WO1997049954A1 - Procede de brulage/fusion pour four de fusion des dechets - Google Patents

Procede de brulage/fusion pour four de fusion des dechets Download PDF

Info

Publication number
WO1997049954A1
WO1997049954A1 PCT/JP1997/002149 JP9702149W WO9749954A1 WO 1997049954 A1 WO1997049954 A1 WO 1997049954A1 JP 9702149 W JP9702149 W JP 9702149W WO 9749954 A1 WO9749954 A1 WO 9749954A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
gas
furnace
tuyere
melting
Prior art date
Application number
PCT/JP1997/002149
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Ishida
Youichi Tawara
Yasuhiko Kato
Yoshihiro Ono
Kazuhiro Kuribayashi
Norio Fukinaka
Hachiro Harajiri
Kazuki Murahashi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP16345896A external-priority patent/JPH109540A/ja
Priority claimed from JP8163460A external-priority patent/JPH109530A/ja
Priority claimed from JP16345996A external-priority patent/JPH109554A/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP97927421A priority Critical patent/EP0846919B1/en
Priority to US09/029,103 priority patent/US6189462B1/en
Priority to DE69724562T priority patent/DE69724562T2/de
Publication of WO1997049954A1 publication Critical patent/WO1997049954A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/085High-temperature heating means, e.g. plasma, for partly melting the waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07007Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber using specific ranges of oxygen percentage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention examines the optimal treatment method of a waste melting furnace that melts and reprocesses waste such as general waste and industrial waste, and enables stable operation even with fluctuations in waste quality.
  • the present invention also relates to a combustion melting method for a waste melting furnace, which enables wide-area treatment of waste and the treatment of other incinerated ash, landfilled waste, sludge, etc. in the same furnace.
  • Conventional technology
  • FIG. 1 is a diagram showing the reaction state in the furnace. Waste and coke are charged from the inlet (loading inlet) 11 at the furnace top to the shaft la, and the charged (filled) layer Are formed and gradually lowered, while being sequentially melted by a reaction (pyrolysis gas) gas rising from below.
  • Exhaust gas generated by this treatment is introduced into an exhaust gas treatment facility (not shown) from an exhaust gas pipe (duct) 12 provided adjacent to the gas inlet, where heat recovery and gas treatment are performed.
  • refuse introduced into the furnace from the inlet 11 accumulates in the shaft la.
  • the waste loses water and dries.
  • the morning glory 5 from the lower part of the shaft is the thermal decomposition zone 7.
  • the core dropped by the combustion support gas supplied from the tuyere Carbon-based massive combustibles such as coal and coal (hereinafter referred to as coke) and charcoal will burn. This is called combustion melting zone 8.
  • a slag hole (not shown) provided near this position is intermittently pierced with a drill or the like and discharged.
  • the symbol 10 is collectively referred to as hearth in contrast to 5 and la. Gases generated by combustion and pyrolysis are discharged from duct 12.
  • the waste that enters the furnace is processed in three stages: drying, pyrolysis, combustion and melting. If not sufficiently dried, moist waste will enter the combustion zone and, as a result, the temperature of the combustion zone will drop significantly. Therefore, the furnace must have two functions, that is, the amount of heat sufficient for drying and the amount of heat enough for melting and high heat must be supplied.
  • Japanese Patent Publication No. 60-117176 which is a publicly known technology in this field, describes the quality fluctuation of ordinary waste, wide-area treatment, incineration ash of other incineration facilities, and reprocessing of landfilled waste. If the mixing process with sludge is performed in the same furnace, efficient and stable operation cannot be achieved.
  • Japanese Patent Publication No. 63-3207 and Japanese Patent Publication No. 2-6 06 Regulates the supply of carbon-based combustibles and the supply of oxygen-containing gas to the high-temperature hearth to maintain the oxygen concentration in the upper part of the packed bed at almost 0 and the exhaust gas temperature at 700 to 1200 ° C. And a method of adjusting the amount of waste supplied so as to maintain the exhaust gas temperature in the upper part of the packed bed at 400 to 1200 ° C.
  • the upper tuyere in the configuration in which the upper tuyere is installed, it is applied as it is, that is, the supply amount of the carbon-based combustible material and the oxygen-containing gas to the high-temperature hearth (in the present invention, the gas is blown from the lower tuyere). It is not possible to achieve stable operation only by adjusting). This is because simply adjusting the supply of carbon-based combustibles and the amount of oxygen from the lower tuyere will only change the combustion and melting conditions, so especially for combustible wastes, waste combustion at the upper tuyere It is impossible to make the amount appropriate, and stable operation will not be achieved.
  • waste containing combustibles is dried, pyrolyzed, and the temperature of the non-combustible material that falls into the combustion and melting zone and the temperature of the pyrolysis residue generated by the pyrolysis are maintained at a sufficiently high level to ensure stable melting.
  • this is within the range of normal waste quality fluctuations, and the recent widespread disposal of waste and incineration ash from other incineration facilities, landfilled waste, sludge, etc.
  • waste quality fluctuates greatly, and conventional technology is efficient and stable Operation becomes difficult.
  • the present invention optimizes combustion of coke and combustible substances in waste in a furnace even in the case where the quality of waste fluctuates greatly, thereby enabling efficient treatment.
  • the purpose is to realize the melting method.
  • the amount of heat exchange will fluctuate if the quality of the waste fluctuates, making it difficult to maintain a constant exhaust gas temperature.
  • the present invention makes uniform the unloading of the charge in the cross-sectional direction in a waste melting furnace in which a plurality of upper tuyeres are installed in the plane direction of the waste melting furnace,
  • a method for controlling the amount of gas injected into the upper tuyere of a waste melting furnace is provided. .
  • the gist of the present invention that achieves the above objects is as follows.
  • the combustion and melting zone is provided with a plurality of lower tuyeres arranged in a lower stage, and a lower stage combustion supporting gas (a gas containing oxygen) is provided.
  • the upper part of the tuyeres is provided with a plurality of upper tuyeres arranged at positions above the tuyeres, and a part of the waste is burned by the supply of the upper combustion support gas.
  • the total amount of the combustion support gas and the lower combustion support gas is to supply an oxygen content of 130 to 600 Nm : i per t of waste, and the ratio of the oxygen amount from the upper tuyere is the sum of the lower and upper Up from the upper tuyere so that it becomes 0.2 to 0.8 Supplying combustion supporting lifting gas, a carbon-based oxygen amount supplied from the lower stage tuyere to the al
  • a waste melting method characterized in that the supply amount is adjusted so as to be at least 0.8 times the theoretical oxygen amount of the massive combustibles, and the temperature of the exhaust gas on the packed bed of the waste is 150 to 700 ° C. .
  • the control of the blowing rate of the plurality of upper tuyere combustion supporting gas installed in the cross-sectional direction of the waste melting furnace is performed in a shaft of the waste melting furnace.
  • the temperature inside the melting furnace is measured by a plurality of thermometers installed in the cross section direction and in multiple stages in the height direction, and if the detected temperature is out of the specified range, the upper stage from the upper tuyere
  • a waste melting method characterized by increasing or decreasing the amount of combustion support gas.
  • FIG. 1 is a diagram schematically showing a waste melting furnace according to the present invention.
  • FIG. 2 (a) is an explanatory view of a vertical sectional view of the waste melting furnace in the third invention of the present invention
  • FIG. 2 (b) is an explanatory view of a transverse sectional view.
  • FIG. 3 is a diagram showing a time chart of an embodiment of the third invention of the present invention.
  • FIG. 4 is a diagram showing a time chart of another embodiment of the third invention of the present invention.
  • the present inventor has obtained the following findings from the results of numerous experiments and has achieved the present invention.
  • the slag in this shaft furnace must be melted at 1350-1550 ° C, preferably 1400-1500 ° C, and discharged from the furnace. If the slag is lower than 1350 ° C, the iron in the waste will not melt and accumulate in the furnace, impairing the function of the shaft furnace. On the other hand, high-temperature slag can cause significant problems by melting down the refractory of the furnace. For this reason, the most optimal operating temperature is 1400 to 1500 ° C, the slag temperature discharged from the furnace.
  • the waste contains combustibles in the phase and has a low calorific value of 1000-3000 kcalZkg.
  • the waste in order to burn at a high temperature, it must be burned with a gas containing a high concentration of oxygen.
  • a combustor that emits high temperature and burns is used.
  • the present invention uses a two-stage tuyere furnace. As shown in Fig. 1, a new tuyere 3 is provided on the lower tuyere 2 to divide the air volume between the upper and lower halves. The upper air does not preheat, and the lower air releases oxygen. By enriching it to an oxygen concentration of 30 to 40% and blowing it through the tuyere, it was found that the amount of coke used was only 20 to 100 k / t. For example pure oxygen when 28% of the oxygen of the lower on average conditions rather good in dust t per 24 N m 3, coke may be 20 kg.
  • the present method is characterized in that incombustibles in waste are melted at a high temperature in the lower part of the furnace, and the waste is dried with a large amount of low-temperature gas in the upper part. . For this reason, it is preferable to supply air on the coke bed to increase the amount of combustion gas and dilute extremely hot gas.
  • the upper tuyere 3 is placed at least 300 mm from the lower tuyere 2. If the distance is too large, the gas in the lower part becomes too cold, and there is a risk that the upper tuyere 3 will not reignite. Therefore, the upper tuyere 3 must be within the range where the effect of the lower tuyere 2 remains.
  • the temperature of the slag discharged from the furnace should be between 1350 and 1550 ° C, preferably between 1400 and 1500 ° C.
  • the incombustibles in the waste are melted by the high-temperature combustion of the coke burning near the tuyere.
  • the high-temperature gas then decomposes and decomposes the waste, changing the nature of the waste. If the waste is high in moisture (drying must be strengthened) or if there is a lot of material to be melted ( That we must get).
  • the two-stage tuyere of the present invention can cope with changes in the quality of waste and can reduce auxiliary materials such as coke and oxygen.
  • the purpose of the lower tuyere 2 is to obtain a high temperature, and the conditions should be such that a high temperature can be obtained.
  • air enriched in oxygen In order to obtain the aforementioned slag temperature, it was necessary to use air enriched in oxygen at 30% or more at room temperature.
  • the upper limit of the oxygen concentration is not specified, but the use of high-concentration oxygen such as pure oxygen and co-materials as auxiliary materials is suppressed comprehensively, and furnace wall damage due to local abnormal high temperature About 40% is enough to suppress the noise.
  • the oxygen concentration without oxygen enrichment should be 21% or less, and preheated air or non-preheated air, or clean due to high temperature near the upper tuyere Inert gas such as water vapor or nitrogen into the air to suppress generation of power, or mix low oxygen concentration gas such as flue gas into the air
  • the combustion temperature can be suppressed by using it alone.
  • the tuyere has two stages, and when the gas generated in the lower stage is burned on a coke bed, carbon is effectively combusted, and the total amount of oxygen supplied from air and pure oxygen is greater than that of the one-stage tuyere Required.
  • Coke as an auxiliary material requires 20 to 100 kg per t of garbage to treat normally conceivable solid waste, especially municipal waste generated in Japan.
  • Normally generated garbage with a water content of 40 to 60% requires 30 to 80 kg of coke per ton of garbage, and garbage with a large amount of water or non-combustibles requires more coke.
  • Amount of oxygen required per waste t the change Suruga according to coke requirement, 1 when the 30 Nm 3 or less, insufficient combustion in the furnace of co one box and waste combustibles, dried,
  • the amount of heat required for pyrolysis and melting cannot be maintained. As a result, it becomes difficult to discharge the melt and operation becomes impossible. If it is 600 Nm 3 or more, the combustion in the furnace of combustibles in coke and waste becomes excessive and the exhaust gas temperature rises, resulting in inefficient operation.
  • the oxygen amount of the lower combustion support gas sent from the lower tuyere By setting the oxygen amount of the lower combustion support gas sent from the lower tuyere to 0.8 times or more of the theoretical combustion oxygen amount, coke can be completely burned and the loss due to the endothermic reaction can be suppressed.
  • the most efficient use of the coke a heat source for melting and drying can be secured, and the exhaust gas temperature can be maintained at a high temperature.
  • the upper combustion support is adjusted so that the ratio of the oxygen amount is 0.2 to 0.8, which is the sum of the oxygen amount sent from the lower tuyere and that of the upper tuyere. Supply gas. If this value is less than 0.2, the combustion of the pyrolysis powdery carbon in the waste cannot be maintained, and if it is more than 0.8, the amount of oxygen will be excessive with respect to the pyrolysis powdery carbon in the waste, and partly The reduced combustion state cannot be maintained, and the exhaust gas calories decrease. In this case, even if a secondary combustion chamber is usually arranged at the latter stage and complete combustion is attempted, self-combustion will not be possible.
  • the temperature on the waste bed is specified in the range of 150 to 700 ° C, but it is preferably 200 to 300 for more stable and efficient operation.
  • the waste gas temperature is lowered The temperature rise becomes slower, and the proportion of tar generated by thermal decomposition at low temperatures increases. For this reason, the amount of tar in the exhaust gas increases synergistically, and the amount of tar generated in the pyrolysis zone increases when passing through the drying zone above the packed bed. As a result, air permeability in the dry zone is impaired, which makes it difficult to continue operation.
  • the temperature of the exhaust gas exceeds 700 ° C, especially when treating waste with a small proportion of combustibles, it will remain in the furnace because the pyrolysis gasification rate at high temperatures increases the rate of pyrolysis gasification.
  • the amount of combustible pyrolysis residues is reduced, the amount of combustibles in the waste in the furnace is reduced, resulting in a shortage of dry heat sources and an increase in coke supply This is an uneconomic operation.
  • the coke supply ratio (kg / waste O) is adjusted to satisfy the following formula, and the ratio of the upper tuyere oxygen amount is in the range of 0.2 to 0.8.
  • Control the exhaust gas temperature by adjusting and further adjusting the amount of oxygen required per 11 wastes.
  • the adjustment of the coke supply ratio and the oxygen amount ratio of the lower tuyere may be controlled artificially or mechanically, and is not particularly limited.
  • the shape when the quality of the waste greatly changes, for example, the shape may be different even with the same ratio of combustibles, moisture, and incombustibles. This is the case when one has a large shape and a small specific surface area, and the other has a small shape and a large specific surface area.
  • the exhaust gas temperature can be maintained properly if the shape is large and the specific surface area is small, but if the shape is small and the specific surface area is large, The amount of heat exchange in the packed bed becomes excessive, and it may not be possible to maintain the exhaust gas temperature at an appropriate temperature of more than 150 ° C.
  • the difference in the specific surface area is canceled without changing those conditions.
  • a method of changing the volume of the packed bed may be used. In this case, since the furnace sectional area is constant, stable operation can be obtained by adjusting the thickness of the packed bed specified in the second invention. .
  • the layer thickness of the packed bed must satisfy H / D ⁇ 1, and if the above conditions are not satisfied, the gas flow in the packed bed tends to be uneven, and the heat exchange efficiency of the packed bed becomes poor. It fluctuates and does not operate stably.
  • This example is an example of operation at the time of treatment of general waste at the two-stage tuyere.
  • a gas for combustion and melting was supplied from the upper and lower tuyeres to perform the melting treatment of the general waste.
  • the interval between the upper tuyere and the lower tuyere was 500 mm, and the number of tuyeres was 8 for the upper tuyere and 4 for the lower tuyere, respectively.
  • the quality of waste used was as follows.
  • the operating conditions were adjusted so that the temperature of the exhaust gas from the furnace became appropriate.
  • 3 () kg of coke per t of waste and 20 kg of limestone are added, and 33 Nm 3 of room-temperature pure oxygen is added per t of waste from the lower tuyere.
  • 120Nm 3 of air at room temperature, and a 38% total enriched combustion support gas were blown.
  • Air at a normal temperature of 495 Nm : i was blown from the upper tuyere, and the oxygen ratio from the upper tuyere was 0.6 in total.
  • the amount of oxygen was 1.3 times the theoretical combustion oxygen amount of the coke, and the total amount of oxygen per t of waste was 162! 1 ⁇ 2 : ', and the waste was treated at the rate of 3. Ot / h of the above waste.
  • the generated gas was burned by the connected combustion equipment, and heat was recovered by the boiler and heat exchanger.
  • This example is an example of operation at the time of treatment of general waste at the one-stage tuyere.
  • the upper stage was not used, and only the lower stage tuyere was used for combustion and the gas for melting was supplied to melt the municipal waste.
  • the number of lower stage tuyeres was four. there were.
  • the quality of waste used was as follows.
  • the present embodiment is an example of an operation at the time of treatment for general waste treatment and high moisture waste (sludge) mixed treatment at a two-stage tuyere.
  • gas for combustion and melting was supplied from the upper and lower tuyeres, and the mixture was melted.
  • the interval between the upper tuyere and the lower tuyere was 500 mm, and the number of tuyeres was 8 for the upper tuyere and 4 for the lower tuyere, respectively.
  • the quality of waste used was as follows.
  • the operating conditions were adjusted so that the temperature of the exhaust gas from the furnace became appropriate.
  • the conditions are as follows: at the time of charging the waste, 6 () kg of coke and 20 kg of limestone are added per waste, and pure oxygen 50Nm : i at room temperature is added from the lower tuyere per t of waste Normal temperature air 185Nm 3 , 383 ⁇ 4 in total!
  • the combustion support gas enriched in the fuel was blown.
  • the Ri per waste t 1 30 ⁇ 600 Nm 3 The combustion support gas for oxygen is supplied, and the combustion support gas is supplied so that the amount of oxygen sent from the upper tuyere is 0.2 to 0.8 as a whole. Also, assuming that the oxygen concentration of the combustion supporting gas sent from the lower tuyere is 30% or more, the amount of oxygen sent from the lower tuyere is 0.8 times or more of the theoretical combustion oxygen amount of the coke. It can be seen that the supply amount should be adjusted as described above and the exhaust gas temperature on the waste packed bed should be set to 150 to 700 ° C.
  • the level of the upper end of the packed bed is measured by a weight type or an ultrasonic method for measuring the packed bed thickness, and when the layer thickness is changed, the level is increased or decreased. This will be implemented.
  • the continuous or semi-continuous supply of waste should be temporarily interrupted and the supply of waste should be resumed when the level reaches a predetermined level.
  • the opposite can be done to adjust the layer thickness.
  • Example 3 when (filled height) furnace bottom inner diameter of the furnace), 2.0, and when the packed bed height was 4 m, the crushed waste having a large specific surface area was treated, If the treatment is performed without changing the height of the packed bed, the exhaust gas temperature on the packed bed cannot be maintained at 150 ° C.
  • the height of the packed bed is reduced to 3 m by the operation of changing the layer thickness.
  • the exhaust gas temperature could be maintained at a temperature exceeding 200 ° C. without changing the conditions such as the oxygen amount, the coke supply amount, and the lower stage oxygen amount ratio.
  • (filled bed height) / (furnace bottom furnace inner diameter) was 1.5, 1.0 or more was secured, and stable operation was achieved without drift of exhaust gas.
  • FIGS. 2 (a) and 2 (b) are explanatory diagrams of the waste melting furnace of the present embodiment
  • FIG. 2 (a) is a longitudinal sectional view of the waste melting furnace
  • FIG. 2 (b) is FIG.
  • each upper tuyere 3 is provided with a shut-off valve 16 for controlling the blowing amount of the upper tuyere combustion support gas.
  • thermometers 1 are arranged at intervals in the cross-sectional direction of the shaft portion 1a, and a plurality of thermometers 1 are arranged in the height direction. 5 is installed, and the temperature of gas and solid in the melting furnace is measured. Place the thermometers 15 so that they are lined up above the upper tuyere 3.
  • thermometer measures the temperature of the solid, so the temperature reading shows a relatively low value. If any part is generated, or if a localized gas flow is occurring, the heat exchange between the solid and the gas is not sufficient, and the temperature indication indicates a relatively high temperature.
  • FIG. 3 is a time chart of the present embodiment.
  • thermometers 15a to 15d at a certain stage measure the temperature of the solid when the readings are below a specified value (0 in Fig. 3).
  • a specified value (0 in Fig. 3).
  • thermometer 15a for example, if the indication of the thermometer 15a exceeds a certain specified value (1 of thermometer 15a in Fig. 3), the heat exchange between solid and gas is not enough, Since it is in a defective state, the blowing amount of the upper combustion support gas in the upper tuyere 3a is reduced by the shut-off valve 16a, 3b, 3c and 3d are increased, and then the thermometer 15a When the reading falls below the specified value, open the shutoff valve 16a to return the upper combustion support gas charge to its original value.
  • a certain specified value (1 of thermometer 15a in Fig. 3
  • the part where the load is good is maintained in that state, and the heat exchange between the gas and the charge is sufficiently performed. Since the heat load is excessive in the part where the unloading failure occurs, the amount of heat generated by reducing the amount of the upper-stage combustion support gas is reduced, and the heat tends to be thermally balanced.
  • FIG. 4 is a time chart of another embodiment of the book.
  • the amount of blowing of the upper combustion support gas at each tuyere of the upper tuyere is constant.
  • the upper tuyere 3a does not blow the upper combustion support gas, and the same amount of the upper tuyeres from the remaining upper tuyeres 3b, 3c, and 3d Inject combustion support gas.
  • a predetermined time usually 10 minutes
  • the blowing of the upper combustion support gas in the upper tuyere 3c is stopped, and the blowing of the upper combustion support gas in the upper tuyere 3b is restarted.
  • the blowing of the upper combustion support gas in the upper tuyere 3d is stopped, and the blowing of the upper combustion support gas in the upper tuyere 3c is restarted at the same time.
  • the above operation is performed periodically, and the total gas volume per unit time of the upper tuyere is constant regardless of whether the upper tuyeres 3a to 3d stop blowing.
  • the processing amount 20 tons / day, two-stage tuyere stages, blade talkative four cases of the melting furnace Z stage, a total amount 400 Nm 3 / time of the upper combustion supporting gas, each upper tuyere 3 a to 3 d was repeated for 10 minutes, and then the pattern of stopping was repeated. As a result, it was effective in the case of waste having a relatively uniform composition.
  • thermometer 15a when treating waste with a very non-uniform composition, fluctuations in the unloading of the charge occur, and the indication of the thermometer 15a exceeds the specified value.
  • the upper-stage tuyere 3a is further reduced in the upper-stage combustion support gas injection amount, and thereafter, when the thermometer 15a reading becomes equal to or less than the specified value, the shut-off valve] fia is used to reduce the upper-stage combustion support gas injection amount to the above pattern. Therefore, the furnace was adjusted and the stable operation of the furnace was achieved.
  • thermometer 15 d of the upper tuyere 3 d exceeds the specified value, the blow-off amount of the upper combustion support gas 3 d of the upper tuyere 3 d is reduced by the shut-off valve 16 d.
  • the heat energy released uneconomically into the furnace exhaust gas can be used for the furnace reaction, and the amount of various auxiliary materials used can be reduced.
  • uniform loading and unloading of the charge shall be minimized, and in the case of cavitation, poor loading and poor heat exchange between the charge and the gas due to localized flow of gas shall be minimized. Can be done.
  • the amount of heat generated is reduced by reducing the amount of upper combustion support gas from the upper tuyere. Since the temperature decreases, local heating of the refractory on the furnace wall can be prevented, and the equipment life can be prolonged.
  • the recovery can be performed at an early stage, so that the processing speed of the waste can be increased on average.
  • the margin of the cross-sectional area of the waste melting furnace can be minimized, and the equipment can be made compact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

明 細 書
廃棄物溶融炉の燃焼溶融方法 技術分野
本発明は、 一般廃棄物、 産業廃棄物等の再処理廃棄物を溶融処理 する廃棄物溶融炉の最適処理方法を検討し、 廃棄物の質の変動に対 しても、 安定した操業ができ、 かつ廃棄物の広域処理化や他の焼却 灰、 埋め立てられた廃棄物、 汚泥等を同一の炉で処理するこ とを可 能とする廃棄物溶融炉の燃焼溶融方法に関する ものである。 従来の技術
近年都市の廃棄物を熱分解する方式が多く 提案され、 更に熱分解 残渣を溶融し体積を減少しかつ有害物を減少しょう という シ ャ フ ト 炉も多い。 特に特公昭 46 - 34349号、 特公昭 52 - 24790号公報等が先駆 的技術を提案している。 これらに開示される溶融式熱分解方式を第 1 図によ り説明する。 これは炉内の反応状態を示す図で、 廃棄物お よびコーク スは炉頂の投入口 (装入口) 1 1 からシ ャ フ ト部 l aに 装入され、 装入物 (充塡) 層を形成して順次下降しながら、 下方か ら上昇する反応 (熱分解ガス) ガスによって順次溶融処理される。 この処理により発生する排ガスは、 装入口に隣接して設けられる排 ガス管 (ダク 卜) 1 2から排ガス処理設備 (図示せず) に導入され 熱回収およびガス処理される。 具体的には、 投入口 1 1から炉に導入 されたごみはシ ャ フ 卜部 l aに堆積する。 この最上部 6 で廃棄物は水 分を失い、 乾燥する。 次いでシ ャ フ ト部の下部から朝顔部 5 は熱分 解帯 7 である。 このゾー ン内の下部には特に熱分解後の炭化物チ ヤ —が多く 存在する。 羽口から供給された燃焼支持ガスで落下したコ —ク ス、 石炭等の炭素系塊状可燃物 (以下コ一ク スという) および チヤ一が燃焼する。 こ こを燃焼溶解帯 8 と称する。 溶解したスラグ 、 鉄等は湯溜部 1 3に貯溜されるので、 この位置近傍に設けられてい る出滓孔 (図示しない) を間歇的に ドリ ル等で穿孔して排出する。 出滓が終ればモルタル等で閉じる。 符号 1 0は 5 , l aと対比し炉床部 と総称する。 燃焼および熱分解で生成したガスはダク ト 1 2から排出 される。
炉に入った廃棄物は乾燥、 熱分解、 燃焼溶融と三段階の経過で処 理される。 も し乾燥が十分行なわれないと水分の多い廃棄物が燃焼 溶融帯に入り こみ、 その結果燃焼溶融帯の温度を著し く 降下させる こ とになる。 従ってこの炉は乾燥が十分行なわれるだけの熱量と、 溶融が十分行なわれるだけの熱量および高熱が供給されねばならな いという二つの機能を同時に持つ必要がある。
さて、 都市の廃棄物は一例と して可燃分 47. 4 %、 厨芥 26. 6 %、 ゴ ム、 プラスチ ッ ク 8. 0 %、 不燃物 1 8. 0 % (ゥエ ツ トベース) を含み 、 水分は 40〜60 %にも達する。 従って溶融式熱分解炉を適用する場 合、 前述の理由から、 水分の乾燥に努力を払わねばならない。
この分野の公知技術の特公昭 6 0 ― 1 1 7 6 6 号公報においては 、 通常の廃棄物の質変動や広域処理化や、 他の焼却施設の焼却灰、 埋め立てられた廃棄物の再処理、 汚泥等との混合処理を同一炉で実 施する場合、 効率的に安定して操業するこ とができない。
すなわち、 水分、 不燃分のいずれかの割合が多い場合、 補助燃料 であるコーク スの使用量の増加、 それに伴って下段羽口から送り込 む酸素量の増加が必要であり、 逆に可燃分が多い場合、、 コ一ク ス使 用量の低減、 上段羽口での廃棄物の燃焼量を増加するこ とが安定的 に効率的に運転するために必要である。
また、 特公昭 6 3 — 3 2 0 7号および特公平 2 — 6 0 6 号公報に は、 充塡層上部の酸素濃度がほぼ 0、 かつ排ガス温度を 700 〜1 200 °Cに維持するために、 炭素系可燃物質の供給量および、 高温炉床へ の酸素含有ガス供給量を調節する方法、 また充填層上部の排ガス温 度を 400 〜 1 200 °Cに維持するために、 廃棄物の供給量を調節する方 法が開示されている。
前者では、 上段羽口が設置されている構成において、 そのまま適 用する こ と、 すなわち、 炭素系可燃物質の供給量と高温炉床への酸 素含有ガス (本発明では、 下段羽口から吹き込み) を調節するのみ では、 安定操業は不可能である。 これは、 炭素系可燃物質の供給量 と下段羽口からの酸素量を調節するのみでは、 燃焼溶融条件が変わ るのみなので、 特に可燃物が多い廃棄物では、 上段羽口での廃棄物 燃焼量を適正にするこ とが不可能であり、 安定操業とならない。 後者の場合においても、 乾燥、 熱分解、 燃焼溶融ゾーンの充塡層 を形成し、 上段羽口が設置されている構成において、 そのまま適用 する こ とは不可能である。 すなわち、 廃棄物の供給量は、 乾燥、 熱 分解、 燃焼溶融ズー ンそれぞれの処理速度の合計となるので、 上段 羽口での廃棄物燃焼量を適正に しない限り、 排ガス温度は調節不可 能となる。 発明の開示
従来の技術において、 可燃性物質を含む廃棄物は、 乾燥、 熱分解 、 燃焼溶融ゾーンに降下する不燃分と熱分解によって発生する熱分 解残澄の温度は、 十分高く 維持され、 安定した溶融が可能である。 しかし、 これは通常の廃棄物の質変動の範囲における ものであって 、 最近問題となっている廃棄物の広域処理化や他の焼却施設の焼却 灰、 埋め立てられた廃棄物、 汚泥等を同一の炉で処理する場合にお いては、 廃棄物の質変動が大き く 、 従来の技術では効率的、 安定的 な操業が困難となる。 本発明はこのような、 廃棄物の質が大き く 変 動する場合においても、 コークスおよび廃棄物中可燃物質の炉内で の燃焼を最適化して、 効率良く 処理するこ とを可能とする燃焼溶融 方法を実現することを目的とする。
また、 同一の充塡層の層厚で処理すると、 廃棄物の質が変動する と熱交換量が変動し、 排ガス温度を一定に維持するこ とが難し く な るが、 このような状態でも充塡層の層厚を調整する こ とによ って最 適操業に復帰させ、 安定操業を行う ことを可能とする。
さ らに、 本発明は、 廃棄物溶融炉の平面方向に複数本の上段羽口 が設置された廃棄物溶融炉内における横断面方向で装入物の荷下が りを均一にし、 また、 空洞部の発生による荷下がり不良や局部的な ガスの集中流れによる熱交換不良を最小限に抑えるために、 廃棄物 溶融炉の上段羽口燃焼支持ガス吹き込み量の制御方法を提供する も のである。 上記の目的を達成する本発明の要旨とすると ころは、 下 記のとおりである。
( 1 ) 可燃性物質を含む廃棄物と炭素系塊状可燃物を上部から供 給し、 乾燥、 熱分解、 燃焼 · 溶融ゾーンを持つ廃棄物の充塡層を形 成せしめ、 炉下部から溶融物を排出 し炉上部から可燃性ガスを排出 する廃棄物の熱分解溶融方法において、 前記燃焼 · 溶融ゾーンには 複数段配列した下段羽口を設け、 下段燃焼支持ガス (酸素を含有し たガス) の供給により炭素系塊状可燃物を主体に燃焼させ、 この羽 口上の位置に複数段配列した上段羽口を設け、 上段燃焼支持ガスの 供給により廃棄物の一部を燃焼させる際に、 前記上段燃焼支持ガス と下段燃焼支持ガスの合計で、 廃棄物 t 当たり 1 30 ~ 600 Nm :iの酸素 分を供給するよう にし、 前記上段羽口からの酸素量の割合が、 下段 と上段の合計の 0. 2 〜0. 8 となる様に前記上段羽口から上段燃焼支 持ガスを供給し、 さ らに前記下段羽口から供給する酸素量が炭素系 塊状可燃物の理論酸素量の 0.8 倍以上となるように供給量を調整し 、 かつ廃棄物の充塡層上の排ガス温度を 150 〜700 °Cとするこ とを 特徴とする廃棄物溶融方法。
( 2 ) 前記 ( 1 ) の廃棄物溶融方法において、 廃棄物の充塡層上 の排ガス温度の制御は廃棄物の充填層の層厚を調整する こ とによつ てなされるこ とを特徴とする廃棄物溶融方法。
( 3 ) 前記 ( 1 ) の廃棄物溶融方法において、 廃棄物溶融炉の横 断面方向に設置された複数本の上段羽口燃焼支持ガス吹込量の制御 は、 廃棄物溶融炉のシャ フ ト部の横断面方向に複数本、 且つ高さ方 向に複数段設置された温度計により溶融炉内の温度を測定し、 検出 された温度が規定範囲外の場合には、 上段羽口からの上段燃焼支持 ガス量を増減するこ とを特徴とする廃棄物溶融方法。
( 4 ) 前記 ( 1 ) の廃棄物溶融方法において、 下段燃焼支持ガス の酸素濃度は 3 0 %以上、 上段燃焼支持ガスの酸素濃度は 2 1 %以 下とするこ とを特徴とする廃棄物溶融方法。
( 5 ) 前記 ( 1 ) の廃棄物溶融方法において、 炭素系塊状可燃物 の性状は炭素 3 0 ドラィ%以上、 灰分 7 0 ドライ%以下である こ と を特徴とする廃棄物溶融方法。
( 6 ) 前記 ( 2 ) の廃棄物溶融方法において、 充塡層の層厚は、 下記数式を満足するこ とを特徴とする廃棄物溶融方法。
H / D≥ 1
但し、 H : 充塡層厚で、 下段羽口先端中心から充塡層上端までの 高さ (m)
D : 炉の最小内径 (m) 、 通常炉底部燃焼溶融ゾー ンでの 炉の内径 図面の簡単な説明 第 1 図は本発明に係る廃棄物溶融炉の概略を示す図である。
第 2 ( a ) 図は本発明の第 3 発明における廃棄物溶融炉の縦断面 図の説明図であり、 第 2 ( b ) 図は横断面図の説明図である。
第 3 図は本発明の第 3発明の実施例のタイムチヤ一 トを示す図で ある。
第 4 図は本発明の第 3 発明の別の実施例のタイムチヤ一 トを示す 図である。 発明を実施するための最良の形態
本発明者が多数の実験の結果から次の知見を得て、 本発明を達成 したものである。 第 1 には、 このシャフ ト炉におけるスラ グは 1350 〜 1550°C、 好ま し く は 1400~ 1500°Cで溶融して炉から排出されねば ならないこ とである。 スラ グが 1350°Cより低いと きは廃棄物中の鉄 が融解せず炉内に蓄積してシ ャ フ ト炉の機能を害してしま う。 一方 、 高温のスラ グは炉の耐火物を著し く 溶損するので高温過ぎても問 題となる。 このため、 最も最適な操業温度は炉から排出されるスラ グ温度で 1400~ 1500°Cである。
第 2 に、 このような高温度は廃棄物の可燃物の燃焼だけでは達成 できない。 前述したよう に、 廃棄物は相^の可燃分を含み、 1000〜 3000kcalZkgの低位発熱量を有する。 しかし高温を発して燃焼する ためには、 高濃度の酸素を含むガスで燃焼させねばならない。 本発 明では高濃度酸素の使用を減ずるために高温度を発して燃える コ一 ク スを使用するこ とと した。
単段の羽口のシ ャ フ ト炉で都市の一般廃棄物を処理したと ころ、 コ一ク スを廃棄物 t 当り 50~ 150kg 加えて、 燃焼用空気に酸素を富 ィ匕し、 25〜40%の酸素を含ませ、 羽匚 Iから吹き こむこ とによって、 上述のスラ グ温度で安定する こ とが分かった。 この場合、 平均の条 件と して、 酸素約 32 %にするために、 純酸素を廃棄物 t 当り 1 1 0 N m 3 、 コーク スを】 00 k g 使用 した。
この補助資材をできるだけ減少させるために、 本発明では 2段の 羽口による炉を用いる。 第 1 図のように下段の羽口 2 の上に新しい 羽口 3 を設け、 上段と下段で空気量を 2分し、 上段の空気は予熱す るこ とな く 、 下段の空気は酸素を富化し、 30〜40 %の酸素濃度と し 、 羽口から吹き こむこ とによって、 コークスの使用量はごみ t 当り 20 ~ 1 00k で済むこ とが分かった。 例えば平均の条件では下段の酸 素を 28 %と したとき純酸素はごみ t 当り 24 N m 3 でよ く 、 コークス は 20 k gでよい。
以上の実験から溶融炉の装置の僅かな改善でコ ーク ス、 純酸素の 補助資材が大巾に減らせる こ とが明らかになった。
このため、 シ ャ フ ト炉がどのような形状が最適であるかを実験し た。 炉を操業中羽口から燃焼支持ガスを送るこ とを中止し、 窒素を 送ると、 反応は停止し、 炉はそのまま凍結される。 このように して 調査すると、 炉は第 1 図に示すように上部では廃棄物はただ水分を 失い乾燥され、 ついで朝顔部の直前で熱分解を受ける。 このため朝 顔部には微粉の炭化物が存在する。 この状況から形状の変わらない ごみが朝顔部内上部で支持されるこ とが必要なものと思われ、 朝顔 部の必要性と、 この部分で粉状炭化物を燃焼させるため、 こ こ に上 段羽口を設置する理由が明らかである。 炉床部には下段羽口があり 、 こ こから燃焼支持流体が送り込まれ、 内部に存在するコーク スぉ よび固体廃棄物から生じた炭素分 (チ ヤ一) が燃焼する。 通常下段 羽口附近はコ一クスが溜ま っており、 下段羽口から 300mm ない し 50 0 mm はコ一ク スが集積しており、 これをコ一クスべッ ドと称する。 後述するよ う に本方法は炉の下部で高温で廃棄物中不燃物を溶融し 、 上部では低温の多量のガスで廃棄物を乾燥させる点に特徴がある 。 このためコーク スべッ ド上に空気を供袷し、 燃焼ガスの量を増し 、 著しい高温のガスを稀釈するこ とが好ま しい。 このよ うな見地か ら上段羽口 3 は、 下段羽口 2 より 300mm 以上に置く 。 更に距離が開 き過ぎると下部のガスが冷えすぎて、 上段の羽口 3 で再着火しない おそれが残る。 従って上段羽口 3 は下段羽口 2 の影響が残っている 範囲になければならない。
大型炉になる と、 下段羽口と上段羽口の距離が長く なるが、 その 場合は、 上段羽口を上下に複数段設置すれば前記問題がな く なる。
さて、 炉から排出するスラグ温度を 1 350〜 1 550 °Cに、 好ま し く は 1400〜 1 500 °Cにすべき ことは既述した。 1 段で、 下段の位置の羽口 のみで処理する場合は羽口附近で燃えるコ ークスの高温の燃焼によ り廃棄物中不燃物を溶融する。 ついでこの高温ガスによって廃棄物 の熱分解、 乾燥を行うため、 廃棄物の性質が変わり、 水分の多い場 合 (乾燥を強化せねばならない) や、 被溶融物の多い場合 (溶融の ため高温を得なければな らない) などへの対応ができなレ、。
本発明の 2段の羽口はごみ質の変化に対応できる と同時にコ一ク ス、 酸素等の補助資材を減らすこ とができる。 下段の羽口 2 は高温 を得る こ とが目的であり、 できるだけ高温が得られるよ うな条件に すればよい。 前述のスラ グ温度を得るためには常温の場合、 酸素 30 %以上に富化した空気を用いる必要があった。 酸素濃度の上限は、 特に規定しないが、 副資材であるコ一ク スと純酸素等の高濃度酸素 の使用量を総合的に抑え、 さ らに局部的な異常高温による炉壁の損 傷を抑えるために 4 0 %程度で十分である。 上段の羽口は高温を得 る必要がないので、 酸素富化をしない酸素濃度 2 1 %以下と し、 予 熱した空気または予熱しない空気、 または上段羽口近傍での高温化 によるク リ ン力の生成を抑えるために水蒸気、 窒素等の不活性ガス を空気に混入したり、 燃焼排ガス等の低酸素濃度ガスを空気に混入 したり、 単独に用いるこ とで燃焼温度を抑制するこ と もできる。 理論的には羽口を 2段にし、 下段で生じたガスをコ一クスベッ ド の上で燃やすと炭素が有効に燃焼し、 空気および純酸素から供給さ れる総酸素量は一段羽口より多く 必要となる。 しかし実験の結果同 一のコークス使用量の場合総酸素量はほぼ同一であった。 ただ 2段 羽口自身の効果でコーク ス使用量が減り、 これに応じて総酸素量も 減少した。
補助資材と してのコークスは通常考えられる固体廃棄物、 特に日 本国内で発生する一般廃棄物を処理するためには、 ごみ t 当たり 20 〜 1 00 k g 必要である。 通常発生する水分 40〜60 %のごみでは、 ごみ t 当り 30〜80 k gのコークスを要し、 水分または不燃分が多いごみで はコーク ス所要量が増える。
廃棄物の質が大き く 変動する場合、 以下の条件となるよう に操業 すると、 安定的および効率的に操業出来る こ とがわかった。
廃棄物 t 当たり に必要な酸素量は、 コーク ス所要量に応じて変化 するが、 1 30Nm 3以下にすると、 コ一クスおよび廃棄物中可燃分の炉 内での燃焼が不足し、 乾燥、 熱分解、 溶融に必要な熱量の維持がで きなく なる。 その結果溶融物の排出が困難となり、 操業が不可能と なる。 600Nm 3以上にする と、 コークスおよび廃棄物中可燃分の炉内 での燃焼が過剰となり、 排ガス温度が高く なるので効率的な操業に な らない。 下段羽口から送り込む下段燃焼支持ガスの酸素量を、 理 論燃焼酸素量の 0. 8 倍以上とするこ とで、 コーク スを完全燃焼し、 吸熱反応によるロスを抑えるこ とができるので、 最も効率的にコ一 ク スを利用 しつつ、 溶融、 乾燥用の熱源を確保するこ とができ、 排 ガス温度を高温に維持可能とする。
上段羽口からは、 その酸素量の割合が下段羽口から送り込む酸素 量と上段羽口のそれとの合計の 0. 2 〜 0. 8 となるように上段燃焼支 持ガスを供給する。 これが 0. 2 以下では、 廃棄物中の熱分解粉状炭 化物の燃焼を維持できず、 また 0. 8 以上では廃棄物中の熱分解粉状 炭化物に対し、 酸素が過剰となり、 部分的に還元燃焼状態が維持で きず、 排ガスカロ リが低下する。 この場合、 通常後段に 2 次燃焼室 を配置し完全燃焼をさせよう と しても、 自燃する こ とができな く な
^> o
廃棄物充塡層上の温度は、 1 50 〜700 °Cの範囲に規定するが、 さ らに安定的、 効率的な操業をするには、 好ま し く は 200 〜300 で ある。 排ガス温度を 1 50 QC未満では、 特に水分割合の大きい廃棄物 やプラ スチ ッ クの多い廃棄物等のタール発生割合が大きい廃棄物を 処理する場合には、 排ガス温度が低下し廃棄物の温度上昇が緩やか になり、 低温での熱分解により発生するタール分の割合が増大する 。 このため、 排ガス中のタール量が相乗的に増大するので、 熱分解 ゾー ンで発生したタール分は充填層上部の乾燥ゾー ンを通過する際 、 凝縮量が増大する。 その結果乾燥ゾー ンでの通気性を阻害し、 つ いには操業の継続を困難とする。
一方、 排ガス温度を 700 °C超にする と、 特に可燃分割合の小さい 廃棄物を処理する場合において、 高温での熱分解によ り熱分解ガス 化割合が増大するため、 炉内に残留する可燃性の熱分解残渣の量が 減少し、 炉内での廃棄物中可燃分の燃焼量が減少して、 その結果乾 燥熱源が不足し、 コー ク スの供給量を増大する必要が生じるので、 不経済な操業となる。 さ らに、 700 °C超では、 排ガス中で中和され ている塩素が、 CaC l 2 + H 2 0 →CaO + 2HC 1に代表される反応で、 塩 化水素ガスになり、 溶融炉頂部および排ガスダク 卜が腐食するので 、 設備と して耐食性を考慮した設計が必要となり設備コ ス ト の増大 を招く 。 また、 排ガス中の低融点化合物が、 溶融炉頂部および排ガ スダク 卜に付着するので長期の運転が困難となる。 以上のよ う に、 排ガス温度は、 廃棄物の質の変化を最もよ く 表す ので、 前記コー ク ス供給量、 酸素量、 下段酸素量の割合を調整する 重要な指標となる。 すなわち、 排ガス温度が低下する場合、 廃棄物 の水分も し く は灰分割合が多いので、 乾燥熱源、 溶融熱源を補完す るためにコ ー ク スの供給量を増加し、 それに伴い下段の酸素割合を 増加する。 逆に、 排ガス温度が上昇する場合、 可燃分が多いのでコ — ク スの供給量を減じ、 それに伴い下段羽口の酸素量割合を減じ、 上段羽口の酸素量割合を増加すれば、 可燃分の熱分解残渣の燃焼量 が増加して乾燥熱源が確保され、 不燃分も昇温される。 その結果、 相乗効果によ り さ らにコ一 ク スの供給量はさ らに削減可能となる。 つま り、 前述の関係から、 コー ク ス供給比率(kg/廃棄物 Oは、 下記 数式を満足するよう に調整し、 かつ上段羽口酸素量の割合で 0. 2 〜 0. 8 の範囲に調整し、 さ らに廃棄物 1 1当たり に必要な酸素量を調整 するこ とによ って、 排ガス温度を制御する。
( コ一ク ス供給比率) ≤ { 1 一( 上段羽口酸素量の割合) } ( 廃 棄物 I t当たりに必要な酸素量) Z ( コークス l kg 当たりの理論酸素 量) X 0. 8
前記コーク ス供給比率と下段羽口の酸素量割合の調整は、 人為的 または機械的等で制御してもよ く特に限定する ものではない。
本発明の第 2 発明においては、 廃棄物の質が大き く 変わる場合、 例えば同一の可燃分、 水分、 不燃分割合でも、 形状が異なる場合が ある。 これには一方が形状が大き く比表面積が小さ く 、 他方は形状 が小さ く 比表面積が大きい場合である。 この場合、 同一の充塡層の 層厚で処理すると、 形状が大き く比表面積が小さい場合は、 排ガス 温度を適正に保つこ とがてきても、 形状が小さ く 比表面積が大きい 場合は、 充填層での熱交換量は過剰になり、 排ガス温度を適正な 15 0 °C以上に維持するこ とが不可能な場合が発生する。 この対策と し て、 請求の範囲 1 のよ うに、 酸素量、 コ—クス供給速度、 下段酸素 量割合を調整する方法以外に、 さ らにそれらの条件を変えずに、 比 表面積の差がキャ ンセルされるよ うに、 充塡層の体積を変更する方 法でもよい。 この場合、 炉断面積は一定であるので、 第 2 発明に規 定する充塡層の層厚を調整する こ とによって、 安定操業を得る もの であ。。
充塡層の層厚は、 H/D ≥ 1 を満足する必要があり、 前記条件を満 足しない場合、 充塡層内のガス流れは偏り易 く なり、 充塡層の熱交 換効率が変動し、 安定した操業にならない。
以下に実施例によって本発明をさ らに説明する。 実施例
実施例 1
本実施例は、 2 段羽口での一般廃棄物を対象と した処理時の操業 例である。 第 1 図に示した炉を用いて、 上段および下段羽口から燃 焼 · 溶融用ガスを供給し前記一般廃棄物の溶融処理を行った。
この上段羽口と下段羽口の間隔は 5 0 0 m mで、 本数はそれぞれ 、 上段 8 本、 下段 4 本の羽口であった。
用いた廃棄物の質は下記のとおりであった。
水分 灰分 可燃分 低位発熱量
42.4% 15.0% 42.6% 1720kcal/kg
炉上からの排ガス温度が適正になるよう に操業条件を調整した。 その条件と して、 廃棄物の装入時、 廃棄物 t 当たり 3()kgのコ一クス と、 20kgの石灰石を加え、 廃棄物 t 当たり下段羽口からは常温の純 酸素 33Nm3 を添加した常温の空気 120Nm3、 合計で 38% に富化した燃 焼支持ガスを吹き込んだ。 上段羽口からは 495Nm:iの常温の空気を吹 き込み、 上段羽口からの酸素割合は全体の 0.6 で、 下段羽口からの 酸素量はコ一ク スの理論燃焼酸素量の 1.3 倍、 廃棄物 t 当たりの全 体の酸素量は 162!½:'であり、 上記廃棄物 3. Ot/hの割合で処理した。
その結果、 廃棄物 t 当たり 109kg のスラ グと 47kgのメ タルが溶融 され、 出滓口から排出された。 その時、 スラ グ温度は 1480°Cであつ た。 炉頂からは、 N2 :58.6¾, C02 :15.9¾, CO: 14.6%, H 2: 9.4¾, CH .: 1.5% のガスが 350 °Cの温度で、 廃棄物 t 当たり 1420Nm:l 発生した。
発生したガスは接続する燃焼設備で燃焼し、 ボイラおよび熱交換 器で熱回収を行つた。
なお、 上段羽口と下段羽口の間隔を、 1500および 2000mmと した場 合も試験的に実施したが、 前記操業条件を変える こ とな く 処理可能 であるこ とが確認できた。
実施例 2
本実施例は、 1 段羽口での一般廃棄物を対象と した処理時の操業 例である。 第 1 図に示した炉を用いて、 上段を用いず、 下段羽口の みで燃焼 , 溶融用ガスを供給し前記一般廃棄物の溶融処理を行った この下段羽口の本数は 4 本であった。
用いた廃棄物の質は下記のとおりであった。
水分 灰分 可燃分 低位発熱量
42.4¾ 15.0¾ 42.6¾ 1720kcal/kg
廃棄物の装入時、 廃棄物 t 当たり 60kgのコ一クスと、 20kgの石灰 石を加え、 廃棄物 t 当たり常温の純酸素 92Nm3 を添加した常温の空 気 334Nm:'、 合計で 38% に富化した燃焼支持ガスを用いて、 上記廃棄 物 3. Ot/hの割合で処理した。 下段羽口からの酸素量はコ一ク スの理 論燃焼酸素量の 1.7 倍、 廃棄物 当たりの全体の酸素量は 162Nm3で あり、
その結果、 廃棄物 t 当たり 109kg のスラ グと 47kgのメ タルが溶融 され、 出滓口から排出された。 その時、 スラ グ温度は 1490°Cであつ た。 炉頂からは、 N2 :42.5¾, C02: 19.0¾, C0:24.0¾, H2: 12.5%, CH, :2.0 % のガスが 340 °Cの温度で、 廃棄物 t 当たり 1210Nm:t 発生した。 発生したガスは接続する燃焼設備で燃焼し、 ボイ ラおよび熱交換 器で熱回収を行った。
実施例 3
本実施例は、 2 段羽口での一般廃棄物処理と高水分廃棄物( 汚泥 ) の混合処理を対象と した処理時の操業例である。 第 1 図に示した 炉を用いて、 上段および下段羽口から燃焼 · 溶融用ガスを供給し前 記混合物の溶融処理を行った。
この上段羽口と下段羽口の間隔は 500mm で、 本数はそれぞれ、 上 段 8 本、 下段 4 本の羽口であった。
用いた廃棄物の質は下記のとおりであった。
水分 灰分 可燃分 低位発熱量
61.6% 10.0% 28.4¾ 950kcal/kg
炉上からの排ガス温度が適正になるよう に操業条件を調整した。 その条件と して、 廃棄物の装入時、 廃棄物 当たり 6()kgのコー ク ス と、 20kgの石灰石を加え、 廃棄物 t 当たり下段羽口からは常温の純 酸素 50Nm:i を添加した常温の空気 185Nm3、 合計で 38¾! に富化した燃 焼支持ガスを吹き込んだ。 上段羽口からは 340Nm の常温の空気を吹 き込み、 上段羽口からの酸素割合は全体の 0.4 で、 下段羽口からの 酸素量はコ一クスの理論燃焼酸素量の 0. 9 倍、 廃棄物 t 当たりの全 体の酸素量は 159ΝΠΓ1であり、 上記廃棄物 3. Ot/hの割合で処理した。
その結果、 廃棄物 t 当たり 76kgのスラ グと 33kgのメ タルが溶融さ れ、 出滓口から排出されたい その時、 スラ グ温度は 1480°Cであった o 炉頂からは、 N2 :57.6¾, CO,: 17.0¾, C0:17.0¾, II, :7.3¾, CH 1.2¾;の ガスが 230 °Cの温度で、 廃棄物 t 当たり 1520ΝΠ)3 発生した。
] 4 発生したガスは接続する燃焼設備で燃焼し、 ボイ ラおよび熱交換 器で熱回収を行った。
以上の実施例の結果を第 1 表にま とめて示す。
第 1表 実施例 羽口 純酸素量 空気 純酸素 コ -クス 排ガス 上段羽口からの 下段羽口からの供給酸
No. 段数 (上段 + NmV NmV kg/ 温度 酸素供給割合 素量のコークス理論燃 下段) Nm3 廃棄物 。C 焼酸素量に対する割合 1廃棄物 t 物 t t t
1 2段 42.4 162 615 33 30 350 0.6 1.3
2 1段 42.4 162 334 92 60 340 0 1.7
3 2段 61.6 159 525 50 60 230 0.4 0.9
第 1 表から、 1 段羽口に対して 2 段羽口では、 コ 一 ク スおよび純 酸素の原単位が低下している。 また、 廃棄物中水分が多 く なる例に おいては、 排ガス温度が適正になるよう にするには、 コ一ク ス、 純 酸素等の条件の変更が必要となる。 本発明を用いると、 廃棄物の質 変動が大きい場合においても、 不経済に炉排ガス中に放出される熱 エネルギーを炉反応に利用でき、 各種の副原料使用量を減少させる こ とができ、 操業の トラブルも未然に防止して安定した操業ができ る。 つま り、 廃棄物の質に応じ、 コ ークス、 純酸素等の副原料を効 率的に利用 し、 トラブルのないよう に操業するには、 廃棄物 t 当た り 1 30 〜 600 Nm 3の酸素分の燃焼支持ガスを供給し、 上段羽口から送 り込む酸素量は全体の 0. 2 ~ 0. 8 となるよう に燃焼支持ガスを供給 する。 また、 下段羽口から送り込む燃焼支持ガスの酸素濃度は 30 % 以上と して、 コ ーク スは下段羽口から送り込む酸素量がコー ク スの 理論燃焼酸素量の 0. 8 倍以上となるよう に供給量を調節 し、 廃棄物 充塡層上の排ガス温度で 1 50 〜700 °Cとすればよいこ とがわかる。
また、 本発明の第 2 発明においては、 充塡層厚の測定のため重錘 式や超音波式等で、 充塡層上端のレベルを測定し、 層厚の変更は、 そのレベルを上下する こ とで実施する。
充塡層の層厚を減じるには、 それまで連続若し く は準連続の廃棄 物の供給を一時的に中断し、 所定のレベルになる と廃棄物の供給を 再開する。 層厚を増すには、 その逆を行う こ とで層厚を調節するこ とが可能となる。
前記実施例 3 において、 ( 充塡高さ)バ 炉底部炉内径), 2. 0 で、 充塡層高さ 4 mの条件にて、 破砕処理した比表面積の大きい廃棄物を 処理した場合、 充塡層の高さを変えずに処理を行う と、 充塡層上の 排ガス温度は、 1 50 °Cを維持できない。
そのため、 前記層厚の変更操作によって、 充塡層高さ 3mに減じる のみで、 酸素量、 コークス供給量、 下段酸素量割合等の条件を変更 するこ となく 、 排ガス温度を 200 °Cを越える温度に維持するこ とが できた。 この時、 ( 充填層高さ) / ( 炉底部炉内径) 1 . 5 で、 1 . 0 以 上が確保されているので、 排ガスの偏流もな く 安定した運転になつ た。
実施例 4
本発明の第 3 発明の実施例を説明する。 第 2 ( a ) 、 第 2 ( b ) 図は本実施例の廃棄物溶融炉の説明図で、 第 2 ( a ) 図は廃棄物溶 融炉の縦断面図、 第 2 ( b ) 図は横断面図である。
廃棄物溶融炉自体の構造は前述の従来の溶融炉と同 じであり、 各 上段羽口 3 には上段羽口燃焼支持ガス吹き込み量を制御する遮断弁 1 6が設け られている。
本発明においては、 横断面方向の装入物 〗 bの荷下がり及び空洞 を検出するため、 シャフ ト部 1 aの横断面方向に間隔をおいて複数 本、 高さ方向に複数段温度計 1 5を設置し、 溶融炉内のガス及び固体 の温度を測定する。 温度計 1 5の設置場所は、 上段羽口 3 の上へ並ぶ よう に設置する。
前記構成において、 装入物 1 bの荷下がりが安定し良好な場合、 温度計は固体の温度を測るため、 温度指示は比較的低い値を示 し、 一方、 荷下がりが不良な場合や空洞部が発生している場合、 また、 局部的なガスの集中流れが発生している場合は、 固体とガスの熱交 換が十分行われないため、 温度指示は比較的高い温度を示す。
第 3 図は、 本実施例のタイ ムチャー トである。
第 3 図において、 ある段の温度計 1 5 a〜 1 5 dの指示がある規定値 以下 (第 3 図において 0 ) の時は、 温度計 1 5 a〜1 5 dが固体の温度 を測るため、 固体が存在しており、 荷下がりが安定し良好な状態な ので、 遮断弁 1 6 a〜 1 6 d は開けたままの状態で所定量の上段燃焼支 持ガスを吹き込む。
一方、 例えば、 温度計 1 5 aの指示がある規定値を超えた場合 (第 3 図において温度計 1 5 aの 1 ) は、 固体とガスの熱交換が十分行わ れていないため、 荷下がり不良の状態となっているので、 遮断弁 1 6 a により上段羽口 3 aの上段燃焼支持ガス吹き込み量を減じ、 3 b, 3 c, 3 dは増加させ、 その後、 温度計 1 5 aの指示が規定値以下になった ら遮断弁 1 6 a を開いて上段燃焼支持ガス込み量をもとに戻す。
以上のように上段燃焼支持ガス吹き込み量を制御するこ とで、 荷 下がりが良好な部分はその状態を維持し、 ガスと装入物の熱交換が 十分に行われる。 荷下がり不良な部分は熱量が過剰なため、 上段燃 焼支持ガス量を減じるこ とで発生する熱量が低減し、 熱的にバラ ン スする方向へ行く 。
第 4 図は、 本の別実施例のタイ ムチャー トである。
第 4 図において、 廃棄物溶融炉内における装人物の荷下がりを均 一に して、 炉操業を安定化させるため、 上段羽口の各羽口の上段燃 焼支持ガス吹き込み量の増減を一定時間毎に周期的に行う操業方法 で、 吹き込みが開始されると、 上段羽口 3 aでは上段燃焼支持ガス を吹き込まず、 残りの上段羽口 3 b , 3 c , 3 dから同量の上段燃 焼支持ガスを吹き込む。 その後、 所定時間 (通常 1 0分) 後に、 上段 羽口 3 bの上段燃焼支持ガス吹き込みを停止する と同時に上段羽 U 3 aの上段燃焼支持ガス吹き込みを開始する。 さ らに、 所定時間後 に上段羽口 3 cの上段燃焼支持ガス吹き込みを停止すると同時に上 段羽口 3 bの上段燃焼支持ガス吹き込みを再開する。 その後、 所定 時間後に上段羽口 3 dの上段燃焼支持ガス吹き込みを停止すると同 時に上段羽口 3 cの上段燃焼支持ガス吹き込みを再開する。 以上の 動作を周期的に行う もので、 各上段羽口 3 a〜 3 dの吹き込み停止 にかかわらず、 上段羽口の単位時間当たりの総ガス量は一定である 例えば、 処理量 20 ト ン/日で、 羽口段数 2段、 羽口数 4 本 Z段の 溶融炉の場合、 上段燃焼支持ガスの総量 400Nm 3 /時間で、 各上段羽 口 3 a〜 3 dを順次 1 0分間吹き込み、 その後停止させるパター ンを 繰り返した結果、 組成が比較的均一な廃棄物の場合には有効であつ た。
と ころが、 組成が著し く 不均一な廃棄物を処理する場合、 装入物 の荷下がりの変動が生じ、 温度計 1 5 aの指示が規定値を超えるので 、 遮断弁 1 6 a によ り上段羽口 3 aの上段燃焼支持ガス吹き込み量を 減じ、 その後、 温度計 1 5 aの指示が規定値以下になる と遮断弁】 fi a により上段燃焼支持ガス吹き込み量を前記パタ ー ンに したがって調 整して、 安定した炉操業を行う ことができた。 上段羽口 3 d につい ても同様に、 温度計 1 5 dが規定値以上になった場合、 遮断弁 1 6 d に より上段羽口 3 dの上段燃焼支持ガス吹き込み量を減じる。
一度空洞が発生した場合は、 上段燃焼支持ガス量を増加し装入物 の処理速度を増加させるより も、 上段燃焼支持ガス量を減じ装入物 への浮力を低減するほうが空洞を埋めるのに要する時間が短く でき る。 産業上の利用可能性
本発明を用いると、 不経済に炉排ガス中に放出される熱エネルギ —を炉反応に利用でき、 各種の副資材使用量を減少させる こ とがで きる。 また、 装入物の荷下がりを均一にし、 また、 空洞が発生した 場合には荷下がり不良や局部的なガスの集中流れによる装入物とガ スの熱交換不良を最小限に抑えるこ とができ る。
また、 空洞部が発生し熱交換が不十分になつた場合でも上段羽口 からの上段燃焼支持ガス量を減じ発生する熱量を抑えるため、 ガス 温度は低下するので、 炉壁の耐火物の局部加熱を防止するこ とが可 能となり、 設備寿命を長く する ことができる。
本発明では、 ガス流の集中部位が発生し、 廃棄物とガスの熱交換 量が低下しても、 早期に回復できるので、 廃棄物の処理速度を平均 的にア ップさせるこ とが可能となり、 また、 廃棄物溶融炉断面積の 余裕を極小にする こ とが可能となり、 設備をコ ンパク 卜にするこ と ができる。
また、 ガス流の集中部位が発生した場合でも早期に回復し、 安定 操業できるので、 ボイ ラ ター ビンを設置 し、 エネルギー回収をする 場合も、 発電効率が平均的にア ップし省エネに寄与する。

Claims

請 求 の 範 囲
1. 可燃性物質を含む廃棄物と炭素系塊状可燃物を上部から供給 し、 乾燥、 熱分解、 燃焼 · 溶融ゾー ンを持つ廃棄物の充塡層を形成 せしめ、 炉下部から溶融物を排出 し炉上部から可燃性ガスを排出す る廃棄物の熱分解溶融方法において、 前記燃焼 · 溶融ゾー ンには複 数段配列した下段羽口を設け、 下段燃焼支持ガス (酸素を含有した ガス) の供給により炭素系塊状可燃物を主体に燃焼させ、 この羽口 上の位置に複数段配列した上段羽口を設け、 上段燃焼支持ガスの供 給によ り廃棄物の一部を燃焼させる際に、 前記上段燃焼支持ガスと 下段燃焼支持ガスの合計で、 廃棄物 t 当たり 1 30 〜6 () 0 Νπτ'の酸素分 を供給するよう にし、 前記上段羽口からの酸素量の割合が、 下段と 上段の合計の 0. 2 〜0. 8 となる様に前記上段羽口から上段燃焼支持 ガスを供給し、 さ らに前記下段羽口から供給する酸素量が炭素系塊 状可燃物の理論酸素量の 0. 8 倍以上となるよ うに供給量を調整し、 かつ廃棄物の充塡層上の排ガス温度を 1 50 〜700 °Cとする こ とを特 徴とする廃棄物溶融方法。
2. 請求の範囲 1 の廃棄物溶融方法において、 廃棄物の充塡層上 の排ガス温度の制御は廃棄物の充塡層の層厚を調整するこ とによつ てなされるこ とを特徴とする廃棄物溶融方法。
3. 請求の範囲 1 の廃棄物溶融方法において、 廃棄物溶融炉の横 断面方向に設置された複数本の上段羽口燃焼支持ガス吹込量の制御 は、 廃棄物溶融炉のシ ャ フ ト部の横断面方向に複数本、 且つ高さ方 向に複数段設置された温度計により溶融炉内の温度を測定し、 検出 された温度が規定範囲外の場合には、 上段羽口からの上段燃焼支持 ガス量を増減することを特徴とする廃棄物溶融方法。
4. 請求の範囲 1 の廃棄物溶融方法において、 下段燃焼支持ガス の酸素濃度は 3 0 %以上、 上段燃焼支持ガスの酸素濃度は 2 1 %以 下とする こ とを特徴とする廃棄物溶融方法。
5. 請求の範囲 1 の廃棄物溶融方法において、 炭素系塊状可燃物 の性状は炭素 3 0 ドライ%以上、 灰分 7 0 ドライ %以下である こ と を特徴とする廃棄物溶融方法。
6. 請求の範囲 2 の廃棄物溶融方法において、 充塡層の層厚は、 下記数式を満足するこ とを特徴とする廃棄物溶融方法。
Ε / Ό ≥ I
但し、 H : 充塡層厚で、 下段羽口先端中心から充壙層上端までの 高さ (m )
D : 炉の最小内径 (m ) 、 通常炉底部燃焼溶融ゾー ンでの 炉の内径
PCT/JP1997/002149 1996-06-24 1997-06-23 Procede de brulage/fusion pour four de fusion des dechets WO1997049954A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97927421A EP0846919B1 (en) 1996-06-24 1997-06-23 Burning/melting method of waste melting furnace
US09/029,103 US6189462B1 (en) 1996-06-24 1997-06-23 Burning/melting method of waste melting furnace
DE69724562T DE69724562T2 (de) 1996-06-24 1997-06-23 Verbrennungs/schmelzverfahren für einen abfallschmelzofen

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8/163460 1996-06-24
JP16345896A JPH109540A (ja) 1996-06-24 1996-06-24 廃棄物溶融炉のコークス装入方法
JP8163460A JPH109530A (ja) 1996-06-24 1996-06-24 廃棄物溶融炉の副原料装入方法
JP8/163458 1996-06-24
JP16345996A JPH109554A (ja) 1996-06-24 1996-06-24 廃棄物溶融炉の上段羽口空気吹き込み量の制御方法
JP8/163459 1996-06-24

Publications (1)

Publication Number Publication Date
WO1997049954A1 true WO1997049954A1 (fr) 1997-12-31

Family

ID=27322168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002149 WO1997049954A1 (fr) 1996-06-24 1997-06-23 Procede de brulage/fusion pour four de fusion des dechets

Country Status (4)

Country Link
US (1) US6189462B1 (ja)
EP (1) EP0846919B1 (ja)
DE (1) DE69724562T2 (ja)
WO (1) WO1997049954A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1318321B1 (it) * 2000-02-18 2003-08-25 Tesi Ambiente S R L Impianto per il trattamento dei combustibili da rifiuto.
US6389996B1 (en) * 2001-07-06 2002-05-21 Sung-Chuan Mai Incinerator
US7841282B2 (en) * 2006-09-21 2010-11-30 John Kimberlin Apparatus, system, and method for operating and controlling combustor for ground or particulate biomass
JP4593688B1 (ja) * 2010-03-18 2010-12-08 株式会社プランテック 竪型ごみ焼却炉における燃焼用空気の供給方法及び竪型ごみ焼却炉
JP5601688B2 (ja) * 2011-01-13 2014-10-08 新日鉄住金エンジニアリング株式会社 シャフト炉式ガス化溶融炉における吹き抜け解消方法
CN104140851B (zh) * 2014-08-12 2017-10-31 余式正 一种无二噁英和无废气排放的立式负压垃圾干馏焚烧炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813916A (ja) * 1981-07-20 1983-01-26 Osaka Gas Co Ltd 廃棄物溶融方法
JPH01184314A (ja) * 1988-01-14 1989-07-24 Nippon Steel Corp 廃棄物溶融炉
JPH02192508A (ja) * 1989-01-19 1990-07-30 Mitsubishi Heavy Ind Ltd 粉状廃棄物溶融炉における燃焼方法
JPH04122488A (ja) * 1990-09-14 1992-04-22 Osaka Gas Co Ltd 廃棄物溶融炉
JPH08159436A (ja) * 1994-12-08 1996-06-21 Nippon Steel Corp 廃棄物溶融炉の燃焼制御方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE786025A (fr) 1971-07-09 1973-01-08 Union Carbide Corp Procede d'incineration d'ordures
FI50663C (fi) * 1973-03-21 1976-05-10 Tampella Oy Ab Palamisilman syötön ja happiylimäärän säädön järjestely jätteenpolttou unissa
JPS5224790A (en) 1975-08-15 1977-02-24 American Can Co Article and method of producing same
LU77677A1 (ja) * 1977-07-01 1977-10-07
JPS6011766B2 (ja) * 1978-12-25 1985-03-28 新日本製鐵株式会社 廃棄物の溶融式熱分解炉における燃焼支持ガス吹込方法
LU81572A1 (de) * 1979-08-02 1981-03-24 Arbed Verfahren zur regelung des waermehaushalts in einem schachtofen und hierzu verwendetes mittel
US4346661A (en) * 1980-03-20 1982-08-31 Osaka Gas Kabushiki Kaisha Furnace for treating industrial wastes
JPS5712216A (en) 1980-06-25 1982-01-22 Osaka Gas Co Ltd Method of melting waste
GB2136939B (en) * 1983-03-23 1986-05-08 Skf Steel Eng Ab Method for destroying refuse
JPS6011766A (ja) * 1983-06-30 1985-01-22 Fujitsu Ltd 自動クラツチの制御方式
US4655146A (en) * 1984-08-01 1987-04-07 Lemelson Jerome H Reaction apparatus and method
DE3563790D1 (en) * 1985-03-05 1988-08-18 Wamsler Herd & Ofen Gmbh Method of controlled burning of a pile of solid fuel particularly of wood piled up in a vertical fire stack of a stove as well as stove for carrying out the method
DE3910215A1 (de) * 1989-03-30 1990-10-04 Saarbergwerke Ag Verfahren zur verwertung von klaerschlamm
US5127344A (en) * 1990-02-12 1992-07-07 Kabushiki Kaisha Plantec Incinerator and incinerating method employing the same
DE4104507C2 (de) * 1991-02-14 1997-08-07 Elsner Emil Dr Ing Verfahren und Vorrichtung zum Verarbeiten von Abfallstoffen, insbesondere Hausmüll, zu einem brennbaren Gasgemisch, Metallen und Schlacke
JPH0894031A (ja) * 1994-09-21 1996-04-12 Nkk Corp 廃棄物ガス化溶融炉
US5628261A (en) * 1995-03-20 1997-05-13 Chemical Lime Company Method and furnace for decomposing solid waste materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813916A (ja) * 1981-07-20 1983-01-26 Osaka Gas Co Ltd 廃棄物溶融方法
JPH01184314A (ja) * 1988-01-14 1989-07-24 Nippon Steel Corp 廃棄物溶融炉
JPH02192508A (ja) * 1989-01-19 1990-07-30 Mitsubishi Heavy Ind Ltd 粉状廃棄物溶融炉における燃焼方法
JPH04122488A (ja) * 1990-09-14 1992-04-22 Osaka Gas Co Ltd 廃棄物溶融炉
JPH08159436A (ja) * 1994-12-08 1996-06-21 Nippon Steel Corp 廃棄物溶融炉の燃焼制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0846919A4 *

Also Published As

Publication number Publication date
EP0846919A4 (en) 1999-12-08
DE69724562T2 (de) 2004-04-08
EP0846919B1 (en) 2003-09-03
DE69724562D1 (de) 2003-10-09
US6189462B1 (en) 2001-02-20
KR19990044091A (ko) 1999-06-25
EP0846919A1 (en) 1998-06-10

Similar Documents

Publication Publication Date Title
WO2013128524A1 (ja) 廃棄物ガス化溶融炉
EP1347236A1 (en) Waste-gasified fusion furnace and method of operating the fusion furnace
JP2010043840A (ja) 廃棄物溶融処理方法および廃棄物溶融処理装置
WO1997049954A1 (fr) Procede de brulage/fusion pour four de fusion des dechets
JP5611418B2 (ja) ガス化溶融システムの燃焼制御方法及び該システム
JP4276559B2 (ja) バイオマスを利用する廃棄物溶融処理方法
JPH0129847B2 (ja)
EP1367323A1 (en) Gasification melting furnace and gasification melting method for combustible refuse and/or burned ash
JP2002372216A (ja) 廃棄物ガス化溶融炉
WO2014157466A1 (ja) 廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法
JP4918834B2 (ja) 廃棄物溶融炉および廃棄物溶融炉の操業方法
JP3742441B2 (ja) シャフト炉方式の廃棄物の溶融炉における燃焼温度調整方法
JP4126317B2 (ja) ガス化溶融システムの運転制御方法及び該システム
JP6016196B2 (ja) 廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法
JP5605576B2 (ja) 廃棄物ガス化溶融装置
JP4589226B2 (ja) 燃料用炭化物および燃料ガスの製造方法
JP3734177B2 (ja) 塵芥の溶融方法
JP2019190730A (ja) 廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法
JP3438573B2 (ja) 廃棄物のガス化溶融炉およびガス化溶融方法
KR101281016B1 (ko) 미분화되지 않은 고형물 상태의 석유코크스 연료를 사용하여 순환 부상 연소방식으로 우수한 연소효율을 갖도록 하는 가스연료화 시스템 및 장치.
KR100310857B1 (ko) 폐기물용해로의연소및용해방법
KR20070026568A (ko) 폐기물 용융로의 송풍구 구조 및 가연성 더스트의 취입방법
JP2006207912A (ja) 廃棄物溶融処理方法及び廃棄物溶融処理炉
JP2001227713A (ja) 塵芥の溶融炉
JP4791889B2 (ja) 廃棄物溶融処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997927421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09029103

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980701324

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997927421

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980701324

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980701324

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997927421

Country of ref document: EP