発電しない場合及び発電していても大容量電力コン デンサ 1 8 0に平滑コンデンサの電圧を全波整流した電圧値まで上昇さ せる程の十分なエネルギーが蓄積されてないときは、 商用電源からエネ ルギ一を貰って充電しコンパ一タ 7 0が動作できるようにする。
以上の平滑コンデンサ 8 0充電処理が終了すると、 コンバータ 7 0の 制御が行われる。 この制御については、 ここでは概要のみ説明し、 詳細 は後述する。
処理 5 3 3では、 コンバータ 7 0のコンバータコン トローラ 1 5 0に よって電圧センサ 5 0から得られた電圧及び平滑コンデンサ 8 0の電圧 の大きさに基づいて系統電源に異常がないかを判断している。 即ち、 電 圧センサ 5 0から検出される 3相の交流電圧値が零乃至は異常に低下し た場合、 或いは平滑コンデンサの電圧が所定の値より低下した場合に系 統電源 1 0に異常が発生したと判断して、 処理 5 3 2, 5 3 5が実行さ れる。
この場合、 コンバータのゲー ト信号を遮断し、 コンバータ動作を停止 し、 コンタクタ 3 1, 3 2, 3 3 をオフして、 コンバータを系統電源 1 0 と切り離す。 その後、 太陽電池系にスイ ッチング動作信号を送り、 昇圧手段 4 0 0 を動作させる。
このような状態は非常状態と考え、 太陽電池の発電状態如何に拘わら ず、 非常電源用のエネルギ一として犬容量電力コンデンサ 1 8 0に確保 されているエネルギーを使ってエレべ一タを最寄りの階まで移動させ、 乗りかごをロックして固定した後、 ィンバータのゲ一 卜信号を遮断する。 処理 5 3 3によって、 系統電源 1 0側に異常がない場合、 処理 5 5 0, 5 6 0 , 5 9 0が実行される。 つま り、 処理 5 5 0では、 コンバータコ ン 卜ローラ 1 5 0で指定されている電圧指令に平滑コンデンサの電圧が なるように制御される。
なお、 この場合の太陽電池側からエネルギーの注入動作は、 上記で述 ベた条件 (詳細は後述説明) を満足している限り、 コンパ一タ制御に無 関係に行われている。
処理 5 6 0では、 上記の電圧指令よりも低い限り、 平滑コンデンサへ のエネルギー蓄積は商用電源及び太陽電池の双方から行われ、 その結果 平滑コンデンサに蓄積されたエネルギ一は P W Mィンバ一タ 9 0を介し て電動機 1 1 0を駆動するパワーとして利用される。
電動機 1 1 0からの加減速運転によって、 回生エネルギーが発生して 平滑コンデンサの電圧が上記の電圧指令よりも高くなると、 系統電源 1 0側に余剰電力の返還が行われる。
絶えず太陽電池側からエネルギーの注入が行われても、 このような負 荷側の電力の供給及び系統電源側への電力返還の双方がコンバータ制御 動作によって行われるため、 負荷側の要求に合わせた所望のエネルギー を供給でき、 エネルギーが余ると自動的に系統電源側に返還できるため、 従来のようにエネルギーを蓄える蓄電池は必要がなくなる。 次に、 太陽電池系の制御について述べる。
第 3図は現在太陽電池モジュール 1 7 0で発生している瞬時出力パヮ — P sの最大値を日照量に応じて探索する方法を示したものである。 瞬 時出力パワー P sの時間的変動分 d P s Z d t をもとに太陽電池モジュ —ル 1 7 0から取り出せる出力電流, 出力電圧を判断し、 日照量が変化 しても、 その時点時点で常に最大値 P l iiiax , P 2max……になるように電 流指令演算手段 4 2 0で電流指令値を定めていく。
以上の手法によって定められた電流指令は、 日照量が変化しても太陽 電池モジュール 1 7 0から最大出力パヮ一得られるように決定される。 以上は太陽電池モジュール 1 7 0から最大出力パワーを得る方法とし て瞬時出力パワー P sの時間的変動分 d P s / d tに着目 した方法を述 ベたものである。
第 3図から分かるように、 最大出力パヮ一を取り出せる出力電圧は太 陽電池の固有の特性としてほぼ一定である。 このことに着目 して、 上記 の電流指令の代わりに該出力電圧を指令にして電圧制御系を構成して、 該電圧指令に大容量電力コンデンサ 1 8 0の出力電圧が追従するように 昇圧手段 4 0 0内のスィツチング手段 3 0 0の通流率を制御するように してもよい。
第 4図は太陽電池系の処理を示したものである。
先ず、 処理 4 6 0は太陽電池モジュールの発電状態を判断する処理で ある。
これは前述した第 1 図の手段 4 0 1, 4 0 2によって行われる。 太陽 電池モジュール 1 7 0は発電状態は日照量に応じて変動するので、 その 出力電流が I min 以下になっているか否か或いは出力電力が所定の値 ( P min ) 以下になっているか否かを、 太陽電池の発電状況判断手段 4 0 1及び太陽電池エネルギー蓄積量判断手段 4 0 2によって判定する。 判定の結果、 上記の何れかが生じた場合に、 処理 4 6 1 が実行される。 この処理では、 コン トローラ 1 5 0からスイ ッチング動作信号が送信さ れてないかをチエツク して系統電源 1 0側に異常がないか否かを判断す る。
判定の結果、 停電等の系統電源側に異常が発生した場合は、 処理 463 及び 4 6 4が実行される。 先ず、 この場合上記のスイッチング動作信号 を昇圧手段 4 0 0内の通流率演算手段 4 5 0に送信し、 処理 4 6 3が行 われる。 即ち、 昇圧手段 4 0 0が起動され、 通流率演算手段 4 5 0に基 づいてスィツチング手段 3 0 0がオンオフ動作して、 大容量電力用コン デンサ 1 8 0に非常電源用として蓄積されているエネルギーを平滑コン デンサ 8 0に注入する。
なお、 この操作によって注入されたエネルギーは前述した非常時のェ レベータ運転用として利用される。
処理 4 6 1 によって系統電源側に異常がないと判定された場合、 処理 4 6 2が実行される。 この場合、 太陽電池として余り発電していない状 態にあると判断し、 昇圧手段 4 0 0の動作を停止し、 太陽電池の発電工 ネルギーを大容量電力コンデンサ 1 8 0に蓄積し非常用電源としてのェ ネルギ一の確保する動作を行う。
以上が処理 4 6 0によって太陽電池で発電されるエネルギーが所定値 以下にあると判断された場合の処理である。
次に、 処理 4 6 0によって太陽電池から所定値以上のエネルギーが発 電されていると判断された場合、 処理 4 6 4が実行され、 昇圧手段 400 によって太陽電池モジュール 1 7 0で発生したエネルギーを平滑コンデ ンサ 8 0に注入する。
以上の説明から分かるように、 太陽電池で発生したエネルギーは余す ことなく、 利用される。
太陽電池のエネルギーは、 第 1 に非常用電源として、 第 2に負荷に供 給するエネルギーとして利用され、 第 1 , 第 2のエネルギー以外にエネ ルギ一に余剰分がある場合には第 3の利用として系統電源 1 0側に返還 される。 このため、 太陽電池は利用効率を常に最大にして利用できかつ 従来のような蓄電池も不要となるという効果がでてくる。
第 5図は以上説明してきたコンバータ制御系の一実施例を示したプロ ック図である。 その骨子を以下説明する。
コンバータの基準電圧 E d * が設定される。 この電圧は商用電源を全 波整流して得られる値よりも大きな値で、 インパータ側で使用するパヮ —素子の耐圧から決定される。 該基準電圧 E d * と電圧センサ 8 1 から 検出された平滑コンデンサ 8 0の電圧 E d との偏差が減算器 1 5 7によ つて生成され、 該偏差は電圧制御手段 1 5 1 に入力される。
該電圧制御手段 1 5 1 からは、 平滑コンデンサ 8 0の電圧 E dが基準 電圧 E d * に一致すべく電源電流の大きさ I * が決定される。 該電源電 流の大きさ I * は 3相交流電流指令発生手段 1 5 2に入力される。 該 3 相交流電流指令発生手段 1 5 2は電圧センサ 5 0から検出された電源電 圧からその位相を求め、 該位相と上記の電源電流の大きさ I * と 3相交 流電流指令 i u *, i v *, i (図では U相の指令のみ示す) を発生す る。
該 3相の交流電流指令に電流センサ 6 1, 6 2, 6 3から検出された 3相交流電流 (電源電流) がー致するように偏差が減算器 1 5 8でとら れ、 3相電源電流制御手段 1 5 3で 3相変調波 E u *, E v *, E w * を 発生する。 該 3相変調波は搬送波発生手段 1 5 5から発生した搬送波 (三角波) と 3相変調波と搬送波との比較手段 1 5 6で比較され、 3相 P W M信号を発生する。
該 3相 P W M信号はコンバータ 7 0のパワー素子に印加すべきゲー 卜 信号をコンバータ 7 0のゲー 卜信号形成手段 1 5 7によって生成し、 コ ンバ一タ 7 0のパワー素子のゲ一 トに印加される。
以上のコンバータ制御によって、 平滑コンデンサ 8 0の電圧はその基 準電圧 E d * に保持される。 つまり、 平滑コンデンサ 8 0の電圧が該基 準電圧 E d * 以下では、 電圧制御手段 1 5 1 は、 太陽電池から注入され るエネルギーを加味しながら商用電源からエネルギー供給を受け、 負荷 側で消費されるエネルギーを補充して平滑コンデンサ 8 0の電圧を増加 させて該基準電圧 E d * に合わせるように作動する。
一方、 平滑コンデンサ 8 0の電圧が該基準電圧 E d * 以上になると、 電圧制御手段 1 5 1 は、 太陽電池のエネルギー及び負荷側から回生され るエネルギーとの卜ータルエネルギーを系統電源 1 0に余剰エネルギー として返還して平滑コンデンサ 8 0の電圧を減少させて該基準電圧 E d* に合わせるように作動する。 何れの動作に対しても電源電流は、 3相交 流電流指令発生手段 1 5 2によって電源電圧の位相に一致した電源電流 が流れる。 つまり、 力率 1 の状態で系統電源と電力の授受が行われる。 このほかに、 電源異常検出手段 1 5 4 を具備して、 系統電源 1 0に異常 があった場合に対応できるようにしている。 電源異常は、 平滑コンデン サ電圧に異常低下 (欠相が生じた場合等で発生) 調べ、 更に電圧センサ 5 0から検出された 3相交流電源電圧の大きさから瞬停等の電源異常を 検出する。
該電源異常検出手段 1 5 4によって系統電源 1 0側で異常があると判 定されると、 コンバータ ' インバータ保護のため、 先ず、 コンバータゲ — ト信号遮断信号をコンバータ 7 0に送り、 コンバータ動作を停止し、 電源側コンタクタ 3 1, 3 2, 3 3 をオフして系統電源 1 0からコンパ ータ 7 0を切り離す。 この後、 電源異常検出信号をィンバ一タコン トロ ーラ 1 5 0にも送られ、 この信号をインバータ側では平滑コンデンサ 8 0に蓄積されたエネルギーを利用してエレベータ を最寄りの階に移動 させるための卜リガ一信号として利用する。
更に、 電源異常検出手段 1 5 によって系統電源 1 0側で異常がある と判定されると、 スィツチング動作信号を昇圧手段 4 0 0に送信し、 該 昇圧手段 4 0 0内のスィ ツチング手段 3 0 0を動作させて平滑コンデン サ 8 0に太陽電池のエネルギーを注入する動作を開始させる。
この操作は、 夜間等太陽電池が発電してない場合に有効である。 太陽 電池が通常通りに発電している場合は、 所定道理に平滑コンデンサ 8 0 に太陽電池のエネルギ一を注入する動作は行われているため何ら問題な いからである。
そこで、 上記のスイッチング動作信号は、 夜間等太陽電池が発電して ない場合に非常電源用として大容量電力用コンデンサ 1 8 0に蓄積され ているエネルギ一を平滑コンデンサに注入させることに意義がある。 第 6図に P W Mインバ一タ側での電動機 1 1 0を駆動する制御ブロッ ク図を示したものである。
先ず、 通常の動作から説明する。 加速度指令パターン発生手段 160bか ら加速度指令 が発生する。 速度指令発生手段 1 6 0 cでは、 この加 速度指令 を積分して、 速度指令 を形成する。 該速度指令 は 速度検出器 1 1 1から検出された電動機の回転速度 ω Μが上記速度指令 w Rに一致するように、 両者の偏差を減算器 1 6 1 aが求め、 該偏差を 零にするように速度制御手段 1 6 0 eが作動して トルク指令 τ Rを決定 する。
該トルク指令て Rに電動機 1 1 0で発生する トルク てがー致すように、 両者の偏差を加減算器 1 6 1 bで求め、 該偏差を零にするための トルク 指令の操作量て * がトルク制御手段 1 6 0 f で求められる。 ここで、 現 在電動機 1 1 0で発生している トルク ては次式から トルク演算手段 160g によって演算する。
τ = 3 · p · (M/ L r ) · I t · Φ2 ( 3 ) 但し、 P : 極対数
M : 励磁ィンダクタンス
L r = M + 1 2, 1 2 : 2次漏れインダクタンス ここで、 トルク電流 I tは、 電流センサ 1 0 1 , 1 0 2, 1 0 3から 検出された交流の 3相一次電流から励磁電流 Zトルク電流検出手段 160 からインバータ角周波数 ωΐ で回転する γ— δ軸上で座標変換して得ら れた値である。 また、 2次磁束 Φ2 は上記励磁電流 Ζトルク電流検出手 段 1 6 0から得られた励磁電流 I mを使って 2次磁束演算手段 1 6 0 j によって次式から求める。
Φ2 = Μ . I m/ ( 1 + T2 · s ) ( 4 )
T2= L r /R 2 : 2次時定数
次に、 トルク電流指令 I t Rが上記のトルク電流指令演算手段 160hに よって、 次式から求める。
I t R = k - / Φ 2 ( 5 ) 但し、 k = L r / ( 3 ' p ' M)
励磁電流指令 I m Rは上記のトルク指令の操作量て * に対して、 電動 機の効率が最高になるように トルク電流指令と励磁電流指令との比決定 P T P
3 2 手段 1 6 0 i から決められる比 9に基づいて決定される。 その決め方は、 特願平 8— 40916号に記載された手法を使って求めればよい。 その詳細は 省略する。
以上の操作によって決定された トルク電流指令 I t R及び励磁電流指 令 I mRに励磁電流 トルク電流検出手段 1 6 0から得られた トルク電 流 I t及び励磁電流 I mがー致するように、 各々電流偏差が減算器 161c, 1 6 1 dで求められ、 該偏差が零になるように トルク電流制御手段 160m, 励磁電流制御手段 1 6 0 1で各電流指令に対応した操作量が I , I t * が決定される。
該電流指令の操作量 I m I t *はインバータ角周波数 ωΐ を使って、 y - δ軸上での一次側電圧指令 V γ*, V δ *が非干渉手段 1 6 0 οから 求める。 この演算の方法は、 前述の特願平 8— 40916号で開示されている 方法を使って求める。
ここで、 インバータ角周波数 ωΐ は滑り周波数演算手段 1 6 0 ηによ つて、 滑り角周波数 を ( 6 ) 式から求めた後、 次式の加算演算を加 算器 1 6 1 eで行って求める。
ω s = (Μ/Τ2) · I t /Φ2 ( 6 ) ω 1 = ω s + ω M ( 7 )
PWM信号発生手段 1 6 0 pでは、 上記の電圧指令 V γ* , V δ * か ら 3相の一次電圧指令 V u*, V v*, V w* に変換して変調波を得、 三 角波 (搬送波) との比較により PWM信号を生成して、 これを基にゲー ト信号を形成する。 該ゲー ト信号は PWMインバータ 9 0を構成するパ ヮ一素子のゲー トに印加され、 これによつて電動機 1 1 0が駆動される。 これら一連の処理によって、 加速度指令 α* に従った トルクが効率良 く電動機から発生される。 以上が正常なエレベータ運転時のィンパ一タ制御である。
第 5図でも示したように、 系統電源 1 0側で異常が発生した場合には、 加速度指令 α * の補正が行われる。 これは、 インバータコン 卜ローラ 1 6 0内の加速度補正手段 1 6 0 aが電源異常検出信号をコンバ一タコ ントロ一ラ 1 5 0から受け取ると、 荷重センサ 1 4 1 によリ菴内重量 (搭乗している人含む) を把握し、 カウンタウェイ ト 1 3 0と不平衡分 の重量を求め、 該不平衡重量を一階分だけ移動させる分の必要負荷トル クを演算する。
そして、 エレベータが加速中、 或いは一定走行中にあっては、 平滑コ ンデンサ 8 0の電圧を見ながら、 加速度指令 を減少させいく。 この ような制御が行われている間は、 回生エネルギーとして平滑コンデンサ に戻される。
そこで、 該平滑コンデンサには、 上記の回生エネルギーと太陽電池が 非常電源用として蓄積されたエネルギーも昇圧手段 4 0 0を動作して一 緒に注入されてくる。 このようにして該平滑コンデンサに蓄積されてい くエネルギーを常に求め、 該平滑コンデンサに蓄積されたエネルギーカ 、 上記の負荷トルクに見合うだけのトルクを電動機で発生できるようにな るまで加速度指令 α * を減少させる操作を続ける。
そして上記に相当するエネルギーが該平滑コンデンサに蓄積されたら、 その速度で一階分移動させエレべ一タを停止させる。
勿論、 回生エネルギーだけで、 エレベータを最寄りの階まで移動する エネルギーが賄える場合は、 太陽電池系の大容量電力用コンデンサ 1 80 に非常用として蓄積されたエネルギーを利用する必要はない。
ここで、 上述したように大容量電力用コンデンサ 1 8 0には、 常に非 常時に備えて、 エレベータを最大負荷の状態で一階分移動させる分のェ ネルギ一を蓄えてあるので、 回生エネルギーを利用できない場合でも非 常時にはエレべ一タを最寄りの階まで移動させることができる。
本実施例では、 コンバータ出力側の平滑コンデンサに全てのェネルギ 一を蓄積し、 該平滑コンデンサの電圧が上記で述べた規定値内にあるか 否かを判断し、 負荷側に電力を送るか、 電源系統側に電力を返還するを 判断しながらエネルギーの流れを制御する。 このため、 太陽電池で発生 したエネルギーを効率よく利用できる。
また、 このようなシステム構成を採月]することによって、 コンバータ の起動を円滑に行うことも可能になる。
更に、 太陽電池の出力に瞬時電力を蓄積できる大容量 (数 F以上) コ ンデンサを具備しているため、 系統電源が停電しても十分負荷側の非常 用電源として利用できるため、 従来非常用として具備していたバッテリ 一が不要となりメンテナンスだけでなく環境条件に関係なく性能が確保 できるため、 非常用電源としての信頼性も向上する。
本実施例では、 太陽電池のエネルギーをコンバータに蓄積する構成を 基に説明した力 太陽電池の代わりに他の電池、 例えば、 燃料電池に蓄 積されたエネルギーを一旦大容量電力用コンデンサに蓄え、 該コンデン ザの出力電圧とコンバータ出力側の平 f コンデンサとの電圧レベルを調 整する電圧調整手段及び該平滑コンデンサとの間を絶縁する手段を付加 すれば同様な効果が得られることは云うまでもない。
また、 実施例では、 太陽電池モジュールから発生する出力電圧とコン バータ出力側の平滑コンデンサとの電圧レベルを調整する手段として昇 圧手段を用いたが、 該モジュールから発生する電圧が平滑コンデンサの 電圧 (電源電圧をダイオー ド整流して得られた値) より大きくなる場合 は降圧手段を使って電圧のレベルを調整する。 即ち、 昇圧手段或いは降 圧手段の何れを利用するかは、 電池側の出力電圧とコンバ一タ出力側の 平滑コンデンサの電圧とのレベルを調整できるような手段となり得る方 を、 本発明での電圧調整手段とすればよい。
第 7図は第 1 図に示した実施例の変形例である。
第 1 図の構成との相違点は、 1 台のコンバ一タ 5 0 0 Λに平滑コンデ ンサが接続され、 該平滑コンデンサの出力には複数台の P W Mインバ一 タエレベータ駆動システム 9 0 A〜 9 0 Cが接続され、 インバータ蛍光 灯等の一般負荷も供給されている点にある。 これは大規模ビル等で利用 できるシステムの一構成例として考えられる。 太陽電池系の構成は変わ らないが、 一台の太陽電池モジュール 1 7 0で非常用電源として確保で きない場合は、 複数台 (図示せず) 用意して、 非常用電源として最低限 のエネルギー確保できる程の発電能力を持つように構成し、 且つ該エネ ルギーを蓄積できる程の容量をもつ大容量電力用コンデンサ 1 8 0を具 備しているものとする。
もう一つの特徴として、 複数台の負荷が平滑コンデンサに接続される ため電源系統管理システム 6 0 0を具備している点である。 この場合、 複数台のエレベータが回生エネルギーとカ行エネルギーをバランスした 状態でエレべ一タが運行しているとは限らない。
例えば、 1台のエレベータがカ行状態にあり、 残りエレベータが回生 状態にある場合には、 系統電源に異常がないのに、 多くの回生エネルギ 一が電源に変換されるので、 系統電源の電圧を一時的に押し上げること になり、 これが原因で他の系統に接続されている機器に影響を及ぼすこ とが考えられる。 更に、 これに加えて太陽電池から平滑コンデンサへの エネルギー注入がドンドン行われているとなると系統側に与える影響は 益々甚大になる。 逆に、 負荷側が殆どカ行状態にあり、 太陽電池の発電状態が悪い場合 は、 系統電源側の電圧下がる。 これの変動が繰り返して起こると電源電 圧の変動となって現れ、 フリッカ一現象が生じたりすることになる。 そこで、 このようなシステムでは、 電源電圧が所定の変動範囲内にお さまるような電源系統管理システムが必要になる。
第 8図に電源系統管理システム 6 0 0の処理を示す。
先ず、 処理 6 0 0 Aでは、 一次電源 (系統電源) 側の状況 (欠相, 瞬 停, 電圧降下等) をいち早く検出するため、 電圧センサ 5 0から検出さ れた電圧から トランス 1 次側に換算した値 (系統電源電圧) が決められ た規定範囲内にあるか否かをチエツク し、 系統電源側の状態を監視する。 この結果、 規定内にある場合は、 系統電源側には異常がないとする。 こ の場合は、 各負荷系及び太陽電池系は系統電源に対して、 エネルギー授 受についてバランスよく保たれて動作していると判断してそのまま状態 で運転を続行する。
処理 6 0 0 Aで上記の検出電圧が規定の範囲に入ってないと判断する と、 トランス 2次側の電圧変動の状況を電圧センサ 5 0を整流して得た 値から判断する。 この場合には規定より小さい場合と規定よリ大きい場 合が考えられる。
そこで、 先ず、 規定より小さい場合について説明する。 この場合著し く電圧が低下している状況、 即ち、 瞬停, 停電, 欠相等が系統電源側に 発生したと処理 6 0 0 Dで判定し、 処理 6 0 0 Eでコンバータ動作を停 止し、 駆動中のエレべ一タを減速させて回生エネルギーを平滑コンデン ザに回収する。 この操作によっても、 平滑コンデンサにエレべ一タ を最 寄りの階に移動させるだけのエネルギーがない場合には、 太陽電池系か ら不足分のエネルギーを注入してエレベータを最寄りの階に停止させる 処理 6 0 0 Fを行う。
ここでは、 一般負荷にも接続されていることを考え、 更に、 太陽電池 のエネルギーを平滑コンデンサ注入し続け非常灯等の一般負荷に対する 非常用電源としても太陽電池の蓄積エネルギーを利用できるようにして いる。
次に、 規定より大きい場合について説明する。
処理 6 0 0 Gで、 規定値よリ大きいと判断すると、 処理 6 0 0 G , 6 0 0 H , 6 6 0 1 が実行される。
処理 6 0 0 Gは、 規定値よりも 卜ランス 2次側の電圧が大きくなつた のは、 太陽電池からの発電エネルギーが平滑コンデンサに注入されたこ と及び殆どのエレベータが減速中で回生エネルギーが多量に平滑コンデ ンサに戻されたことが同時に発生してこのような状態が起こったのでは ないかと推定する。 これには優先順位を付カ卩して対応する。
太陽電池のエネルギー注入動作と、 ェレベータの減速動作を比較する と後者の方が優先順位を高くすべきである。 この場合、 エレベータが停 止動作に入っているからである。
そこで、 処理 6 ひ 0 Gでは、 先ず、 昇圧手段 4 0 0の動作を停止させ て平滑コンデンサへの太陽電池で発生したエネルギーの注入を中止する。 その後、 処理 6 0 0 Hを実行した結果、 卜ランス 2次側の電圧が規定の 範囲内におさまったならば、 通常の処理 6 0 0 Bを実行する。 この場合、 複数のエレベータの減速運転と太陽電池での発生エネルギーの注入動作 とが重なって、 平滑コンデンサに注入 (返還) されるエネルギ一が急激 に増加したため、 これに伴ってコンバータによる系統電源へのエネルギ —返還が多くなって一時的に 卜ランス 2次側の電圧が規定値以上になつ たと想定されたからである。 なお、 太陽電池の発生エネルギーの平滑コンデンサへの注入動作が中 止していても、 太陽電池で発生している瞬時エネルギーは大容量電力用 コンデンサ 1 8 0に蓄積され続けらている。 このため、 このような平滑 コンデンサへの太陽電池の発生エネルギーの注入中止動作があっても太 陽電池の利用効率は減少する訳ではない。
次に、 上述の太陽電池の発生エネルギーの注入動作を中止しても未だ、 卜ランス 2次側の電圧が規定の範囲内におさまらない場合は、 処理 660 1 が実行される。
即ち、 減速中のエレベータの減速レー 卜を緩和して、 回生エネルギー 量を少なくする。
この場合も、 優先順位をつけて減速レー トの緩和を実行する。 ここで は、 荷重センサからの情報を基に、 乗りかごに乗っている人数を推定し、 該搭乗人数が少ない方から減速レ一 卜を緩和していく。 搭乗人数が少な い程アンバランス トルクが大きく、 電動機にとって等価慣性が大きくな つており回生エネルギ一も大きくなつていることが予想されること、 搭 乗員に対する迷惑の影響も極力抑えられるからである。
処理 6 0 0 1 では、 優先順位に従って減速レー 卜を下げてゆき (処理 6 0 0 I と 6 0 0 Hが併用して行われる) 、 規定の範囲内に入ったら通 常の処理 6 0 0 Bに移行する。
以上のように電源管理を行うことによって、 系統電源側に影響をおよ ぼさずに、 しかも回生エネルギー及び太陽電池で発生したエネルギーを 有効に利用できる。
以上第 7図の実施例の思想は、 平滑コンデンサを直流電源ラインとし て捉え、 該直流電源に多種の負荷が接続されることを想定した例である。 つまり、 該直流電源ラインに複数の P W Mィンバ一タを接続したエレ ベータ駆動システムの他に、 該直流電源に D Cチヨツバ回路等直流電圧 調整器を付加すれば直流電動機の速度制御ゃバッテリ一充電器としても 利用できる。 また、 該直流電源ラインにインバ一タ蛍光灯つければ効率 のよい照明器具としても使える。
このような拡張した実施形態をとつた場合、 多様な電気 · 電子機器に 商用電源以外から得たエネルギーを利用でき、 エネルギー利用効率が向 上するという他にない効果でてくる。
第 9図は第 7図のシステムの変形した実施例である。
第 8図と相違する点は、 複数台のコンバータ · インバ一タシステムで エレべ一タを駆動する場合を示したものである。
電源系統管理システム 6 0 0は、 基本的には第 8図の処理によって行 われるが、 平滑コンデンサの基準電圧 E d * は各々コンバータシステム に対応して具備している点が異なる。
即ち、 処理 6 0 0 Cでトランス 2次側の電圧が規定値以上になったと 判断された場合、 6 0 0 G処理を行う前に、 上記の基準電圧 E d * を増 加させて、 トランス 2次側へ返還されるエネルギーの量を緩和する。 勿 論、 この基準電圧 E d * 増加の上限は P W Mインバータ側のパワー素子 の耐圧や平滑コンデンサの耐圧等から制約をうけて決められるものであ る。 このシステムでは、 基準電圧 E d * を系統電源側に擾乱を与えない ように最適な基準電圧 E d * になるように電源系統システム 6 0 0で管 理するようにしたことが特徴である。
このような系統電源管理システムを導入することによって、 太陽電池 のエネルギーを利用して複数台のエレベータ駆動システムで、 各エレべ ―タに種々の運行を行わしても該系統電源管理システムによつて系統電 源側に対する総合エネルギー (太陽電池の発生エネルギー, 減速による 回生エネルギー) 管理がなされるため、 効率よく電源側に逆潮流できる ことになる。
以上のように複数台のエレべ一タシステムでも、 異種電源発生してい る瞬時電力を系統電源側に返還させる新たなコンバータを付加すること なく逆潮流させることができ、 しかも駆動側における動カ用電源や系統 電源停電時の非常用電源及び平滑コンデンサの初期充電用電源として利 用できるため、 システム全体として電源の利用効率が向上し、 併せてシ ステム全体の信頼性も向上するという効果が現れる。 産業上の利用可能性
本発明は、 太陽電池の発生電力をコンバータとィンバータ間のコンデ ンサに注入し、 インバータの負荷側用のエネルギーとして或いは電源系 統側に返還できるため、 太陽電池エネルギーの利用効率を向上すること ができる。 また、 蓄電池が必須ではなくなり、 環境条件に左右されない 性能と信頼性が保証でき、 煩雑な蓄電池のメンテナンスも省けるので、 エレべ一タ制御装置をはじめ、 コンバータとインバ一タを備えた電力変 換器の制御装置として広く利用できる。

Claims

請 求 の 範 囲
1 . 電源からの交流電力を直流電力に変換するコンバータと、 該コンパ ータの出力側に接続されたコンデンサと、 該コンデンサの直流電力を可 変電圧 · 可変周波数の交流電力に変換するィンバータ と、 該インバ一タ によって給電されエレベータ乗りかごを昇降駆動する電動機を備えたェ レベータ制御装置において、 太陽電池と、 該太陽電池が発生する電力を 前記コンデンサに注入する手段と、 前記コンデンサの電力を前記電源へ 回生するように前記コンバータを制御する手段を設けたことを特徴とす るエレベータ制御装置。
2 . 請求項 1 において、 前記コンバータ制御手段は、 前記コンデンサの 電圧が予定値を超えたことに応動して前記コンバータを回生方向に制御 する手段を備えたことを特徴とするエレベータ制御装置。
3 . 請求項 1 において、 前記コンパ一タ制御手段は、 前記コンデンサの 電圧が予定の電圧範囲を維持する電圧制御系を備えたことを特徴とする エレベータ制御装置。
4 . 請求項 1 において、 前記コンデンサ電圧に基づいて、 前記電源から 前記コンデンサに電力を注入し或いは前記コンデンサの電力を電源に逆 潮流させるように前記コンバータを制御する手段を備えたことを特徴と するエレベータ制御装置。
5 . 請求項 1 において、 前記太陽電池の出力側と前記コンデンサとの間 に、 前記コンデンサ側から前記太陽電池の出力側への電力の逆流を阻止 する手段を設けたことを特徴とするエレベータ制御装置。
6 . 請求項 1 において、 前記太陽電池が日照量に応じて発生した電力を、 前記コンデンサに注入できる電力状態に電力変換する手段を設けたこと を特徴とするエレベータ制御装置。
7 . 請求項 6において、 前記太陽電池の出力側と前記電力変換手段との 間に、 前記太陽電池の瞬時出力電力を吸収する能力を持つ容量の電力用 コンデンサを設けたことを特徴とするエレベータ制御装置。
8 . 請求項 6において、 前記太陽電池の発電状態が予定値以下になった ことを判定する手段と、 この判定手段の出力に応じて前記電力変換手段 の動作を停止する手段を備え、 前記太陽電池が予定の電力を発生してい る間だけ、 当該電力を前記コンデンサに注入するように構成したことを 特徴とするエレベータ制御装置。
9 . 請求項 6において、 前記コンバータが停止した状態で予め前記電力 変換手段を動作させ、 前記コンデンサに太陽電池の電力を注入し、 その 電圧を予定値まで上昇させる予備充電手段と、 この予定電圧に到達した 後に前記コンバータを起動する手段を設けたことを特徴とするエレべ一 タ制御装置。
1 0 . 請求項 7において、 前記コンデンサの電力が不足したとき、 前記 電力用コンデンサに蓄積された電力を前記電力変換手段によって前記コ ンデンザに注入し、 該注入された電力で最寄りの階までエレベータを運 転する救出運転手段を設けたことを特徴とするエレベータ制御装置。
1 1 . 交流電源からの交流電力を直流電力に変換する P W Mコンバータ と、 該コンバータの出力側に接続された平滑コンデンサと、 該平滑コン デンサの直流電力を可変電圧 · 可変周波数の交流電力に変換する P WM ィ ンバータと、 該ィンバ一タによって給電されエレベータを昇降駆動す る電動機を備えたエレベータ制御装置において、 太陽電池と、 該太陽電 池が発生する電力を前記平滑コンデンサに注入するように前記太陽電池 の出力の電圧レベルを調整する手段と、 前記平滑コンデンサの電圧を予 定の電圧範囲に保つように前記コンバータを可逆的に P W M制御する手 段を設けたことを特徴とするエレベータ制御装置。
1 2 . 交流電源からの交流電力を直流電力に変換する P W Mコンバータ と、 該コンバータの出力側に接続された平滑コンデンサと、 該平滑コン デンサの直流電力を可変電圧 ♦ 可変周波数の交流電力に変換する P W M ィンバ一タと、 該ィンバ一タによって給電されエレベータを昇降駆動す る電動機を備えたエレベータ制御装置において、 太陽電池と、 該太陽電 池が発生する電力を予定の電流値で前記平滑コンデンサに注入するよう に前記太陽電池の出力の電圧レベルを調整する電流制御系と、 前記平滑 コンデンサの電圧を予定の電圧範囲に保つように前記コンバータを可逆 的に P WM制御する手段を設けたことを特徴とするエレベータ制御装置。
1 3 . 請求項 1 2において、 前記交流電源への回生電流に関係する電気 量を検出する手段と、 この検出値が予定値を超えたことに応動して前記 電流制御系を絞リ込む手段とを設けたことを特徴とするエレベータ制御
1 4 . 電源からの交流電力を直流電力に変換するコンバータと、 該コン バータの出力側に接続された平滑コンデンサと、 該コンデンサの直流電 力を可変電圧 · 可変周波数の交流電力に変換する P W Mインバータと、 該ィンパータによって給電される負荷を備えた電力変換器制御装置にお いて、 太陽電池と、 該太陽電池が発生する電力を前記平滑コンデンサに 注入する手段と、 前記平滑コンデンサの電力を前記電源へ回生するよう に前記コンバータを制御する手段を設けたことを特徴とする電力変換器 制御装置。
PCT/JP1996/003613 1996-12-11 1996-12-11 Dispositif de commande d'ascenseur et dispositif de commande destine a un convertisseur de puissance WO1998025849A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP1996/003613 WO1998025849A1 (fr) 1996-12-11 1996-12-11 Dispositif de commande d'ascenseur et dispositif de commande destine a un convertisseur de puissance
KR1019990705195A KR20000057507A (ko) 1996-12-11 1996-12-11 엘리베이터 제어장치 및 전력 변환기 제어장치
TW086117853A TW421905B (en) 1996-12-11 1997-11-27 Electric power converter system and elevator control system using said electric power converter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/003613 WO1998025849A1 (fr) 1996-12-11 1996-12-11 Dispositif de commande d'ascenseur et dispositif de commande destine a un convertisseur de puissance

Publications (1)

Publication Number Publication Date
WO1998025849A1 true WO1998025849A1 (fr) 1998-06-18

Family

ID=14154218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003613 WO1998025849A1 (fr) 1996-12-11 1996-12-11 Dispositif de commande d'ascenseur et dispositif de commande destine a un convertisseur de puissance

Country Status (3)

Country Link
KR (1) KR20000057507A (ja)
TW (1) TW421905B (ja)
WO (1) WO1998025849A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255462A (ja) * 2001-02-26 2002-09-11 Fujitec Co Ltd 交流エレベータの電源装置
JP2003529511A (ja) * 2000-03-31 2003-10-07 インベンテイオ・アクテイエンゲゼルシヤフト エレベータ設備の電源接続定格を縮小する装置及び方法
JP2005343574A (ja) * 2004-05-31 2005-12-15 Toshiba Elevator Co Ltd エレベータ制御装置
JP2010105757A (ja) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp エレベーターの制御方法およびそのシステム
JP2012119269A (ja) * 2010-12-03 2012-06-21 Mitsubishi Heavy Industries Parking Co Ltd 電源装置、機械式駐車装置、及び電源装置の制御方法
EP2500309A1 (en) * 2011-03-18 2012-09-19 Inventio AG Energy management system for solar-powered elevator installation
WO2013179324A1 (en) * 2012-06-01 2013-12-05 Otis Elevator Company Elevator system with power storage device
EP2495857A3 (en) * 2011-03-01 2017-07-05 International Controls And Measurements Corp. AC line voltage conditioner and controller
EP4324774A1 (en) * 2022-08-15 2024-02-21 OTIS Elevator Company Conveyance system with regenerative drive

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630122B2 (ja) * 2005-05-11 2011-02-09 株式会社アドバンテスト 試験装置、及び試験方法
KR100980803B1 (ko) * 2009-01-20 2010-09-10 서일대학산학협력단 엘리베이터장치의 회생전력을 이용한 연계형 발전 시스템
CN104470842B (zh) * 2012-07-18 2016-10-12 奥的斯电梯公司 电梯电力管理
TWI452823B (zh) * 2012-07-31 2014-09-11 Delta Electronics Inc 馬達減速方法及應用該減速方法之馬達驅動裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349268U (ja) * 1989-09-20 1991-05-14
JPH04272073A (ja) * 1991-02-28 1992-09-28 Toshiba Corp エレベ―タシステム
JPH08208140A (ja) * 1995-02-02 1996-08-13 Hitachi Ltd エレベータの制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349268U (ja) * 1989-09-20 1991-05-14
JPH04272073A (ja) * 1991-02-28 1992-09-28 Toshiba Corp エレベ―タシステム
JPH08208140A (ja) * 1995-02-02 1996-08-13 Hitachi Ltd エレベータの制御装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529511A (ja) * 2000-03-31 2003-10-07 インベンテイオ・アクテイエンゲゼルシヤフト エレベータ設備の電源接続定格を縮小する装置及び方法
JP2002255462A (ja) * 2001-02-26 2002-09-11 Fujitec Co Ltd 交流エレベータの電源装置
JP2005343574A (ja) * 2004-05-31 2005-12-15 Toshiba Elevator Co Ltd エレベータ制御装置
JP2010105757A (ja) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp エレベーターの制御方法およびそのシステム
JP2012119269A (ja) * 2010-12-03 2012-06-21 Mitsubishi Heavy Industries Parking Co Ltd 電源装置、機械式駐車装置、及び電源装置の制御方法
EP2495857A3 (en) * 2011-03-01 2017-07-05 International Controls And Measurements Corp. AC line voltage conditioner and controller
EP3657665A1 (en) * 2011-03-01 2020-05-27 International Controls And Measurements Corp. Ac line voltage conditioner and controller
WO2012126728A1 (en) * 2011-03-18 2012-09-27 Inventio Ag Energy management system for solar-powered elevator installation
US9440819B2 (en) 2011-03-18 2016-09-13 Inventio Ag Energy management system for elevator installation
AU2012230560B2 (en) * 2011-03-18 2017-05-18 Inventio Ag Energy management system for solar-powered elevator installation
EP2500309A1 (en) * 2011-03-18 2012-09-19 Inventio AG Energy management system for solar-powered elevator installation
CN104350001A (zh) * 2012-06-01 2015-02-11 奥的斯电梯公司 具有电力存储装置的电梯系统
WO2013179324A1 (en) * 2012-06-01 2013-12-05 Otis Elevator Company Elevator system with power storage device
US9834406B2 (en) 2012-06-01 2017-12-05 Otis Elevator Company Elevator system including a power storage device with a supercapacitor unit and a battery unit
EP4324774A1 (en) * 2022-08-15 2024-02-21 OTIS Elevator Company Conveyance system with regenerative drive

Also Published As

Publication number Publication date
KR20000057507A (ko) 2000-09-15
TW421905B (en) 2001-02-11

Similar Documents

Publication Publication Date Title
EP2855321B1 (en) Elevator system with power storage device
JP4874404B2 (ja) 回生ドライブシステム用の自動救助運転
CN106385101B (zh) 一种大功率型电梯自动救援装置实现供电的方法及装置
JP2003339118A (ja) 分散電源システム
KR20010085467A (ko) 엘리베이터의 제어장치
CN104619628A (zh) 包含垂直输送机的驱动系统的驱动控制装置
WO1998025849A1 (fr) Dispositif de commande d'ascenseur et dispositif de commande destine a un convertisseur de puissance
CN212579619U (zh) 用于轨道车辆的能量供应装置和轨道车辆
JP4098182B2 (ja) モータ駆動システム及びエレベータ駆動システム
WO2010059139A1 (en) Power management in elevators during marginal quality power conditions
CN107528383B (zh) 一种矿井提升机用超级电容ups电源装置
CN113708396A (zh) 一种基于混合储能装置并网的电梯节能控制系统及方法
CN204928347U (zh) 电梯自动解救及节能装置、以及超级电容器模块
JPH10236743A (ja) エレベータ制御装置
JP2003333891A (ja) モータ駆動装置およびそれに用いられる電源装置、並びにモータ駆動装置の電源設備容量低減方法
JP6961808B2 (ja) エネルギー貯蔵システム
CN201530655U (zh) 一种微能耗电梯
CN108110781B (zh) 基于钛酸锂电池的电梯能量回收系统
CN216863331U (zh) 分布式储能电梯
JP5509442B2 (ja) 電力変換装置及び電気鉄道システム
JP2003333893A (ja) モータ駆動装置
CN104418192A (zh) 电梯控制装置
EP3640175B1 (en) Decentralized power management in an elevator system
CN201990351U (zh) 新能源电梯
CN201942394U (zh) 改进的新能源电梯

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96180534.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019997005195

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1019997005195

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019997005195

Country of ref document: KR