WO1998000234A1 - Catalyseur d'hydrodesulfuration d'un fuel oil distille et procede de production - Google Patents

Catalyseur d'hydrodesulfuration d'un fuel oil distille et procede de production Download PDF

Info

Publication number
WO1998000234A1
WO1998000234A1 PCT/CN1997/000065 CN9700065W WO9800234A1 WO 1998000234 A1 WO1998000234 A1 WO 1998000234A1 CN 9700065 W CN9700065 W CN 9700065W WO 9800234 A1 WO9800234 A1 WO 9800234A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
pore
catalyst
composite
weight
Prior art date
Application number
PCT/CN1997/000065
Other languages
English (en)
French (fr)
Inventor
Yahua Shi
Dadong Li
Xuefen Liu
Hong Nie
Xiaodong Gao
Yibing Ying
Original Assignee
China Petrochemical Corporation
Research Institute Of Petroleum Processing Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petrochemical Corporation, Research Institute Of Petroleum Processing Sinopec filed Critical China Petrochemical Corporation
Priority to CA002258563A priority Critical patent/CA2258563C/en
Priority to AU32528/97A priority patent/AU3252897A/en
Priority to EP97928102A priority patent/EP0916404A4/en
Priority to JP50370198A priority patent/JP2001503313A/ja
Publication of WO1998000234A1 publication Critical patent/WO1998000234A1/zh
Priority to NO19986094A priority patent/NO316970B1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium

Definitions

  • the present invention relates to a distillate hydrorefining catalyst and a preparation method thereof, and in particular to a nickel and tungsten-containing distillate hydrorefining catalyst and a preparation method thereof.
  • Distillate chlorination refining catalysts generally consist of a metal or metal oxide with hydrogenation activity and a certain acidic support and auxiliary.
  • the commonly used metal component is cobalt-molybdenum or nickel-molybdenum, and recently nickel-tungsten is used
  • the development direction is to further reduce the metal content in the catalyst and change the properties of the catalyst support to make it more suitable for the hydrorefining of inferior oils.
  • US 3, 779, 903 discloses a method for preparing a hydrorefining catalyst.
  • Alumina sol is dried and calcined to obtain a plant having a pore volume of 0.15-0.45 ml / g, and then immersed in an aqueous solution containing tungsten and nickel.
  • a catalyst containing 10-18 wt% of nickel oxide, 25-40 wt% of tungsten oxide, and 1-9 wt% of fluorine is prepared by drying and firing.
  • the catalyst has an excessively high cost due to the metal content, especially the excessive nickel content.
  • US 4,330,395 discloses a method for preparing a hydrorefining catalyst.
  • a tungsten compound and an aluminum compound are used as raw materials, and a distillate hydrorefining catalyst is prepared by evaporating to dry, roasting, impregnating with a nickel compound, and then sulfiding and fluorinating with a sulfur compound and a fluorine compound.
  • This catalyst also has the disadvantage of too high a metal content, and its preparation method is also relatively complicated.
  • Chinese patent CN85, 104, 438B discloses a method for preparing a hydrorefining catalyst. High-purity boehmite prepared by the method of hydrolyzing aluminum alkoxide or alkyl aluminum is used as a precursor of the catalyst body to prepare a catalyst.
  • the catalyst has a lower metal content and a higher hydrogenation activity. Precursors of the body are more expensive, resulting in higher catalyst costs.
  • CN1, 105, 053A discloses a catalyst suitable for hydrorefining of heavy distillates.
  • the composition of the catalyst is 1 to 5 wt% of nickel oxide, 15 to 38 wt% of tungsten oxide, and 1 to 9 wt% of fluorine.
  • the plant body is a modified alumina obtained by air and water vapor treatment at high temperature. The modified alumina pore distribution is concentrated within the range of 60-200 Angstroms, but the preparation process is complex and the energy consumption is high.
  • the object of the present invention is to provide a hydrofinishing catalyst with lower cost, higher activity, and suitable for hydrogenation of various distillates.
  • Another object of the present invention is to provide a method for preparing such a hydrorefining catalyst.
  • the catalyst provided by Ming has the following composition: based on the total weight of the catalyst composition, nickel oxide 1-5% by weight, tungsten oxide 12-35% by weight, fluorine 1-9% by weight, and the rest are composite alumina as a plant body.
  • the Composite alumina is composed of one or more small-pore alumina and one or more large-pore alumina according to a weight ratio of 75:25-50:50.
  • the small-pore alumina referred to herein is a pore The pore volume with a diameter less than 80 Angstroms accounts for more than 95% of its total pore volume.
  • the macroporous alumina referred to herein refers to alumina with a pore diameter of 60-600 Angstroms and 70% of its total pore volume The pore distribution is measured by the BET low temperature nitrogen adsorption method (the same applies hereinafter).
  • the preparation method of the catalyst provided by the present invention is: Precursor of small pore alumina and precursor of macro pore alumina as required The proportions are mixed uniformly. This proportion ensures that the precursor mixture meets the predetermined ratio of small-pore alumina and large-pore alumina in the catalyst (that is, 75:25-50:50) after molding and baking (based on the obtained dry basis).
  • the catalyst provided according to the present invention has the following composition: based on the total weight of the catalyst composition, nickel oxide is 1 to 5 wt%, tungsten oxide is 12 to 35 wt%, fluorene is 9 wt%, and the rest is compound oxidation as a plant body.
  • the composite alumina is composed of one or more small-pore alumina and one or more large-pore alumina.
  • the composite alumina is preferably composed of a small-pore alumina and a large-pore oxide Aluminum composite.
  • the composite ratio of alumina is adjusted according to the weight of the raw material oil processed by the catalyst. When the raw material is light distillate oil, the amount of alumina can be added.
  • the composite alumina plant preferably has the following pore distribution: a pore volume with a diameter of 40-100 Angstroms accounts for more than 75% of the total pore volume.
  • Impregnation of fluorine impregnate the above composite alumina with a fluorine-containing aqueous solution, dry at 100-130 X and bake at 400-600 for 3-5 hours;
  • Nickel-tungsten impregnation Impregnate the above fluorine-containing composite alumina plant with an aqueous solution containing nickel and tungsten, and dry it at 100-130 "and roast it at 400-600 for 3-5 hours.
  • the precursor of the small-pore alumina is preferably a boehmite content greater than 60 weight ⁇ /.
  • Hydrated alumina which is preferably prepared by the sodium metaaluminate-carbon dioxide method;
  • the precursor of macroporous alumina is preferably a hydrated aluminate with a content of more than 50% by weight, and it is preferably sodium metaaluminate-sparse acid Made of aluminum.
  • the fluorine-containing aqueous solution refers to an aqueous solution of an inorganic compound containing fluorine, such as an aqueous solution of ammonium fluoride and / or hydrogen fluoride.
  • the aqueous solution containing tungsten and nickel is generally composed of ammonium metatungstate, ammonium tungstate, ethyl ammonium metatungstate or a mixed aqueous solution of nickel metatungstate and nickel nitrate or nickel acetate.
  • the present invention cleverly combines two different aluminas, making full use of the properties of special pore distribution composite alumina, and producing a synergistic effect, which not only maintains CN85104438B discloses the advantages of lower catalyst metal content, and can use different pores to distribute the content of alumina in the plant body, flexibly adjust the properties of the catalyst plant body, and make it suitable for the hydrorefining process of various distillates.
  • the catalyst provided by the present invention has higher catalytic activity than the catalyst provided by the prior art.
  • the catalyst is composed of small-pore alumina and large-pore alumina in a weight ratio of 70:30.
  • the catalyst prepared by the plant has higher desulfurization, denitrification and aromatic hydrocarbon hydrogenation activities than the catalyst disclosed in CN85104438B.
  • the catalyst provided by the present invention is used for hydrorefining of high-sulfur inferior distillates, it still has Higher catalytic activity than the prior art.
  • the price of hydrated alumina produced by the sodium metaaluminate-carbon dioxide method is only the aluminum alkoxide or alkyl aluminum hydrolysis method or sodium metaaluminate-aluminum oleate
  • the price of the hydrated alumina prepared by the method is about one-ninth, so the cost of the catalyst support provided by the present invention is greatly reduced.
  • the catalyst support prepared from the two types of hydrated alumina is composited and shaped and calcined
  • the cost of the catalyst body is much lower than that of the catalyst body disclosed in CN85104438B.
  • reaction temperature 200-500 X preferably 300-400 reaction pressure 2-24 MPa, preferably 3-15 mega frames, liquid hourly space velocity (LHSV) 0.1-30 hours 1 , preferably 0.2-10 hours_ hydrogen Oil volume ratio is 50-5000, preferably 200-1000.
  • LHSV liquid hourly space velocity
  • This set of examples illustrates the preparation method of the catalyst support provided by the present invention.
  • the precursor of the small-pore alumina used in this example is the hydrated alumina (the first hydrated alumina) industrial product-dry pseudoboehmite (Shandong Aluminum Plant, China) prepared by the sodium metaaluminate-carbon dioxide method.
  • the content of gibbsite is 80% by weight, and the content of gibbsite is 5% by weight.
  • the specific surface and pore distribution of the small-pore alumina (B) formed after baking at 550 for 4 hours are listed in Table 1.
  • the large size used in this embodiment The precursor of porous alumina is hydrated alumina (the second type of hydrated alumina) produced by the sodium metaaluminate-aluminum sulfate method.
  • the industrial product is Changling dry powder (China Changling Refinery Catalyst Plant), among which gibbsite The content of 68% by weight, the content of gibbsite is 5% by weight, and the specific surface and pore distribution of the macroporous alumina (C) formed after calcination at 550 "C for 4 hours are listed in Table 1.
  • the required weight ratio (see Table 1), mix well, add the appropriate amount of auxiliaries, adhesives and water, extrude into a three-leaf bar with an outer circle diameter of 1.4 mm, dry at 120, and roast at 550-650 ⁇ for 4 hours.
  • the catalyst body D-H was obtained. Measured by BET low temperature nitrogen adsorption method (the same below) Its specific surface and pore distribution are listed in Table 1.
  • This set of examples illustrates the preparation method of the catalyst provided by the present invention.
  • Table 2 shows the amount of each raw material and the calcination temperature and time.
  • This comparative example illustrates the preparation of a comparative catalyst.
  • the catalyst carrier A prepared in Comparative Example 1 was weighed, and the catalyst T was prepared according to the method described in Examples 6-16, wherein the amount of each raw material, the calcination temperature and time, and the content of the active components of the catalyst are listed in Table 24, respectively.
  • This set of examples illustrates the toluene hydrogenation activity of the catalyst provided by the present invention.
  • This comparative example illustrates the methylbenzyl hydrogenation activity of the comparative catalyst.
  • This set of examples illustrates the catalyst's denitrification and denitrification activities.
  • the catalyst desulfurization and denitrification activity was evaluated in a medium-sized hydrogenation unit.
  • the catalyst was J, the catalyst loading was 100 ml, the catalyst length was 2-3 mm, and the catalytic cracking diesel with a distillation range of 186-350 was used as the raw material.
  • the catalyst was pre-dried with a straight-run kerosene containing 2% by weight of difluorinated carbon under a hydrogen atmosphere of 300 ° C for 3 hours to convert it to a sulfurized state. Then, the feed oil was passed through for hydrogenation reaction.
  • the reaction temperatures were respectively It is 330 and 350 hydrogen partial pressure 3.2 MPa, liquid hourly space velocity (LHSV) 2.0 hours hydrogen oil volume ratio 350.
  • the reaction product uses electricity law, chemiluminescence law N, the reaction results are shown in Table 6.
  • This set of examples illustrates the hydrorefining performance of the catalyst provided by the present invention for high sulfur content distillates.
  • the catalyst and its contents, the experimental reaction device and the catalyst pre-sulfidation method are the same as those in Examples 28-29, except that the reaction raw material used is Saudi Arabia medium-quality straight-run diesel (distillation range is 235-366 X:).
  • the reaction temperatures are 330, 340 and 350, hydrogen partial pressure 3.2 MPa, liquid hourly space velocity (LHSV) 2.0 hours-hydrogen oil volume ratio 400.
  • the reaction results are listed in Table 7.
  • This set of comparative examples shows the performance of the comparative catalyst when it is used for the hydrorefining of distillate with high sparse content.
  • the evaluation methods and raw materials are the same as those in Examples 30-32, except that the catalyst used is catalyst T prepared in Comparative Example 2.
  • the reaction results are shown in Table 7. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

一种馏分油加氢精制催化剂及其制备方法
发明领域
本发明是关于一种馏分油加氢精制催化剂及其制备方法, 具体地说是 关于一种含镍和钨的馏分油加氢精制催化剂及其制备方法.
发明背景
近年来, 世界范围内原油劣质化倾向日益明显, 石油产品中砥、 氮和 芳烃含量日益增高, 显然, 越来越严格的环保要求与这一现实间的矛盾愈 发尖锐. 众所周知, 加氢是改善油品质量最有效的工艺手段之一, 加氢催 化剂则是这个工艺最为重要和关键的因素, 因此, 许多大公司均致力于对 现有加氢精制催化剂的改进工作, 并不断开发出性能更好的加氢精制催化 剂。
馏分油加氯精制催化剂一般由具有加氢活性的金属或金属氧化物和具 有一定酸性的栽体及助剂组成. 常用的金属组分是钴 -钼或镍-钼, 而最 近使用镍-钨为活性组分的加氢精制催化剂越来越多, 其发展方向是进一 步降低催化剂中金属的含量, 以及改变催化剂载体的性质使之更适合劣质 油品的加氢精制.
US3 , 779 , 903公开了一种制备加氢精制催化剂的方法. 将氧化铝 溶胶干燥并焙烧, 制得孔体积为 0.15 - 0.45毫升 /克的栽体, 然后于含钨、 镍的水溶液中浸渍并干燥、 焙烧制得含氧化镍 10 - 18重%、 氧化钨 25 - 40重%和 1 - 9重%氟的催化剂, 该催化剂由于金属含量, 特别是镍含量 过高, 导致成本过高.
US4 , 330 , 395公开了一种制备加氢精制催化剂的方法。 以钨化合 物和铝化合物为原料, 通过蒸干、 焙烧、 用镍化合物浸渍, 然后用硫化合 物和氟化合物进行硫化和氟化,制备出一种馏分油加氢精制催化剂。 这种催 化剂同样有金属含量过高的缺点, 其制备方法也比较复杂. 中国专利 CN85 , 104 , 438B公开了一种制备加氢精制催化剂的方 法. 采用烷氧基铝或烷基铝水解的方法制备的高纯一水铝石作为催化剂栽 体的前身物, 制备出一种含氧化镍 1 - 5重%、 氧化钨 12 - 35重%、 氟 1 - 9重%的加氢精制催化剂, 该催化剂具有较低的金属含量和较高的加氢 活性, 但由于催化剂栽体的前身物价格较贵, 致使催化剂成本较高.
此外 CN1 , 105 , 053A公开了一种适用于重质馏分油加氢精制的催 化剂, 该催化剂的组成为氧化镍 1 - 5重%, 氧化钨 15 - 38重%, 氟 1 - 9重%, 其栽体是一种用空气和水蒸汽在高温下处理得到的改性氧化 铝, 该改性氧化铝孔分布集中在 60 - 200埃范围以内, 但制备工艺复杂、 能耗较高.
发明目的
本发明的目的是提供一种成本较低、 活性更高且适用于各种馏分油加 氢的加氢精制催化剂.
本发明的另一目的是提供这种加氢精制催化剂的制备方法.
发明概述
明提供的催化剂具有下列組成: 基于催化剂组合物的总重量, 氧 化镍 1 - 5重%, 氧化钨 12 - 35重%, 氟 1 - 9重%, 其余为作为栽体 的复合氧化铝. 该复合氧化铝是由一种或多种小孔氧化铝与一种或多种大 孔氧化铝按照 75 : 25 - 50 : 50的重量比复合而成的. 本文所说的小孔 氧化铝为孔直径小于 80埃孔的孔体积占其总孔体积 95 %以上的氧化铝, 本文所说的大孔氧化铝为孔直径 60 - 600埃孔的孔体积占其总孔体积 70 %以上的氧化铝,其中所述孔分布是由 BET低温氮吸附法测得(以下同). 本发明提供的该催化剂的制备方法为: 将小孔氧化铝的前身物和大孔 氧化铝的前身物按所需比例混合均匀, 该比例保证前身物混合物成型焙烧 后(即按所得干基计)满足催化剂中小孔氧化铝和大孔氧化铝预定比例(即 75:25 - 50:50 ), 然后成型、 焙烧制得作为催化剂栽体的复合氧化铝, 然 后再依次用含氟水溶液和含镍-钨水溶液浸渍该复合氧化铝, 每次浸渍后 经干燥和焙烧制得本发明的催化剂. 发明详述
按照本发明提供的催化剂, 其组成为: 基于催化剂组合物的总重量, 氧化镍 1 - 5重%、 氧化钨 12 - 35重%, 氟 Ί - 9重%, 其余为作为栽 体的复合氧化铝. 该复合氧化铝是由一种或多种小孔氧化铝与一种或多种 大孔氧化铝复合而成. 该复合氧化铝优选是由一种小孔氧化铝与一种大孔 氧化铝复合而成. 氧化铝的复合比例是根据该催化剂所加工的原料油的轻 重进行调整的. 当原料是轻质馏分油时可以加大小孔氧化铝的用量, 当原 料是重质馏分油时则宜加大大孔氧化铝的用量. 用于 80 - 550 的石油馏 分加氢精制时, 小孔氧化铝和大孔氧化铝的重量比应为 75 : 25 - 50 : 50。 此时, 复合后的氧化铝栽体优选具有如下孔分布: 直径 40 - 100埃孔 的孔体积占总孔体积的 75 %以上.
在本发明提供的催化剂中, 其复合氧化铝具有一般加氢精制催化剂栽 体的常规的比表面和孔体积, 其比表面优选 200米 克以上, 更为优选 220 米 2/克以上, 孔体积优选 0.3毫升 /克以上, 更为优选 0.4毫升 /克以上. 按照本发明提供的上述催化剂的制备方法, 其具体制备步猓如下:
1.栽体的制备: 将小孔氧化铝的前身物和大孔氧化铝的前身物按照所 需的比例混合均匀, 按常规的加氢精制催化剂成型方法成型, 然后于 550 - 650 焙烧 3 - 5小时得到了作为栽体的复合氧化铝;
2.氟的浸渍: 用含氟水溶液浸渍上述复合氧化铝, 100 - 130 X烘干 后于 400 - 600 焙烧 3 - 5小时;
3.镍-钨的浸渍: 用含镍和钨的水溶液浸渍上述含氟复合氧化铝栽 体, 100 - 130 " 烘干后于 400 - 600 焙烧 3 - 5小时.
其中所说小孔氧化铝的前身物优选是一水铝石含量大于 60重 β/。的水 合氧化铝, 它优选用偏铝酸钠-二氧化碳法制得; 大孔氧化铝的前身物优 选是一水铝石含量大于 50重%的水合氧化铝, 它优选用偏铝酸钠 -疏酸铝 法制得.
其中所说的常规成型方法包括压片、 成球和挤条等方法, 优选采用挤 条成型的方法. 其中所说含氟水溶液指含氟的无机化合物水溶液, 如氟化铵和 /或氟化 氢的水溶液.
其中所说含钨和镍的水溶液一般由偏钨酸铵、 钨酸铵、 乙基偏钨酸铵 或偏钨酸镍和硝酸镍或醋酸镍制成的混合水溶液.
本发明最为突出的技术特征在于创造性地结合了两种不同的氧化铝, 利用了特殊孔分布的复合氧化铝制备出适合用作馏分油加氢精制催化剂的 栽体. 虽然大孔氧化铝有利于较大分子的反应物和产物的扩散, 适合用作 馏分油加氢精制催化剂的栽体, 然而, 众所周知, 孔太大会对催化剂栽体 的强度产生不利的影响. 小孔氧化铝不利于反应物和产物的扩散, 却正好 弥补了上述大孔氧化铝存在的缺憾. 本发明将两种不同氧化铝巧妙地结合 起来, 充分利用了特殊孔分布复合氧化铝的性质, 产生协同效应, 不仅保 持了 CN85104438B披露的催化剂金属含量较低的优点,而且可以利用不同 孔分布氧化铝在栽体中的含量, 灵活地调整催化剂栽体的性质, 使之适合 于各种馏分油的加氢精制过程.
由于采用了上述氧化铝栽体, 本发明提供的催化剂具有比现有技术提 供的催化剂更高的催化活性.例如, 用小孔氧化铝和大孔氧化铝按 70 : 30 的重量比复合而成的栽体制备出的催化剂, 其脱疏、 脱氮及芳烃加氢活性 均高于 CN85104438B中所披露的催化剂.而且当本发明提供的催化剂用于 高硫劣质馏分油加氢精制时, 仍具有较高的优于现有技术的催化活性. 此外, 因偏铝酸钠 -二氧化碳法制备的水合氧化铝的价格仅为烷氧基 铝或烷基铝水解法或偏铝酸钠 -疏酸铝法制备的水合氧化铝价格的约九分 之一, 因而本发明提供的催化剂栽体的成本得到大幅度降低. 换言之, 由 两种水合氧化铝按比例复合并成型和焙烧后制备出的催化剂栽体的成本比 CN85104438B披露的催化剂栽体的成本大大降低.
本发明提供的催化剂特别适用于馏程为 80 - 550 的石油馏分油的加 氢精制. 本发明提供的催化剂和加氢裂化催化剂配合使用則可用于重质馏 分油的加氢改质, 特别是中压加氢改质过程.
本发明提供的催化剂用于馏分油加氢精制时可使用常规的加氢精制工 艺条件, 如反应温度 200 - 500 X:, 优选 300 - 400 反应压力 2 - 24 兆帕, 优选 3 - 15兆幀, 液时空速( LHSV ) 0.1 - 30小时 1 , 优选 0.2 - 10小时 _ 氢油体积比 50 - 5000 , 优选 200 - 1000 .
实施例
下面的实施例将对本发明做进一步说明, 但并不因此而限制本发明.
实施例 1 - 5
这组实例说明本发明提供的催化剂栽体的制备方法.
本实例采用的小孔氧化铝的前身物为偏铝酸钠 -二氧化碳法制得的水 合氧化铝(第一种水合氧化铝)工业产品-干拟薄水铝石(中国山东铝厂), 其中一水铝石含量 80重%, 三水铝石含量 5重%. 经 550 焙烧 4小时后 形成的小孔氧化铝( B ) 的比表面和孔分布列于表 1中. 本实施例采用的 大孔氧化铝前身物为偏铝酸钠 -硫酸铝法制得的水合氧化铝(第二种水合 氧化铝) 工业产品-长岭干胶粉(中国长岭炼油厂催化剂厂) , 其中一水 铝石含量 68重%, 三水铝石含量 5重%, 经 550 "C焙烧 4小时后形成的大 孔氧化铝( C ) 的比表面和孔分布列于表 1中. 将两种水合氧化铝按所需 的重量比(见表 1 ) 混合均匀, 加入适量助挤剂、 胶粘剂和水, 挤成外接 圆直径为 1.4毫米的三叶型条, 120 烘干, 分别在 550 - 650匸焙烧 4 小时, 制得催化剂栽体 D - H . 用 BET低温氮吸附法(下同) 测得其比 表面和孔分布列于表 1中.
表 1
Figure imgf000008_0001
对比例 1
称取烷氧基铝水解法制备的水合氧化铝(商品名 SB , 德国 Condea公 司产品, 其中一水铝石含量 85重% ) 200克(按干基计), 分别加入适量 助挤剂, 胶粘剂和水, 挤成外接圓直径为 1.4毫米的三叶型条, 120 X烘 干, 550 焙烧 4小时,即得对比催化剂栽体 A .用 BET低温氮吸附 ^(下 同)测得其比表面为 232米 2/克, 孔体积为 0.47毫升 /克, 其孔分布为: 孔 直径 20 - 40埃孔的体积占总孔体积的 7.4 %,孔直径为 40 - 80埃孔的孔 体积占总孔体积的 84.2 % , 80 - 100埃孔的孔体积占总孔体积的 6.8 %, 孔直径为 100 - 600埃孔的孔体积占总孔体积的 1.6 % .
实例 6 - 16
这组实例说明本发明提供的催化剂的制备方法. 分别称取一定量的实例 1 - 5制备的氧化铝栽体 D - H ,用一定量的 氟化铵(化学纯) 水溶液浸渍 1小时, 120 TC烘干, 在不同温度下焙烧 4 小时, 得到含氟氧化铝栽体. 表 2给出了各原料用量及焙烧温度和时间. 用一定量偏钨酸铵(化学纯) 和硝酸镍(化学纯) 的混合水溶液浸渍 含氟氧化铝栽体 4小时, 120 X烘干, 在不同温度下焙烧 4小时, 制得催 化剂 I - S . 表 3给出了各原料用量, 焙烧温度及时间, 表 4则给出了制 备出的催化剂的活性组分的含量, 其中 NiO 、 W03含量测定方法参见《石 油化工分析方法》 ( RIPP试验法), P360 - 361,科学出版社( 1990 ), 氟的测定方法参见同书的 P185 - 187页.
对比例 2
本对比例说明对比催化剂的制备方法.
称取对比例 1制备的催化剂栽体 A, 按实例 6 - 16所述方法制备出 催化剂 T , 其中各原料用量, 焙烧温度及时间, 催化剂活性组分含量分别 列于表 2 4中.
实例编号 所用栽体 氟的浸渍 焙烧条件 编号 用量, 克 NH4F用量, 克水用量, 毫升温度, 时间, 小时
6 D 50 6.0 33 530 4
7 E 200 22.6 132 530 4
8 E 50 6.0 33 450 4
9 E 50 6.0 33 500 4
10 E 50 6.0 33 530 4
11 E 50 6.0 33 530 4
12 E 50 6.0 33 530 4
13 E 50 12.6 33 530 4
14 F 50 6.0 33 530 4
15 G 200 22.6 132 530 4
16 H 200 22.6 132 530 4 对比例 2 A 200 30.0 120 530 4
实例编号 镍-钨的浸渍 焙烧条件 硝酸银用 偏钨酸铵用 水用量, 温度, 时间, 小时 量, 克 量, 克 毫升
6 6.0 17.5 32 500 4
7 24.2 70.0 128 500 4
8 6.0 17.5 32 500 4
9 6.0 17.5 32 500 4
10 6.0 17.5 32 420 4
11 6.0 17.5 32 480 4
12 11.7 10.8 32 500 4
13 4.3 27.4 32 500 4
14 6.0 17.5 32 420 4
15 24.2 70.0 128 500 4
16 24.2 70.0 128 500 4 对比例 2 27.2 80.0 120 500 4
Figure imgf000012_0001
实施例 17 - 27
这组实例说明本发明提供的催化剂的甲苯加氢活性.
以含 50重%甲苯的正己烷溶液为原料,在小型固定床反应装置上进行 活性评价, 催化剂装量 1.5克(催化剂粒度 40 - 60目) . 在反应器中分别 装入催化剂 I ― S , 在 300 X:氢气气氛下用 3重%二硤化碳的环己烷溶液 预硫化 2小时. 然后通入反应原料, 反应温度 360 X:, 压力 4.1兆帕, 重时 空速( WHSV ) 3.4小时— 氢油体积比 400 . 反应 3小时后取样, 反应 产物用气相色谱在线分析, 反应结果列于表 5中.
对比例 3
本对比例说明对比催化剂的甲笨加氢活性.
活性评价所用原料及方法同实例 17 ― 27,只是所用催化剂为对比例 2 制备的催化剂 T, 所得结果列于表 5中.
表 5
Figure imgf000013_0001
由表 5的结果可以看出, 在相同的反应条件下及相同的催化剂活性组 分含量范围内,·本发明提供的催化剂的甲苯加氢活性均高于对比催化剂.
实例 28 - 29
这组实施例说明本发明提供的催化剂的脱 、 脱氮活性.
催化剂脱硫、 脱氮活性的评价在中型加氢装置中进行, 催化剂为 J , 催化剂装量 100毫升, 催化剂长度 2 - 3毫米, 采用馏程为 186 - 350 的催化裂化柴油为原料.反应前, 先用含 2重%二硤化碳的直馏煤油在 300 ■C氢气氛下对催化剂进行预疏化 3小时 , 使其转化成硫化态. 然后通入原 料油进行加氢反应. 反应温度分别为 330和 350 氢分压 3.2兆帕, 液时 空速( LHSV ) 2.0小时 氢油体积比 350 . 反应产物采用电量法定 、 化学发光法定 N , 反应结果列于表 6中.
对比例 4 - 5
- 1卜 这组对比例说明对比催化剂的脱砥脱氮活性.
评价方法及原料同实例 28 - 29 , 只是所用催化剂为对比例 2制备的 催化剂 T, 反应结果列于表 6中.
表 6
Figure imgf000014_0001
表 6的结果说明, 本发明提供的催化剂无论是脱硫还是脱氮活性均高 于对比催化剂. 实例 30 - 32
这组实施例说明本发明提供的催化剂对高硫含量馏分油的加氢精制性 能.
催化剂及其装量、 实验反应装置和催化剂的预硫化方法同实例 28 - 29,只是所用反应原料为沙特阿拉伯中质直馏柴油(馏程为 235 - 366 X: ). 反应温度分别为 330、 340和 350 ,氢分压 3.2兆帕,液时空速( LHSV ) 2.0小时— 氢油体积比 400。 反应结果列于表 7中.
对比例 6 - 8
这组对比例说明对比催化剂用于高疏含量馏分油加氢精制时的性能. 评价方法及原料同实例 30 - 32 , 只是所用催化剂为对比例 2制备的 催化剂 T , 反应结果列于表 7中。 实例编号 实施例 实施例 实施例 对比例 6对比例 7对比例 8 30 31 32
催化剂 J J J T T T 反应温度, X: 330 340 350 330 340 350 原料疏含量, ppm 12784 12784 12784 12784 12784 12784 产品砥含量, ppm 614 221 59 1084 514 153 脱破率, % 95.2 98.3 99.5 91.5 96.0 98.8 表 7的结果说明, 当本发明提供的催化剂用于砥含量高达 12784ppm 的馏分油加氢精制时, 在各个反应温度下, 本发明提供的催化剂的活性均 明显高于对比催化剂. 这说明不仅对于高氮低硫含量馏分油的加氢精制, 而且对于高硫含量劣质馏分油的加氢精制, 本发明提供的催化剂的催化活 性均优于现有技术.

Claims

权 利 要 求
1. 一种加氢精制催化剂, 其组成基于催化剂总重量为氧化镍 1 - 5重 % , 氧化钨 12 - 35重%, 氟 1 - 9重%, 其余为作为栽体的复合氧化铝, 其特征在于所述复合氧化铝是由一种或多种小孔氧化铝与一种或多种大孔 氧化铝按照 75 : 25 - 50 : 50的重量比复合而成的, 其中小孔氧化铝为 孔直径小于 80埃孔的孔体积占其总孔体积 95 %以上的氧化铝, 大孔氧化 铝为孔直径 60 - 600埃孔的孔体积占其总孔体积 70 %以上的氧化铝, 所 述孔分布是采用 BET低温氮吸附法测得。
2. 根据权利要求 1所述的催化剂, 其特征在于所述复合氧化铝由一种 小孔氧化铝与一种大孔氧化铝复合而成.
3. 根据权利要求 1或 2所述的催化剂,其特征在于所述小孔氧化铝从一 水铝石含量大于 60重%的水合氧化铝得到, 大孔氧化铝从一水铝石含量大 于 50重%的水合氧化铝得到.
4. 根据权利要求 1或 2所述的催化剂,其特征在于所述复合氧化铝中孔 直径为 40 - 100埃孔的孔体积占总体积的 75 %以上.
5. 根据权利要求 1所述催化剂, 其特征在于所述复合氧化铝的比表面 为 220米 2/克以上, 孔体积为 0.4毫升 /克以上。
6. 权利要求 1催化剂的制备方法, 包括将小孔氧化铝前身物和大孔氧 化铝前身物的混合物成型、 焙烧得到作为栽体的复合氧化铝, 依次用含氟 水溶液和含镍-钨的水溶液浸渍所得的复合氧化铝, 每次浸渍后经干燥和 焙烧.
7. 根据权利要求 6所述的制备方法, 其特征在于所述小孔氧化铝前身 物为一水铝石含量大于 60重%的水合氧化铝.
8. 根据权利要求 7所述的制备方法, 其特征在于所述水合氧化铝由偏 铝酸钠 -二氧化碳法制得.
9. 根据权利要求 6所述的制备方法, 其特征在于所述大孔氧化铝前身 物为一水铝石含量大于 50重%的水合氧化铝.
10. 根据权利要求 9所述的制备方法, 其特征在于所述水合氧化铝由偏 铝酸钠 -硫酸铝法制得.
11. 根据权利要求 6的方法制备的催化剂.
PCT/CN1997/000065 1996-06-28 1997-06-27 Catalyseur d'hydrodesulfuration d'un fuel oil distille et procede de production WO1998000234A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002258563A CA2258563C (en) 1996-06-28 1997-06-27 A hydrofining catalyst of a distillate oil and production method
AU32528/97A AU3252897A (en) 1996-06-28 1997-06-27 A hydrofining catalyst of a distillate oil and production method
EP97928102A EP0916404A4 (en) 1996-06-28 1997-06-27 HYDRORAFFINATING CATALYST FROM A DISTILLATE OIL AND METHOD FOR THE PRODUCTION THEREOF
JP50370198A JP2001503313A (ja) 1996-06-28 1997-06-27 蒸留油のハイドロファイニング触媒および製造方法
NO19986094A NO316970B1 (no) 1996-06-28 1998-12-23 Katalysator for destillathydrofining, og fremgangsmate for fremstilling derav

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN96106724 1996-06-28
CN96106724.1 1996-07-22

Publications (1)

Publication Number Publication Date
WO1998000234A1 true WO1998000234A1 (fr) 1998-01-08

Family

ID=5119339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1997/000065 WO1998000234A1 (fr) 1996-06-28 1997-06-27 Catalyseur d'hydrodesulfuration d'un fuel oil distille et procede de production

Country Status (9)

Country Link
US (1) US5914290A (zh)
EP (1) EP0916404A4 (zh)
JP (1) JP2001503313A (zh)
AU (1) AU3252897A (zh)
CA (1) CA2258563C (zh)
HR (1) HRP970356A2 (zh)
ID (1) ID17802A (zh)
NO (1) NO316970B1 (zh)
WO (1) WO1998000234A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365542B1 (en) * 1999-01-25 2002-04-02 China Petrochemical Corporation And Research Institute Of Petroleum Processing Presulfurization method of hydrogenation catalyst
KR100633881B1 (ko) * 1999-10-14 2006-10-16 차이나 피트로케미컬 코포레이션 수소첨가 증류 정유용 촉매, 이의 캐리어 및 제조방법
CN1108356C (zh) * 2000-10-26 2003-05-14 中国石油化工股份有限公司 一种高活性高中油性加氢裂化催化剂及其制备方法
JP4612229B2 (ja) * 2001-06-08 2011-01-12 日本ケッチェン株式会社 重質炭化水素油の水素化処理用触媒並びに水素化処理方法
JP4630014B2 (ja) * 2004-07-23 2011-02-09 Jx日鉱日石エネルギー株式会社 石油系炭化水素の水素化脱硫触媒および水素化脱硫方法
US8883669B2 (en) * 2005-04-29 2014-11-11 China Petroleum & Chemical Corporation Hydrocracking catalyst, a process for producing the same, and the use of the same
CN109833880A (zh) * 2017-11-29 2019-06-04 中国石油天然气股份有限公司 聚α烯烃合成油加氢精制催化剂及其制备方法
KR20200086983A (ko) * 2019-01-10 2020-07-20 코아텍주식회사 대용량 과불화화합물 제거를 위한 금속산화물 촉매 및 그 제조 방법
CN114425361B (zh) * 2020-10-29 2023-07-28 中国石油化工股份有限公司 石蜡加氢精制催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779903A (en) * 1967-12-11 1973-12-18 Shell Oil Co Hydroconversion process with a catalyst having a hydrogenation component composited with a high density alumina
US4330395A (en) * 1979-06-05 1982-05-18 Shell Oil Company Process for the conversion of hydrocarbons employing a sulphided fluorine-containing nickel-tungsten catalyst
CN85104438A (zh) * 1985-06-13 1986-08-06 中国石油化工总公司石油化工科学研究院 一种馏分油加氢精制催化剂
CN1105053A (zh) * 1994-01-04 1995-07-12 中国石油化工总公司 一种馏分油加氢精制催化剂

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA967986A (en) * 1971-03-26 1975-05-20 Grace (W. R.) And Co. Preparation of macroporous alumina extrudates
US5266300A (en) * 1989-08-02 1993-11-30 Texaco Inc. Method of making porous alumina

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779903A (en) * 1967-12-11 1973-12-18 Shell Oil Co Hydroconversion process with a catalyst having a hydrogenation component composited with a high density alumina
US4330395A (en) * 1979-06-05 1982-05-18 Shell Oil Company Process for the conversion of hydrocarbons employing a sulphided fluorine-containing nickel-tungsten catalyst
CN85104438A (zh) * 1985-06-13 1986-08-06 中国石油化工总公司石油化工科学研究院 一种馏分油加氢精制催化剂
CN1105053A (zh) * 1994-01-04 1995-07-12 中国石油化工总公司 一种馏分油加氢精制催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0916404A4 *

Also Published As

Publication number Publication date
NO986094L (no) 1999-02-26
CA2258563A1 (en) 1998-01-08
EP0916404A1 (en) 1999-05-19
EP0916404A4 (en) 2000-03-22
AU3252897A (en) 1998-01-21
JP2001503313A (ja) 2001-03-13
CA2258563C (en) 2005-08-23
NO986094D0 (no) 1998-12-23
NO316970B1 (no) 2004-07-12
HRP970356A2 (en) 1998-06-30
US5914290A (en) 1999-06-22
ID17802A (id) 1998-01-29

Similar Documents

Publication Publication Date Title
JP5140817B2 (ja) 触媒を使用して炭化水素原料装入物の水素化精製および/または水素化転化の処理方法
RU2396114C2 (ru) Способ селективного обессеривания лигроина и катализатор для его осуществления
EP0947575B1 (en) A process for hydrocracking a heavy distillate oil under middle pressure
EP1651347B1 (en) A process for the selective hydrogenation of diolefins contained in an olefin containing stream and for the removal of arsenic therefrom
MX2008009679A (es) Proceso de hidrodesulfurizacion.
EP1153107A1 (en) Hydroprocessing catalyst and use thereof
US3779903A (en) Hydroconversion process with a catalyst having a hydrogenation component composited with a high density alumina
EP1567617A1 (en) Hydroprocessing of hydrocarbon using a mixture of catalysts
WO1998000234A1 (fr) Catalyseur d'hydrodesulfuration d'un fuel oil distille et procede de production
EP1392798A2 (en) Two-stage hydroprocessing process and catalyst
WO2010079044A2 (en) Process for aromatic hydrogenation and cetane value increase of middle-distillate feedstocks
EP0243894B1 (en) Hydroprocessing catalyst and support having bidisperse pore structure
CN111097500B (zh) 负载型催化剂及其制备方法和应用以及一种临氢处理柴油馏分的方法
EP3822332A1 (en) Catalyst for selective hydrogenation of diolefins and method for preparing catalyst
JPH0626673B2 (ja) 水素化脱硫・水素化分解能を有する触媒
CN112717949B (zh) 一种加氢精制催化剂及其制备方法和应用
CN1274788C (zh) 用于中间馏分油深度加氢处理的含分子筛催化剂及其制备方法
JP2003103173A (ja) 重質炭化水素油の水素化処理触媒
CA2258591C (en) A process for hydrocracking a heavy distillate oil under middle pressure
RU2575638C1 (ru) Способ приготовления катализатора гидроочистки бензина каталитического крекинга
RU2575639C1 (ru) Способ гидроочистки бензина каталитического крекинга
CN117299192A (zh) 加氢催化剂及其制备方法和应用
CN114522694A (zh) 一种加氢脱硫催化剂及其制备方法和应用
CN117943103A (zh) 一种柴油加氢改质催化剂及其制备方法与应用
JP2708567B2 (ja) 水素化処理用触媒およびその製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2258563

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2258563

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1997928102

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1998 503701

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997928102

Country of ref document: EP