WO1997044108A1 - Appareil de distillation par reaction et procede de distillation par reaction - Google Patents

Appareil de distillation par reaction et procede de distillation par reaction Download PDF

Info

Publication number
WO1997044108A1
WO1997044108A1 PCT/JP1997/001685 JP9701685W WO9744108A1 WO 1997044108 A1 WO1997044108 A1 WO 1997044108A1 JP 9701685 W JP9701685 W JP 9701685W WO 9744108 A1 WO9744108 A1 WO 9744108A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
raw material
reactive distillation
equilibrium reaction
boiling point
Prior art date
Application number
PCT/JP1997/001685
Other languages
English (en)
French (fr)
Inventor
Hideaki Tsuneki
Atusi Moriya
Hiroshi Yoshida
Hiroki Wakayama
Kenichi Watanabe
Yoshiyuki Onda
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to EP97922103A priority Critical patent/EP0842685A4/en
Priority to US09/000,009 priority patent/US6057470A/en
Publication of WO1997044108A1 publication Critical patent/WO1997044108A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00247Reflux columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00557Flow controlling the residence time inside the reactor vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a reactive distillation apparatus and a reactive distillation method that can be applied to a relatively complicated reaction obtained by combining two or more equilibrium reactions.
  • the above conventional reactive distillation column is applied only to a relatively simple reaction, and is not applied to a relatively complicated reaction in which an equilibrium reaction is combined in two or more stages. In other words, little is known about a reactive distillation column applicable to a sequential complex reaction. Therefore, there is a need for a reactive distillation apparatus and a reactive distillation method that can be applied to relatively complicated reactions in which equilibrium reactions are combined in two or more stages.
  • the present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a reactive distillation apparatus that can be applied to a relatively complicated reaction in which an equilibrium reaction is combined in two or more steps;
  • An object of the present invention is to provide a reactive distillation method capable of efficiently performing a reaction. Disclosure of the invention
  • the present inventors have diligently studied a reactive distillation apparatus and a reactive distillation method in order to solve the above conventional problems.
  • the first supply unit, the second supply unit, and the third supply unit use the reactive distillation apparatus fi, which is provided in different stages in order from the top of the column, to perform two types of equilibrium reactions.
  • the raw material with the higher boiling point first raw material
  • second raw material second raw material
  • a third raw material for performing a second equilibrium reaction with a product having a boiling point from the first and second raw materials from the first and second raw materials is supplied from a third supply unit, and the product and the third raw material are supplied.
  • the present inventors have found that a relatively complicated reaction comprising a combination of two or more equilibrium reactions can be efficiently performed by performing the second equilibrium reaction with .
  • the reactive distillation apparatus of the present invention is a reactive distillation apparatus having three or more stages for performing a reaction having two or more equilibrium reactions.
  • a first supply unit that supplies a raw material with a higher boiling point (first raw material) and a second supply unit that supplies a raw material with a lower boiling point (second raw material)
  • a second supply unit and a third supply for supplying a third raw material for performing the second equilibrium reaction with a product having a higher boiling point than the first and second raw materials among the products generated by the first equilibrium reaction.
  • at least a first part, and the first supply part, the second supply part, and the third supply part are provided in different stages in order from the top of the tower.
  • the reactive distillation apparatus of the present invention may further include a stage provided with no supply unit between the two stages provided with the supply unit.
  • the first supply section, the second supply section, and the third supply section to which different raw materials are supplied are provided in different stages in order from the top of the tower. .
  • a reactive distillation apparatus 11 that can be applied to a relatively complicated reaction in which two or more equilibrium reactions are combined, that is, a sequential complex reaction.
  • the reactive distillation method of the present invention is a reactive distillation method in which a reaction having two or more equilibrium reactions is performed using a reactive distillation apparatus having three or more stages.
  • the raw material with the higher boiling point first raw material
  • second raw material second raw material
  • the third raw material that causes the second equilibrium reaction with the product having a high level of water is supplied to the third stage below the second stage, and the second equilibrium between the product and the third raw material is obtained. And carrying out a reaction.
  • a product having a lower boiling point may be a raw material of the first equilibrium reaction.
  • the two kinds of raw materials are subjected to the first equilibrium reaction, and among the products generated by the first equilibrium reaction, the product having a higher boiling point and the third raw material are separated. Allow two equilibrium reactions to take place.
  • This can provide a relatively complicated reaction in which the equilibrium reaction is combined in two or more steps, that is, a reactive distillation method applicable to a sequential complex reaction.
  • the reactive distillation method of the present invention further comprises the step of: R 1 C 00 R 2 ' ⁇ ' ⁇ '(1)
  • R 1 and R 2 each independently represent an alkyl group, an alicyclic hydrocarbon group or an arylalkyl group); and a compound represented by the general formula (2)
  • R 3 represents an aromatic group which may have an S-substituent
  • R 3 is an ester exchange reaction with an aromatic hydroxy compound represented by the formula:
  • R 1 represents an alkyl group, an alicyclic hydrocarbon group or an arylalkyl group, and R 3 represents an aromatic group which may have a protecting group.
  • R 4 and R 5 each independently represent an alkyl group, an alicyclic hydrocarbon group or an arylalkyl group).
  • R 3 represents an aromatic group which may have a substituent, and represents a substituent selected from the group consisting of R 3 , R 4 and R 5 ). Can be manufactured efficiently.
  • the obtained carbonate ester is an industrially useful compound.
  • carbon dioxide a kind of carbonic acid ester, is used as a raw material for polycarbonate.
  • FIG. 1 is a block diagram showing a schematic configuration of a reactive distillation apparatus according to one embodiment of the present invention.
  • the reactive distillation apparatus and the reactive distillation method according to the present invention can also provide a complicated sequential complex reaction in which equilibrium reactions are combined in three or more stages.
  • the equilibrium reaction will be described for convenience of explanation.
  • An example is a sequential complex reaction in which two steps are combined. That is, using the raw material (A), the raw material (B) and the raw material (E),
  • the order of the boiling points of the raw material (A) as the first raw material, the raw material (B), and the raw material (E) as the third raw material is as follows: raw material (A)> raw material (B)> raw material (E ), And the order of the boiling points of the product (C) and the product (D) is as follows: product (C)> product (D), and the boiling points of the product (F) and the product (G) Is assumed to be product (F)> product (G).
  • the first equilibrium reaction is referred to as a first-stage reaction
  • the second equilibrium reaction is referred to as a second-stage reaction.
  • a reactive distillation apparatus (hereinafter, simply referred to as a reactive distillation column) 1 according to the present invention includes a reboiler 1, a condenser 3, a bomb 4, and the like.
  • the reactive distillation column 1 has three or more stages.
  • the raw material (A) and the raw material (B) are brought into gas-liquid contact with the product (C) and the raw material (E) with gas-liquid contact.
  • Reactive distillation column 1 [This is connected to the raw material supply pipe 5 ⁇ 6 ⁇ 7.
  • the bottom of the reactive distillation column 1 is connected to the reboiler 2 via an extraction pipe 8 and a conduit 14.
  • the top of the reactive distillation column 1 is connected to a condenser 3 via a conduit 12.
  • the raw material supply pipes 5, 6, 7 are provided in different stages in order from the top of the reactive distillation column 1. That is, in the reactive distillation column 1, the raw material supply pipe 6 is connected to a lower stage than the raw material supply pipe 5, and the raw material supply pipe 7 is connected to a lower stage than the raw material supply pipe 6.
  • the reactive distillation column 1 is provided between a stage to which the raw material supply pipe 5 is connected (first stage) and a stage to which the raw material supply tube 6 is connected (second stage), Between the stage to which the supply pipe 6 is connected and the stage to which the raw material supply pipe 7 is connected (third stage), there may be a stage to which the raw material supply pipe is not connected. More preferred. Further, the raw material supply pipe 7 may be connected to the tower bottom.
  • the raw material supply pipe 5 as the first supply unit continuously supplies the raw material (A) to the reactive distillation column 1.
  • a raw material supply pipe 6 as a second supply unit continuously supplies the raw material (B) to the reactive distillation column 1.
  • a raw material supply pipe 7 as a third supply section continuously supplies the raw material (E) to the reactive distillation column 1.
  • the reboiler 2 is connected to the reactive distillation column 1 via the extraction pipe 8 and the conduit 14. T / JP97 / 01685
  • the reboiler 2 heats the bottom liquid extracted through the extraction pipe 8 and returns the liquid to the bottom through the conduit 14. That is, the reboiler 2 heats and circulates the bottom liquid. Then, the withdrawal pipe 8 is performing a division technique, so that a part of the bottom liquid can be continuously withdrawn as a bottom liquid outside the reaction system.
  • the condenser 3 condenses and liquefies the distillate from the reactive distillation column 1.
  • the condenser 3 is connected to the top of the reactive distillation column 1 via a conduit 12, and is connected to the pump 4 via a discharge pipe 9. Further, the condenser 3 is provided with an adjusting pipe 10 provided with a pressure adjusting valve 11. Then, the extraction pipe 9 performs a divisional operation, so that a part of the distillate can be continuously extracted out of the reaction system.
  • the pump 4 refluxes the distillate to the reactive distillation column 1 at a predetermined reflux ratio.
  • the bomb 4 is connected to the condenser 3 via an extraction pipe 9, and is connected to the top of the reactive distillation column 1 via a conduit 13.
  • the raw material (A) is fed through the raw material supply pipe 5, the raw material (B) is fed through the raw material supply pipe 6, and the raw material (E) is fed through the raw material supply pipe 7 to the reactive distillation column 1.
  • These raw materials (A), (B), and (E) may be supplied in liquid form, may be supplied in gaseous form, or may be painted in a gas-liquid mixed state.
  • the raw material (A) may include a part of the raw material (B), and the raw material (B) may include a part of the raw material (A).
  • the raw material (A) and the raw material (B) supplied to the reactive distillation column 1 are subjected to gas-liquid contact, that is, reactive distillation.
  • the first-stage reaction proceeds, A product (C) and a product (D) are formed, and both are separated.
  • the product (C) flows down in the reactive distillation column 1.
  • the product (D) which is a by-product, is continuously extracted as a distillate.
  • the product (C) and the raw material (E) are subjected to gas-liquid contact, that is, reactive distillation.
  • gas-liquid contact that is, reactive distillation.
  • the latter-stage reaction proceeds, and a product (F) and a product (G) are generated and both are separated.
  • the by-product (G) rises in the reactive distillation column 1 and is continuously extracted as a distillate.
  • the product (G) is the raw material of the first-stage reaction, that is, when the product (G) and the raw material (B) are the same compound, the product (G) is To be served.
  • the target product (F) is continuously extracted from the reaction distillation column 1 as a bottom liquid (bottom liquid) outside the reaction system. That is, the product (F) is continuously taken out of the reaction system as a bottom liquid.
  • the product (F) By performing the above reaction operations, the product (F) can be efficiently and continuously produced.
  • the types of compounds existing in the reactive distillation column 1 are reduced, and the reaction system is simplified.
  • the supply amount of the raw material (B) supplied through the raw material supply pipe 6 can be reduced, the above-described sequential complex reaction can be performed more efficiently.
  • the catalyst is continuously supplied to the reactive distillation column 1 together with the raw materials (A) and Z or the raw material (B).
  • the catalyst may be separated and recovered from the product (F) by using a known method such as distillation.
  • the catalyst is held inside the reactive distillation column 1.
  • a heterogeneous catalyst may be charged instead of a part or all of the charged material in the reactive distillation column 1. Wear.
  • a tray column (to be described later) is used as the reactive distillation column 1, the unevenness—the catalyst may be held in a plate or a downcomer.
  • the catalyst used in the first-stage reaction and the catalyst used in the second-stage reaction may be the same as each other, or may be different from each other.
  • a solvent supply tube (not shown) may be separately provided in the reactive distillation column 1, and the solvent may be continuously supplied through the solvent supply tube.
  • the reactive distillation column 1 has a structure in which a gas phase is present in the reactive distillation column 1 and the generated low-boiling components can be continuously separated and removed from the gas phase, ie, so-called Any structure that can carry out reactive distillation may be used.
  • a distillation column having three or more stages excluding the top (top) and the bottom (bottom) is preferable.
  • Such distillation towers were filled with, for example, Raschig ring, ball ring, Inox rock saddle, Dixonno, 'packing, McMahon packing, sludge packing, etc.
  • Packing tower A commonly used distillation tower such as a tray tower using a tray such as an bubble bell tray, a sieve tray, or a valve tray can be used.
  • a combined distillation column having both a tray and a packed bed can also be employed.
  • the number of plates mentioned above indicates the number of plates in a tray column, and indicates the number of theoretical plates in a packed column.
  • the reactive distillation apparatus is not limited to the configuration shown in FIG. .
  • the reactive distillation apparatus and the reactive distillation method according to the present invention are not only applied to the sequential complex reaction in which the equilibrium reactions are combined in two stages, but the complex sequential reaction in which the equilibrium reactions are combined in three or more stages. It can also be used for complex reactions. In this case, the same number of raw material supply pipes as the types of raw materials may be provided in the reactive distillation column.
  • the reactive distillation apparatus and the reactive distillation method according to the present invention will be described in more detail below by giving specific examples.
  • the first-stage reaction is represented by the general formula (1)
  • R 1 and R 2 each independently represent an alkyl group, an alicyclic hydrocarbon group or an alkyl group), and a single-arm type (2)
  • R 3 represents an aromatic group which may have a substituent
  • R 3 is a transesterification reaction with an aromatic hydroxy compound represented by the formula:
  • R 1 represents an alkyl group, an alicyclic hydrocarbon group or an arylalkyl group, and R 3 represents an aromatic group which may have a substituent).
  • R 4 and R 5 each independently represent an alkyl group, an alicyclic hydrocarbon group or an arylalkyl group). It shall be. Therefore, one of the carboxylic acid ester represented by the one-branch type (1) and the aromatic hydroquine compound represented by the general formula (2) corresponds to the raw material (A), and the other corresponds to the raw material (A). (B). Further, the carboxylate represented by the one-branch type (3) corresponds to the product (C), and the carbonate represented by the general formula (4) corresponds to the raw material (E).
  • R 3 represents an aromatic group which may have a substituent
  • R s represents a substituent selected from the group consisting of R 3 , R 4 and RS.
  • Esters are formed. Therefore, the carbonate represented by the single branch (5) corresponds to the product (F).
  • carbonates (5) which are the target substances
  • R 6 is represented as necessary.
  • the carbonic acid ester (5) in which the substituted annulable group is S-substituent R 4 or the substituent RS is called a carbonic acid monoester
  • the latter reaction proceeds in two stages: a reaction in which a carbonate monoester is formed and a reaction in which a ester carbonate is formed. That is, first, one of the substituents R 4 and R 5 of the carbonate represented by the general formula (4) (hereinafter referred to as carbonate (4)) is represented by the general formula (3).
  • the ester is transesterified with a substituent R 3 of a carboxylic acid ester (hereinafter referred to as a carboxylic acid ester (3)).
  • a monoester of carbonic acid is formed, and a single-branch type (6)
  • R ′ represents an alkyl group, an alicyclic hydrocarbon group or an arylalkyl group, and R 7 represents a substituent selected from the group consisting of R 4 and R s ).
  • Acid esters hereinafter referred to as carboxylic acid esters (6) are by-produced.
  • the remaining S-substituent R 4 (R 5 ) of the carbonate monoester is transesterified with the substituent R 3 of the carboxylate (3).
  • a carbonic acid diester is generated, and a carboxylic acid ester (6) is by-produced.
  • the carboxylate (6) corresponds to the product (G).
  • the carboxylic acid ester represented by the general formula (1) (hereinafter, referred to as carboxylic acid ester (1)) is not particularly limited, but the substituent represented by R 1 or R 2 is not particularly limited.
  • R 1 or R 2 is not particularly limited.
  • the alkyl group preferably has 1 to 10 carbon atoms
  • the alicyclic hydrocarbon group preferably has 3 to 10 carbon atoms
  • the arylalkyl group preferably has 7 to 10 carbon atoms.
  • carboxylate (1) examples include, for example, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, cyclohexyl acetate, benzyl acetate, benzyl acetate, 12-ethylhexyl acetate, and propion.
  • Methyl ester ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, methyl isobutyrate, ethyl ethyl isobutyrate, propyl isoformate, methyl valerate, Ethyl valerate, propyl valerate, methyl isovalerate, ethyl ethyl valerate, propyl isovalerate, methyl hexate, ethyl hexate, propyl hexate, methyl heptanoate Ethyl propionate and the like.
  • the carboxylate (6) is preferably reusable as the carboxylate (1). Therefore, it is preferable that the substituent R 2 of the carboxylic acid ester (1) and the substituents R 4 and R 5 of the carbonate (4) are the same as each other.
  • the carboxylic acid ester (6) can be easily separated and recovered.
  • the carboxylic acid ester (1) is not substantially consumed.
  • R 2 represents an alkyl group, an alicyclic hydrocarbon group or an alkyl group
  • R 2 represents an alkyl group, an alicyclic hydrocarbon group or an alkyl group
  • the carboxylic acid ester (1) having a boiling point higher than that of the by-produced alcohol is more preferable among the above exemplified compounds.
  • the alcohol represented by the general formula (7) corresponds to the product (D).
  • a carboxylic acid ester (1) which does not form an azeotropic composition with an alcohol represented by the general formula (7) (hereinafter simply referred to as an alcohol) is required. It is preferable to use.
  • Carboxylic esters that do not form azeotropic compositions (1) include ethyl butyrate, butyl butyrate, and isovalerate and valerate esters. Compounds having 4 or more carbon atoms on the side of the acyl group such as xanates (or compounds having 3 or more prime numbers of the S-substituent group R 1 ) are mentioned.
  • the aromatic hydroxy compound represented by the general formula (2) is not particularly limited, but is a compound in which the substituent represented by R 3 is an aromatic group.
  • the above aromatic group may have a substituent.
  • aromatic hydroxy compound examples include, for example, phenol, 0 — creso-nore, m-tarreteil, p — cresol, 0 — cro-mouth phenol, m-chloro Mouth phenol, p—clo phenol, 0—ethyl phenol, m—ethyl phenol, p—ethyl phenol, 0—isop bil phenol, m—isopropy crizol, p—isoprobiphenol, 0—methoxyphenol, m—methoxyphenol, p-methoxyphenol, xylenols, Hiichi Naphthol, -naphthol and the like.
  • aromatic hydroquine compounds may be appropriately mixed and used.
  • phenol is preferred from the industrial viewpoint.
  • a carboxylic acid ester (1) having a boiling point lower than that of the carboxylic acid ester (3) it is preferable to use.
  • Examples of such a combination of the carboxylic acid ester (1) and the aromatic hydroxy compound include a combination other than the combination of mono-ethylhexyl acetate and phenol, and the combination of benzyl benzoate and phenol. .
  • an acetic acid ester in which the alcohol has 7 or less carbon atoms or a propionate in which the alcohol has 8 or less carbon atoms is used as the carboxylic acid ester (1), All combinations with aromatic hydroxy compounds are possible.
  • the above-mentioned carboxylate (1) and carboxylate (3) may be azeotropic.
  • carboxylic acid ester (3) obtained by the above-mentioned first-stage reaction include, for example, phenyl nitrate, each isomer of methyl acetate, each isomer of ethyl phenyl acetate, Each isomer of mouth phenol, each isomer of isopropyl phenyl acetate, each isomer of methoxyphenyl acetate, each isomer of dimethyl phenyl acetate, each isomer of naphthyl acetate, and each isomer of naphthyl acetate Each isomer of urel, phenyl butyrate, phenyl oxobutyrate, phenyl valerate, each isomer of methyl valerate, phenyl isovalerate, phenyl hexanoate, Phenyl heptanoate and the like.
  • the carbonate ester (4) is not particularly limited.
  • the substituents represented by R 4 and RS each independently represent an alkyl group, an alicyclic hydride group or an arylalkyl group. It is a compound composed of a group.
  • the alkyl group preferably has 1 to 10 carbon atoms
  • the alicyclic hydrocarbon group preferably has 3 to 10 carbon atoms
  • the arylalkyl group has 1 to 10 carbon atoms. ⁇ 10 is preferred.
  • the carbonate ester (4) include, for example, dimethyl carbonate, getyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, each isomer of dibutyl carbonate, each isomer of dipentyl carbonate, and dicarbonate.
  • These carbonates (4) may be appropriately mixed and used.
  • dimethyl carbonate is preferred from the industrial viewpoint.
  • the boiling point of the compound exemplified above is higher than the boiling point of the carboxylic acid ester (6).
  • Carboxylic acid esters (3) are more preferred. Examples of such a combination of the carboxylate (3) and the carbonate (4) include, when the substituent R 3 of the carboxylate (3) is a phenyl group, the substituent R of the carbonate (4) 4 ⁇ When R 5 is linear, it has 7 or less carbon atoms.
  • a carboxylic acid ester (3) having a boiling point lower than that of the carbonate (5) In order to continuously extract the produced carbonate (5) out of the reaction system, it is preferable to use a carboxylic acid ester (3) having a boiling point lower than that of the carbonate (5).
  • a carboxylate (3) for example, a compound having 7 or less carbon atoms when the S-substituent R 1 is linear.
  • the difference in boiling point between the carboxylic acid ester (3) and the carbonate (5) should be relatively large so that the generated carbonate (5) and the carboxylic acid ester (3) can be easily separated. Is preferred.
  • the difference in boiling point between the carboxylic ester (3) and the carboxylic ester (4) is relatively small. It is preferable that the boiling point difference between the acid ester (3) and the carboxylic acid ester (6) is relatively large. 1 5
  • the equilibrium of the transesterification reaction advantageously to the product system side reaction efficiency
  • the carboxylic acid ester (6) When the carboxylic acid ester (6) is distilled off, it is preferable that the carboxylic acid ester (6) and the carboxylic acid ester (3) are sufficiently separated. However, when the carboxylate (6) and the carboxylate (1) are the same compound, it is not necessary to extract the carboxylate (6) out of the reaction system.
  • the carboxylic acid ester (1) and the aromatic hydroxy compound are transesterified in the presence of a catalyst (first-stage reaction). Further, the carboxylate (3) and the carbonate (4) are transesterified in the presence of a catalyst (second reaction).
  • the catalyst used in the first-stage reaction and the catalyst used in the second-stage reaction may be the same as each other, or may be different from each other.
  • Examples of the above catalyst include mineral acids such as sulfuric acid; Rufonic acids: solid acids such as ion-exchange resins and zeolite; bases such as sodium hydroxide; metal alkoxides such as titanate trisopropoxide and zirconium (IV) isobrobox; aluminum chloride and titanium tetrachloride Lewis acids and compounds that generate Lewis acids, etc .; Metal phenoxides such as phenoxy lead, pentoxy titanium, etc .: Lead oxides; Lead salts such as lead carbonate; Zirconium ([V) cetylacetone) Metal, acetyl acetonate Metal acetyl acetonate complex such as copper (I [), zinc (II) acetyl acetate, lithium acetyl acetonate: organic tin compound such as dibutyltin oxide Titano silicate, metal-substituted aluminum phosphate, and the like.
  • mineral acids such as sulfuric acid
  • Rufonic acids solid acids
  • ordinary protonic acid, protonic base, solid acid, and solid base can also be used as a catalyst.
  • metal alkoxides; Lewis acids and compounds generating Lewis acids metal phenoxides; organotin compounds; titanium silicates; I like it.
  • a mixed solution of the catalyst is supplied to one part of the reactive distillation column.
  • the catalyst can be supplied by mixing at least one of the carboxylic acid ester (1), the aromatic hydroxy compound and the carbonate (4).
  • the mixed solution of the catalyst may be supplied to the supply stage of the carboxylic acid ester (1), the aromatic hydroquine compound or the carbonate ester (4), or may be supplied to a stage different from the supply stage. .
  • the reactive distillation column 1 as the area (stage) where the catalyst is present is larger, the frequency of contact between the reaction solution and the catalyst is increased, and the reaction efficiency is improved. For this reason, it is preferable that the catalyst be supplied to the upper stage of the reactive distillation column 1 as much as possible.
  • the lower limit is 0.1 ppm, preferably 1 ppm, and more preferably 1 ppm.
  • the upper limit is the amount that is dissolved in the reaction solution inside the reactive distillation column 1 in a saturated state, and is about 10% by weight, preferably 5% by weight, and more preferably 1% by weight.
  • the lower limit of the amount of the catalyst is 0.1% by weight, preferably 0.5% by weight, more preferably 0.5% by weight, based on the total amount of the carboxylate (1) and the aromatic hydroxy compound. Preferably, it is 1% by weight.
  • the upper limit is 40% by weight, preferably 30% by weight, and more preferably 20% by weight.
  • the method of supplying the raw materials to the reactive distillation column 1 is not particularly limited.
  • the carboxylate (1), the aromatic hydroxy compound, and the carbonate (4) may be supplied in a liquid form, in a gaseous form, or in a gas-liquid mixed state. May also be supplied.
  • the carboxylate (1) may contain a part of the aromatic sigma-oxy compound, and the aromatic hydroxyquine compound may contain a part of the carboxylate (1). May be included.
  • the molar ratio between the carboxylic acid ester (1) and the aromatic hydroxy ⁇ -oxy compound in the first-stage reaction depends on the type and amount of the catalyst used, the reaction conditions, and the like. A range of 0: 1 is preferred, a range of 1:20 to 20: 1 is more preferred, and a range of 1: 5 to 5: 1 is even more preferred.
  • the first-stage reaction is an equilibrium reaction that is extremely biased toward the original system. Therefore, by using one of the carboxylic acid ester (1) and the aromatic hydroxy compound in a large excess, the reaction efficiency (equilibrium conversion) of the other is reduced. Can be enhanced. However, when the molar ratio of the two is out of the above range, the carboxylic acid ester (1) or the aromatic hydroxy compound used in a large excess must be recovered and recycled. This is industrially disadvantageous and not preferred.
  • the molar ratio of the carboxylic acid ester (3) to the carbonate ester (4) in the latter reaction depends on the type and amount of the catalyst used, the reaction conditions, and the like, but ranges from 1:50 to 50: 1. Is preferable, the range of 1:20 to 20: 1 is more preferable, and the range of 1: 5 to 5: 1 is even more preferable.
  • the reaction efficiency equilibrium conversion
  • the carboxylate (3) or carbonate (4) used in a large excess must be recovered and recycled. For this reason, it is industrially disadvantageous and unfavorable.
  • the reaction system may contain a carboxylic acid ester (1), an aromatic hydroxy compound, or the like, which is an unreacted product in the first-stage reaction.
  • a carboxylic acid ester (1) an aromatic hydroxy compound, or the like, which is an unreacted product in the first-stage reaction.
  • the content of the carboxylate (3) in the total amount of the carboxylate (3), the carboxylate (1) and the aromatic hydroxy compound is required. Is preferably at least 10 mol%, more preferably at least 20 mol%, and even more preferably at least 30 mol%.
  • Factors that determine the operating conditions when operating the above reactive distillation column 1 include, for example, the number of stages, operating temperature (reaction temperature), operating pressure, liquid residence time, reflux ratio, and liquid hold-up. And the like. That is, in the first equilibrium reaction, a product having a higher boiling point than each of the first and second raw materials among the respective products generated by the first equilibrium reaction is converted from the first and second raw materials. It is adjusted to a temperature and pressure that can be separated by the difference of each boiling point.
  • the first equilibrium reaction among the products produced by the first equilibrium reaction, products having a lower boiling point than the first and second raw materials are separated and removed according to the difference in each boiling point. Thus, the temperature and pressure are adjusted so as to promote the first equilibrium reaction.
  • the more specific operation temperature depends on the type of the carboxylic acid ester (1), the aromatic hydroxy compound and the carboxylic acid ester (4), the type and amount of the catalyst, and other conditions (factors).
  • the lower limit temperature is 100 ° C., preferably 140 ° C., more preferably 160 ° C.
  • the upper limit temperature is 350 ° C., preferably 300 ° C.
  • the operating temperature is lower than 100 ° C., the catalytic activity becomes lower, so that the reaction time becomes longer and the productivity is lowered, which is not preferable. If the operating temperature is higher than 350, the dehydration reaction or decarboxylation reaction This is not preferred because side reactions such as the production of ethers (diaryl ethers, alkyl aryl ethers, etc.) are likely to occur. Further, the pressure inside the reactive distillation column 1 is too high, which is not preferable.
  • the more specific operating pressure may be any of depressurizing pressure, normal pressure, and pressurizing.
  • the type of carboxylate (1), aromatic hydroxy compound and carbonate (4), and the type of catalyst The lower limit is 100 mmHg, preferably 500 mmHg, more preferably 760 mmHg (normal pressure), depending on the type, amount, and other conditions (factors). Yes, and the upper limit is 100 kg no c in 2 , preferably 50 kg g cm 2 , more preferably 10 kg g cm 2 .
  • the amount of hall tongue divided by the number of stages is closely related to the reaction time, that is, the residence time.
  • the residence time In other words, to increase the equilibrium conversion, it is necessary to lengthen the residence time to some extent, and to increase the residence time, it is necessary to increase the hold-up amount or increase the number of stages . Of these, it is preferable to increase the hold-up amount, but if it is increased to a certain degree or more, flooding occurs.
  • the hold-up amount with respect to the empty column volume (volume) of the reactive distillation column 1 is preferably in the range of 0.05 to 0.75 by volume ratio, and in the range of 0.01 to 0.5. Inside is more preferred.
  • the number of plates is preferably from 5 to 100, taking into account the cost and height limitation of the reactive distillation column 1, utility costs, fixed costs, and the like. .
  • the difference in boiling point between the carboxylic acid ester (1) and the alcohol in the first-stage reaction is relatively small, and in the second-stage reaction, the carboxylic acid ester (3) and the monoester or carboxylic acid carbonate are used.
  • the boiling point difference from the ester (6) is relatively small, the efficiency of gas-liquid separation is improved.
  • the far flow ratio is preferably in the range of 0 to 100, more preferably in the range of 0 to 50, and even more preferably in the range of 0 to 25.
  • the reflux ratio is preferably 0 or a relatively small value.
  • the reflux ratio is preferably set to a relatively large value in consideration of utilities and fixed costs.
  • heterogeneous catalyst In the case of using a heterogeneous catalyst, there is no need to separate the catalyst if the catalyst is kept in a reactive distillation column. By using a known method, the heterogeneous catalyst can be easily removed and recovered from the reaction solution.
  • the homogeneous catalyst when a homogeneous catalyst is used, the homogeneous catalyst can be easily separated and recovered from the reaction solution by using a known method such as distillation after completion of the reaction.
  • the catalyst is separated by the above-mentioned method, and then the known method such as distillation, extraction, and recrystallization is used to obtain the carbonate ester (5), that is, the desired carbonic acid. Diesters can be easily singulated.
  • carboxylic acid ester (6) or carbonate monoester, or carbonate (4) as by-product, or aromatic or hydroxy compound as unreacted material can be easily separated and recovered. be able to.
  • a solvent may be added to the reaction system, that is, the reaction solution, if necessary.
  • the solvent to be added include compounds inert to the above reaction system, for example, ethers, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, and the like.
  • an azeotropic composition having an azeotropic point lower than the azeotropic point of the azeotropic composition is formed with the alcohol.
  • a solvent coexist in the reaction system.
  • suitable solvents include compounds such as benzene-cyclohexane.
  • the solvent forms an azeotropic composition having a relatively low azeotropic point with methanol. For this reason, the azeotrope of the carboxylic acid ester (1) and methanol is suppressed, so that separation of both can be facilitated and the equilibrium conversion can be improved. Even when the carboxylic acid ester (1) and the alcohol do not form an azeotropic composition, an azeotropic composition having a low azeotropic point is mixed with the alcohol in order to further facilitate the separation of the two.
  • the solvent formed in the reaction may be allowed to coexist in the reaction system.
  • an inert gas such as nitrogen gas
  • an inert gas can be introduced into the reaction system from the lower part of the reactive distillation column 1.
  • the aromatic hydroxy compound is fed to the reactive distillation column 1 via the raw material supply pipe 5, the carboxylic acid ester (1) via the raw material supply pipe 6, and the carbonate ester (4) via the raw material supply pipe 7. Each is supplied continuously.
  • the carboxylate (3) and the carbonate (4) are brought into gas-liquid contact, that is, reactive distillation.
  • the latter-stage reaction proceeds, and ester carbonate (5) and carboxylic acid ester (6) are formed, and both are separated.
  • the carboxylic acid ester (6) as a by-product rises in the reactive distillation column 1 and is continuously extracted as a distillate.
  • the carboxylic acid ester (6) and the carboxylic acid ester (1) are the same compound, the carboxylic acid ester (6) is subjected to the above-mentioned first-stage reaction.
  • the desired carbonic acid ester (5) is continuously extracted from the reaction distillation column 1 as a bottom liquid (bottom liquid) outside the reaction system. That is, the carbonate ester (5) is continuously taken out of the reaction system as a bottom liquid.
  • Example 1 Using the reactive distillation apparatus S shown in Fig. 1, a sequential complex reaction in which the equilibrium reaction was combined in two steps was performed.
  • a stainless steel distillation column was connected to a stainless steel plate column, and a column was used.
  • the tray tower mentioned above has an inner diameter of 20 mm and has 60 stages. Then, the raw material supply pipe 5 is connected to the uppermost stage (the 60th stage), that is, to the top of the tower, and the raw material supply tube 6 is connected to the 20th stage, and the lowermost stage (the first stage) is connected.
  • the raw material supply pipe 7 was connected to the bottom, that is, to the bottom of the tower.
  • the tray column is the reaction section.
  • the above distillation column had a height of lm, an inner diameter of 20 mni, and was filled with 1.5 mm 0 stainless steel disc packing. Therefore, the distillation tower is the enrichment section.
  • the heat required for distillation was supplied by heating the bottom of the tray column with a heater.
  • the operating conditions for the reactive distillation column 1 were as follows: the bottom temperature was 240, and the top pressure was 3.4 kg / cm 2 (gauge pressure).
  • the reflux operation was not performed, a part of the distillate was condensed inside the distillation column due to heat release, and a slight internal reflux occurred.
  • phenol as the raw material (A) and titanate enantioxide “T i (0 Ph) 4 J as a raw material (A) are fed into the reactive distillation column 1 via a raw material supply pipe 5.
  • the amount of the raw material liquid supplied per hour was 60 g.
  • the raw material (B) was supplied to the reactive distillation column via the raw material supply pipe 6.
  • Methyl valerate was continuously supplied in gaseous form as part of the reaction.
  • the amount of methyl valerate supplied per hour was set at 128 g.
  • the amount of titanium added to the total amount of methyl valerate and phenol) was adjusted so as to be SOO ppm.
  • Methyl was continuously supplied in gaseous form.
  • the amount of dimethyl carbonate supplied per hour was set to 18.6 g.
  • the composition was as follows: phenyl valerate 25.6%, methyl phenyl carbonate 17.3%, diphenyl carbonate 14.0%, dimethyl carbonate 4.5% The content was 12.3% of methyl valerate and 26.2% of phenol. The conversion of phenol was 59.6%, and the conversion of dimethyl carbonate was 75.5%.
  • Example 2 Using the same reactive distillation apparatus as that of Example 1, the supply amount of methyl valerate in Example 1 per hour was reduced from 128 g to 124 g. 2 ⁇
  • the withdrawal amount of the bottoms per hour was 96 g.
  • the amount of the distillate withdrawn per hour was 11 Ig.
  • the composition was as follows: phenyl valerate 21.5%, methylphenyl carbonate 20.4%, diphenyl carbonate 14.4%, dimethyl carbonate 6.7% And methyl valerate 12.4% and phenol 24.7%.
  • the conversion of phenol was 60.0%, and the conversion of dimethyl carbonate was 71.5%.
  • Example 1 Using the same reactive distillation apparatus as in Example 1, the feed rate per hour of the phenol-containing raw material liquid in Example 1 was changed from 60 g to 63 g, and the amount of methyl valerate was changed from 60 g to 63 g.
  • a sequential complex reaction was performed under the same reaction conditions.
  • the withdrawal amount of the bottoms per hour was 115 g.
  • the amount of the distillate withdrawn per hour was 101 g.
  • the composition was found to be 29.4% for phenyl valerate, 14.9% for methylphenyl carbonate, 0% for diphenyl carbonate 1, 3.9% for dimethyl carbonate, 13.3% of methyl valerate and 27.5% of phenol.
  • the conversion of phenol was 58.5%, and the conversion of dimethyl carbonate was 80.0%.
  • the reactive distillation apparatus S of the present invention can provide a reaction distillation apparatus that can be applied to a relatively complicated reaction in which two or more equilibrium reactions are combined, that is, a sequential complex reaction.
  • the reactive distillation method of the present invention can provide a relatively complicated reaction in which two or more equilibrium reactions are combined, that is, a reactive distillation method that can be applied to a sequential complex reaction.
  • a useful carbonic acid ester can be efficiently produced.
  • diphenyl carbonate which is one of the above-mentioned carbonates, is used as a raw material for industrially useful polycarbonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

明 細 書 反応蒸留装置および反応蒸留方法 技術分野
本発明は、 平衡反応が二段階以上組み合わされてなる比較的複雑な反 応に適用することができる反応蒸留装置、 および、 反応蒸留方法に関す るものである。 背景技術
従来より、 平衡反応の平衡が生成系側に不利である場合には、 反応蒸 留を行うこ とにより、 上記平衡を生成系側に有利にして反応効率 (平衡 転化率) を高めるこ とが行われている。 例えば、 「化学工学」 第 5 7巻 第 1 号 7 7頁〜 7 9頁 ( 1 9 9 3年) には、 具体例で、 上記の反応蒸留 についての説明が記載されている。
そして、 一股に、 平衡反応が二段階以上組み合わされてなる比較的複 雑な反応を行う場合には、 各平衡反応に対して、 それぞれ別個に反応蒸 習が行われている。 例えば、 国際公開 W O 0 9 1 / 0 9 8 3 2号公報に は、 二段階の平衡反応を経由して、 炭酸ジメチルとフエノ ールとから炭 酸ジフエニルを製造する方法が開示されている。 上記の方法では、 一つ の平衡反応に対して 1 基の反応蒸留塔 (反応蒸留装置) を用いており、 全体では 2基の反応蒸留塔を使用している。
しかしながら、 上記従来の方法においては、 炭酸ジメチルとフヱノー ルとから炭酸メチルフ ニルを形成する一段階目の平衡反応の反応蒸留 において、 原料の炭酸ジメチルと、 生成物のメタノ ールとが共沸する。 このため、 平衡が生成系側に有利にならず、 平衡反応がう ま く進行しな いので、 炭酸エステルを効率的に製造することができない。 また、 炭酸 ジフエニルの製造に、 2基の反応蒸留塔を用いるので、 設備費か掛かる と共に、 用役費が掛かるという問題点を有している。
このように、 上記従来の反応蒸留塔は、 比較的簡単な反応に適用され ているだけであり、 平衡反応が二段階以上組み合わされてなる比較的複 雑な反応には適用されていない。 つまり、 逐次複合反応に適用するこ と ができる反応蒸留塔は、 ほとんど知られていない。 そこで、 平衡反応が 二段階以上組み合わされてなる比較的複雑な反応に適用することができ る反応蒸留装置、 および、 反応蒸留方法が求められている。
本発明は、 上記従来の問題点に鑑みなされたものであり、 その目的は 、 平衡反応が二段階以上組み合わされてなる比較的複雑な反応に適用す ることができる反応蒸留装置、 および、 該反応を効率的に行う ことがで きる反応蒸留方法を提供することにある。 発明の開示
本願発明者等は、 上記従来の問題点を解決すべく、 反応蒸留装置およ び反応蒸留方法について鋭意検討した。 その結果、 少なく とも第一供給 部、 第二供給部および第三供給部が、 塔頂側から順にそれぞれ異なる段 に設けられている反応蒸留装 fiを用いて、 平衡反応を行う二種類の各原 料のうち、 より沸点の高い原料 (第一原料) を第一供給部から供給する 一方、 より沸点の低い原料 (第二原料) を第二供給部から供給して両者 の第一平衡反応を行わせると共に、 該第一平衡反応によつて生成する各 生成物のうちの第一および第二の原料より沸点の髙ぃ生成物と第二平衡 反応を行わせる第三の原料を第三供耠部から供給して、 該生成物と第三 の原料との第二平衡反応を行わせることにより、 平衡反応が二段階以上 組み合わされてなる比較的複雑な反応を、 効率的に行う ことができるこ とを見い出して、 本発明を完成させるに至った。
即ち、 本願発明の反応蒸留装匱は、 上記の課題を解决するために、 二 つ以上の平衡反応を有する反応を行うための、 段数が 3段以上の反応蒸 留装置であって、 第一平衡反応を行う二種類の各原料のうち、 より沸点 の高い原料 (第一の原料) を供給する第一供耠部と、 より沸点の低い原 料 (第二の原料) を供耠する第二供給部と、 上記第一平衡反応によって 生成する各生成物のうちの第一および第二の原料より沸点の高い生成物 と第二平衡反応を行わせる第三の原料を供給する第三供耠部とを少なく とも備えると共に、 上記第一供給部、 第二供給部および第三供給部が、 塔頂側から順にそれぞれ異なる段に設けられていることを特徴と してい る。 本願発明の反応蒸留装置は、 さ らに、 供給部が設けられている二つ の段の間に、 供給部が設けられていない段を有していてもよい。
上記の構成によれば、 反応蒸留装置は、 それぞれ異なる原料が供給さ れる第一供給部、 第二供給部および第三供給部が、 塔頂側から順にそれ ぞれ異なる段に設けられている。 これにより、 平衡反応が二段階以上組 み合わされてなる比較的複雑な反応、 即ち、 逐次複合反応に適用するこ とができる反応蒸留装 11を提供することができる。
また、 供給部が設けられている二つの段の間に、 供給部が設けられて いない段を有する反応蒸留装置は、 上記の逐次複合反応をより一層効率 的に行う ことができる。 本願発明の反応蒸留方法は、 上記の課題を解決するために、 二つ以上 の平衡反応を有する反応を、 段数が 3段以上の反応蒸留装置を用いて行 う反応蒸留方法であって、 第一平衡反応を行う二種類の各原料のうち、 より沸点の高い原料 (第一の原料) を第一の段に供給する一方、 より沸 点の低い原料 (第二の原料) を上記第一の段よりも下側の第二の段に供 給して両者の第一平衡反応を行う工程と、 該第一平衡反応によって生成 する各生成物のうちの第一および第二の原料より沸点の高い生成物と第 二平衡反応を行わせる第三の原料を上記第二の段よりも下側の第三の段 に供耠して、 該生成物と第三の原料との第二平衡反応を行わせる工程と を含むことを特徴としている。
本願発明の反応蒸留方法は、 さらに、 第二平衡反応によって生成する 各生成物のうち、 より沸点の低い生成物が、 第一平衡反応の原料であつ てもよい。
上記の方法によれば、 二種類の原料を第一平衡反応を行わせると共に 、 該第一平衡反応によって生成する各生成物のうち、 より沸点の高い生 成物と第三の原料とを第二平衡反応を行わせる。 これにより、 平衡反応 が二段階以上組み合わされてなる比較的複雑な反応、 即ち、 逐次複合反 応に適用することができる反応蒸留方法を提供することができる。
また、 第二平衡反応によって生成する各生成物のうち、 より沸点の低 い生成物が、 第一平衡反応の原料である場合には、 第一平衡反応に関与 する原料の供給量を低減することができるので、 上記の逐次複合反応を より一層効率的に行うことができる。
さらに、 本願発明の反応蒸留方法は、 さらに、 第一平衡反応が、 一股 式 ( 1 ) R 1 C 00 R 2 '■'·■' ( 1 )
(式中、 R1 、 R 2 はそれぞれ独立してアルキル基、 脂環式炭化水素基 またはァリ ールアルキル基を表す) で表されるカルボン酸エステルと、 一般式 ( 2)
R3 0H … ( 2 )
(式中、 R3 は S換基を有していてもよい芳香族基を表す) で表される 芳香族ヒ ドロキシ化合物とのエステル交换反応であり、
第二平衡反応が、 上記エステル交換反応により生成する一股式 ( 3)
R 1 C 00 R 3 …… ( 3 )
(式中、 R1 はアルキル基、 脂環式炭化水素基またはァ リ 一ル了ルキル 基を表し、 R3 は匿換基を有していてもよい芳香族基を表す) で表され るカルボン酸エステルと、 一股式 (4 )
R 4 0 - C 00 R 5 …… ( 4 )
(式中、 R4 、 R 5 はそれぞれ独立してアルキル基、 脂環式炭化水素基 またはァ リ ールアルキル基を表す) で表される炭酸ェ テルとのエステ ル交換反応であつてもよい。
これにより、 上記反応蒸留方法を用いて、 一般式 ( 5 )
R 3 0 - C 00 R 8 …… ( 5 )
(式中、 R3 は置換基を有していてもよい芳香族基を表し、 は R3 、 前記 R4 および前記 R5 からなる群より選ばれる置換基を表す) で表 される炭酸エステルを効率的に製造することができる。
尚、 得られる炭酸エステルは工業的に有用な化合物である。 例えば、 炭酸エステルの一種である炭酸ジフ; C二ルは、 ボリ カーボネー トの原料 として用いられる。 5
6
図面の簡単な説明
図 1は、 本発明の一実施の形態にかかる反応蒸留装置の概略の構成を 示すプロッ ク図である。 発明を実施するための最良の形態
本発明にかかる反応蒸留装置および反応蒸留方法は、 平衡反応が三段 階以上組み合わされてなる複雑な逐次複合反応にも供することができる カ^ 以下の説明においては、 説明の便宜上、 平衡反応が二段階組み合わ されてなる逐次複合反応を例に挙げることとする。 つまり、 原料 (A) 、 原料 (B) および原料 (E) を用いて、 次式、
(第一平衡反応)
原料 (A) +原料 (B) « 生成物 (C) +生成物 (D)
(第二平衡反応)
生成物 (C) +原料 (E) 生成物 (F) +生成物 (G)
に示す二段階の平衡反応を行うことにより、 目的物である生成物 (F) を得る場合を例に挙げて説明することとする。
但し、 第一の原料としての原料 (A) 、 原料 (B) 、 および、 第三の 原料としての原料 (E) の沸点の順序は、 原料 (A) >原料 (B) >原 料 (E) であるとし、 生成物 (C) および生成物 (D) の沸点の順序は 、 生成物 (C) >生成物 (D) であるとし、 生成物 (F) および生成物 (G) の沸点の順序は、 生成物 (F) >生成物 (G) であるとする。 ま た、 以下の説明においては、 第一平衡反応を前段反応と称し、 第二平衡 反応を後段反応と称する。
本発明の一実施の形態について、 図 1に基づいて説明すれば、 以下の 通りである。 図 1 に示すように、 本発明にかかる反応蒸留装置 (以下、 単に反応蒸留塔と称する) 1 は、 リボイラ一 2、 凝縮器 3、 および、 ボ ンブ 4等を備えている。
反応蒸留塔 1 は、 段数が 3段以上であり、 原料 (A ) と原料 ( B ) と を気液接触させると共に、 生成物 ( C ) と原料 (E ) とを気液接触させ る。 反応蒸留塔 1 【こは、 原料供給管 5 ■ 6 ■ 7が接梡されている。 また 、 反応蒸留塔 1 の塔底は、 抜き出し管 8および導管 1 4を介してリ ボイ ラー 2 と接梡されている。 さらに、 反応蒸留塔 1 の塔頂は、 導管 1 2を 介して凝縮器 3 と接続されている。
尚、 上記の原料供給管 5 · 6 · 7は、 反応蒸留塔 1 における塔頂側か ら順にそれぞれ異なる段に設けられている。 つま り、 反応蒸留塔 1 にお いて、 原料供給管 6は、 原料供給管 5 より も下段に接続されており、 原 料供給管 7は、 原料供給管 6 より も下段に接続されている。
また、 反応蒸留塔 1 は、 原料供給管 5が接続されている段 (第一の段 ) と、 原料供給管 6が接铳されている段 (第二の段) との間、 並びに、 原料供給管 6が接続されている段と、 原料供給管 7が接続されている段 (第三の段) との間に、 原料供耠管が接続されていない段を有している こ とがより好ま しい。 さらに、 原料供給管 7は、 塔底に接梡されていて もよい。
第一供耠部としての原料供耠管 5は、 原料 ( A ) を反応蒸留塔 1 に連 続的に供給する。 第二供給部としての原料供給管 6 は、 原料 ( B ) を反 応蒸留塔 1 に連梡的に供給する。 第三供給部としての原料供給管 7は、 原料 (E ) を反応蒸留塔 1 に連続的に供給する。
リ ボイラー 2は、 抜き出し管 8および導管 1 4を介して反応蒸留塔 1 T/JP97/01685
8
の塔底と接統されている。 リボイラー 2は、 抜き出し管 8を通じて抜き 出した塔底液を加熱し、 導管 1 4を通じて塔底に戻す。 つまり、 リボイ ラー 2は、 塔底液を加熱して循環させる。 そして、 抜き出し管 8は分技 しており、 塔底液の一部を缶出液として連続的に反応系外に抜き出すこ とができるようになつている。
凝縮器 3は、 反応蒸留塔 1の留出液を凝縮して液化する。 凝縮器 3は 、 導管 1 2を介して反応蒸留塔 1 の塔頂と接続されており、 抜き出し管 9を介してポンプ 4 と接統されている。 また、 凝縮器 3には、 圧力調整 弁 1 1 を備えた調整管 1 0が取り付けられている。 そして、 抜き出し管 9は分技しており、 留出液の一部を連铙的に反応系外に抜き出すこ とが できるようになつている。
ポンプ 4は、 所定の還流比で留出液を反応蒸留塔 1 に還流させるよう になっている。 ボンブ 4は、 抜き出し管 9を介して凝縮器 3 と接続され ており、 導管 1 3を介して反応蒸留塔 1 の塔頂と接铙されている。
次に、 上記構成の反応蒸留装匱を用いた生成物 (F) の製造方法の一 例について説明する。 先ず、 原料供給管 5を介して原料 (A) を、 原料 供袷管 6を介して原料 (B) を、 原料供耠管 7を介して原料 (E ) を反 応蒸留塔 1 にそれぞれ連続的に供給する。 これら原料 (A) · ( B) · (E) は、 液状で供給してもよく、 ガス状で供給してもよ く、 或いは、 気液混合状態で供絵してもよい。 尚、 原料 (A) には、 原料 ( B) の一 部が含まれていてもよ く、 また、 原料 ( B ) には、 原料 (A) の一部か 含まれていてもよい。
続いて、 反応蒸留塔 1 に供給された原料 (A) および原料 (B) は、 気液接触、 つまり、 反応蒸留される。 これにより、 前段反応が進行し、 生成物 (C) および生成物 (D) が生成すると共に、 両者が分雜される 。 該生成物 (C) は、 反応蒸留塔 1内を流下する。 また、 副生成物であ る生成物 (D) は、 留出液として連铳的に抜き出される。
次に、 生成物 (C) と原料 (E) とが気液接触、 つまり、 反応蒸留さ れる。 これにより、 後段反応が進行し、 生成物 (F) および生成物 (G ) が生成すると共に、 両者が分離される。 副生成物である生成物 (G) は、 反応蒸留塔 1内を上昇し、 留出液として連続的に抜き出される。 尚 、 生成物 (G) が、 前段反応の原料である場合、 つまり、 生成物 (G) と原料 (B) とが同一化合物である場合には、 生成物 (G) は、 上記の 前段反応に供される。
—方、 目的物である生成物 (F) は、 反応蒸留塔 1から缶出液 (塔底 液) として反応系外に連铙的に抜き出される。 即ち、 生成物 (F) は、 缶出液として連铳的に反応系外に取り出される。
以上の反応操作を行うことにより、 効率的かつ連統的に生成物 (F) を製造することができる。 尚、 生成物 (G) が前段反応に供される場合 には、 反応蒸留塔 1内に存在する化合物の種類が少なく なり、 反応系が 単純化される。 また、 原料供給管 6を介して供給される原料 (B) の供 給量を低減することができるので、 上記の逐次複合反応をより一層効率 的に行うことができる。
さらに、 前段反応および Zまたは後段反応に例えば均一触媒を用いる 場合には、 該触媒は、 原料 (A) および Zまたは原料 (B) と共に反応 蒸留塔 1に連続的に供給する。 該触媒は、 蒸留等の公知の方法を用いる ことにより、 生成物 (F) から分離 · 回収すればよい。
また、 前段反応および Zまたは後段反応に例えば不均一触媒を用いる 場合には、 該触媒は、 反応蒸留塔 1 内部に保持する。 そして、 反応蒸留 塔 1 として充¾塔 (後述する) を用いる場合には、 反応蒸留塔 1 内に充 ¾する充墳物の一部または全部に代えて不均一触媒を充墳するこ ともで きる。 反応蒸留塔 1 として棚段塔 (後述する) を用いる場合には、 不均 —触媒を棚段やダウンカマー内に保持すればよい。 不均一触媒を用いる 場合、 前段反応で用いる触媒と、 後段反応で用いる触媒とは、 互いに同 —であってもよく、 また、 互いに異なっていてもよい。
さらに、 前段反応および/または後段反応に例えば溶媒を用いる場合 は、 反応蒸留塔 1 に図示しない溶媒供耠管を別途設け、 該溶媒供給管を 介して溶媒を連铳的に供給すればよい。
上記の反応蒸留塔 1 は、 該反応蒸留塔 1 内に気相部が存在し、 生成し た低沸点成分が該気相部へ連続的に分雜 · 除去され得る構造、 即ち、 い わゆる反応蒸留を実施するこ とができる構造であればよい。 反応蒸留塔
1 としては、 連統式の多段蒸留塔が好適である。
上記連铳式の多段蒸留塔としては、 塔頂 (最上段) と塔底 (最下段) とを除いた段数が 3段以上の蒸留塔か好ま しい。 このよ うな蒸留塔と し ては、 例えば、 ラシヒ リ ング、 ボールリ ング、 イ ン夕ロ ッ クスサ ドル、 ディ ク ソ ンノ、'ッキング、 マクマホンパッキング、 スルーザーパッ キング 等の充塡物が充塡された充填塔 ; 泡鐘ト レイ、 シーブト レイ、 バルブ ト レイ等の ト レィ (棚段) を使用した棚段塔等、 一般に用いられている蒸 留塔を採用することができる。 また、 棚段と充填物層とを併せ持つ複合 式の蒸留塔も採用するこ とができる。 上記の段数とは、 棚段塔において は棚段の数を示し、 充填塔においては理論段数を示す。
尚、 反応蒸留装置は、 図 1 に示す構成にのみ限定されるものではない 。 本発明にかかる反応蒸留装置および反応蒸留方法は、 平衡反応が二段 階組み合わされてなる逐次複合反応についてのみ適用されるものではな く、 平衡反応が三段喈以上組み合わされてなる複雑な逐次複合反応にも 供することができる。 この場合には、 反応蒸留塔に、 原料の種類と同数 の原料供給管を設ければよい。
次に、 本発明にかかる反応蒸留装匱および反応蒸留方法について、 具 体的な例を挙げて、 以下により詳しく説明する。 以下の説明においては 、 前段反応が、 一般式 ( 1 )
R 1 C 0 0 R 2 …"- ( 1 )
(式中、 R 1 、 R 2 はそれぞれ独立してアルキル基、 脂環式炭化水素基 または了リ ールアルキル基を表す) で表されるカルボン酸エステルと、 一股式 ( 2 )
R 3 〇 H …' ( 2 )
(式中、 R 3 は置換基を有していてもよい芳香族基を表す) で表される 芳香族ヒ ドロキシ化合物とのエステル交換反応であり、
後段反応が、 上記エステル交換反応により生成する一般式 ( 3 )
R 1 C 0 0 R 3 ···■·· ( 3 )
(式中、 R 1 はアルキル基、 脂環式炭化水素基またはァ リールアルキル 基を表し、 R 3 は置換基を有していてもよい芳香族基を表す) で表され るカルボン酸エステルと、 一般式 ( 4 )
R 4 0 - C 0 0 R 5 ·.· ··· ( 4 )
(式中、 R 4 、 R 5 はそれぞれ独立してアルキル基、 脂環式炭化水素基 またはァ リールアルキル基を表す) で表される炭酸エステルとのエステ ル交換反応てある場合を例に挙げることとする。 従って、 一股式 ( 1 ) で表されるカルボン酸エステル、 および、 一般 式 ( 2 ) で表される芳香族ヒ ドロキン化合物のうち、 何れか一方が原料 (A) に相当し、 他方が原料 (B) に相当する。 また、 一股式 ( 3 ) で 表されるカルボン酸エステルは生成物 ( C) に相当し、 一般式 ( 4 ) で 表される炭酸エステルは原料 (E) に相当する。
上記の反応により、 一般式 ( 5 )
R 3 0 - C 00 R 8 …… ( 5 )
(式中、 R3 は置換基を有していてもよい芳香族基を表し、 R s は R 3 、 前記 R4 および前記 RS からなる群より選ばれる置換基を表す) で表 される炭酸エステルが生成する。 従って、 一股式 ( 5 ) で表される炭酸 エステルは生成物 (F) に相当する。
尚、 以下の説明においては、 必要に応じて、 目的物である前記一般式 ( 5 ) で表される炭酸エステル (以下、 炭酸エステル ( 5 ) と称する) のうち、 式中、 R 6 で示される匿換基が S換基 R 4 または置換基 R S で ある炭酸エステル ( 5 ) を炭酸モノエステルと称し、 R、6 で示される置 換基が置換基 R 3 である炭酸エステル ( 5 ) を炭酸ジエステルと称する こ ととする。
上記の後段反応は、 炭酸モノ エステルが生成する反応と、 炭酸ジエス テルが生成する反応との 2段階で進行する。 即ち、 先ず、 前記一般式 ( 4 ) で表される炭酸エステル (以下、 炭酸エステル ( 4 ) と称する) の 置換基 R 4 · R 5 の何れか一方が、 前記一般式 ( 3 ) で表されるカルボ ン酸エステル (以下、 カルボン酸エステル ( 3 ) と称する) の置換基 R 3 とエステル交換される。 これにより、 炭酸モノエステルが生成すると 共に、 一股式 ( 6 ) R 1 C 0 OR7 '■···· ( 6 )
(式中、 R ' はアルキル基、 脂環式炭化水素基またはァリールアルキ ル基を表し、 R7 は前記 R4 および前記 Rs からなる群より選ばれる置 換基を表す) で表されるカルボン酸エステル (以下、 カルボン酸エステ ル ( 6 ) と称する) が副生する。
次いで、 炭酸モノエステルの残りの S換基 R 4 ( R 5 ) が、 カルボン 酸エステル ( 3 ) の置換基 R3 とエステル交換される。 これにより、 炭 酸ジエステルが生成すると共に、 カルボン酸エステル ( 6 ) が副生する 。 尚、 カルボン酸エステル ( 6 ) は生成物 (G) に相当する。
前記一般式 ( 1 ) で表されるカルボン酸エステル (以下、 カルボン酸 エステル ( 1 ) と称する) は、 特に限定されるものではないが、 式中、 R 1 、 R 2 で示される置換基が、 それぞれ独立してアルキル基、 脂環式 炭化水素基または了リールアルキル基で構成される化合物である。 そし て、 アルキル基は、 炭素数 1〜 1 0が好ま しく、 脂環式炭化水素基は、 炭素数 3〜 1 0が好ましく、 ァリールアルキル基は、 炭素数 7〜 1 0が 好ま しい。
カルボン酸エステル ( 1 ) としては、 具体的には、 例えば、 酢酸メチ ル、 酢酸ェチル、 酢酸プロ ビル、 酢酸プチル、 酢酸シク πへキンル、 酢 酸ベンジル、 酢酸一 2—ェチルへキシル、 プロ ピオン酸メチル、 プロ ピ オン酸ェチル、 プロピオン酸プロ ビル、 プロ ピオン酸ブチル、 酪酸メチ ル、 酪酸ェチル、 酪酸プロピル、 イソ賂酸メチル、 イ ソ酪酸ェチル、 ィ ソ骼酸プロピル、 吉草酸メチル、 吉草酸ェチル、 吉草酸プロ ビル、 イ ソ 吉草酸メチル、 イ ソ吉草酸ェチル、 イ ソ吉草酸プロ ピル、 へキサン酸メ チル、 へキサン酸ェチル、 へキサン酸プロピル、 へブタ ン酸メチル- へ プ夕ン酸ェチル等が挙げられる。
尚、 カルボン酸エステル ( 6 ) は、 カルボン酸エステル ( 1 ) として 再利用できることが好ま しい。 従って、 力ルボン酸エステル ( 1 ) の置 換基 R2 と、 炭酸エステル ( 4 ) の置換基 R 4 · R 5 とは、 互いに同一 であるこ とが好ま しい。
さらに、 カルボン酸エステル ( 6 ) と、 副生するアルコール (後述す る) とが共沸組成物を形成しないように、 上記 S換基 R 2 - R4 - R 5 を設定することが好ま しい。 これにより、 カルボン酸エステル ( 6 ) を 容易に分雜 · 回収することができる。 また、 カルボン酸エステル ( 6 ) をカルボン酸エステル ( 1 ) として全て再利用するこ とができる場合に は、 カルボン酸エステル ( 1 ) は、 実質的に消費されない。
また、 エステル交換反応の平衡を生成系側に有利にして反応効率 (平 衡転化率) を高めるために、 前段反応において副生する一般式 ( 7 )
R2 OH …… ( 7 )
(式中、 R 2 はアルキル基、 脂環式炭化水素基または了リールアルキル 基を表す) で表されるアルコールを反応系外に抜き出すこ とが好ま しい 。 このため、 上記例示の化合物のうち、 副生するアルコールの沸点より も沸点が高いカルボン酸エステル ( 1 ) がより好ま しい。 尚、 一般式 ( 7 ) で表されるアルコールは生成物 (D) に相当する。
また、 前段反応の反応効率をより一層高めるためには、 一般式 ( 7 ) で表されるアルコール (以下、 単にアルコールと称する) との間で共沸 組成物を形成しないカルボン酸エステル ( 1 ) を用いるこ とが好ま しい 。 共沸組成物を形成しないカルボン酸エステル ( 1 ) と しては、 酪酸ェ チル、 酪酸ブチル、 および、 イ ソ吉草酸エステルや吉草酸エステル、 へ キサン酸エステル等のァシル基側の炭素数が 4以上の化合物 (または、 前記 S換基 R 1 の 素数が 3以上の化合物) が挙げられる。 尚、 これら 条件が満たされるカルボン酸エステル ( 1 ) を用いた場合には、 該カル ボン酸エステル ( 1 ) をカルボン酸エステル ( 3 ) にほぼ完全に転化さ せることも理論的には可能である。
前記一般式 ( 2 ) で表される芳香族ヒ ドロキシ化合物は、 特に限定さ れるものではないが、 式中、 R 3 で示される置換基が芳香族基で構成さ れる化合物である。 上記の芳香族基は置換基を有していてもよい。
芳香族ヒ ドロキシ化合物としては、 具体的には、 例えば、 フエノール 、 0 — ク レゾ一ノレ、 m—タ レ ブール、 p —ク レゾール、 0 — ク ロ 口フ エ ノ ール、 m— ク ロ口フ エノ ール、 p —クロ口フ エ ノ ール、 0 —ェチルフ ェノ ール、 m—ェチノレフエ ノ ール、 p —ェチルフ エ ノ ール、 0 —イ ソプ 口 ビルフ エ ノ ール、 m—イ ソプロ ピルフ エ ノ ール、 p —イ ソプロ ビルフ ェノ ール、 0 — メ トキシフエ ノ ール、 m—メ トキシフ エ ノ ール、 p—メ トキシフ エノ ール、 キシレノール類、 ひ一ナフ トール、 —ナフ トール 等が挙げられる。 これら芳香族ヒ ドロキン化合物は、 適宜混合して用い てもよい。 上記例示の化合物のうち、 工業的な面からフエノ ールが好適 である。
そして、 上記芳香族ヒ ドロキシ化合物の平衡転化率を高めるには、 生 成するカルボン酸エステル ( 3 ) の沸点より も沸点が低いカルボン酸ェ ステル ( 1 ) を用いることが好ましい。 このようなカルボン酸エステル ( 1 ) および芳香族ヒ ドロキシ化合物の組み合わせとしては、 酢酸一 2 —ェチルへキシルおよびフヱノール、 並びに、 ^酸べンジルおよびフエ ノール、 の組み合わせを除く その他の組み合わせが該当する。 そして、 アルコールの炭素数が 7以下となるような酢酸エステル、 ま たは、 アルコールの炭素数が 8以下となるようなプロピオン酸エステル をカルボン酸エステル ( 1 ) として用いる場合には、 上記例示の芳香族 ヒ ドロキシ化合物との全ての組み合わせが可能である。 尚、 上記カルボ ン酸エステル ( 1 ) およびカルボン酸エステル ( 3 ) は、 共沸してもよ い。
上記の前段反応によって得られるカルボン酸エステル ( 3 ) と しては 、 具体的には、 例えば、 舴酸フエニル、 酢酸メチルフ 二ルの各異性体 、 酢酸ェチルフエ二ルの各異性体、 齚酸クロ口フエ二ルの各異性体、 酢 酸イ ソプロ ピルフ ニルの各異性体、 酢酸メ トキシフェニルの各異性体 、 酢酸ジメチルフヱ二ルの各異性体、 酢酸ナフチルの各異性体、 ブロ ビ オン酸メチルフ ユ二ルの各異性体、 酷酸フ ニル、 イ ソ酪酸フ Xニル、 吉草酸フ エニル、 吉草酸メチルフ エ二ルの各異性体、 イ ソ吉草酸フ エ二 ル、 へキサン酸フヱニル、 ヘプ夕ン酸フヱニル等が挙げられる。
上記の炭酸エステル ( 4 ) は、 特に限定されるものではないか、 式中 、 R 4 、 R S で示される置換基が、 それぞれ独立してアルキル基、 脂環 式 K化水素基またはァ リールアルキル基で構成される化合物である。 そ して、 アルキル基は、 炭素数〗 〜 1 0が好ま しく 、 脂環式炭化水素基は 、 炭素数 3〜 1 0が好ま しく、 ァリールアルキル基は、 炭素数?〜 1 0 が好ましい。
炭酸エステル ( 4 ) としては、 具体的には、 例えば、 炭酸ジメチル、 炭酸ジェチル、 炭酸ジー n -プロ ビル、 炭酸ジイ ソプロビル、 炭酸ジブ チルの各異性体、 炭酸ジペンチルの各異性体、 炭酸ジへキシルの各異性 体、 炭酸ジへプチルの各異性体、 炭酸ジォクチルの各異性体、 炭酸ジノ 二ルの各異性体、 炭酸ジデシルの各異性体、 炭酸ジシクロへキシル、 炭 酸ジベンジル、 炭酸ジフヱネチルの各異性体、 炭酸ジ (メチルベンジル
) の各異性体等が挙げられる。 これら炭酸エステル ( 4 ) は、 適宜混合 して用いてもよい。 上記例示の化合物のうち、 工業的な面から炭酸ジメ チルが好適である。
また、 エステル交換反応の平衡を生成系側に有利にして反応効率 (平 衡転化率) を高めるためには、 上記例示の化合物のうち、 カルボン酸ェ ステル ( 6 ) の沸点より も沸点が高いカルボン酸エステル ( 3 ) がより 好ま しい。 このようなカルボン酸エステル ( 3 ) および炭酸エステル ( 4 ) の組み合わせとしては、 例えば、 カルボン酸エステル ( 3 ) の置換 基 R3 がフ ニル基である場合、 炭酸エステル ( 4 ) の置換基 R 4 ■ R 5 は、 直鎖状のとき、 炭素数 7以下の化合物が該当する。
また、 生成する炭酸エステル ( 5 ) を連続的に反応系外に抜き出すた めには、 炭酸エステル ( 5 ) の沸点より も沸点が低いカルボン酸エステ ノレ ( 3 ) を用いるこ とが好ま しい。 このようなカルボ 酸エステル ( 3 ) としては、 例えば、 前記 S換基 R 1 が直鎖状のとき、 炭素数 7以下の 化合物が該当する。
さ らに、 生成する炭酸エステル ( 5 ) とカルボン酸エステル ( 3 ) と の分離が容易となるように、 カルボン酸エステル ( 3 ) と炭酸エステル ( 5 ) との沸点差が比較的大きいこ とが好ま しい。 尚、 上記炭酸エステ ル ( 4 ) の平衡転化率を高めるには、 カルボン酸エステル ( 3 ) と該炭 酸エステル ( 4 ) との沸点差が比較的小さいこ とが好ま しく、 また、 力 ルボン酸エステル ( 3 ) とカルボン酸エステル ( 6 ) との沸点差が比較 的大きいことが好ましい。 1 5
1 8
前段反応は、 原系側に非常に偏った平衡反応 (平衡定数 K= 1 0 _3〜 1 0 "4) である。 このため、 エステル交換反応の平衡を生成系側に有利 にして反応効率 (平衡転化率) を高めるために、 アルコールを反応系外 に連続的に抜き出すことが好ましい。 また、 アルコールを留去する際に は、 該アルコールとカルボン酸エステル ( 1 ) とを充分に分離させるこ とが好ま しい。
後段反応も平衡反応 (平衡定数 Κ = 1 0 〜 1 0 1 ) であるが、 前段 反応と比較してエステル交換反応の平衡が原系側にそれ程偏っていない 。 このため、 後段反応は、 前段反応より も反応が進行し易いが、 上記の 平衡を生成系側に有利にして反応効率 (平衡転化率) を高めるために、 前段反応と同様に、 カルボン酸エステル ( 6 ) を反応系外に連続的に抜 き出すことが好ま しい。
また、 カルボン酸エステル ( 6 ) を留去する際には、 該カルボン酸ェ ステル ( 6 ) とカルボン酸エステル ( 3 ) とを充分に分離させるこ とが 好ま しい。 但し、 カルボン酸エステル ( 6 ) とカルボン酸エステル ( 1 ) とが同一化合物である場合には、 カルボン酸エステル ( 6 ) を反応系 外に抜き出す必要はない。
上記炭酸エステル ( 5 ) の製造方法においては、 カルボン酸エステル ( 1 ) と芳香族ヒ ドロキシ化合物とを、 触媒の存在下でエステル交換さ せる (前段反応) 。 また、 カルボン酸エステル ( 3 ) と炭酸エステル ( 4 ) とを、 触媒の存在下でエステル交換させる (後段反応) 。 前段反応 で用いる触媒と、 後段反応で用いる触媒とは、 互いに同一であってもよ く、 また、 互いに異なっていてもよい。
上記の触媒と しては、 硫酸等の鉱酸 ; パラ トルエンスルホン酸等のス ルホン酸類 : イオン交換樹脂、 ゼォライ ト等の固体酸 ; 水酸化ナ ト リ ウ ム等の塩基 ; チタ ンテ ト ライ ソプロボキシ ド、 ジルコニウム(I V)イ ソブ ロボキシド等の金属アルコキシド ; 塩化アルミニゥム、 四塩化チタン等 のルイス酸や、 ルイス酸を発生する化合物 ; フ ノ キシ鉛、 フ ヱノキシ チタン等の金属フ ノキサイ ド類 : 酸化鉛類 ; 炭酸鉛等の鉛塩類 ; ジル コニゥム([V)了セチルァセ トネ一 卜、 ビス (ァセチルァセ トナ ト) 銅 ( I [) 、 亜鉛(I I )ァセチルァセ トネー ト、 リ チウムァセチルァセ ト ネー ト 等の金属ァセチルァセ トネー ト錯体 : ジブチル錫ォキシ ド等の有機錫化 合物 ; チタノ シリゲー ト ; 金属置換リ ン酸アル ミ ニウム等が挙げられる 。 また、 通常のプロ トン酸、 プロ ト ン塩基、 固体酸、 固体塩基も触媒と して用いるこ とができる。 上記例示の触媒のうち、 金属アルコキシ ド ; ルイス酸や、 ルイス酸を発生する化合物 : 金属フ エ ノキサイ ド類 ; 有機 錫化合物 ; チ夕ノ シ リゲー ト ; 金属置換リ ン酸アル ミ ニウムがより好ま しい。
均一触媒を用いる場合には、 該触媒を混合した溶液を反応蒸留塔 1 內 部に供給する。 該触媒は、 カルボン酸エステル ( 1 ) 、 芳香族ヒ ドロキ シ化合物および炭酸エステル ( 4 ) の少なく とも一"" 3に混合して供給す ることができる。 或いは、 触媒を混合した溶液を、 カルボン酸エステル ( 1 ) 、 芳香族ヒ ドロキン化合物または炭酸エステル ( 4 ) の供給段に 供給してもよく、 または、 供給段と異なる段に供給してもよい。 但し、 反応蒸留塔 1 においては、 触媒の存在する領域 (段) が多い程、 反応液 と触媒との接触頻度が増し、 反応効率が良好となる。 このため、 触媒は 、 できるだけ反応蒸留塔 1 の上部の段に供給するこ とが好ま しい。
均一触媒を用いる場合における触媒濃度は、 カルボン酸エステル ( 1 P 97/01685
2 0
) および芳香族ヒ ドロキシ化合物の合計量に対して、 下限値は 0. 1 p pm、 好ましく は l p pm、 さらに好ま しくは 1 O p pmである。 また 、 上限値は、 反応蒸留塔 1 内部の反応液に飽和状態で溶解する量であり 、 凡そ I 0重 i%、 好ましく は 5重量%、 さらに好ま しく は 1重量%で ある。
不均一触媒を用いる場合における触媒の量は、 カルボン酸エステル ( 1 ) および芳香族ヒ ドロキシ化合物の合計量に対して、 下限値は 0. 1 重量%、 好ま しく は 0. 5重量%、 さらに好ま しく は 1重量%である。 また、 上限値は、 4 0重量%、 好ま しく は 3 0重量%、 さ らに好ま しく は 2 0重量%である。
反応蒸留塔 1への原料の供給方法は、 特に限定されるものではない。 カルボン酸エステル ( 1 ) 、 芳香族ヒ ドロキシ化合物、 および、 炭酸ェ ステル ( 4 ) は、 液状で供給してもよ く、 ガス状で供給してもよ く、 或 いは、 気液混合状態で供給してもよい。 尚、 カルボン酸エステル ( 1 ) には、 芳香族ヒ ド σキシ化合物の一部が含まれていてもよ く、 また、 芳 香族ヒ ドロキン化合物には、 カルボン酸エステル ( 1 ) の一部が含まれ ていてもよい。
前段反応における、 カルボン酸エステル ( 1 ) と芳香族ヒ ド αキシ化 合物とのモル比は、 使用する触媒の種類や量、 或いは反応条件等にもよ るが、 1 : 5 0〜 5 0 : 1 の範囲内が好ま しく、 1 : 2 0〜 2 0 : 1 の 範囲内がより好ま しく、 1 : 5〜 5 : 1 の範囲内がさ らに好ま しい。 上 述したように、 前段反応は、 原系側に非常に偏った平衡反応である。 従 つて、 カルボン酸エステル ( 1 ) および芳香族ヒ ドロキシ化合物の何れ か一方を大過剰に用いることにより、 他方の反応効率 (平衡転化率) を 高めることができる。 しかしながら、 両者のモル比が上記の範囲外であ る場合には、 大過剰に用いたカルボン酸エステル ( 1 ) 若しく は芳香族 ヒ ドロキシ化合物を回収し、 リサイクルしなければならない。 このため 、 工業的に不利となり、 好ま しくない。
後段反応における、 カルボン酸エステル ( 3 ) と炭酸エステル ( 4 ) とのモル比は、 使用する触媒の種類や量、 或いは反応条件等にもよるが 、 1 : 5 0〜 5 0 : 1 の範囲内が好ま しく、 1 : 2 0〜 2 0 : 1 の範囲 内がより好ま しく、 1 : 5〜5 : 1 の範囲内がさらに好ま しい。 カルボ ン酸エステル ( 3 ) および炭酸エステル ( 4 ) の何れか一方を大過剰に 用いることにより、 他方の反応効率 (平衡転化率) を高めるこ とができ る。 しかしながら、 両者のモル比が上記の範囲外である場合には、 大過 剰に用いたカルボン酸エステル ( 3 ) 若しく は炭酸エステル ( 4 ) を回 収し、 リサイ クルしなければならない。 このため、 工業的に不利となり 、 好ま しくない。
また、 後段反応においては、 反応系に、 前段反応における未反応物で あるカルボン酸エステル ( 1 ) や芳香族ヒ ドロキシ化合物等が含まれて いてもよい。 尚、 炭酸エステル ( 5 ) を効率的に製造するために、 カル ボン酸エステル ( 3 ) 、 カルボン酸エステル ( 1 ) および芳香族ヒ ドロ キン化合物の合計量における該カルボン酸エステル ( 3 ) の含量は、 1 0モル%以上が好ま しく、 2 0モル%以上がより好ま しく、 3 0モル% 以上がさらに好ま しい。
上記の反応蒸留塔 1 を操作する際に、 その操作条件を決める因子と し ては、 例えば、 段数、 操作温度 (反応温度) 、 操作圧、 液の滞留時間、 還流比、 および液のホールドアッブ量等が挙げられる。 すなわち、 第一平衡反応は、 該第一平衡反応によって生成する各生成 物のうちの第一および第二の各原料より、 沸点の高い生成物を、 上記第 一および第二の各原料から、 各沸点の違いによって分離し得る温度およ び圧力に調整されて行われる。
また、 第一平衡反応は、 該第一平衡反応によって生成する各生成物の うちの第一および第二の各原料より沸点の低い生成物を、 各沸点の違い によって分雜して除去することによって、 上記第一平衡反応を促進し得 る温度および圧力に調整されて行われる。
第二平衡反応は、 該第二平衡反応によって生成する各生成物のうち、 より沸点の高い生成物を、 目的生成物として、 各沸点の違いにより分雜 し、 反応分雔装置から取り出される温度および圧力に調整されて行われ る。
また、 第二平衡反応は、 該第二平衡反応によって生成する各生成物の うち、 より沸点の低い生成物を、 各沸点の違いによって該第二平衡反応 系から分雜することにより、 該第二平衡反応を促進し得る温度および圧 力に調整されて行われる。
より具体的な操作温度は、 カルボン酸エステル ( 1 ) 、 芳香族ヒ ドロ キシ化合物および崁酸エステル ( 4 ) の種類、 触媒の種類や量、 他の条 件 (因子) 等にもよるが、 下限温度は 1 0 0 'C、 好ましくは 1 4 0て、 より好ましくは 1 6 0てであり、 上限温度は 3 5 0 'C、 好ま しくは 3 0 0 'Cである。
操作温度が 1 0 O 'Cよりも低い場合には、 触媒活性が低くなるので反 応時間が長くなり、 生産性が低下するため好ましくない。 また、 操作温 度が 3 5 0てよりも高い場合には、 脱水反応、 或いは、 脱炭酸反応によ るエーテル類 (ジァリールエーテル類、 アルキルァ リ一ルェ一テル類等 ) の生成等の副反応が起こ り易くなるため好ま しく ない。 さ らに、 反応 蒸留塔 1 内部の圧力が上昇しすぎるため好ま しくない。
より具体的な操作圧としては、 滅圧、 常圧、 加圧の何れであってもよ く、 また、 カルボン酸エステル ( 1 ) 、 芳香族ヒ ドロキシ化合物および 炭酸エステル ( 4 ) の種類、 触媒の種類や量、 他の条件 (因子) 等にも よるが、 下限値は 1 0 0 mmH g、 好ま しく は 5 0 0 mmH g、 より好 ま しく は 7 6 0 mmH g (常圧) であり、 上限値は 1 0 0 k gノ c in 2 、 好ましく は 5 0 k gZ c m2 、 より好ま しく は 1 O k gZ c m2 であ る。
ホール ドアツブ量ゃ段数は、 反応時間、 即ち、 滞留時間と密接に関係 している。 つまり、 平衡転化率を高めるには、 滞留時間を或る程度長く する必要があり、 また、 滞留時間を長くするには、 ホール ドアップ量を 大き くするか、 または、 段数を多くする必要がある。 このうち、 ホール ドアッブ量を大き くする方が好ましいが、 或る程度以上大き く すると、 フラッディ ングが起こる。
このため、 反応蒸留塔 1 の空塔容積 (体積) に対するホール ドアップ 量は、 体積比で 0. 0 0 5〜 0. 7 5の範囲内が好ま しく、 0. 0 1 〜 0. 5の範囲内がより好ま しい。 また、 段数を多くする場合には、 反応 蒸留塔 1 を製造する際の費用や高さ制限、 用役費、 固定費等を考慮に入 れて、 5段〜 1 0 0段程度が好ま しい。
尚、 段数を多くすると、 前段反応において、 カルボン酸エステル ( 1 ) とアルコールとの沸点差が比較的小さい場合、 並びに、 後段反応にお いて、 カルボン酸エステル ( 3 ) と炭酸モノエステル或いはカルボン酸 エステル ( 6 ) との沸点差が比較的小さい場合において、 気液分雜の効 率が向上する。
遠流比は、 0〜 1 0 0の範囲内が好ま しく、 0〜 5 0の範囲内がより 好ましく、 0〜 2 5の範囲内がさらに好ま しい。 尚、 カルボン酸エステ ル ( 1 ) とアルコールとが共沸組成物を形成する場合には、 還流比は、 0或いは比較的小さな値にすることが好ま しい。 また、 カルボン酸エス テル ( 1 ) とアルコールとの沸点差が比較的小さい場合には、 還流比は 、 用役费ゃ固定費等を考慮に入れて、 比較的大きな値にするこ とが好ま しい。
不均一触媒を用いた場合には、 反応蒸留塔内に触媒を保待すれば触媒 の分雜の必要はなく、 スラ リー状で用いた場合でも反応終了後、 遠心分 雜ゃ爐過等の公知の方法を用いることにより、 反応液から不均一触媒を 容易に除去 · 回収することができる。
また、 均一触媒を用いた場合には、 反応終了後、 蒸留等の公知の方法 を用いるこ とにより、 反応液から均一触媒を容易に分離 · 回収するこ と ができる。
そして、 反応終了後、 上記の方法を用いて触媒を分離し、 次いで、 蒸 留、 抽出、 再結晶等の公知の方法を用いるこ とにより、 炭酸エステル ( 5 ) 、 即ち、 目的物である炭酸ジエステルを容易に単雜するこ とかでき る。 また、 必要に応じて、 副生成物であるカルボン酸エステル ( 6 ) や 炭酸モノエステル、 或いは、 炭酸エステル ( 4 ) や未反応物である芳香 ήヒ ドロキシ化合物等を容易に分雜 · 回収することができる。
上記炭酸エステル ( 5 ) の製造方法においては、 必要に応じて、 反応 系、 つまり反応液に、 溶媒を添加してもよい。 反応操作を容易にするた めに添加する溶媒としては、 上記反応系に対して不活性な化合物、 例え ば、 エーテル類、 脂肪族炭化水素、 芳香族炭化水素、 ハロゲン化炭化水 素等が挙げられる。
また、 カルボン酸エステル ( 1 ) とアルコールとが共沸組成物を形成 する場合には、 該共沸組成物の共沸点より も共沸点が低い共沸組成物を 上記アルコールとの間で形成する溶媒を、 反応系内に共存させるこ とが 好ましい。 例えば、 アルコールがメタノールである場合には、 好適な溶 媒として、 ベンゼンゃシクロへキサン等の化合物が挙げられる。
該溶媒は、 メ タノールとの間で、 共沸点が比較的低い共沸組成物を形 成する。 このため、 カルボン酸エステル ( 1 ) およびメタノールの共沸 が抑制されるので、 両者の分離が容易となり、 平衡転化率を向上させる こ とができる。 尚、 カルボン酸エステル ( 1 ) とアルコールとが共沸組 成物を形成しない場合にも、 両者の分雜をより一層容易とするために、 共沸点が低い共沸組成物をアルコールとの間で形成する溶媒を、 反応系 内に共存させてもよい。
また、 アルコールやカルボン酸エステル ( 6 ) を反応系から容易に除 去するために、 反応蒸留塔 1 の下部から反応系に対して不活性な気体 ( 窒素ガス等) を導入することもできる。
次に、 炭酸エステル ( 5 ) の製造方法の一例について説明する。 先ず 、 原料供給管 5を介して芳香族ヒ ドロキシ化合物を、 原料供給管 6を介 してカルボン酸エステル ( 1 ) を、 原料供給管 7を介して炭酸エステル ( 4 ) を反応蒸留塔 1 にそれぞれ連挠的に供給する。
すると、 反応蒸留塔 1 に供給された芳香族ヒ ドロキシ化合物および力 ルボン酸エステル ( 1 ) は、 気液接触、 つま り、 反応蒸留される。 これ により、 前段反応が進行し、 カルボン酸エステル ( 3 ) とアルコールと が生成すると共に、 両者が分雜される。 該カルボン酸エステル ( 3 ) は 、 反応蒸留塔 1 内を流下する。 また、 副生成物であるアルコールは、 留 出液として连梡的に抜き出される。
次に、 カルボン酸エステル ( 3 ) と炭酸エステル ( 4 ) とが気液接触 、 つまり、 反応蒸留される。 これにより、 後段反応が進行し、 炭酸エス テル ( 5 ) およびカルボン酸エステル ( 6 ) が生成すると共に、 両者が 分離される。 副生成物であるカルボン酸エステル ( 6 ) は、 反応蒸留塔 1 内を上昇し、 留出液として連镜的に抜き出される。 尚、 カルボン酸ェ ステル ( 6 ) とカルボン酸エステル ( 1 ) とが同一化合物である場合に は、 カルボン酸エステル ( 6 ) は、 上記の前段反応に供される。
—方、 目的物である炭酸エステル ( 5 ) は、 反応蒸留塔 1 から缶出液 (塔底液) として反応系外に連铳的に抜き出される。 即ち、 炭酸エステ ル ( 5 ) は、 缶出液として連铳的に反応系外に取り出される。
以上の反応操作を行う ことにより、 効率的かつ連铙的に炭酸エステル ( 5 ) を製造することができる。 尚、 カルボン酸エステル ( 6 ) が前段 反応に供される場合には、 反応蒸留塔 1 内に存在する化合物の種類が少 なく なり、 反応系が単純化される。 また、 原料供給管 6を介して供給さ れるカルボン酸エステル ( 1 ) の供給量を低滅することができるので、 上記の逐次複合反応をより一層効率的に行う こ とができる。
以下、 実施例により、 本発明をさ らに具体的に説明するが、 本発明は これらにより何ら限定されるものではない。 尚、 実施例に記裁の 「%」 は、 「重量%」 を示す。
〔実施例 1 〕 図 1 に示す反応蒸留装 Sを用いて、 平衡反応が二段階組み合わされて なる逐次複合反応を実施した。 但し、 反応蒸留塔 1 として、 ステン レス 製の棚段塔の上に、 ステンレス製の蒸留塔を接铳してなる塔を用いた。 上記の棚段塔は、 内径 2 0 mmであり、 段数が 6 0段からなる。 そし て、 最上段 ( 6 0段目) の上、 即ち、 塔頂部に原料供給管 5を接较し、 2 0段目に原料供給管 6を接繞し、 最下段 ( 1 段目) の下、 即ち、 塔底 部に原料供給管 7を接続した。 従って、 棚段塔は反応部である。
上記の蒸留塔は、 高さ l m、 内径 2 0 mniであり、 充塡物として 1. 5 mm 0のステン レス製ディ ク ソ ンバッキングを充塡した。 従って、 蒸 留塔は濃縮部である。 また、 リボイラー 2等を用いて塔底液を加熱する 代わりに、 棚段塔の塔底部をヒータで加熱することにより、 蒸留に必要 な熱を供耠した。 反応蒸留塔 1 の操作条件は、 塔底温度を 2 4 0で、 塔 頂圧力を 3. 4 k g/ c m2 (ゲージ圧) とした。 また、 還流操作は行 わなかったが、 放熱により留出液の一部が蒸留塔内部で凝縮するこ とに より、 内部還流が若干起こっている。
そして、 反応蒸留塔 1 に原料供給管 5を介して、 原料 (A) と しての フ エノ ールと、 触媒としてのチタ ンテ ト ラフ エ ノ キシ ド 「T i (0 P h )4J とからなる原料液を連镜的に供給した。 原料液の 1時間当たりの供 給量は、 6 0 gとした。 また、 反応蒸留塔】 に原料供給管 6を介して、 原料 ( B) としての吉草酸メチルを一部ガス状で連続的に供給した。 吉 草酸メチルの 1時間当たりの供給量は、 1 2 8 gと した。 上記のチ夕ン テ トラフ Xノキシ ドは、 原料 (吉草酸メチルおよびフヱノールの合計量 ) に対するチタンの添加量が S O O p pmとなるように添加した。 さら に、 反応蒸留塔 1 に原料供給管 7を介して、 原料 (E) としての炭酸ジ メチルをガス状で連鲩的に供給した。 炭酸ジメチルの 1 時間当たりの供 耠量は、 1 8. 6 gとした。
上記の反応蒸留塔 1 にて吉草酸メチルとフ ヱノ一ルとをエステル交換 させながら気液接触 (前段反応) させると共に、 生成した吉草酸フエ二 ル (生成物 ( C) ) と炭酸ジメチルとをエステル交換させながら気液接 触 (後段反応) させた。 そして、 生成した炭酸メチルフ ニルおよび炭 酸ジフ ニニル (何れも生成物 (F) ) を含む缶出液を、 抜き出し管 8を 通じて連続的に反応系外に取り出した。 缶出液の 1 時間当たりの抜き出 し量は、 9 3. 3 gであった。 また、 副生したメ タノール (生成物 (D ) ) を含む留出液を、 抜き出し管 9を通じて連铳的に反応系外に取り出 した。 留出液の 1 時間当たりの抜き出し量は、 1 1 1 gであった。
上記缶出液の組成を分析した結果、 該組成は、 吉草酸フ ニル 2 5. 6 %、 炭酸メチルフ ヱニル 1 7. 3 %、 炭酸ジフ エニル 1 4. 0 %、 炭 酸ジメチル 4. 5 %、 吉草酸メチル 1 2. 3 %、 および、 フ エノ ール 2 6. 2 %であった。 また、 フエノ一ルの転化率は 5 9. 6 %であり、 炭 酸ジメチルの転化率は 7 5. 5 %であった。
—方、 上記留出液の組成を分析した結果、 該留出液には、 炭酸ジメチ ルは殆ど含まれていなかった。 また、 棚段塔の塔底から 1 3段目に存在 する反応液を抜き取って分析したところ、 該反応液にも、 炭酸ジメチル は殆ど含まれていなかった。 尚、 後段反応で副生した吉草酸メチル (生 成物 (G) ) は、 原料 (B) として前段反応に供された。
〔実施例 2〕
実施例 1 の反応蒸留装置と同一の反応蒸留装置を用いて、 実施例 1 に おける吉草酸メチルの 1 時問当たりの供給量を 1 2 8 gから 1 2 4 gに 2 θ
変更すると共に、 炭酸ジメチルの 1 時間当たりの供給量を 1 8. 6 gか ら 2 4. 4 gに変更した以外は、 実施例 1 の反応条件と同様の反応条件 で、 逐次複合反応を実施した。
缶出液の 1 時間当たりの抜き出し量は、 9 6 gであった。 また、 留出 液の 1 時間当たりの抜き出し量は、 1 1 I gであった。 上記缶出液の組 成を分析した結果、 該組成は、 吉草酸フェニル 2 1 . 5 %、 炭酸メチル フ エニル 2 0. 4 %、 炭酸ジフ エニル 1 4. 4 %、 炭酸ジメチル 6. 7 %、 吉草酸メチル 1 2. 4 %、 および、 フエノ ール 2 4. 7 %であった 。 また、 フエノールの転化率は 6 0. 0 %であり、 炭酸ジメチルの転化 率は 7 1 . 5 %であった。
〔実施例 3〕
実施例 1 の反応蒸留装置と同一の反応蒸留装置を用いて、 実施例 1 に おけるフ ノールを含む原料液の 1 時間当たりの供給量を 6 0 gから 6 3 gに、 吉草酸メチルの 1 時間当たりの供給量を 1 2 8 gから 1 3 6 g に、 炭酸ジメチルの 1 時間当たりの供給量を 1 8. 6 gから 1 8. 7 g にそれぞれ変更した以外は、 実施例 1 の反応条件と同様の反応条件で、 逐次複合反応を実施した。
缶出液の 1 時間当たりの抜き出し量は、 1 1 5 gであった。 また、 留 出液の I 時間当たりの抜き出し量は、 1 0 1 gであった。 上記缶出液の 組成を分析した結果、 該組成は、 吉草酸フ ニル 2 9. 4 %、 炭酸メチ ルフエニル 1 4. 9 %、 炭酸ジフエニル 1 に 0 %、 炭酸ジメ チル 3. 9 %、 吉草酸メチル 1 3. 3 %、 および、 フエノール 2 7. 5 %であつ た。 また、 フ ノールの転化率は 5 8. 5 %であり、 炭酸ジメチルの転 化率は 8 0. 0 %であった。 産業上の利用可能性
本発明の反応蒸留装 Sは、 平衡反応が二段階以上組み合わされてなる 比較的筏雑な反応、 即ち、 逐次複合反応に適用するこ とができる反応蒸 留装置を提供することができる。
本発明の反応蒸留方法は、 平衡反応が二段階以上組み合わされてなる 比較的複雑な反応、 即ち、 逐次複合反応に適用するこ とができる反応蒸 留方法を提供することができ、 また、 工業的に有用な炭酸エステルを効 率的に製造するこ とができる。 例えば、 上記炭酸エステルの一種である 炭酸ジフヱニルは、 工業的に有用なポリ カ一ボネー トの原料として用い られる。

Claims

請 求 の 範 囲
1 . 二つ以上の平衡反応を有する反応を行うための、 段数が 3段以 上の反応蒸留装置であって、
第一平衡反応を行う二種類の各原料のうち、 より沸点の高い原料 (第 一の原料) を供給する第一供給部と、 より沸点の低い原料 (第二の原料 ) を供給する第二供給部と、 上記第一平衡反応によって生成する各生成 物のうちの第一および第二の原料より沸点の高い生成物と第二平衡反応 を行わせる第三の原料を供給する第三供給部とを少なく とも備えると共 に、 上記第一供給部、 第二供耠部および第三供給部が、 塔頂側から順に それぞれ異なる段に設けられている反応蒸留装置。
2 . 供給部が設けられている二つの段の間に、 供給部が設けられて いない段を有する請求項 1記載の反応蒸留装置。
3 . 二つ以上の平衡反応を有する反応を、 段数が 3段以上の反応蒸 留装置を用いて行う反応蒸留方法であって、
第一平衡反応を行う二種類の各原料のうち、 より沸点の高い原料 (第 一の原料) を第一の段に供給する一方、 より沸点の低い原料 (第二の原 料) を上記第一の段よりも下側の第二の段に供給して両者の第一平衡反 応を行わせる工程と、
該第一平衡反応によって生成する各生成物のうちの第一および第二の 各原料より沸点の高い生成物と第二平衡反応を行わせる第三の原料を上 記第二の段よりも下側の第三の段に供給して、 該生成物と第三の原料と の第二平衡反応を行わせる工程とを含む反応蒸留方法。
4 . 第二平衡反応によって生成する各生成物のうち、 より沸点の低 い生成物が、 第一平衡反応の原料である請求項 3記載の反応蒸留方法。
5. 第一平衡反応が、 一股式 ( 1 )
R 5 C 00 R2 …… ( 1 )
(式中、 R ' 、 R2 はそれぞれ独立してアルキル基、 脂環式炭化水素基 またはァリールアルキル基を表す) で表されるカルボン酸エステルと、 —股式 ( 2 )
R3 0H …… ( 2 )
(式中、 R3 は S換基を有していてもよい芳香族基を表す) で表される 芳香族ヒ ドロキシ化合物とのエステル交換反応であり、
第二平衡反応が、 上記エステル交換反応により生成する一般式 ( 3 )
R 1 C 00 R 3 …… ( 3 )
(式中、 R 1 はアルキル基、 脂環式炭化水素基またはァリ ールアルキル 基を表し、 R3 は置換基を有していてもよい芳香族基を表す) で表され るカルボン酸エステルと、 一般式 ( 4 )
R 4 0 - C 0 OR 5 …… ( 4 )
(式中、 R4 、 R s はそれぞれ独立してアルキル基、 脂環式炭化水素基 またはァリールアルキル基を表す) で表される炭酸エステルとのエステ ル交換反応である請求項 3記載の反応蒸留方法。
6. 第三の原料の沸点を、 第 1 および第 2の各原料の各沸点より小 さ く設定する請求項 3記載の反応蒸留方法。
7. 第一平衡反応は、 該第一平衡反応によって生成する各生成物の うちの第一および第二の各原料より、 沸点の高い生成物を、 上記第一お よび第二の各原料から、 各沸点の違いによって分雜し得る温度および圧 力に調整されて行われる請求項 3記載の反応蒸留方法。
8. 第一平衡反応は、 該第一平衡反応によって生成する各生成物の うちの第一および第二の各原料より沸点の低い生成物を、 各沸点の違い によって分雜して除去することによって、 上記第一平衡反応を促進し得 る温度および圧力に調整されて行われる請求項 3記載の反応蒸留方法。
9 . 第二平衡反応は、 該第二平衡反応によって生成する各生成物の うち、 より沸点の高い生成物を、 目的生成物として、 各沸点の違いによ り分離し、 反応分離装置から取り出される温度および圧力に調整されて 行われる請求項 3記載の反応蒸留方法。
1 0 . 第二平衡反応は、 該第二平衡反応によって生成する各生成物の うち、 より沸点の低い生成物を、 各沸点の違いによって該第二平衡反応 系から分雜することにより、 該第二平衡反応を促進し得る温度および圧 力に調整されて行われる請求項 3記載の反応蒸留方法。
1 1 . 第二平衡反応により得られる目的生成物は、 炭酸ジエステルで ある請求項 3記載の反応蒸留方法。
PCT/JP1997/001685 1996-05-21 1997-05-20 Appareil de distillation par reaction et procede de distillation par reaction WO1997044108A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97922103A EP0842685A4 (en) 1996-05-21 1997-05-20 APPARATUS AND REACTION DISTILLATION METHOD
US09/000,009 US6057470A (en) 1996-05-21 1997-05-20 Reaction distillation apparatus and reaction distillation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/126035 1996-05-21
JP8126035A JP2854279B2 (ja) 1996-05-21 1996-05-21 反応蒸留装置および反応蒸留方法

Publications (1)

Publication Number Publication Date
WO1997044108A1 true WO1997044108A1 (fr) 1997-11-27

Family

ID=14925072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001685 WO1997044108A1 (fr) 1996-05-21 1997-05-20 Appareil de distillation par reaction et procede de distillation par reaction

Country Status (4)

Country Link
US (1) US6057470A (ja)
EP (1) EP0842685A4 (ja)
JP (1) JP2854279B2 (ja)
WO (1) WO1997044108A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104645896A (zh) * 2015-01-09 2015-05-27 烟台大学 一种偶相催化反应-非均相共沸精馏系统及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2922848B2 (ja) * 1996-06-14 1999-07-26 株式会社日本触媒 芳香族炭酸エステルの製造方法
US6413413B1 (en) * 1998-12-31 2002-07-02 Catalytic Distillation Technologies Hydrogenation process
US6600061B1 (en) 2000-11-15 2003-07-29 General Electric Company Method for the continuous production of aromatic carbonates
CN1628090A (zh) * 2002-02-05 2005-06-15 Lg化学株式会社 使用非均相催化剂制备芳香族碳酸酯的连续方法及其反应设备
JP5271598B2 (ja) * 2007-05-09 2013-08-21 花王株式会社 オキサゾリン化合物の製造方法
US20150027873A1 (en) * 2013-06-18 2015-01-29 University Of Houston System Iterative reactive distillation of dynamic ester mixtures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523923B1 (ja) * 1969-12-25 1977-01-31
JPS59500671A (ja) * 1982-04-26 1984-04-19 イ−ストマン コダツク カンパニ− 酢酸メチルの製造方法
JPH04261142A (ja) * 1991-02-14 1992-09-17 Asahi Chem Ind Co Ltd 芳香族カーボネート類の連続的製造法
JPH07206781A (ja) * 1993-12-23 1995-08-08 Bayer Ag 炭酸ジメチルの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523923A (en) * 1975-06-26 1977-01-12 Nissan Motor Co Ltd Intake passage device of torch-type ignition engine
ATE107273T1 (de) * 1989-12-28 1994-07-15 Asahi Chemical Ind Kontinuierliches verfahren zur herstellung aromatischer karbonate.
US5679312A (en) * 1993-02-17 1997-10-21 China Petro-Chemical Corporation Multiple stage suspended reactive stripping process and apparatus
TW310322B (ja) * 1994-05-25 1997-07-11 Nippon Catalytic Chem Ind

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523923B1 (ja) * 1969-12-25 1977-01-31
JPS59500671A (ja) * 1982-04-26 1984-04-19 イ−ストマン コダツク カンパニ− 酢酸メチルの製造方法
JPH04261142A (ja) * 1991-02-14 1992-09-17 Asahi Chem Ind Co Ltd 芳香族カーボネート類の連続的製造法
JPH07206781A (ja) * 1993-12-23 1995-08-08 Bayer Ag 炭酸ジメチルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0842685A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104645896A (zh) * 2015-01-09 2015-05-27 烟台大学 一种偶相催化反应-非均相共沸精馏系统及方法

Also Published As

Publication number Publication date
US6057470A (en) 2000-05-02
JP2854279B2 (ja) 1999-02-03
EP0842685A4 (en) 2001-11-07
JPH09308801A (ja) 1997-12-02
EP0842685A1 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
EP1125915B1 (en) Process for simultaneous production of ethylene glycol and carbonate ester
KR100379816B1 (ko) 디알킬 카보네이트와 디올을 연속적으로 제조하는 방법
EP0523728B1 (en) Continuous process for preparing dimethyl carbonate
RU2708627C2 (ru) Способ получения диметилового эфира из газообразных смесей монооксида углерода, водорода и метилацетата
JP4260212B2 (ja) ジアルキルカーボネートの工業的分離方法
JP4937140B2 (ja) ジアルキルカーボネートとジオール類の工業的製造方法
JP2006206497A (ja) ジアルキルカーボネートおよびジオールを製造する方法
KR100193287B1 (ko) 탄산에스테르의 제조방법
EP0968995B1 (en) Process for continuously producing ester of acrylic or methacrylic acid
JPH04198141A (ja) ジアルキルカーボネートとジオール類の連続的製造法
WO1997044108A1 (fr) Appareil de distillation par reaction et procede de distillation par reaction
CA2382831C (en) Process and device for hydrolytically obtaining a carboxylic acid and alcohol from the corresponding carboxylate
US5821384A (en) Process for generating vinyl carboxylate esters
JP2000005503A (ja) 反応蒸留装置および反応蒸留方法
JP4424898B2 (ja) ジアルキルカーボネートおよびジオールを製造する方法
JP2557099B2 (ja) ジメチルカーボネートの分離方法
JP2922848B2 (ja) 芳香族炭酸エステルの製造方法
JP2003342236A (ja) ジメチルカーボネートの製造方法
US5217582A (en) Process for the isolation of alkyl glyoxylate
JP2733035B2 (ja) 炭酸エステルの製造方法
JP2733034B2 (ja) カルボン酸エステルの製造方法
JPH10301A (ja) 反応蒸留装置および反応蒸留方法
JP2733036B2 (ja) 炭酸エステルの製造方法
JPH1045675A (ja) 炭酸エステルの製造方法
JP2003300918A (ja) ジアルキルカーボネートとグリコールの連続同時製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997922103

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09000009

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997922103

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997922103

Country of ref document: EP