WO2013128524A1 - 廃棄物ガス化溶融炉 - Google Patents

廃棄物ガス化溶融炉 Download PDF

Info

Publication number
WO2013128524A1
WO2013128524A1 PCT/JP2012/007596 JP2012007596W WO2013128524A1 WO 2013128524 A1 WO2013128524 A1 WO 2013128524A1 JP 2012007596 W JP2012007596 W JP 2012007596W WO 2013128524 A1 WO2013128524 A1 WO 2013128524A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
melting furnace
furnace
grate
carbonization
Prior art date
Application number
PCT/JP2012/007596
Other languages
English (en)
French (fr)
Inventor
淳志 小林
吉浩 石田
博久 梶山
純一 高田
信宏 谷垣
諒 牧志
将治 平倉
泰佳 藤永
Original Assignee
新日鉄住金エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金エンジニアリング株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Priority to KR1020147021786A priority Critical patent/KR101890873B1/ko
Priority to SG11201404073RA priority patent/SG11201404073RA/en
Priority to CA2865581A priority patent/CA2865581C/en
Priority to US14/372,319 priority patent/US10047954B2/en
Priority to CN201280068994.XA priority patent/CN104094059B/zh
Priority to EP12869814.9A priority patent/EP2821702B1/en
Priority to BR112014021343A priority patent/BR112014021343B8/pt
Priority to AU2012371991A priority patent/AU2012371991B2/en
Priority to ES12869814.9T priority patent/ES2639845T3/es
Publication of WO2013128524A1 publication Critical patent/WO2013128524A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/444Waste feed arrangements for solid waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/101Combustion in two or more stages with controlled oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/101Furnace arrangements with stepped or inclined grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/10Supplementary heating arrangements using auxiliary fuel
    • F23G2204/101Supplementary heating arrangements using auxiliary fuel solid fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a waste gasification and melting furnace for drying and pyrolyzing waste charged from the top of the furnace, further melting the pyrolysis residue and recovering the molten residue from the bottom of the furnace.
  • waste such as general waste and industrial waste
  • a method of melting waste in an industrial furnace using a carbon-based solid fuel such as coke as a melting heat source there is a method of melting waste in an industrial furnace using a carbon-based solid fuel such as coke as a melting heat source.
  • Disposal of waste by melting has an advantage that not only the volume of waste can be reduced, but also incinerated ash and incombustible waste that have been finally disposed of by landfill can be recycled as slag or metal.
  • a shaft type gasification melting furnace As a facility for melting waste, a shaft type gasification melting furnace is known (for example, see Patent Document 1 and Patent Document 2).
  • the waste gasification and melting furnaces disclosed in Patent Documents 1 and 2 have a furnace body including a cylindrical shaft portion (straight barrel portion), an inverted truncated cone portion (morning glory portion), and a furnace bottom portion, Upper and lower tuyere are provided to blow a combustion support gas such as oxygen-enriched air into the furnace.
  • Patent Documents 1 and 2 are charged with waste and coke from the top of the furnace, and exchange heat between the waste that descends in the shaft and the air blown from the upper tuyere.
  • the waste is dried and pyrolyzed.
  • the pyrolysis residue of the dried and pyrolyzed waste falls to the bottom of the furnace and melts using the combustion heat of coke as a heat source.
  • a molten residue is extracted from a furnace bottom part, and slag and a metal are collect
  • the waste gasification and melting furnaces disclosed in Patent Documents 1 and 2 cause a blow-through phenomenon or the like particularly when the oxygen ratio from the upper tuyere exceeds a majority, as described in the literature. Furnace operation becomes unstable due to fluctuations in the furnace pressure. Therefore, in the actual operation of the furnace, the oxygen ratio from the lower tuyere is 70 to 80%, and the oxygen ratio from the upper tuyere is 20 to 30%.
  • the shaft-type gasification melting furnace has a structure in which the air blown from the upper tuyere does not reach the central region of the shaft part. Decomposition becomes insufficient, and the amount of moisture and volatile components brought into the furnace bottom increases.
  • the present invention has been made to solve the above-described problems, and its purpose is to promote the drying and thermal decomposition of waste in the shaft portion, and to bring moisture and volatile components into the furnace bottom.
  • An object of the present invention is to provide a waste gasification and melting furnace that can suppress and reduce the consumption of excess coke.
  • Another object of the present invention is to improve the thermal decomposition efficiency of the waste, thereby suppressing the waste with insufficient thermal decomposition from being brought into the furnace bottom and reducing the combustion load at the furnace bottom. .
  • the gist of the present invention is as follows. (1) A waste gas inlet and an in-furnace gas discharge port on the upper side, an opening through which waste is discharged on the bottom side, and a shaft portion for drying and thermally decomposing waste filled therein, The shaft portion is arranged with the furnace core shifted, and has an opening for supplying pyrolyzed waste and carbon-based solid fuel on the upper side, and a tuyere for blowing oxygen-enriched air for combustion on the furnace bottom side.
  • a waste gasification melting furnace comprising: a melting furnace part; and a communication part that connects a bottom side opening of the shaft part and an upper side opening of the melting furnace part, the waste filled in the shaft part
  • a carbonization grate portion disposed at a position to receive a load of an object, a blower that blows air for drying / pyrolysis from the carbonization grate portion into the shaft portion, and a thermal decomposition on the carbonization grate portion Supply to the upper side opening of the melting furnace
  • the carbonization grate part includes a supply carbonization grate arranged on the upper stage side and a dry distillation carbonization grate arranged on the lower stage side, and the supply device
  • the 1st supply apparatus which supplies the waste on a carbonization grate toward the said carbonization carbonization grate
  • the 2nd supply apparatus which supplies the carbonized waste on the said carbonization carbonization grate toward the said melting furnace part In order to promote drying / pyrolysis using the combustion heat of the waste
  • the blower is configured so that the moisture in the waste supplied from the carbonization grate portion to the melting furnace portion is 10% or less and the remaining amount of fixed carbon is 3% or more.
  • the waste gasification and melting furnace according to (1) wherein an amount of air blown into the furnace from the carbonization grate is adjusted.
  • the supply speed of the supply device is set so that the waste filling height in the melting furnace section is maintained within a range from +0.5 m above the tuyere to the lowest end of the carbonization grate section.
  • the carbonization grate portion has a carbonization grate burning rate within a range of 300 kg / (m 2 ⁇ h) to 500 kg / (m 2 ⁇ h).
  • the waste gasification melting furnace according to any one of the above.
  • the melting furnace portion has a cylindrical shape, and an inverted truncated cone portion is formed between the opening portion to which the waste from the carbonization grate portion is supplied and the tuyere.
  • the waste gasification and melting furnace according to any one of (1) to (8), wherein the angle of inclination of the inverted truncated cone portion is greater than 75 degrees.
  • the carbonization grate portion is disposed at a position where the load of the waste charged in the shaft portion is received, and the drying occupies 60% or more of the total oxygen amount blown into the furnace through the carbonization grate portion.
  • Air distribution for thermal decomposition is blown into the shaft, and less than 40% of the total amount of oxygen blown into the furnace is distributed from the tuyere of the melting furnace, and the carbonization grate is discarded in the melting furnace.
  • the furnace supply speed (V2) is set higher (V2> V1) than the speed (V1) at which the supply carbonization grate supplies waste to the carbonization carbonization grate (V2> V1).
  • the moisture in the waste supplied from the carbonization grate part to the melting furnace part is 10% or less, and the residual amount of fixed carbon is 3% or more,
  • the amount of oxygen corresponding to the adjusted amount of air is 60% or more of the total amount of oxygen in the entire furnace, compared with the conventional case.
  • the amount of oxygen in the entire furnace without increasing the amount of oxygen in the entire furnace, it is possible to supply the molten furnace part with a property suitable for melting in consideration of the balance between moisture and residual fixed carbon.
  • unnecessary combustion loads other than melting in the melting furnace section can be reduced more reliably, and consumption of excess carbon-based solid fuel can be suppressed.
  • the oxygen generator can be made compact, and the power consumption of the oxygen generator can be greatly reduced. It is.
  • the carbonization grate part has a two-stage configuration of a supply carbonization grate and a carbonization carbonization grate, and a rate (V2) of supplying waste from the carbonization carbonization grate to the melting furnace part is set.
  • the thermal decomposition efficiency can be reduced by reducing the layer thickness of the waste on the dry carbonization grate by setting the rate larger than the supply rate (V1) of the waste from the supply carbonization grate to the dry carbonization grate. Can be improved.
  • the carbonization fire is so maintained that the filling height of the waste in the melting furnace is maintained in a range from +0.5 m above the tuyere to the lowest end of the carbonization lattice part.
  • the minimum filling height that can suppress the leakage of oxygen from the melting furnace part to the communicating part is ensured.
  • the melting furnace part is cylindrical, an inverted truncated cone part is formed between the upper opening to which waste is supplied and the tuyere, and the inclination angle of the inverted truncated cone part is 75 degrees. By making it larger, it is possible to prevent the shelf from hanging.
  • the theoretical combustion oxygen amount (M1) of fixed carbon contained in the carbon-based solid fuel is divided by the total oxygen amount (M2) of oxygen-enriched air blown into the melting furnace section from the tuyere.
  • the present invention by adopting a configuration in which the charging position in the furnace is changed in accordance with the type or properties of the waste, for example, the waste having a low moisture content or the waste having a high ash content is included in the melting furnace section. It is possible to prevent the shaft portion from passing therethrough. As a result, it becomes possible to improve the drying / pyrolysis efficiency in the shaft portion and the carbonized grate portion. Moreover, the effect which reduces the quantity of the ash which falls from the clearance gap between the grate of a carbonization grate part can also be expected.
  • the carbonization grate portion is configured so that the combustion rate of the carbonization grate is in the range of 300 kg / (m 2 ⁇ h) to 500 kg / (m 2 ⁇ h), It is possible to generate waste that is 10% or less and in which fixed carbon is suitably left, and supply it to the melting furnace section. A suitable residual amount of fixed carbon is 3% or more.
  • FIG. 1 is a longitudinal sectional view showing a waste gasification melting furnace according to a preferred embodiment of the present invention. It is a figure for demonstrating the shape of the said waste gasification melting furnace. It is a graph which shows the test result of the coke ratio of the said waste gasification melting furnace, and the oxygen ratio of a carbonization grate part.
  • FIG. 4 (a) is a graph showing the test results of the moisture and residual fixed carbon after carbonization in the carbonization grate
  • FIG. 4 (b) shows the slag temperature when the waste is melted. It is a graph which shows a result. It is a figure which shows typically the mode of the waste carbonized by the said carbonization grate part.
  • FIG. 6A is a graph showing a test result of the burning rate of the carbonization grate and the moisture content of the waste
  • FIG. 6B is a graph showing a result of the slag temperature when the waste is melted.
  • It is a graph which shows the test result of the melting furnace fuel ratio and slag temperature of the said waste gasification melting furnace.
  • It is a graph which shows the test result of the furnace bottom level and slag temperature of the said waste gasification melting furnace.
  • It is a graph which shows the test result of the carbonization grate part temperature and slag temperature of the said waste gasification melting furnace.
  • FIG. 1 shows a longitudinal sectional view of a waste gasification melting furnace according to the present embodiment.
  • the waste gasification and melting furnace 1 includes, for example, a shaft portion 2 that dries and pyrolyzes waste under a reducing atmosphere, and carbonizes to further pyrolyze the dried and pyrolyzed waste to generate carbonized waste.
  • a grate part 3 and a melting furnace part 4 for further burning and melting carbonized waste are provided.
  • the shaft portion 2 and the melting furnace portion 4 are disposed so as to relatively shift the furnace core in the lateral direction, and the bottom side opening of the shaft portion 2 and the upper side opening of the melting furnace portion 4 communicate with each other. Are connected through.
  • the carbonized grate part 3 is arranged in a stepped manner on the bottom surface side of the communication part 5.
  • the shaft portion 2 is formed in a cylindrical shape, for example.
  • a waste inlet 21 is formed for charging the waste to be processed into the furnace.
  • an in-furnace gas exhaust port 22 is formed on the upper side of the shaft portion for discharging gas generated by thermal decomposition of waste and gas blown into the furnace.
  • the bottom surface of the cylindrical shaft portion 2 is an opening 23 through which waste that falls by its own weight in the shaft is discharged.
  • the inner diameter and height of the shaft portion 2 can be appropriately determined according to the processing capacity of the furnace, etc., but the height at which the filling height of the waste in the shaft can be managed at least 1 m from the lower end surface. It is preferable to make it. By ensuring the filling height to be 1 m or more, it is possible to suppress the occurrence of the blow-in phenomenon of the in-furnace gas in the shaft.
  • the melting furnace part 4 is formed in a cylindrical shape, for example.
  • An auxiliary material inlet 41 for charging carbon-based solid fuel into the furnace is formed in the upper part of the melting furnace section 4. Further, the bottom of the melting furnace 4 is burned with the carbon-based solid fuel charged and the combustible pyrolysis residue (fixed carbon) of the carbonized waste supplied from the carbonization grate 3.
  • a plurality of tuyere 42 for blowing oxygen-enriched air into the furnace is arranged in the circumferential direction.
  • the oxygen-enriched air blown into the furnace from the tuyere 42 is, for example, air whose oxygen concentration is increased by mixing oxygen from the oxygen generator 43.
  • the carbon-based solid fuel may be charged from the waste charging port 21 together with the waste.
  • the carbon-based solid fuel is coke, biomass carbide or the like, but other carbon-based combustible materials can also be used.
  • limestone or the like as a basicity adjusting agent can be charged from the auxiliary material charging port 41.
  • a hot water outlet 44 for discharging molten residue (that is, slag and metal) is provided.
  • the hot water outlet 44 is provided with an open / close mechanism (not shown), and intermittently discharges molten residue.
  • the molten residue discharged outside the furnace is cooled and solidified, and further separated into slag and metal.
  • the slag temperature of the furnace bottom (the temperature of the molten residue actually measured) is 1450 ° C. or higher. If slag temperature is 1450 degreeC or more, the quality slag which suppressed the content rate of lead (Pb) can be obtained.
  • the slag temperature at the bottom of the furnace is preferably 1450 ° C. or higher in order to perform stable operation of the furnace.
  • the melting furnace portion 4 forms an inverted truncated cone portion (so-called morning glory portion) 45 that forms a constricted portion between a position where it is connected to the communication portion 5 (that is, the lowermost end of the carbonization grate portion 3) and the tuyere 42. It is preferable to set the inclination angle ⁇ of the inverted truncated cone part 45 to be larger than 75 degrees. When the inclination angle ⁇ of the inverted truncated cone part 45 is 75 degrees or less, particularly 70 ° C. or less, the unloading stagnate particularly due to friction with the wall surface of the inverted truncated cone part 45, and a waste shelving phenomenon occurs inside. There is a case.
  • the inclination angle ⁇ of the inverted truncated cone part 45 is set to be larger than 75 degrees to promote the unloading of the filler in the melting furnace part 4 and prevent the shelf hanging phenomenon from occurring.
  • the melting furnace portion 4 is formed in a rectangular shape instead of a cylindrical shape, both side surfaces in the width direction of the furnace are inclined at an inclination angle ( ⁇ ) larger than 75 degrees as shown in FIG.
  • the communicating part 5 has a longitudinal section formed in a rectangular shape, and the carbonized fire grate part 3 is arranged along the bottom surface.
  • the carbonized grate part 3 further thermally decomposes the waste dried and thermally decomposed by the shaft part 2.
  • the amount of air is adjusted so that the inside of the furnace has a reducing atmosphere, and the waste is pyrolyzed (dry-distilled) and carbonized so that combustion proceeds and ash is not generated.
  • the carbonization grate unit 3 is a device for thermally decomposing (dry distillation) the waste, and also serves as a supply device for supplying the carbonized waste to the melting furnace unit 4.
  • the carbonized grate portion 3 is formed by alternately combining a movable grate and a fixed grate in a staircase shape or an inclined shape, and each movable grate is connected to a drive device 31 (31a such as a fluid pressure cylinder). , 31b), the waste on the carbonization grate portion 3 is pushed out from the upstream side toward the downstream side while stirring, by reciprocating at a constant pitch in the front-rear direction.
  • the carbonization grate part 3 may be composed of only a fixed grate and a supply device may be provided separately.
  • An example of the supply device is a pusher.
  • the carbonization grate part 3 has a two-stage structure composed of a supply carbonization grate 3A on the upper stage side and a dry distillation carbonization grate 3B on the lower stage side.
  • Supply carbonization grate 3A is arranged such that shaft portion 2 is positioned directly above so as to directly receive the load of waste filled in shaft portion 2.
  • the supply carbonization grate 3A is extruded and supplied to the dry distillation carbonization grate 3B while further pyrolyzing and carbonizing the waste that has been dried and pyrolyzed at the shaft portion 2.
  • the width of the carbonization grate part 3, particularly the width of the supply carbonization grate 3 ⁇ / b> A is preferably the same as the inner diameter of the shaft part 2.
  • the unloading of the waste can be stabilized. As a result, it is possible to suppress the waste from being placed in a shelf-suspended state in the portion where the shaft portion 2 is switched to the carbonized grate portion 3 or in the shaft portion 2.
  • the supply carbonization grate 3A It is preferable that the uppermost grate is at a position lower than the lower end of the shaft portion 2 (that is, height h1> 0).
  • the width of the supply carbonization grate 3A and the inner diameter of the shaft portion 2 are set to be the same, the width (h2) between the lowermost end portion of the supply carbonization grate 3A and the lower end of the shaft portion 2 is exemplified as shown in FIG. ) Is more preferably smaller than the inner diameter of the shaft portion 2.
  • the rectangular cross-sectional area of the corresponding portion is made smaller than the cross-sectional area of the shaft instead of the height h2.
  • the dry distillation carbonization grate 3B further pyrolyzes the waste from the supply carbonization grate 3A to generate carbide, and the carbonized waste is extruded and supplied to the melting furnace section 4.
  • the dry distillation carbonization grate 3B may have the same width as the supply carbonization grate 3A or may have a relatively different width. Since the volume of waste is reduced by the progress of drying and thermal decomposition, the furnace bottom inner diameter of the melting furnace part 4 is usually designed to be smaller than the inner diameter of the shaft part 2 and the width of the communication part 5.
  • the dry distillation carbonization grate 3B has a configuration in which the width is gradually reduced from the upstream side toward the downstream side so that the downstream width is as close as possible to the inner diameter of the upper opening 46 of the melting furnace section 4. Also good. In this way, by bringing the downstream width of the carbonized carbonization grate 3B closer to the inner diameter of the melting furnace section 4, the squeezing rate of the inverted truncated cone part 45 is relaxed, and the inclination angle ⁇ of the inverted truncated cone part 45 is 75 degrees. To avoid a shape lower than.
  • both the supply carbonization grate 3 ⁇ / b> A and the dry distillation carbonization grate 3 ⁇ / b> B show a horizontal grate extending in the horizontal direction, but the present invention is not limited to this, and the supply carbonization fire Either one or both of the lattice 3A and the carbonized carbonization lattice 3B may be an inclined lattice with the tip side inclined upward.
  • both the supply carbonization grate 3A and the dry distillation carbonization grate 3B are horizontal grate having a higher supply capacity than the inclined grate.
  • the movable carbon grate of the supply carbonization grate 3A is driven by the first drive unit 31a, and the movable grate of the dry distillation carbonization grate 3B is driven by the second drive unit 31b.
  • the first and second driving devices 31a and 31b are arranged so that each can independently control the driving, stopping, and driving speed (that is, the supply speed).
  • the supply rate (V1) of the supply carbonization grate 3A and the supply rate (V2) of the dry distillation carbonization grate 3B may be set to be relatively different from each other, or may be set to be the same.
  • the supply rate (V2) of the dry carbonization grate 3B is set to be higher than the supply rate (V1) of the supply carbonization grate 3A. Further, it is more preferable to variably control the supply rate (V1) of the supply carbonization grate 3A while keeping the supply rate (V2) of the dry distillation carbonization grate 3B constant.
  • the carbonized grate portion 3 is configured such that air can be blown into the furnace from the entire surface through the gaps between the grate and / or the blow holes formed in the grate. That is, the carbonization grate portion 3 also serves as a blower that blows air for drying and pyrolysis into the furnace.
  • the second recovery chamber 32b is disposed, and the air ducts 33a and 33b are connected to the first recovery chamber 32a and the second recovery chamber 32b, respectively.
  • the air supplied from the supply carbonization grate 3A and the dry distillation carbonization grate 3B may be at room temperature, and may be preheated to 200 ° C., for example.
  • the preheating of the air may be performed by heat exchange with the high-temperature gas discharged from the furnace gas discharge port 22.
  • the waste charged from the waste charging inlet 21 forms a waste filling layer 100 in the shaft portion 2.
  • the drying and thermal decomposition of the waste proceeds by heat exchange when the air blown into the carbonization grate part 3 and the melting furnace part 4 or the gas generated in the furnace passes through the waste packed bed 100. Heat generation from the waste itself is also used for drying and pyrolysis.
  • the waste material unloaded in the shaft portion 2 is supplied onto the supply carbonization grate 3A that receives the load of the waste filling layer 100 in the shaft portion 2, and is subjected to dry distillation carbonization while further pyrolyzing at the supply carbonization grate 3A Supplied to the grid 3B.
  • Waste that has been further pyrolyzed and carbonized in the carbonized carbonization grate 3B falls and is supplied from the upper side opening 46 of the melting furnace section 4 to form a packed bed 101 of carbonized waste.
  • Coke as carbon-based solid fuel is charged into the melting furnace section 4 from the auxiliary material inlet 41, and the coke and waste fixed carbon are burned by oxygen-enriched air blown from the tuyere 42 at the bottom of the furnace. .
  • a high-temperature coke bed 102 is formed at the bottom of the furnace, and the ash and incombustible components contained in the waste are melted by the heat.
  • the high-temperature gas discharged from the in-furnace gas exhaust port 22 recovers waste heat with an apparatus such as a boiler, and then discharges it after detoxifying.
  • the amount of air blown into the furnace from the carbonized grate portion 3 is adjusted so as to have an oxygen ratio of 60% or more of the total amount of oxygen blown into the furnace during operation. More specifically, since air is blown from the carbonization grate portion 3 located on the upper stage side and the tuyere 42 located on the lower stage side in the height direction of the furnace, oxygen supplied into the furnace by the respective air The sum of the amounts is the total oxygen amount. And the ventilation volume of the carbonization fire grate part 3 is adjusted so that the oxygen ratio from the carbonization grate part 3 located in the upper stage side may be 60% or more of the total supply oxygen amount. On the other hand, the blowing rate of the tuyere 42 and / or the oxygen concentration of the oxygen-enriched air is adjusted so that the proportion of oxygen supplied to the melting furnace unit 4 is less than 40% of the total oxygen amount.
  • the amount of air blown into the furnace from the carbonization grate portion 3 is as described above.
  • the flow rate control valve 34a is connected to each of the blow pipes 33a and 33b connected to the first and second recovery chambers 32a and 32b.
  • 34b may be provided, and the blowing rate of the feed carbonization grate 3A and the dry distillation carbonization grate 3B may be adjusted to be relatively different depending on the in-furnace situation. You may make it manage integrally the ventilation volume of the dry distillation carbonization grate 3B.
  • FIG. 3 shows the test results actually performed.
  • the plot ⁇ represents the oxygen ratio (upper oxygen ratio (%)) supplied from the carbonized grate portion 3 of the present embodiment.
  • the plot ⁇ indicates the oxygen ratio (upper oxygen ratio (%)) supplied from the upper tuyere of the conventional shaft type gasification melting furnace as a comparison.
  • the coke ratio (kg / t-waste total amount) (coke usage per waste treatment amount) can be suppressed to 20 or less. It is. In order to more reliably suppress the coke ratio (kg / t-waste amount) to 20 or less, it is possible to set the coke ratio to 70% or more of the total oxygen amount. That is, compared with the conventional shaft type melting furnace, the coke consumption of the whole furnace can be remarkably reduced.
  • the ratio of the amount of oxygen blown into the furnace is as described above.
  • the moisture contained in the waste after being dried and pyrolyzed in the shaft portion 2 and further carbonized in the carbonization grate portion 3 is 10% or less, and the remaining fixed carbon is 3%.
  • the amount of air blown into the furnace from the carbonized grate portion 3 is adjusted so as to be at least%.
  • the amount of moisture and fixed carbon contained in the waste before treatment is not limited, but for example, a general waste having a moisture content of 45% or more and a fixed carbon content of 10% or more, and having a moisture content of 10% or less,
  • the amount of air suitable for drying, pyrolysis, and carbonization so that the remaining fixed carbon is 3% or more has an air ratio with respect to the theoretical air amount as shown in FIG. 4 (a). 0.2 to 0.3. Since the content of moisture and ash may vary depending on the type of waste, the air ratio should be adjusted within the range of 0.1 to 0.4.
  • the amount of oxygen contained in the waste after carbonization is 10% or less and the remaining fixed carbon is 3% or more, and the supply oxygen amount corresponding to the set air amount Is adjusted so that the air flow rate of the tuyere 42 and / or the oxygen concentration to be enriched is reduced so that it becomes 60% or more of the total supply oxygen amount in the whole furnace. It is desirable that the waste supplied to the melting furnace section 4 be sufficiently dried. On the other hand, if the drying / pyrolysis proceeds too much, the fixed carbon is gasified, and the combustion heat of the waste itself used for melting is reduced. It will decrease. Therefore, paying attention to a suitable balance between moisture and residual fixed carbon, a test was actually conducted to find a waste state suitable for melting.
  • the furnace bottom slag temperature can be set to a temperature at which stable operation is possible (that is, 1450 ° C. or higher).
  • the waste can be carbonized with high carbonization efficiency.
  • V2 supply rate of the carbonization grate 3B
  • V1 supply rate of the supply carbonization grate 3A
  • the waste having insufficient dry distillation on the surface layer is supplied to the melting furnace section 4.
  • the supply rate (V2) of the carbonized carbonization grate 3B is set larger than the supply rate (V1) of the carbonization grate 3A, the waste layer on the carbonization grate 3B can be made thin. It can be fully dry distilled on carbonized grate. By placing importance on the layer thickness rather than the residence time in this way, it is possible to improve the dry distillation efficiency of the carbonized grate portion 3, and to more reliably reduce the combustion load at the furnace bottom. More preferably, as illustrated in FIG.
  • an angle formed between a horizontal line and a line connecting the lower end of the shaft portion 2 near the communication portion 5 and the top end portion of the top surface of the carbonized carbonization grate just above the upper side opening portion 46 ( ⁇ ) is set to 50 degrees or less. If comprised in this way, it will be possible to suppress the sagging from the shaft portion 2 due to the angle of repose of the waste, and it is possible to more reliably suppress the waste layer on the carbonized grate portion 3 from becoming thicker. .
  • the carbonized waste supplied to the melting furnace section 4 preferably has a moisture content of 10% or less and a fixed carbon content of 3% or more in consideration of the balance between moisture and fixed carbon.
  • the carbonization grate burning rate of the supplied carbonization grate 3A and the carbonization carbonization grate 3B is within a range of 300 kg / (m 2 ⁇ h) to 500 kg / (m 2 ⁇ h).
  • the carbonized grate burning rate means the amount of waste processed per unit time and unit area.
  • the areas of the supplied carbonization grate 3A and the carbonized carbonization grate 3B are set so that the carbonization grate combustion rate is in the range of 300 kg / (m 2 ⁇ h) to 500 kg / (m 2 ⁇ h). Also, according to the dry and pyrolyzed state of the waste, the driving speed of the movable grate, the blowing amount and blowing temperature from each carbonization grate 3A, 3B, etc. are controlled, and the carbonization grate burning rate during furnace operation is controlled. It can also be adjusted.
  • the carbonization grate burning rate is set within the range of 300 kg / (m 2 ⁇ h) to 500 kg / (m 2 ⁇ h)
  • the combustion load of the melting furnace section 4 can be reduced and the actual load shown in FIG.
  • the slag temperature at the furnace bottom can be set to a temperature at which stable operation is possible (that is, 1450 ° C. or higher).
  • the proportion of oxygen supplied from the tuyere 42 into the furnace is as described above. More preferably, the theoretical combustion oxygen amount (M1) of fixed carbon contained in the carbon-based solid fuel is changed from the tuyere 42 to the melting furnace part. 4, when the value divided by the total oxygen amount (M2) of the oxygen-enriched air blown into the furnace 4 is the melting furnace fuel ratio (M1 / M2), the melting furnace fuel ratio (M1 / M2) is 0.8 to 1. 2 is maintained.
  • the melting furnace fuel ratio (M1 / M2) is preferably maintained within the range of 0.8 to 1.2.
  • Adjustment of the melting furnace fuel ratio (M1 / M2) can be performed, for example, by changing at least one of the carbon-based solid fuel to be input, the amount of air blown from the tuyere 42, and the oxygen concentration of the oxygen-enriched air. it can.
  • the melting furnace fuel ratio (M1 / M2) is less than 0.8, oxygen leaks from the melting furnace section 4 to the communication section 5, and the leaked oxygen reacts with carbon monoxide present in the communication section 5. Abnormal combustion may occur.
  • an oxidized molten clinker may be formed on the inner wall of the furnace.
  • the melting furnace fuel ratio (M1 / M2) exceeds 1.2, the carbon-based solid fuel may not be burned sufficiently in the furnace bottom.
  • the melting furnace fuel ratio (M1 / M2) is maintained within the range of 0.8 to 1.2, the input amount of carbon-based solid fuel and the oxygen supply amount of tuyere 42 can be minimized. Is possible. Further, as shown in FIG. 7, the actual test result can be set to 1450 ° C. or higher at which the slag temperature at the furnace bottom can be stably operated.
  • the filling height of the waste in the melting furnace section 4 during operation is preferably maintained within the range from the tuyere 42 upward +0.5 m to the lowest end of the carbonized grate section 3.
  • oxygen leakage from the furnace bottom due to the thin layer thickness of the packed bed 101 can be suppressed.
  • actual slag temperature can be raised to 1450 ° C. or higher at which stable operation is possible (the furnace bottom level in FIG. 8 is carbonized as shown in FIG. 1).
  • the position of the lowermost end portion of the grate portion 3 is shown as the furnace bottom level 0).
  • Control of the filling height of the waste in the melting furnace part 4 is performed by adjusting the speed at which the carbonization grate part 3 supplies the waste to the melting furnace part 4, for example.
  • a sensor (not shown) for detecting the height of the packed bed 101 is disposed in the melting furnace section 4 and the supply rate of the carbonization grate section 3 is controlled based on the height of the packed bed 101 detected by the sensor. can do.
  • an operator may monitor the filling height and control the supply speed based on the monitoring result.
  • the pressure loss of the packed bed 101 may be detected using a pressure gauge, and the supply rate of the carbonization grate portion 3 may be controlled according to the degree of pressure loss.
  • a pressure sensor (P1) for detecting the pressure in the melting furnace section 4 is disposed in the inverted truncated cone section 45, and for example, a pressure sensor for detecting the pressure in the upper space of the carbonization grate section 3 (P2) is arranged in the communication part 5.
  • the difference between the pressure detected by the pressure sensor (P1) and the pressure detected by the pressure sensor (P2) is the furnace bottom differential pressure, and the furnace bottom differential pressure is within a predetermined range, for example, 0.4 to 2 kPa.
  • the supply rate of the carbonization grate part 3 is controlled so as to be maintained within the range.
  • the set value of the bottom differential pressure is preferably determined by confirming the range of the bottom differential pressure corresponding to a suitable filling height in advance by actually operating, and by maintaining within that range Further, oxygen leakage and shelf hanging phenomenon can be suppressed, and further, as shown in FIG. 10, the slag temperature at the bottom of the furnace can be raised to 1450 ° C. or higher at which stable operation is possible.
  • a temperature sensor (T1) that detects the temperature of the upper space near the boundary between the supply carbonization grate 3A and the dry distillation carbonization grate 3B is disposed in the communication portion 5. Then, the supply rate of the carbonization grate unit 3 is controlled so that the temperature detected by the temperature sensor (T1) is maintained within a predetermined temperature range, for example, a range of 650 to 800 ° C.
  • the temperature setting value is determined by confirming a temperature range corresponding to a suitable filling height in advance by actually operating, and by maintaining the temperature range within that range, oxygen leaks and shelves Furthermore, as shown in FIG. 11, the actual slag temperature of the furnace bottom can be increased to 1450 ° C. or higher at which stable operation is possible. You may make it use together control by the bottom pressure difference, and control by the temperature of the carbonization grate part 3.
  • an ITV camera that can monitor the state near the tip of the dry distillation carbonization grate 3B is arranged, and the supply rate of the carbonization grate unit 3 is controlled so that the flame in the furnace can be confirmed.
  • a sampling hole for in-furnace gas is provided in the communication part 5, and the concentrations of the sampled gas carbon monoxide and oxygen are measured, and the carbon monoxide concentration is 3% or more.
  • the supply rate of the carbonization grate unit 3 may be controlled so that the oxygen concentration is maintained at 1% or less. That is, when the oxygen concentration exceeds 1%, it is determined that the oxygen leakage is caused by the decrease in the filling level, and the supply rate is increased. If the carbon monoxide concentration is less than 3%, it is judged that the carbonization efficiency is reduced due to overfilling, and the supply rate is slowed down.
  • the waste is not limited to the configuration in which the waste is charged only from the waste inlet 21 at the upper part of the shaft.
  • the waste may be charged from the auxiliary material inlet 41.
  • waste with a large amount of water is charged from the waste inlet 21 and dried and thermally decomposed at the shaft portion 2 and the carbonized fire grate portion 3 before being supplied to the melting furnace portion 4.
  • Waste containing a large amount of moisture is charged from the auxiliary material inlet 41 so as to reduce the load of drying and pyrolysis in the shaft portion 2 and the carbonized grate portion 3.
  • the waste with a large amount of water includes sludge
  • the waste with a large amount of ash includes incinerated ash.
  • the waste loading port can be provided at a place other than the waste loading port 21 and the auxiliary material loading port 41. As described above, if the position of charging into the furnace is appropriately changed based on the properties of the waste, the load on the entire furnace can be reduced as a result.
  • the type of waste to be treated is not particularly limited, and may be either general waste or industrial waste. Shredding dust (ASR), excavated waste, incinerated ash, or the like, or a mixture of these and combustible waste can be treated. Also, carbonized waste or char may be input.
  • ASR Shredding dust
  • excavated waste excavated waste
  • incinerated ash or the like
  • carbonized waste or char may be input.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

【課題】シャフト部における廃棄物の乾燥・熱分解を促進し、炉底にまで水分や揮発分が持ち込まれるのを抑制し、余分なコークスの消費を削減することのできる廃棄物ガス化溶融炉を提供する 【解決手段】上部側に廃棄物の装入口(21)及び炉内ガス排出口(22)、底部側に廃棄物が排出される開口部(23)を有し、内部に充填された廃棄物を乾燥及び熱分解させるシャフト部(2)と、シャフト部(2)とは炉芯をずらして配置され、上部側に熱分解された廃棄物と炭素系固形燃料が供給される開口部(46)、炉底側に燃焼用の酸素富化空気を吹き込む羽口(42)を有する溶融炉部(4)と、シャフト部の底部側開口部(23)と溶融炉部の上部側開口部(46)とを連結する連通部(5)と、を備えた廃棄物ガス化溶融炉(1)において、シャフト部(2)に充填された廃棄物の荷重を受ける位置に配置された炭化火格子部(3)と、炉内に吹き込まれる全酸素量の60%以上を占めるように乾燥・熱分解用の空気を炭化火格子部(3)からシャフト部(2)内に送風する送風装置(3)と、炭化火格子部上にある熱分解された廃棄物を溶融炉部(4)の上部側開口部(46)に供給する供給装置(3)と、を連通部に備えた構成にする。

Description

廃棄物ガス化溶融炉
 本発明は、炉上部から装入した廃棄物を乾燥及び熱分解させ、更に熱分解残渣を溶融させて炉底部から溶融残渣を回収する廃棄物ガス化溶融炉に関する。
 一般廃棄物や産業廃棄物などの廃棄物を処理する方法としては、例えばコークス等の炭素系固形燃料を溶融熱源に用い、工業炉で廃棄物を溶融する方法がある。溶融による廃棄物の処理は、廃棄物の減容化だけでなく、これまで埋め立てによって最終処分されていた焼却灰や不燃性ごみをスラグやメタルにして再資源化できる利点がある。
 廃棄物を溶融する設備としては、シャフト式のガス化溶融炉が知られている(例えば、特許文献1,特許文献2参照)。特許文献1、2に開示されている廃棄物ガス化溶融炉は、円筒状のシャフト部(直胴部)、逆円錐台部(朝顔部)及び炉底部を含む炉本体を有し、空気や酸素富化空気などの燃焼支持ガスを炉内に吹き込むための上段羽口と下段羽口が設けられている。
 特許文献1、2に開示されている廃棄物ガス化溶融炉は、炉上部から廃棄物とコークスを装入し、シャフト部内を降下する廃棄物と上段羽口から吹き込んだ空気とを熱交換させることによって廃棄物を乾燥・熱分解させる。乾燥・熱分解した廃棄物の熱分解残渣は、炉底部に降下し、コークスの燃焼熱を熱源にして溶融させる。そして溶融残渣を炉底部から抜き出し、スラグとメタルを回収する。
 特許文献1、2に開示されている廃棄物ガス化溶融炉は、上段羽口から吹き込んだ空気によって廃棄物を乾燥・熱分解させている。従って、廃棄物の乾燥・熱分解を促進するためには、上段羽口からの送風量を増やすなどして、上段羽口から供給する酸素割合を増加させることが好ましい。上段羽口から供給する酸素割合を増加させることにより、シャフト部において廃棄物自身の燃焼熱を利用した乾燥・熱分解を促進することができる。
 しかしながら、特許文献1、2に開示されている廃棄物ガス化溶融炉は、文献中にも記載されているように、上段羽口からの酸素割合が過半を超えると特に吹き抜け現象等が発生し、炉内圧力が変動するなど炉の操業が不安定となる。そのため、実際の炉の操業は、下段羽口からの酸素割合を70~80%とし、上段羽口からの酸素割合を20~30%にとどめている。加えて、シャフト式のガス化溶融炉は、上段羽口から吹き込んだ空気がシャフト部の中心領域まで到達し難い構造であるため、シャフト部の中心領域を降下している廃棄物の乾燥・熱分解が不十分となり、炉底部まで持ち込まれる水分や揮発分の量が多くなる。その結果、溶融熱源であるコークスの燃焼熱が水分や揮発分を蒸発するのに消費され、その分の余分なコークスが必要となる。コークスの余分な消費は、ランニングコストを高騰させるだけでなく、化石燃料に由来するCOの排出量が増えるという問題がある。
特公昭53-16633号公報 特公昭60-11766号公報
 本発明は、上述した問題点を解決するためになされたものであり、その目的は、シャフト部における廃棄物の乾燥・熱分解を促進し、炉底にまで水分や揮発分が持ち込まれるのを抑制し、余分なコークスの消費を削減することのできる廃棄物ガス化溶融炉を提供することにある。
 本発明の他の目的は、廃棄物の熱分解効率を向上させることによって、熱分解不足の廃棄物が炉底にまで持ち込まれることを抑制し、炉底での燃焼負荷を軽減することにある。
 即ち、本発明の要旨とするところは以下のとおりである。
(1)上部側に廃棄物装入口及び炉内ガス排出口、底部側に廃棄物が排出される開口部を有し、内部に充填された廃棄物を乾燥及び熱分解させるシャフト部と、前記シャフト部とは炉芯をずらして配置され、上部側に熱分解された廃棄物と炭素系固形燃料が供給される開口部、炉底側に燃焼用の酸素富化空気を吹き込む羽口を有する溶融炉部と、前記シャフト部の底部側開口部と前記溶融炉部の上部側開口部とを連結する連通部と、を備えた廃棄物ガス化溶融炉において、前記シャフト部に充填された廃棄物の荷重を受ける位置に配置された炭化火格子部と、乾燥・熱分解用の空気を前記炭化火格子部から前記シャフト部内に送風する送風装置と、前記炭化火格子部上にある熱分解された廃棄物を前記溶融炉部の上部側開口部に供給する供給装置と、を前記連通部に備え、前記炭化火格子部は、上段側に配置される供給炭化火格子と、下段側に配置される乾留炭化火格子とを含み、前記供給装置は、前記供給炭化火格子上の廃棄物を前記乾留炭化火格子に向けて供給する第1供給装置と、前記乾留炭化火格子上にある炭化した廃棄物を前記溶融炉部に向けて供給する第2供給装置を含み、前記炭化火格子部での廃棄物自身の燃焼熱を利用した乾燥・熱分解を促進させるために、炉内に吹き込まれる全酸素量の60%以上を占めるように前記乾燥・熱分解用の空気を前記炭化火格子部から前記シャフト部内に送風し、炉内に吹き込まれる全酸素量の40%未満を前記溶融炉部の羽口から供給する酸素配分とし、さらに前記第2供給装置の供給速度(V2)を、前記第1供給装置の供給速度(V1)よりも大きく設定(V2>V1)したことを特徴とする廃棄物ガス化溶融炉。
(2)前記送風装置は、前記炭化火格子部から前記溶融炉部に供給される廃棄物中の水分が10%以下であって、且つ、固定炭素の残存量が3%以上となるように、前記炭化火格子部から炉内に吹き込む空気量を調節することを特徴とする前記(1)に記載の廃棄物ガス化溶融炉。
(3)前記溶融炉部内の廃棄物充填高さを前記羽口より上方向+0.5m~前記炭化火格子部の最下端部までの範囲内に維持するように、前記供給装置の供給速度を制御することを特徴とする前記(1)又は(2)に記載の廃棄物ガス化溶融炉。
(4)前記溶融炉部内の圧力(P1)と前記炭化火格子部の上部空間の圧力(P2)との差圧を0.4kPa~2kPaの範囲内に維持するように、前記供給装置の供給速度を制御することを特徴とする前記(1)~(3)のいずれかに記載の廃棄物ガス化溶融炉。
(5)前記炭化火格子部の温度を650℃~800℃の範囲内に維持するように、前記供給装置の供給速度を制御することを特徴とする前記(1)~(4)のいずれかに記載の廃棄物ガス化溶融炉。
(6)前記炭素系固形燃料中に含まれる固定炭素の理論燃焼酸素量(M1)を、前記羽口から前記溶融炉内に吹き込む酸素富化空気の総酸素量(M2)で除した値を溶融炉燃料比(M1/M2)としたときに、前記溶融炉燃料比(M1/M2)を0.8~1.2の範囲内に設定することを特徴とする前記(1)~(5)のいずれかに記載の廃棄物ガス化溶融炉。
(7)廃棄物の種類又は性状に応じて炉内への装入位置を変更する少なくとも一つ以上の廃棄物装入口を、前記シャフト部の上部に配置した廃棄物装入口とは異なる位置に設けたことを特徴とする前記(1)~(6)のいずれかに記載の廃棄物ガス化溶融炉。
(8)前記炭化火格子部は、炭化火格子燃焼率が300kg/(m・h)~500kg/(m・h)の範囲内にあることを特徴とする前記(1)~(7)のいずれかに記載の廃棄物ガス化溶融炉。
(9)前記溶融炉部は、円筒形状であって、前記炭化火格子部からの廃棄物が供給される前記開口部から前記羽口までの間に絞り部をなす逆円錐台部が形成されており、前記逆円錐台部の傾斜角が75度より大きくなっていることを特徴とする前記(1)~(8)のいずれかに記載の廃棄物ガス化溶融炉。
 本発明によれば、シャフト部に充填された廃棄物の荷重を受ける位置に炭化火格子部を配置し、この炭化火格子部を通じて、炉内に吹き込まれる全酸素量の60%以上を占める乾燥・熱分解用の空気をシャフト部内に送風し、炉内に吹き込まれる全酸素量の40%未満を前記溶融炉部の羽口から供給する酸素配分とし、乾留炭化火格子が溶融炉部に廃棄物を供給する速度(V2)を、供給炭化火格子が乾留炭化火格子に廃棄物を供給する速度(V1)よりも大きく設定(V2>V1)したことにより、吹き抜け現象など炉の操業が不安定になる現象が発生するのを抑制しつつ前記シャフト部及び前記炭化火格子部における廃棄物の乾燥・熱分解を促進することが可能となる。その結果、溶融炉部の炉底にまで水分や揮発分が持ち込まれるのを抑制することができ、余分な炭素系固形燃料の消費を削減することが可能となる。
 更に本発明によれば、前記炭化火格子部から前記溶融炉部に供給される廃棄物中の水分が10%以下であって、且つ、固定炭素の残存量が3%以上となるように、前記炭化火格子部から炉内に吹き込む空気量に調節し、この調節された空気量に対応する酸素量が炉全体における全酸素量の60%以上となるようにしたことにより、従来と比較しても炉全体における酸素量を増加させることなく、水分と残留固定炭素のバランスが考慮された溶融に好適な性状にして前記溶融炉部に供給することが可能となる。その結果、より確実に前記溶融炉部における溶融以外の不要な燃焼負荷を低減でき、余分な炭素系固形燃料の消費を抑制することができる。また、炉全体における酸素量が大幅に削減できるため、酸素発生装置をコンパクト化することができ、酸素発生装置での消費電力を大幅に減らすことができる点が、本発明の大きな効果の一つである。
 更に本発明によれば、前記炭化火格子部を、供給炭化火格子と乾留炭化火格子の2段構成とし、前記乾留炭化火格子から前記溶融炉部に廃棄物を供給する速度(V2)を、前記供給炭化火格子から前記乾留炭化火格子に廃棄物を供給する速度(V1)よりも大きく設定したことにより、前記乾留炭化火格子上の廃棄物の層厚を薄くすることで熱分解効率を向上させることが可能となる。
 更に本発明によれば、前記溶融炉内の廃棄物の充填高さを羽口より上方向+0.5m~前記炭化火格子部の最下端部までの範囲内に維持するように、前記炭化火格子部からの供給速度を制御することにより、前記溶融炉部内から連通部へ酸素がリークするのを抑制することができる最低限の充填高さを確保する。その結果、リークした酸素と連通部内に存在する一酸化炭素とが反応してしまうのを抑制することができる。更に、炉の内壁に酸化溶融クリンカが形成されるのを抑制することができる。また反対に、充填高さを前記炭化火格子部の最下端部以下にすることによって、前記炭化火格子上部の熱分解効率低下や押し固めに伴う棚吊り現象を防止することができる。前記溶融炉部が円筒形状である場合は、廃棄物が供給される上部開口部から羽口までの間に絞り部をなす逆円錐台部が形成し、逆円錐台部の傾斜角を75度より大きくすることによって棚吊を防止することもできる。
 更に本発明によれば、炭素系固形燃料中に含まれる固定炭素の理論燃焼酸素量(M1)を、前記羽口から前記溶融炉部内に吹き込む酸素富化空気の総酸素量(M2)で除した値を溶融炉内燃料比(M1/M2)としたときに、溶融炉燃料比(M1/M2)を0.8~1.2の範囲内に設定したことにより、炭素系固形燃料を確実に炉底にまで到達させつつ前記溶融炉部に余分な空気(或いは酸素)を供給するのを抑制することができる。
 更に本発明によれば、廃棄物の種類又は性状に応じて炉内への装入位置を変更する構成としたことにより、例えば水分が少ない廃棄物や灰分が多い廃棄物などは前記溶融炉部に直接投入して、前記シャフト部を通過させないようにすることができる。その結果、前記シャフト部及び前記炭化火格子部における乾燥・熱分解効率を向上させることが可能となる。また、炭化火格子部の火格子同士の隙間から落塵する灰の量を減らす効果も望める。
 更に本発明によれば、炭化火格子燃焼率が300kg/(m・h)~500kg/(m・h)の範囲内となるように前記炭化火格子部を構成したことにより、水分が10%以下であって、且つ、固定炭素が好適に残存した状態の廃棄物を生成して前記溶融炉部に供給することが可能である。好適な固定炭素の残存量は3%以上である。
本発明の好ましい実施形態に従う廃棄物ガス化溶融炉を示す縦断面図である。 上記廃棄物ガス化溶融炉の形状を説明するための図である。 上記廃棄物ガス化溶融炉のコークス比と炭化火格子部の酸素割合の試験結果を示すグラフである。 図4(a)は上記炭化火格子部で炭化された後の廃棄物の水分と残留固定炭素の試験結果を示すグラフであり、図4(b)は廃棄物を溶融したときのスラグ温度の結果を示すグラフである。 上記炭化火格子部で炭化される廃棄物の様子を模式的に示す図である。 図6(a)は上記炭化火格子部の燃焼率と廃棄物の水分の試験結果を示すグラフであり、図6(b)は廃棄物を溶融したときのスラグ温度の結果を示すグラフである。 上記廃棄物ガス化溶融炉の溶融炉燃料比とスラグ温度の試験結果を示すグラフである。 上記廃棄物ガス化溶融炉の炉底レベルとスラグ温度の試験結果を示すグラフである。 上記廃棄物ガス化溶融炉の温度計、圧力計の設置位置を説明する図である。 上記廃棄物ガス化溶融炉の炉底差圧とスラグ温度の試験結果を示すグラフである。 上記廃棄物ガス化溶融炉の炭化火格子部温度とスラグ温度の試験結果を示すグラフである。
 以下、本発明の好ましい実施形態に従う廃棄物ガス化溶融炉について、添付図面を参照しながら詳しく説明する。但し、以下に説明する実施形態によって本発明の技術的範囲は何ら限定解釈されることはない。
 図1は、本実施形態に従う廃棄物ガス化溶融炉の縦断面図を示す。廃棄物ガス化溶融炉1は、例えば還元雰囲気下で廃棄物を乾燥・熱分解するシャフト部2、乾燥・熱分解された廃棄物を更に熱分解して、炭化された廃棄物を生成する炭化火格子部3、炭化された廃棄物を更に燃焼・溶融する溶融炉部4を備えている。シャフト部2と溶融炉部4は、相対的に横方向に炉芯をずらすように配置されており、シャフト部2の底部側開口部と溶融炉部4の上部側開口部とが連通部5を通じて連結されている。炭化火格子部3は、連通部5の底面側に階段状に配置されている。
 シャフト部2は、例えば円筒形状に形成する。シャフト部2の上部には、被処理物である廃棄物を炉内に装入するための廃棄物装入口21が形成されている。更に、シャフト部の上部側には、廃棄物が熱分解して発生するガスや炉内に吹き込んだガスを排出する炉内ガス排気口22が形成されている。一方、円筒形状のシャフト部2の底面は、シャフト内を自重で降下する廃棄物が排出される開口部23となっている。シャフト部2の内径及び高さは、炉の処理能力等に応じて適宜決定することができるが、シャフト内の廃棄物の充填高さを少なくとも下端面から1m以上で管理することのできる高さにすることが好ましい。充填高さを1m以上に確保することによって、シャフト内において炉内ガスの吹き抜け現象が発生するのを抑制できる。
 溶融炉部4は、例えば円筒形状に形成する。溶融炉部4の上部には、炭素系固形燃料を炉内に装入するための副資材装入口41が形成されている。更に、溶融炉部4の炉底には、装入された炭素系固形燃料、及び炭化火格子部3から供給される炭化された廃棄物の可燃性熱分解残渣(固定炭素)を燃焼させるための、酸素富化空気を炉内に吹き込む羽口42が周方向に複数配置されている。羽口42から炉内に吹き込まれる酸素富化空気とは、例えば酸素発生器43からの酸素を混合することによって酸素濃度を高めた空気である。なお、炭素系固形燃料は、廃棄物と共に廃棄物装入口21から装入するようにしてもよい。炭素系固形燃料は、コークス、バイオマスの炭化物などであるが、これら以外の炭素系可燃性物質を用いることもできる。また、炭素系固形燃料の他にも、塩基度調整剤としての石灰石等を副資材装入口41から装入することもできる。
 溶融炉部4の炉底には、溶融残渣物(すなわち、スラグ及びメタル)を排出する出湯口44が設けられている。出湯口44は、開閉機構(不図示)が設けられており、間欠的に溶融残渣物を排出する。炉外に排出した溶融残渣物は、冷却・凝固させ、更にスラグとメタルに分別する。このように還元雰囲気下において間欠的に溶融残渣物を排出する場合、炉底のスラグ温度(実際に測定するのは溶融残渣物の温度)が1450℃以上であることが好ましい。スラグ温度が1450℃以上であれば、鉛(Pb)の含有率を抑えた良質のスラグを得ることができる。また、スラグの流動性が良いので安定して炉外に排出することができる。すなわち、本実施形態の溶融炉においては、炉の安定操業を行うために炉底のスラグ温度が1450℃以上であることが好ましい。
 溶融炉部4は、連通部5との連結位置(すなわち、炭化火格子部3の最下端)から羽口42までの間に絞り部をなす逆円錐台部(所謂、朝顔部)45を形成するのが好ましく、更に逆円錐台部45の傾斜角θを75度より大きく設定することが望ましい。逆円錐台部45の傾斜角θが75度以下、特に70℃以下の場合は、特に逆円錐台部45の壁面との摩擦によって荷下がりが停滞し、内部で廃棄物の棚吊り現象が発生する場合がある。そのため、逆円錐台部45の傾斜角θを75度より大きく設定して溶融炉部4内の充填物の荷下がりを促進させ、棚吊り現象が発生するのを防止する。なお、溶融炉部4を、円筒形状ではなく矩形状に形成する場合、図2に例示すように、炉の幅方向の両側面を75度より大きい傾斜角(θ)にする。
 連通部5は、縦断面形状が矩形状に形成されており、底面に沿って炭化火格子部3が配置されている。炭化火格子部3は、シャフト部2で乾燥及び熱分解された廃棄物を更に熱分解する。本実施形態では炉内が還元雰囲気となるように空気量を調節し、燃焼が進行して灰分が生成しないようにしつつ廃棄物を熱分解(乾留)して炭化させる。更に炭化火格子部3は、廃棄物を熱分解(乾留)する装置であると共に、炭化した廃棄物を溶融炉部4に供給する供給装置を兼ねている。すなわち、炭化火格子部3は、可動火格子と固定火格子とを交互に階段状又は傾斜状に組み合せることによって形成されており、各可動火格子を流体圧シリンダ等の駆動装置31(31a,31b)で前後方向へ一定のピッチで往復動させることによって、炭化火格子部3の上にある廃棄物を撹拌しながら上流側から下流側へ向けて押し出すようになっている。但し、炭化火格子部3を固定火格子のみで構成し、供給装置を別に設けるようにしてもよい。供給装置としては、プッシャーが一例として挙げられる。
 炭化火格子部3は、上段側の供給炭化火格子3Aと、下段側の乾留炭化火格子3Bによる2段構造になっている。供給炭化火格子3Aは、シャフト部2内に充填された廃棄物の荷重を直接的に受けるように、真上にシャフト部2が位置するように配置されている。供給炭化火格子3Aは、シャフト部2で乾燥・熱分解された廃棄物を更に熱分解して炭化させながら乾留炭化火格子3Bに押出供給する。炭化火格子部3の幅、特に供給炭化火格子3Aの幅は、シャフト部2の内径と同じであることが好ましい。シャフト部2から炭化火格子部3に切り替わる箇所において炭化火格子部3の幅とシャフト部2の内径を同じにすることによって、廃棄物の荷下がりを安定化させることができる。その結果、シャフト部2から炭化火格子部3に切り替わる箇所やシャフト部2内において、廃棄物が棚吊り状態となるのを抑制することができる。
 また、供給炭化火格子3Aが下流への供給動作を行うことによってシャフト部2の下端周辺の廃棄物が圧密になるのを抑制するために、図2に例示するように、供給炭化火格子3Aの最上段の火格子がシャフト部2の下端よりも低い位置(すなわち、高さh1>0)になっていることが好ましい。また、供給炭化火格子3Aの幅とシャフト部2の内径が同じに設定した場合、図2に例示するように、供給炭化火格子3Aの最下端部とシャフト部2の下端との幅(h2)がシャフト部2の内径よりも小さいことが更に好ましい。このように構成すれば、連通部5からシャフト部2に流れ込むガスの流速が上がるので、シャフト部2内に均一にガスが行き届くようにすることが可能となる。供給炭化火格子3Aの幅とシャフト部2の内径が異なるように設定した場合には、高さh2に代えて、該当箇所の矩形断面積がシャフト断面積よりも小さくなるようにする。
 一方、乾留炭化火格子3Bは、供給炭化火格子3Aからの廃棄物を更に熱分解して炭化物を生成し、炭化された廃棄物を溶融炉部4に押出供給する。乾留炭化火格子3Bは、供給炭化火格子3Aと同じ幅であってもよく、相対的に異なる幅としてもよい。乾燥と熱分解が進行することにより廃棄物は減容化するので、通常は、シャフト部2の内径や連通部5の幅に比べて溶融炉部4の炉底内径を小さく設計する。そこで、乾留炭化火格子3Bは、下流側の幅が、出来るだけ溶融炉部4の上部側開口部46の内径に近づくように、上流側から下流側に向かうにつれて徐々に幅を小さくした構成としてもよい。このように乾留炭化火格子3Bの下流側の幅を溶融炉部4の内径に近付けることにより、逆円錐台部45の絞り率を緩和して、逆円錐台部45の傾斜角θが75度を下回る形状になってしまうのを回避する。
 なお、図1には、供給炭化火格子3A及び乾留炭化火格子3Bの両方とも、水平方向に火格子が延びる水平火格子を示しているが、これに限定されることはなく、供給炭化火格子3A及び乾留炭化火格子3Bのいずれか一方或いは両方を、先端側が上方向に向かって傾斜する傾斜火格子にしてもよい。廃棄物の処理量が大きい炉を設計する場合は、供給炭化火格子3A及び乾留炭化火格子3Bの両方とも、傾斜火格子に比べて供給能力が高い水平火格子にすることが好ましい。
 供給炭化火格子3Aの可動火格子は第1駆動装置31aによって駆動される構成であり、乾留炭化火格子3Bの可動火格子は第2駆動装置31bによって駆動される構成である。このように第1及び第2駆動装置31a、31bを配置して、各々が独立して駆動、停止及び駆動速度(すなわち、供給速度)を制御可能なようにしている。この場合、供給炭化火格子3Aの供給速度(V1)と乾留炭化火格子3Bの供給速度(V2)は、相対的に異なるように設定してもよく、或いは同じに設定してもよい。供給速度を相対的に異なるように設定する場合、乾留炭化火格子3Bの供給速度(V2)が供給炭化火格子3Aの供給速度(V1)よりも大きくなるように設定するのが好ましい。更に、乾留炭化火格子3Bの供給速度(V2)を一定にして、供給炭化火格子3Aの供給速度(V1)を可変制御することが、より好ましい。
 更に炭化火格子部3は、図示を省略するが、火格子間の隙間及び/又は火格子に形成した送風孔を通じて表面全体から空気を炉内に吹き込むことができる構成となっている。すなわち、炭化火格子部3は、乾燥・熱分解用の空気を炉内に吹き込む送風装置を兼ねている。供給炭化火格子3A及び乾留炭化火格子3Bの裏面側には、炭化した廃棄物のうちの微細なものが火格子間の隙間から落下した場合にそれを回収するための第1回収室32aと第2回収室32bとが夫々配置されており、第1回収室32aと第2回収室32bに送風管33a、33bが夫々連結されている。図示しない送風機からの空気を送風管33a、33bを通じて第1回収室32a及び第2回収室32bに供給すると、火格子間の隙間及び/又は火格子に形成した送風孔を通じて炉内に空気が吹き込まれるようになっている。火格子間の隙間及び/又は火格子に形成した送風孔は、例えば400mmピッチ以下であることが好ましい。供給炭化火格子3A及び乾留炭化火格子3Bから供給する空気は、常温であってもよく、例えば200℃まで予熱されていてもよい。空気の予熱は、例えば炉内ガス排出口22から排出される高温ガスとの熱交換によって行うようにしてもよい。
 上記構成において、廃棄物装入口21から装入された廃棄物は、シャフト部2内で廃棄物充填層100を形成する。そして、炭化火格子部3及び溶融炉部4に吹き込んだ空気や炉内で発生したガスが廃棄物充填層100を通過するときの熱交換によって、廃棄物の乾燥及び熱分解が進行する。乾燥及び熱分解には、廃棄物自身からの発熱も利用される。シャフト部2内を荷下がりする廃棄物は、シャフト部2内の廃棄物充填層100の荷重を受ける供給炭化火格子3A上に供給され、供給炭化火格子3Aで更に熱分解しながら乾留炭化火格子3Bに供給される。乾留炭化火格子3Bで更に熱分解されて炭化した廃棄物は、溶融炉部4の上部側開口部46から落下供給され、炭化された廃棄物の充填層101を形成する。溶融炉部4内には副資材装入口41から炭素系固形燃料としてのコークスが装入され、炉底において羽口42から吹き込まれた酸素富化空気によってコークス及び廃棄物の固定炭素を燃焼させる。これにより炉底に高温のコークスベット102が形成され、その熱で廃棄物に含まれる灰分や不燃成分を溶融する。一方、炉内ガス排気口22から排出された高温ガスは、ボイラー等の装置で廃熱を回収した後、無害化処理をして放出する。
 炭化火格子部3から炉内に吹き込む空気の送風量は、操業時に炉内に吹き込まれる全酸素量の60%以上の酸素割合となるように調節される。より詳しくは、炉の高さ方向において上段側に位置する炭化火格子部3、及び下段側に位置する羽口42から空気を吹き込む構成であるため、それぞれの空気によって炉内に供給される酸素量の和が全酸素量となる。そして、上段側に位置する炭化火格子部3からの酸素割合が全供給酸素量の60%以上となるように、炭化火格子部3の送風量を調節する。一方、溶融炉部4に供給される酸素割合は、全酸素量の40%未満となるように羽口42の送風量及び/又は酸素富化空気の酸素濃度を調節する。
 炭化火格子部3から炉内に吹き込む空気の送風量は上記の通りであるが、例えば第1及び第2回収室32a、32bに連結される送風管33a、33bの各々に流量調節弁34a、34bを設け、炉内状況に応じて供給炭化火格子3Aと乾留炭化火格子3Bの送風量を相対的に異なるように調節してもよく、流量調節弁を共通にして供給炭化火格子3Aと乾留炭化火格子3Bの送風量を一元管理するようにしてもよい。
 本実施形態においては、炭化火格子部3から炉内に供給する酸素割合を、炉内に供給する全酸素量の60%以上に設定可能な廃棄物ガス化溶融炉1を具現化したことにより、シャフト部2及び炭化火格子部3において廃棄物自身の燃焼熱を利用した乾燥・熱分解を促進することができる。図3は、実際に行った試験結果を示す。プロット●は本実施形態の炭化火格子部3から供給する酸素割合(上部酸素割合(%))を示す。また、プロット▲は、比較として従来型シャフト式ガス化溶融炉の上段羽口から供給する酸素割合(上部酸素割合(%))を示す。図3に示す実際の試験結果からも明らかな通り、本実施形態によればコークス比(kg/t-廃棄物総量)(廃棄物処理量当たりのコークス使用量)を20以下に抑えることが可能である。コークス比(kg/t-廃棄物総量)をより確実に20以下に抑えるために全酸素量の70%以上に設定することも可能である。すなわち、従来のシャフト式溶融炉に比べて、炉全体のコークス消費量を格段に削減できている。
 炉内に吹き込む酸素量の割合は上記の通りである。更に好ましい例として、シャフト部2内で乾燥・熱分解され、更に炭化火格子部3で炭化された後の廃棄物に含まれる水分が10%以下であって、且つ、残存する固定炭素が3%以上となるように炭化火格子部3から炉内に吹き込む空気量を調節する。処理前の廃棄物に含まれる水分と固定炭素量は限定されないが、例えば水分が45%以上であって、固定炭素が10%以上である一般廃棄物を、水分が10%以下であって、且つ、残存する固定炭素が3%以上となるよう乾燥・熱分解・炭化するのに好適な空気量は、図4(a)に実際の試験結果を示すように、理論空気量に対する空気比が0.2~0.3である。廃棄物の種類によって水分や灰分の含有量が異なる場合があるので、空気比としては0.1~0.4の範囲内で調節するようにする。
 すなわち、炭化後の廃棄物に含まれる水分が10%以下であって、且つ、残存する固定炭素が3%以上となる空気量を設定し、更にその設定された空気量に対応する供給酸素量が炉全体における全供給酸素量の60%以上となるように、羽口42の送風量及び/又は富化する酸素濃度が少なくなるように調節している。溶融炉部4に供給する廃棄物は十分に乾燥させることが望ましいが、一方で、乾燥・熱分解が進行し過ぎると固定炭素がガス化してしまい、溶融に利用する廃棄物自身の燃焼熱が減ってしまう。そこで水分と残存固定炭素の好適なバランスに着目し、実際に試験を行って、溶融するのに好適な廃棄物の状態を見出した。これにより、炉底での燃焼負荷を低減して余分なコークス使用量を削減している。更に、図4(b)に実際の試験結果を示すように、炉底のスラグ温度を安定操業できる温度(すなわち、1450℃以上)にできることも確認している。
 更に、乾留炭化火格子3Bの供給速度(V2)が供給炭化火格子3Aの供給速度(V1)よりも大きくなるように設定すれば、高い乾留効率で廃棄物を乾留することができる。炭化火格子部3の乾留効率を高めようとした場合、乾留炭化火格子3B上に廃棄物を長く滞留させることが好ましいと考え、供給速度(V2)を供給速度(V1)よりも小さく設定するのが通常である。しかしながら、供給炭化火格子3Aの上方にシャフト部2が配置され、荷下がりによって廃棄物が供給される構成にあっては、図5に示すように、乾留炭化火格子3B上の廃棄物の層が厚くなり、表層の乾留不十分な廃棄物が溶融炉部4に供給されてしまう。一方、乾留炭化火格子3Bの供給速度(V2)を供給炭化火格子3Aの供給速度(V1)よりも大きく設定すれば、乾留炭化火格子3B上の廃棄物の層を薄くすることができ、炭化火格子上で十分に乾留することができる。このように滞留時間よりも層厚を重視したことにより、炭化火格子部3の乾留効率を向上させることができ、炉底での燃焼負荷をより確実に低減することが可能となる。更に好ましくは、図2に例示するように、シャフト部2の連通部5寄りの下端と、上部側開口部46の真上の乾留炭化火格子上面先端部を結ぶ線と水平線とのなす角(α)を50度以下にする。このように構成すれば、廃棄物の安息角によるシャフト部2からのなだれ込みが抑制でき、炭化火格子部3上の廃棄物の層が厚くなるのをより確実に抑制することが可能となる。
 前述したように、溶融炉部4に供給する炭化後の廃棄物は、水分と固定炭素のバランスを考慮して、水分が10%以下、固定炭素が3%以上であることが好ましい。このような炭化状態にするためには、供給炭化火格子3A及び乾留炭化火格子3Bの炭化火格子燃焼率が300kg/(m・h)~500kg/(m・h)の範囲内であることが好ましい。炭化火格子燃焼率とは、単位時間及び単位面積あたりの廃棄物の処理量を意味する。供給炭化火格子3Aと乾留炭化火格子3Bの面積は、炭化火格子燃焼率が300kg/(m・h)~500kg/(m・h)の範囲内となるように設定する。また、廃棄物の乾燥及び熱分解状態に応じて可動火格子の駆動速度、各炭化火格子3A、3Bからの送風量及び送風温度等を制御し、炉の操業時における炭化火格子燃焼率を調整することもできる。
 炭化火格子燃焼率が500kg/(m・h)を超えると、図6(a)に実際の試験結果を示すように、炭化後の廃棄物の水分が10%を超えてしまい、溶融炉部4において水分を蒸発させるための余分な燃焼負荷が発生する。一方、炭化火格子燃焼率が300kg/(m・h)を下回ると、水分を殆ど蒸発させることができる反面、燃焼が進行することによって廃棄物の固定炭素がガス化し、溶融炉部4の炉底で燃焼熱を利用することができない。炭化火格子燃焼率を300kg/(m・h)~500kg/(m・h)の範囲内にすれば、溶融炉部4の燃焼負荷を低減できる上に、図6(b)に実際の試験結果を示すように、炉底のスラグ温度を安定操業できる温度(すなわち、1450℃以上)にできることも確認している。
 羽口42から炉内に供給する酸素割合は上記の通りであるが、より好ましくは、炭素系固形燃料中に含まれる固定炭素の理論燃焼酸素量(M1)を、羽口42から溶融炉部4内に吹き込む酸素富化空気の総酸素量(M2)で除した値を溶融炉燃料比(M1/M2)としたときに、溶融炉燃料比(M1/M2)が0.8~1.2の範囲内に維持されるようにする。溶融炉燃料比(M1/M2)は、0.8~1.2の範囲内に維持するのが好ましい。溶融炉燃料比(M1/M2)の調整は、例えば投入する炭素系固形燃料、羽口42からの送風量、及び酸素富化空気の酸素濃度の少なくとも一つ以上を変更することによって行うことができる。溶融炉燃料比(M1/M2)が0.8を下回ると、溶融炉部4から連通部5に酸素がリークし、リークした酸素と連通部5内に存在する一酸化炭素とが反応して異常燃焼が発生する場合がある。更に、炉の内壁に酸化溶融クリンカが形成される場合がある。反対に溶融炉燃料比(M1/M2)が1.2を上回ると、炉底において炭素系固形燃料を十分に燃焼できない場合がある。一方、溶融炉燃料比(M1/M2)を0.8~1.2の範囲内に維持すれば、炭素系固形燃料の投入量及び羽口42の酸素供給量を必要最小限に止めることが可能である。更に、図7に実際の試験結果を示すように、炉底のスラグ温度を安定操業可能な1450℃以上にすることができる。
 更に、操業時における溶融炉部4内の廃棄物の充填高さは、羽口42より上方向+0.5m~炭化火格子部3の最下端部までの範囲内に維持することが好ましい。この範囲内に維持することによって、充填層101の層厚が薄くなることに起因する炉底からの酸素リークを抑制することができる。更に、充填し過ぎに起因する炭化火格子部3の熱分解効率低下や溶融炉部4内で充填物の棚吊り現象が発生するのを抑制することができる。更に、図8に実際の試験結果を示すように、炉底のスラグ温度を安定操業可能な1450℃以上にすることができる(なお、図8の炉底レベルは、図1に示すように炭化火格子部3の最下端部の位置を炉底レベル0として示す)。
 溶融炉部4内の廃棄物の充填高さの制御は、例えば炭化火格子部3が溶融炉部4に廃棄物を供給する速度を調節することによって行う。例えば、溶融炉部4に充填層101の高さを検知するためのセンサー(不図示)を配置し、センサーが検知する充填層101の高さに基づいて炭化火格子部3の供給速度を制御することができる。或いは、例えばオペレーターが充填高さを監視し、監視結果に基づいて供給速度を制御してもよい。
 炉底からの酸素リークや充填層101に棚吊り現象が発生するのを抑制するために、溶融炉部4内の充填高さを適切に管理する手段としては、前述のように直接的に充填層101の高さを検知する以外にも、圧力計を用いて充填層101の圧力損失を検知し、圧力損失の程度に応じて炭化火格子部3の供給速度を制御するようにしてもよい。一例として図9に示すように、溶融炉部4内の圧力を検知する圧力センサー(P1)を逆円錐台部45に配置し、例えば炭化火格子部3の上方空間の圧力を検知する圧力センサー(P2)を連通部5に配置する。そして、圧力センサー(P1)が検知する圧力と、圧力センサー(P2)が検知する圧力との差を炉底差圧とし、この炉底差圧が所定の範囲内、例えば0.4~2kPaの範囲内に維持されるように炭化火格子部3の供給速度を制御する。炉底差圧の設定値は、実際に操業することによって予め好適な充填高さに対応する炉底差圧の範囲を確認して決めるようにするのが好ましく、その範囲内に維持することにより、酸素リークや棚吊り現象を抑制することができ、更に図10に実際の試験結果を示すように炉底のスラグ温度を安定操業可能な1450℃以上にすることができる。
 また、前述の差圧制御に代えて、或いは差圧制御と共に、温度計を用いて炭化火格子部3の温度を検知し、炭化火格子部3の温度に応じて炭化火格子部3の供給速度を制御するようにしてもよい。一例として図9に示すように、供給炭化火格子3Aと乾留炭化火格子3Bの境界付近の上方空間の温度を検知する温度センサー(T1)を連通部5内に配置する。そして、温度センサー(T1)が検知する温度が所定の温度範囲内、例えば650~800℃の範囲内に維持されるように炭化火格子部3の供給速度を制御する。温度センサー(T1)が検知する温度が設定範囲を超えた場合、充填レベルが低下して溶融炉部4からの熱量が増えたと判断して供給速度を速くする。反対に、温度センサー(T1)が検知する温度が設定範囲を下回った場合、充填し過ぎと判断して供給速度を遅くする。温度の設定値は、実際に操業することによって予め好適な充填高さに対応する温度範囲を確認して決めるようにするのが好ましく、その範囲内に維持することにより、酸素リークや棚吊り現象を抑制することができ、更に図11に実際の試験結果を示すように炉底のスラグ温度を安定操業可能な1450℃以上にすることができる。炉底差圧による制御と炭化火格子部3の温度による制御を併用するようにしてもよい。
 更に、例えば図9に例示するように、乾留炭化火格子3Bの先端付近の様子を監視できるITVカメラを配置し、炉内の炎が確認できるように炭化火格子部3の供給速度を制御することもできる。すなわち、例えば炉底のスラグ温度を1450℃以上にできる適切な炎の状態を予め確認しておき、ITVカメラで撮影される炎が、適切な炎よりも弱い場合には充填し過ぎと判断して供給速度を遅くする。反対に適切な炎よりも激しい場合には、充填レベルが低下していると判断して供給速度を速くする。
 更に、例えば図9に例示するように、連通部5に炉内ガスのサンプリング孔を設け、サンプリングしたガスの一酸化炭素と酸素の濃度を測定し、一酸化炭素濃度が3%以上であって、且つ、酸素濃度が1%以下を維持するように炭化火格子部3の供給速度を制御するようにしてもよい。すなわち、酸素濃度が1%を上回った場合は充填レベルが低下していることに起因する酸素リークであると判断して供給速度を速くする。また、一酸化炭素濃度が3%を下回った場合は充填し過ぎによる乾留効率の低下であると判断して供給速度を遅くする。
 説明を図1に戻すと、廃棄物はシャフト上部の廃棄物装入口21のみから装入する構成に限られず、例えば副資材装入口41から装入するようにしてもよい。例えば、水分量が多い廃棄物は廃棄物装入口21から装入して、シャフト部2及び炭化火格子部3において乾燥・熱分解してから溶融炉部4に供給するようにし、灰分量が多くて水分が少ない廃棄物は、副資材装入口41から装入するようにしてシャフト部2及び炭化火格子部3における乾燥・熱分解の負荷を軽減するようにする。一例として、水分量が多い廃棄物としては汚泥等が挙げられ、灰分量が多い廃棄物としては焼却灰等が挙げられる。廃棄物の装入口は、廃棄物装入口21及び副資材装入口41以外の場所にも設けることができる。このように、廃棄物の性状に基づいて炉内に装入する位置を適宜変えるようにすれば、結果として炉全体の負荷を軽減することが可能となる。
 処理する廃棄物の種類は、特に限定されることはなく、一般廃棄物,産業廃棄物のいずれであってもよい。シュレッダーダスト(ASR),掘り起こしごみ,焼却灰などの単体又は混合物、或いはこれらと可燃性ごみの混合物なども処理することが可能である。また、乾留された廃棄物やチャーを投入してもよい。
 以上、本発明を具体的な実施形態に則して詳細に説明したが、形式や細部についての種々の置換、変形、変更等が、特許請求の範囲の記載により規定されるような本発明の精神及び範囲から逸脱することなく行われることが可能であることは、当該技術分野における通常の知識を有する者には明らかである。従って、本発明の範囲は、前述の実施形態及び添付図面に限定されるものではなく、特許請求の範囲の記載及びこれと均等なものに基づいて定められるべきである。
 1  廃棄物ガス化溶融炉
 2  シャフト部
 3  炭化火格子部
 3A 供給炭化火格子
 3B 乾留炭化火格子
 4  溶融炉部
 42 羽口
 5  連通部
 

Claims (9)

  1.  上部側に廃棄物装入口及び炉内ガス排出口、底部側に廃棄物が排出される開口部を有し、内部に充填された廃棄物を乾燥及び熱分解させるシャフト部と、
     前記シャフト部とは炉芯をずらして配置され、上部側に熱分解された廃棄物と炭素系固形燃料が供給される開口部、炉底側に燃焼用の酸素富化空気を吹き込む羽口を有する溶融炉部と、
     前記シャフト部の底部側開口部と前記溶融炉部の上部側開口部とを連結する連通部と、を備えた廃棄物ガス化溶融炉において、
     前記シャフト部に充填された廃棄物の荷重を受ける位置に配置された炭化火格子部と、乾燥・熱分解用の空気を前記炭化火格子部から前記シャフト部内に送風する送風装置と、前記炭化火格子部上にある熱分解された廃棄物を前記溶融炉部の上部側開口部に供給する供給装置と、を前記連通部に備え、
     前記炭化火格子部は、上段側に配置される供給炭化火格子と、下段側に配置される乾留炭化火格子とを含み、
     前記供給装置は、前記供給炭化火格子上の廃棄物を前記乾留炭化火格子に向けて供給する第1供給装置と、前記乾留炭化火格子上にある炭化した廃棄物を前記溶融炉部に向けて供給する第2供給装置を含み、
     前記炭化火格子部での廃棄物自身の燃焼熱を利用した乾燥・熱分解を促進させるために、炉内に吹き込まれる全酸素量の60%以上を占めるように前記乾燥・熱分解用の空気を前記炭化火格子部から前記シャフト部内に送風し、炉内に吹き込まれる全酸素量の40%未満を前記溶融炉部の羽口から供給する酸素配分とし、さらに前記第2供給装置の供給速度(V2)を、前記第1供給装置の供給速度(V1)よりも大きく設定(V2>V1)したことを特徴とする廃棄物ガス化溶融炉。
  2.  前記送風装置は、前記炭化火格子部から前記溶融炉部に供給される廃棄物中の水分が10%以下であって、且つ、固定炭素の残存量が3%以上となるように、前記炭化火格子部から炉内に吹き込む空気量を調節することを特徴とする請求項1に記載の廃棄物ガス化溶融炉。
  3.  前記溶融炉部内の廃棄物充填高さを前記羽口より上方向+0.5m~前記炭化火格子部の最下端部までの範囲内に維持するように、前記供給装置の供給速度を制御することを特徴とする請求項1又は2に記載の廃棄物ガス化溶融炉。
  4.  前記溶融炉部内の圧力(P1)と前記炭化火格子部の上部空間の圧力(P2)との差圧を0.4kPa~2kPaの範囲内に維持するように、前記供給装置の供給速度を制御することを特徴とする請求項1~3のいずれか1項に記載の廃棄物ガス化溶融炉。
  5.  前記炭化火格子部の温度を650℃~800℃の範囲内に維持するように、前記供給装置の供給速度を制御することを特徴とする請求項1~4のいずれか1項に記載の廃棄物ガス化溶融炉。
  6.  前記炭素系固形燃料中に含まれる固定炭素の理論燃焼酸素量(M1)を、前記羽口から前記溶融炉内に吹き込む酸素富化空気の総酸素量(M2)で除した値を溶融炉燃料比(M1/M2)としたときに、
     前記溶融炉燃料比(M1/M2)を0.8~1.2の範囲内に設定することを特徴とする請求項1~5のいずれか1項に記載の廃棄物ガス化溶融炉。
  7.  廃棄物の種類又は性状に応じて炉内への装入位置を変更する少なくとも一つ以上の廃棄物装入口を、前記シャフト部の上部に配置した前記廃棄物装入口とは異なる位置に設けたことを特徴とする請求項1~6のいずれか1項に記載の廃棄物ガス化溶融炉。
  8.  前記炭化火格子部は、炭化火格子燃焼率が300kg/(m・h)~500kg/(m・h)の範囲内にあることを特徴とする請求項1~7のいずれか1項に記載の廃棄物ガス化溶融炉。
  9.  前記溶融炉部は、円筒形状であって、前記炭化火格子部からの廃棄物が供給される前記開口部から前記羽口までの間に絞り部をなす逆円錐台部が形成されており、前記逆円錐台部の傾斜角が75度より大きくなっていることを特徴とする請求項1~8のいずれか1項に記載の廃棄物ガス化溶融炉。
     
     
PCT/JP2012/007596 2012-02-28 2012-11-27 廃棄物ガス化溶融炉 WO2013128524A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020147021786A KR101890873B1 (ko) 2012-02-28 2012-11-27 폐기물 가스화 용해로
SG11201404073RA SG11201404073RA (en) 2012-02-28 2012-11-27 Waste gasification melting furnace
CA2865581A CA2865581C (en) 2012-02-28 2012-11-27 Waste gasification melting furnace
US14/372,319 US10047954B2 (en) 2012-02-28 2012-11-27 Method for treating a waste using a waste gasification melting furnace
CN201280068994.XA CN104094059B (zh) 2012-02-28 2012-11-27 废弃物气化熔融炉
EP12869814.9A EP2821702B1 (en) 2012-02-28 2012-11-27 Waste gasification and melting furnace
BR112014021343A BR112014021343B8 (pt) 2012-02-28 2012-11-27 Forno de fundição e gaseificação de resíduo
AU2012371991A AU2012371991B2 (en) 2012-02-28 2012-11-27 Waste gasification melting furnace
ES12869814.9T ES2639845T3 (es) 2012-02-28 2012-11-27 Horno de gasificación y fundición de residuos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-041887 2012-02-28
JP2012041887A JP5120823B1 (ja) 2012-02-28 2012-02-28 廃棄物ガス化溶融炉

Publications (1)

Publication Number Publication Date
WO2013128524A1 true WO2013128524A1 (ja) 2013-09-06

Family

ID=47692843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007596 WO2013128524A1 (ja) 2012-02-28 2012-11-27 廃棄物ガス化溶融炉

Country Status (11)

Country Link
US (1) US10047954B2 (ja)
EP (1) EP2821702B1 (ja)
JP (1) JP5120823B1 (ja)
KR (1) KR101890873B1 (ja)
CN (1) CN104094059B (ja)
AU (1) AU2012371991B2 (ja)
BR (1) BR112014021343B8 (ja)
CA (1) CA2865581C (ja)
ES (1) ES2639845T3 (ja)
SG (1) SG11201404073RA (ja)
WO (1) WO2013128524A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151498A1 (zh) * 2021-01-18 2022-07-21 车战斌 固体燃料的燃烧组织方法及燃烧炉

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9453170B2 (en) * 2013-03-15 2016-09-27 All Power Labs, Inc. Hybrid fixed-kinetic bed gasifier for fuel flexible gasification
US9745516B2 (en) 2013-03-15 2017-08-29 All Power Labs, Inc. Simultaneous pyrolysis and communition for fuel flexible gasification and pyrolysis
JP6223104B2 (ja) * 2013-10-04 2017-11-01 新日鉄住金エンジニアリング株式会社 廃棄物ガス化溶融炉及びその運転方法
US20160320058A1 (en) * 2013-12-17 2016-11-03 Aalto University Foundation Method and apparatus for controlling combustion in a furnace
JP6305803B2 (ja) * 2014-03-26 2018-04-04 株式会社クボタ 表面溶融炉及び表面溶融炉の運転方法
CN104534488B (zh) * 2015-01-08 2017-02-22 辽宁省兴城市特种铸钢有限公司 一种耐磨炉排片
ES2655922T5 (es) * 2015-07-03 2021-10-29 Alite Gmbh Distribución de la entrada de clínker de un enfriador de clínker de cemento
JP5951151B1 (ja) * 2016-02-02 2016-07-13 新日鉄住金エンジニアリング株式会社 廃棄物処理炉及びこれを用いた廃棄物処理方法
CN105757680B (zh) * 2016-03-21 2018-09-11 安徽未名生物环保有限公司 一种温度控制落料系统
CN105823061B (zh) * 2016-03-21 2018-09-11 安徽未名生物环保有限公司 一种自动落料控制系统
CN105885884A (zh) * 2016-04-21 2016-08-24 北京神雾环境能源科技集团股份有限公司 有机垃圾热解系统及其应用
CN106765146A (zh) * 2016-12-30 2017-05-31 重庆科技学院 基于废弃物气化熔融燃烧的二次污染物控制系统
CN107101206A (zh) * 2017-05-09 2017-08-29 高承疆 可燃气体包裹可燃固体的燃烧方法
CN108330282A (zh) * 2018-03-08 2018-07-27 扬州晨光特种设备有限公司 危险废弃物熔融-冶金一体化的处理方法
CN108716670A (zh) * 2018-04-28 2018-10-30 王仲宇 一种多功能生物质高温气化锅炉燃烧器
CN108592030B (zh) * 2018-06-29 2023-09-26 北京环境工程技术有限公司 一种带有自过滤功能的炉排式垃圾气化装置
US10816197B2 (en) * 2018-12-07 2020-10-27 Eco Burn Inc. System for the dynamic movement of waste in an incinerator
CN111853801A (zh) * 2020-07-28 2020-10-30 山东百川同创能源有限公司 一种垃圾热解气化焚烧系统及工艺
CN114432968B (zh) * 2022-02-08 2023-03-24 江苏天楹等离子体科技有限公司 一种倾倒式熔池的放射性废物等离子体气化熔融炉

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316633B2 (ja) 1974-01-23 1978-06-02
JPS6011766B2 (ja) 1978-12-25 1985-03-28 新日本製鐵株式会社 廃棄物の溶融式熱分解炉における燃焼支持ガス吹込方法
JPH09126428A (ja) * 1995-10-06 1997-05-16 Von Roll Umwelttechnik Ag ばら廃棄物の熱処理方法
JPH11281032A (ja) * 1998-01-31 1999-10-15 Kawasaki Steel Corp 廃棄物処理方法および廃棄物処理設備
JP2010038535A (ja) * 2008-07-08 2010-02-18 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2010043840A (ja) * 2008-07-15 2010-02-25 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2010255890A (ja) * 2009-04-22 2010-11-11 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2010255888A (ja) * 2009-04-22 2010-11-11 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2011064383A (ja) * 2009-09-16 2011-03-31 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2011064411A (ja) * 2009-09-17 2011-03-31 Nippon Steel Engineering Co Ltd 廃棄物処理方法及び廃棄物処理設備
JP2011064382A (ja) * 2009-09-16 2011-03-31 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109590A (en) * 1976-12-03 1978-08-29 Mansfield Carbon Products, Inc. Apparatus and method for producing gas
US4471704A (en) * 1982-06-21 1984-09-18 Clear Air, Inc. Reciprocating grate systems for furnaces and incinerators
JPH07111247B2 (ja) * 1989-11-10 1995-11-29 石川島播磨重工業株式会社 廃棄物処理方法
CH688871A5 (de) * 1994-05-16 1998-04-30 Von Roll Umwelttechnik Ag Verfahren zur thermischen Energiegewinnung aus Abfallmaterial, insbesondere Muell.
JP3319327B2 (ja) * 1997-03-26 2002-08-26 日本鋼管株式会社 ごみ焼却炉の燃焼制御方法およびその装置
US6182584B1 (en) * 1999-11-23 2001-02-06 Environmental Solutions & Technology, Inc. Integrated control and destructive distillation of carbonaceous waste
CN1267678C (zh) * 2002-05-29 2006-08-02 周雪松 垃圾焚烧炉
ITRM20040297A1 (it) * 2004-06-17 2004-09-17 Sorain Cecchini Ambiente Sca Spa Metodo per la realizzazione del riciclaggio integrale a basso impatto ambientale dei rifiuti solidi urbani e dispositivi di attuazione.
JP4542417B2 (ja) * 2004-11-26 2010-09-15 新日鉄エンジニアリング株式会社 廃棄物溶融炉の可燃性ガスの処理方法
EA200802255A1 (ru) * 2006-05-05 2009-10-30 Пласкоенерджи Айпи Холдингз, С.Л., Билбау, Шафхаузен Брэнч Система повторного использования тепла для применения с газификатором
WO2007128318A1 (en) * 2006-05-10 2007-11-15 Force Technology Method, device and system for enhancing combustion of solid objects
KR100997250B1 (ko) * 2010-07-13 2010-11-29 (주) 태종 엔이씨 소각로용 2차 연소공기 유량유속조절 댐퍼와 소각로내 온도측정값 및 열정산 프로그램을 이용한 소각로 자동 운전 제어시스템

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316633B2 (ja) 1974-01-23 1978-06-02
JPS6011766B2 (ja) 1978-12-25 1985-03-28 新日本製鐵株式会社 廃棄物の溶融式熱分解炉における燃焼支持ガス吹込方法
JPH09126428A (ja) * 1995-10-06 1997-05-16 Von Roll Umwelttechnik Ag ばら廃棄物の熱処理方法
JPH11281032A (ja) * 1998-01-31 1999-10-15 Kawasaki Steel Corp 廃棄物処理方法および廃棄物処理設備
JP2010038535A (ja) * 2008-07-08 2010-02-18 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2010043840A (ja) * 2008-07-15 2010-02-25 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2010255890A (ja) * 2009-04-22 2010-11-11 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2010255888A (ja) * 2009-04-22 2010-11-11 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2011064383A (ja) * 2009-09-16 2011-03-31 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2011064382A (ja) * 2009-09-16 2011-03-31 Nippon Steel Engineering Co Ltd 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2011064411A (ja) * 2009-09-17 2011-03-31 Nippon Steel Engineering Co Ltd 廃棄物処理方法及び廃棄物処理設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821702A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151498A1 (zh) * 2021-01-18 2022-07-21 车战斌 固体燃料的燃烧组织方法及燃烧炉

Also Published As

Publication number Publication date
JP2013178015A (ja) 2013-09-09
EP2821702A4 (en) 2015-11-11
EP2821702B1 (en) 2017-06-21
CA2865581C (en) 2019-04-09
KR20140131509A (ko) 2014-11-13
AU2012371991B2 (en) 2017-04-06
SG11201404073RA (en) 2014-10-30
US20140338575A1 (en) 2014-11-20
ES2639845T3 (es) 2017-10-30
AU2012371991A1 (en) 2014-07-31
BR112014021343B1 (pt) 2021-11-03
JP5120823B1 (ja) 2013-01-16
US10047954B2 (en) 2018-08-14
CA2865581A1 (en) 2013-09-06
BR112014021343A2 (ja) 2017-06-20
CN104094059A (zh) 2014-10-08
KR101890873B1 (ko) 2018-08-22
CN104094059B (zh) 2016-01-13
EP2821702A1 (en) 2015-01-07
BR112014021343B8 (pt) 2022-03-03

Similar Documents

Publication Publication Date Title
JP5120823B1 (ja) 廃棄物ガス化溶融炉
EP1347236A1 (en) Waste-gasified fusion furnace and method of operating the fusion furnace
KR101921225B1 (ko) 폐기물 용융로
JP5180917B2 (ja) 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2015075245A (ja) 廃棄物ガス化溶融炉及びその運転方法
JP6066461B2 (ja) 廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法
JP2002372216A (ja) 廃棄物ガス化溶融炉
WO2010123444A1 (en) Method and plant for burning solid fuel
CN214612323U (zh) 有机固废套筒式导气湿式排灰固定床气化炉
JP2015075246A (ja) 廃棄物ガス化溶融炉及びその運転方法
US11788021B2 (en) Reactor and process for gasifying and/or melting of feed materials
JP6223104B2 (ja) 廃棄物ガス化溶融炉及びその運転方法
JP5605576B2 (ja) 廃棄物ガス化溶融装置
CN112625754A (zh) 有机固废套筒式导气湿式排灰固定床气化炉及气化方法
WO1997049954A1 (fr) Procede de brulage/fusion pour four de fusion des dechets
JP5855785B1 (ja) 廃棄物ガス化溶融炉の運転方法
JP2014190599A (ja) 廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法
JP6018860B2 (ja) 廃棄物ガス化溶融炉の立ち上げ方法
WO2011027395A1 (ja) 廃棄物溶融炉および廃棄物溶融処理方法
JP5909583B1 (ja) 廃棄物ガス化溶融炉の運転方法
JP5909584B1 (ja) 廃棄物ガス化溶融炉の運転方法
JP2010038535A (ja) 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2002039518A (ja) 塵芥のガス化溶融炉
JP2013257098A (ja) 廃棄物処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869814

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012869814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012869814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14372319

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012371991

Country of ref document: AU

Date of ref document: 20121127

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147021786

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2865581

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014021343

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014021343

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140828