WO1997036172A1 - Anschlussleitung für einen messfühler - Google Patents

Anschlussleitung für einen messfühler Download PDF

Info

Publication number
WO1997036172A1
WO1997036172A1 PCT/DE1996/002206 DE9602206W WO9736172A1 WO 1997036172 A1 WO1997036172 A1 WO 1997036172A1 DE 9602206 W DE9602206 W DE 9602206W WO 9736172 A1 WO9736172 A1 WO 9736172A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
cable sheath
cable
sensor
sensor according
Prior art date
Application number
PCT/DE1996/002206
Other languages
English (en)
French (fr)
Inventor
Helmut Weyl
Hans-Martin Wiedenmann
Anton Hans
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP9533911A priority Critical patent/JPH11506216A/ja
Priority to EP96945737A priority patent/EP0827590A1/de
Publication of WO1997036172A1 publication Critical patent/WO1997036172A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4062Electrical connectors associated therewith

Definitions

  • the invention is based on a sensor, in particular for determining the oxygen content in exhaust gases from
  • a generic sensor is known for example from DE-OS 28 05 598, in which lead out of a metallic housing electrical connection cable from one
  • Jacket tube are encased.
  • the jacket tube is used to conduct a reference air shielded from splash water and air contaminants into the housing of the sensor as a reference atmosphere.
  • the sensor according to the invention with the characterizing features of the main claim has the advantage that a better supply of the reference atmosphere takes place in the housing. Due to the relatively large surface area of the cable sheath, sufficiently dimensioned gas-permeable sections are possible through which sufficient reference air can penetrate the interior of the cable sheath and from there into the housing. At the same time, moisture or impurities are prevented from getting into the housing. Due to the large surface area of the gas-permeable sections of the cable sheathing, a very low specific permeability of the porous material can be set, which makes the otherwise critical penetration of liquid hydrocarbons difficult. A tight connection between the insulation of the connection cable and the cable entry is no longer necessary.
  • a technically favorable connection of the cable sheath to the housing of the sensor is achieved in that the cable sheath is shrunk onto the opening of the housing.
  • the simultaneous caulking of a cable bushing held in the opening with a clamping ring placed over the cable sheathing further simplifies the assembly of the sensor.
  • the cable gland can also be used advantageously as strain relief for the connection cable.
  • FIG. 1 shows a sensor with a connecting line according to the invention and FIG. 2 shows an enlarged section X according to FIG. 1.
  • Figure 1 shows a sensor 10, for example a ⁇ probe, with a housing 13 in which a sensor element 14 is fixed gas-tight.
  • the sensor 10 is connected to a connecting line 11, which consists of a gas-permeable cable sheath 12, in which connecting cables 18 for the sensor element 14 are guided.
  • the housing 13 has a section 15 on the measurement gas side and a section 16 on the connection side.
  • the connection cables 18 each have an electrical conductor 19 which is surrounded by an insulation jacket 20.
  • a protective tube 22 with gas inlet and outlet openings 23 is fastened to the measuring gas side section 15 of the housing 13.
  • the protective tube 22 surrounds the sensor element 14 protruding from the housing 13 on the measuring gas side
  • Section 15 is also provided with a thread 24, with which the sensor 10 is fastened in an exhaust pipe, not shown.
  • a metallic protective sleeve 30 is attached to the connection-side section 16 of the housing 13 in a gas-tight manner by means of a radially circumferential weld seam 31.
  • the protective sleeve 30 surrounds the sensor element 14, which also protrudes from the housing 13 on the connection side, and forms an interior 33 into which a reference atmosphere, for example air, for a reference electrode (not shown) of the sensor element 14 is introduced.
  • connection contacts not shown, which are contacted with contact parts 35.
  • the contact parts 35 are arranged in, for example, a two-part connector 40, the two parts of the connector 40 being held together by an annular spring element 41. As a result, the contact parts 35 are pressed onto the connection contacts (not shown) of the sensor element 14.
  • the cable-side section of the contact parts 35 is designed with a crimp connection 43.
  • the contact parts 35 are connected to the connecting cables 18 by means of the crimp connections 43 (FIG. 2).
  • the protective sleeve 30 is designed according to Figure 2 at its connection end with a cylindrical portion 45 with an opening 46, the cylindrical
  • Section 45 has a small diameter compared to the other part of the protective sleeve 30.
  • the opening 46 is closed with a cable bushing 50.
  • the cable bushing 50 is made of PTFE, for example, and has 18 corresponding to the number of connecting cables to be passed through
  • the through holes 51 are dimensioned so that a gap 52 is formed between the insulation jacket 20 of the connecting cable 18 and the protective sleeve 30, through which the reference air can get into the interior of the protective sleeve 30.
  • the through holes 51 are designed such that the crimp connections 43 get caught in the cable bushing 50.
  • the cable sheath 12 is, for example, a PTFE hose with a plug end 56 and a probe end 57.
  • the PTFE hose has pores on its outer surface through which the reference air can penetrate into the interior of the hose. The pore size is so small that there is a specific permeability that prevents the otherwise critical penetration of liquid hydrocarbons.
  • the connecting cables 18 are led out and contacted with a connector, not shown, which is connected to a control unit, also not shown.
  • the PTFE tube is surrounded by a sleeve 58 which squeezes the PTFE tube together.
  • a sealing element can expediently be arranged within the PTFE tube in the area of the sleeve 58, so that when the tube is squeezed together it is at least sealed watertight.
  • the sensor-side end 57 of the hose is placed over the cylindrical section 45. This is done, for example, by heating and then shrinking the hose onto the cylindrical section 45 of the protective sleeve 30. In addition, a clamping ring 59 is pushed over the sensor-side end 57 of the hose, which is then caulked radially by means of a caulking tool. As a result, the cylindrical section 45 of the protective sleeve 30 is caulked to the cable bushing 50, as a result of which the cable bushing 50 is firmly anchored in the opening 46.
  • the porous PTFE tube is produced by stretching the PTFE material according to a method known per se. But it is also conceivable, the PTFE hose to stretch only on one or more sections, so that there is only a section-wise porosity along the tube.
  • Another possibility for executing a gas-permeable cable sheath 12 is that a material which is inherently dense is made air-permeable by laser beam bombardment or by the finest mechanically introduced needle pricks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

Es wird ein Meßfühler (10), insbesondere zur Bestimmung des Sauerstoffgehaltes in Abgasen von Verbrennungsmotoren vorgeschlagen, mit einem in einem metallischen Gehäuse (13, 30) angeordneten Sensorelement (14), welches mit aus dem Gehäuse (13, 30) herausgeführten Anschlußkabeln (18) kontaktiert ist, die von einer Kabelumhüllung (12) umgeben sind, wobei in das Gehäuse (13, 30) eine Referenzatmosphäre für das Sensorelement (14) einleitbar ist. Die Kabelumhüllung (12) weist an der Mantelfläche zumindest bereichsweise mindestens einen gasdurchlässigen Abschnitt auf, durch den die Referenzatmosphäre in das Innere der Kabelumhüllung (12) und von dort in das Gehäuse (13, 30) gelangen kann. Als Kabelumhüllung (12) eignet sich besonders ein poröser PTFE-Schlauch.

Description

Anschlußleitung für einen Meßfühler
Stand der Technik
Die Erfindung geht aus von einem Meßfühler, insbesondere zur Bestimmung des Sauerstoffgehaltes in Abgasen von
Verbrennungsmotoren, nach der Gattung des Hauptanspruchs.
Ein gattungsgemäßer Meßfühler ist beispielsweise aus der DE- OS 28 05 598 bekannt, bei dem aus einem metallischen Gehäuse herausgeführte elektrische Anschlußkabel von einem
Mantelrohr umhüllt sind. Das Mantelrohr dient dazu, eine von Spritzwasser und Luftverunreinigungen abgeschirmte Referenzluft in das Gehäuses des Meßfühlers als Referenzatmosphäre zu leiten.
Aus der DE-OS 27 02 432 ist ferner bekannt, die Referenzluft über die Anschlußkabel in das Gehäuses einzuleiten, wobei die innerhalb der Isolierung der Anschlußkabel vorhandenen Hohlräume nicht immer ausreichen, um genügend Referenzluft ins Innere des Gehäuses des Meßfühlers zu leiten. Vorteile der Erfindung
Der erfindungsgemäße Meßfühler mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, daß ein besserer Zuführung der Referenzatmosphäre in das Gehäuses stattfindet. Wegen der relativ großen Mantelfläche der Kabelumhüllung sind ausreichend dimensionierte gasdurchlässige Abschitte möglich durch die genügend Referenzluft in das Innere die KabelUmhüllung und von dort in das Gehäuse eindringen kann. Gleichzeitig wird verhindert, daß Feuchtigkeit oder Verunreinigungen in das Gehäuses gelangen. Aufgrund der großen Oberfläche der gasdurchlässigen Abschnitte der Kabelumhüllung kann eine sehr geringe spezifische Durchlässigkeit des porösen Materials eingestellt werden, was das ansonsten kritische Eindringen flüssiger Kohlenwasserstoffe erschwert. Eine dichte Verbindung zwischen den Isolierungen der Anschlußkabel und der Kabeldurchführung ist nicht mehr notwendig.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der erfindungsgemäßen Anschlußleitung möglich. Eine fertigungstechnisch günstige Verbindung der Kabelumhüllung mit dem Gehäuse des Meßfühlers wird dadurch erreicht, daß die Kabelumhüllung auf die Öffnung des Gehäuses aufgeschrumpft wird. Durch das gleichzeitige Verstemmen einer in der Öffnung gehaltenen Kabeldurchführung mit einem über die Kabelumhüllung gelegten Klemmring wird eine weitere Vereinfachung der Montage des Meßfühlers erreicht. Die Kabeldurchführung kann vorteilhaft zugleich als Zugentlastung für die Anschlußkabel eingesetzt werden. Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen Meßfühler mit einer erfindungsgemäßen Anschlußleitung und Figur 2 einen vergrößerten Ausschnitt X gemäß Figur 1.
Ausführungsbeispiel
Figur 1 zeigt einen Meßfühler 10, beispielsweise eine λ-Sonde, mit einem Gehäuse 13, in dem ein Sensorelement 14 gasdicht fixiert ist. Der Meßfühler 10 ist mit einer Anschlußleitung 11 verbunden, die aus einer gasdurchlässigen Kabelumhüllung 12 besteht, in der Anschlußkabel 18 für das Sensorelement 14 geführt sind. Das Gehäuse 13 hat einen meßgasεeitigen Abschnitt 15 und einen anschlußseiigen Abschnitt 16. Die Anschlußkabel 18 besitzen gemäß Figur 2 jeweils einen elektrischen Leiter 19, der von einem Isolationsmantel 20 umgeben ist.
Am meßgasseitigen Abschnitt 15 des Gehäuses 13 ist ein Schutzrohr 22 mit Gasein- und -auslaßöffnungen 23 befestigt. Das Schutzrohr 22 umgibt das aus dem Gehäuse 13 meßgasseitig herausragende Sensorelement 14. Am meßgasseitigen
Abschnitt 15 ist ferner ein Gewinde 24 angebracht, mit dem der Meßfühler 10 in einem nicht dargestellten Abgasrohr befestigt wird.
Am anschlußseitigen Abschnitt 16 des Gehäuses 13 ist eine metallische Schutzhülse 30 gasdicht mittels einer radial umlaufenden Schweißnaht 31 befestigt. Die Schutzhülse 30 umgibt das anschlußseitig ebenfalls aus dem Gehäuse 13 herausragende Sensorelement 14 und bildet einen Innenraum 33 in den eine Referenzatmosphäre, beispielsweise Luft, für eine nichtdargestellte Referenzelektrode des Sensorelements 14 eingeleitet wird.
Am anschlußseitigen Ende besitzt das Sensorelement 14 nicht dargestellte Anschlußkontakte, die mit Kontaktteilen 35 kontaktiert sind. Die Kontaktteile 35 sind in einem beispielsweise zweiteiligen Verbindungsstecker 40 angeordnet, wobei die beiden Teile des Verbindungssteckers 40 von einem ringförmigen Federelement 41 zusammengehalten werden. Dadurch werden die Kontaktteile 35 auf die nicht dargestellten Anschlußkontakte des Sensorelements 14 gedrückt. Der kabelseitige Abschnitt der Kontaktteile 35 ist mit einer Crimpverbindung 43 ausgeführt. Mittels der Crimpverbindungen 43 werden die Kontaktteile 35 mit den Anschlußkabeln 18 verbunden (Figur 2) .
Die Schutzhülse 30 ist gemäß Figur 2 an ihrem anschlußseitigen Ende mit einem zylindrischen Abschnitt 45 mit einer Öffnung 46 ausgeführt, wobei der zylindrische
Abschnitt 45 gegenüber dem anderen Teil der Schutzhülse 30 einen geringen Durchmesser hat. Die Öffnung 46 ist mit einer Kabeldurchführung 50 verschlossen. Die Kabeldurchführung 50 besteht beispielsweise aus PTFE und hat entsprechend der Anzahl der durchzuführenden Anschlußkabel 18
Durchgangslöcher 51. Die Durchgangslδcher 51 sind im Durchmesser so dimensioniert, daß sich zwischen dem Isolationsmantel 20 der Anschlußkabel 18 und Schutzhülse 30 ein Spalt 52 ausbildet, durch den die Referenzluft in das Innere der Schutzhülse 30 gelangen kann. Gehäuseseitig sind die Durchgangslöcher 51 so gestaltet, daß sich die Crimpverbindungen 43 in der Kabeldurchführung 50 verhaken. Durch das Verhaken der Crimpverbindungen 43 entsteht eine Zugentlastung für die Anschlußkabel 18. Die Kabelumhüllung 12 ist beispielsweise ein PTFE-Schlauch mit einem steckerseitigen Ende 56 und einem meßfühlerseitigen Ende 57. Der PTFE-Schlauch weist an seiner Mantelfläche Poren auf, durch die die Referenzluft in das Innere des Schlauchs eindringen kann. Die Porengröße ist derart gering, daß eine spezifische Durchlässigkeit vorliegt, die das ansonsten kritische Eindringen flüssiger Kohlenwasserstoffe verhindert.
Aus dem steckerseitigen Ende 56 des Schlauchs sind die Anschlußkabel 18 herausgeführt und mit einem nicht dargestellten Anschlußstecker kontaktiert, der mit einem ebenfalls nicht dargestellten Steuergerät verbunden wird. Am steckerseitigen Ende 56 ist der PTFE-Schlauch von einer Manschette 58 umgeben, die den PTFE-Schlauch zusammenquetscht. Zweckmäßigerweise kann innerhalb des PTFE- Schlauchs im Bereich der Manschette 58 ein Dichtelement angeordnet sein, so daß beim Zusammenquetschen der Schlauch zumindest wasserdicht verschlossen wird.
Das meßfühlerseitige Ende 57 des Schlauchs ist über den zylinderförmigen Abschnitt 45 gestülpt. Dies geschieht beispielsweise durch Erwärmen und anschließendes Aufschrumpfen des Schlauchs auf den zylindrischen Abschnitt 45 der Schutzhülse 30. Zusätzlich ist über das meßfühlerseitige Ende 57 des Schlauchs ein Klemmring 59 geschoben, der dann mittels eines Stemmwerkzeugs radial verstemmt wird. Dadurch wird gleichzeitig der zylindrische Abschnitt 45 der Schutzhülse 30 mit der Kabeldurchführung 50 verstemmt, wodurch die Kabeldurchführung 50 in der Öffnung 46 fest verankert wird.
Die Herstellung des porösen PTFE-Schlauchs geschieht durch Strecken des PTFE-Materials nach einem an sich bekannten Verfahren. Es ist aber genauso denkbar, den PTFE-Schlauch nur an einem oder mehreren Abschnitten zu strecken, so daß lediglich eine abschnittsweise Porosität entlang des Schlauchs vorliegt.
Eine andere Möglichkeit zur Ausführung einer gasdurchlässigen Kabelumhüllung 12 besteht darin, daß ein an sich dichtes Material durch Laserstrahlbeschuß oder durch feinste mechanisch eingebrachte Nadelstiche luftdurchlässig gemacht wird.
Bei einem entsprechenden Material mit einer geringen Wandstärke und einer entsprechenden Oberflächengröße der Kabelumhüllung 12 ist es durchaus denkbar, die Sauerstoff- Diffusionseigenschaften des Material selbst für die Zuführung der Referenzatmosphäre zu nutzen.

Claims

Patentansprüche
1. Meßfühler, insbesondere zur Bestimmung des Sauerstoffgehaltes in Abgasen von Verbrennungsmotoren, mit einem in einem metallischen Gehäuse angeordneten Sensorelement, welches mit aus dem Gehäuse herausgeführten Anschlußkabeln kontaktiert ist, die von einer Kabelumhüllung umgeben sind, wobei in das Gehäuse eine Referenzatmosphäre für das Sensorelement einleitbar ist, dadurch gekennzeichnet, daß die Kabelumhüllung (12) an der Mantelfläche zumindest bereichsweise mindestens einen gasdurchlässigen Abschnitt derart aufweist, daß die
Referenzatmosphäre in das Innere der Kabelumhüllung (12) und von dort in das Gehäuse (13, 30) gelangen kann.
2. Meßfühler nach Anspruch 1, dadurch gekennzeichnet, daß der gasdurchlässige Abschnitt Poren aufweist, durch die die
Refernzatmosphäre in das Innere der Kabelumhüllung (12) leitbar ist.
3. Meßfühler nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Kabelumhüllung (12) ein PTFE-Schlauch ist, der zumindest abschnittsweise eine Porosität aufweist.
4. Meßfühler nach Anspruch 1, dadurch gekennzeichnet, daß das Gehäuse (13) einen zylindrischen Abschnitt (45) mit einer Öffnung (46) aufweist und daß die KabelUmhüllung (12) am zylindrischen Abschnitt (45) an das Gehäuse (30) angeschlossen ist.
5. Meßfühler nach Anspruch 4, dadurch gekennzeichnet, daß
5 die KabelUmhüllung (12) auf den zylindrischen Abschnitt (45) aufgeschrumpft ist.
6. Meßfühler nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß im Bereich des zylindrischen Abschnitts (45) des
10 Gehäuses (30) ein Klemmring (59) über der Kabelumhüllung (12) angeordnet ist und daß der Klemmring (59) mit dem Gehäuse (30) radial verstemmt ist.
7. Meßfühler nach Anspruch 4, dadurch gekennzeichnet, daß in 15 der Öffnung (46) des zylindrischen Abschnitts (45) des
Gehäuses (30) eine Kabeldurchführung (50) angeordnet ist und daß die Kabeldurchführung (50) entsprechend der Anzahl der Anschlußkabel (18) axial verlaufende Durchgangslöcher (51) aufweist, die in ihrem Querschnitt derart dimensioniert 20 sind, daß zwischen Anschlußkabel (18) und Kabeldurchführung (50) ein Spalt (52) ausgebildet ist, über den die Referenzatmosphäre in das Gehäuse (13) gelangen kann.
8. Meßfühler nach Anspruch 7, dadurch gekennzeichnet, daß 25 Kontaktteile (35) zum Kontaktieren des Sensorelements (14) vorgesehen sind, die mittels einer Crimpverbindung (43) mit den Anschlußkabeln (18) kontaktiert sind, und daß die Durchgangslöcher (51) für die Anschlußkabel (18) zumindest gehäuseseitig derart dimensioniert sind, daß sich die 30 Crimpverbindung (43) im jeweiligen Durchgangsloch (51) verhaken kann.
PCT/DE1996/002206 1996-03-23 1996-11-20 Anschlussleitung für einen messfühler WO1997036172A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9533911A JPH11506216A (ja) 1996-03-23 1996-11-20 測定検出子のための接続導管
EP96945737A EP0827590A1 (de) 1996-03-23 1996-11-20 Anschlussleitung für einen messfühler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19611572.8 1996-03-23
DE19611572A DE19611572A1 (de) 1996-03-23 1996-03-23 Anschlußleitung für einen Meßfühler

Publications (1)

Publication Number Publication Date
WO1997036172A1 true WO1997036172A1 (de) 1997-10-02

Family

ID=7789235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/002206 WO1997036172A1 (de) 1996-03-23 1996-11-20 Anschlussleitung für einen messfühler

Country Status (6)

Country Link
EP (1) EP0827590A1 (de)
JP (1) JPH11506216A (de)
KR (1) KR19990014723A (de)
CN (1) CN1183141A (de)
DE (1) DE19611572A1 (de)
WO (1) WO1997036172A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012207762A1 (de) * 2012-05-09 2013-11-14 Robert Bosch Gmbh Abgassensor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19705623C2 (de) * 1997-02-14 2000-01-13 Bosch Gmbh Robert Gasmeßfühler
DE10151291B4 (de) * 2000-11-14 2006-08-17 Robert Bosch Gmbh Gassensor
JP2004514148A (ja) * 2000-11-14 2004-05-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ガスセンサ
DE10256649A1 (de) * 2002-12-03 2004-06-24 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Sensorsteckkopf insbesondere für einen potentiometrischen Sensor und potentiometrischer Sensor mit Sensorsteckkopf
DE10258614B4 (de) * 2002-12-16 2005-10-27 Robert Bosch Gmbh Meßfühler
DE10327186B4 (de) * 2003-06-17 2006-11-30 Robert Bosch Gmbh Messfühler
DE102005020793B4 (de) * 2005-05-04 2021-01-07 Robert Bosch Gmbh Gasmessfühler zur Bestimmung der physikalischen Eigenschaft eines Messgases
DE102008001862A1 (de) 2008-05-19 2009-11-26 Robert Bosch Gmbh Gassensor
DE102008063313A1 (de) * 2008-12-30 2010-07-01 Morawietz, Jürgen Schraubvorrichtung
DE102010038778A1 (de) 2010-08-02 2012-02-02 Robert Bosch Gmbh Gassensor
DE102012201903A1 (de) * 2012-02-09 2013-08-14 Robert Bosch Gmbh Abgassensor
JP6535156B2 (ja) * 2014-03-12 2019-06-26 日本碍子株式会社 ガスセンサ
ES2563241B1 (es) * 2015-07-17 2016-12-01 Francisco Albero, S.A.U Sensor de gas
JP2019015507A (ja) * 2017-07-03 2019-01-31 日本特殊陶業株式会社 センサ
KR102040826B1 (ko) 2018-04-19 2019-11-05 한국타이어앤테크놀로지 주식회사 중하중용 타이어의 트레드
CN108414572B (zh) * 2018-05-24 2024-06-11 常州联德电子有限公司 片式8线智能氮氧传感器和封装方法
JP6674508B2 (ja) * 2018-08-06 2020-04-01 日本碍子株式会社 ガスセンサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123131A (en) * 1977-08-05 1978-10-31 General Motors Corporation Vented electrical connector
US4127464A (en) * 1976-01-23 1978-11-28 Hitachi, Ltd. Sensor for detecting oxygen concentration
DE2805598A1 (de) * 1978-02-10 1979-08-16 Bbc Brown Boveri & Cie Sauerstoff-sonde
US4786397A (en) * 1987-10-09 1988-11-22 Allied-Signal Inc. Seal for single wire O2 sensor
US4786399A (en) * 1987-09-28 1988-11-22 Allied-Signal Inc. Seal means for isolated grounded O2 sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127464A (en) * 1976-01-23 1978-11-28 Hitachi, Ltd. Sensor for detecting oxygen concentration
US4123131A (en) * 1977-08-05 1978-10-31 General Motors Corporation Vented electrical connector
DE2805598A1 (de) * 1978-02-10 1979-08-16 Bbc Brown Boveri & Cie Sauerstoff-sonde
US4786399A (en) * 1987-09-28 1988-11-22 Allied-Signal Inc. Seal means for isolated grounded O2 sensor
US4786397A (en) * 1987-10-09 1988-11-22 Allied-Signal Inc. Seal for single wire O2 sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012207762A1 (de) * 2012-05-09 2013-11-14 Robert Bosch Gmbh Abgassensor
US9804057B2 (en) 2012-05-09 2017-10-31 Robert Bosch Gmbh Sealed cable passage for an exhaust-gas sensor

Also Published As

Publication number Publication date
DE19611572A1 (de) 1997-09-25
KR19990014723A (ko) 1999-02-25
JPH11506216A (ja) 1999-06-02
CN1183141A (zh) 1998-05-27
EP0827590A1 (de) 1998-03-11

Similar Documents

Publication Publication Date Title
EP0827590A1 (de) Anschlussleitung für einen messfühler
EP0812486B1 (de) Temperaturfeste kabeldurchführung und verfahren zu deren herstellung
EP0824694A1 (de) Gassensor
DE19739435A1 (de) Meßfühler
WO1997033164A1 (de) Messfühler
EP0701693A1 (de) Dichtung für ein sensorelement eines gassensors
DE2729475A1 (de) Elektrochemischer messfuehler fuer die bestimmung des sauerstoffgehaltes in abgasen, insbesondere in abgasen von verbrennungsmotoren
WO1994029710A9 (de) Dichtung für ein sensorelement eines gassensors
DE19701210B4 (de) Wasserdichter Aufbau für einen Luft/Kraftstoff-Verhältnissensor
DE10151291B4 (de) Gassensor
EP0056837B1 (de) Elektrochemischer Messfühler zur Bestimmung des Sauerstoffgehaltes in Gasen
EP0714509B1 (de) Elektrochemischer messfühler
DE102005055456A1 (de) Gassensorbaugruppe und Sensorkappe
EP1382092B1 (de) Kleinbauender kupplungsstecker, insbesondere für eine planare breitband-lambda-sonde mit verlierschutz für einzeladerdichtungen
WO1999014583A1 (de) Gassensor
DE19523911A1 (de) Anschlußleitung für einen Meßfühler
DE19631501C2 (de) Gasdurchlässige Anschlußleitung für einen Meßfühler
DE112004001325B4 (de) Gassensor und Methode zur Herstellung des Gassensors
DE102004063083B4 (de) Vorrichtung zur Durchführung elektrischer Anschlusskabel
EP1340292B1 (de) Kleinbauender kupplungsstecher, insbesondere für eine planare breitband-lambda-sonde
DE10327186B4 (de) Messfühler
DE19803334A1 (de) Gasmeßfühler, insbesondere zur Bestimmung des Sauerstoffgehaltes in Abgasen von Brennkraftmaschinen
DE2805598A1 (de) Sauerstoff-sonde
DE10255080B4 (de) Schutzeinrichtung für einen Gassensor
WO2023193991A1 (de) Sensor zur erfassung mindestens einer eigenschaft eines messgases in einem messgasraum

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96193551.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1996945737

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 1997 945839

Country of ref document: US

Date of ref document: 19971104

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970708065

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1997 533911

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996945737

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970708065

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019970708065

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996945737

Country of ref document: EP