WO1997034318A1 - Procede de traitement thermique et dispositif de chauffage a rayonnement - Google Patents

Procede de traitement thermique et dispositif de chauffage a rayonnement Download PDF

Info

Publication number
WO1997034318A1
WO1997034318A1 PCT/JP1997/000734 JP9700734W WO9734318A1 WO 1997034318 A1 WO1997034318 A1 WO 1997034318A1 JP 9700734 W JP9700734 W JP 9700734W WO 9734318 A1 WO9734318 A1 WO 9734318A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
processed
resistivity
heat treatment
radiation thermometer
Prior art date
Application number
PCT/JP1997/000734
Other languages
English (en)
French (fr)
Inventor
Naoto Tate
Tomoyuki Sakai
Naohisa Toda
Hitoshi Habuka
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to US09/142,646 priority Critical patent/US6072164A/en
Priority to EP97905470A priority patent/EP0910115A4/en
Publication of WO1997034318A1 publication Critical patent/WO1997034318A1/ja

Links

Classifications

    • H01L21/205
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • C30B31/18Controlling or regulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement

Definitions

  • the present invention relates to a method for heating an object to be processed by a radiant heating apparatus, particularly when performing various heat treatments, CVD film growth, and erbaxial growth on a low-resistance semiconductor silicon single crystal substrate.
  • the present invention relates to a method and a radiant heating device capable of performing a heat treatment at a truly desired temperature. Background art
  • a semiconductor device is manufactured by subjecting a silicon single crystal substrate, a compound semiconductor single crystal substrate, or the like to an object to be processed and performing various heat treatments thereon.
  • a radiant heating device is often used.
  • Fig. 1 shows a schematic configuration of a conventional radiation heating device.
  • the radiant heating device 1 accommodates an object 2 such as a semiconductor substrate in a reaction vessel 8 made of, for example, transparent quartz, and receives the object 2 from a radiant heating unit 3 disposed outside the reaction vessel.
  • the object to be processed can be heated by irradiating the object with energy by radiant light.
  • the radiant heating unit includes a radiant heat lamp 9 such as a halogen lamp and an infrared lamp, and a mirror surface 10 for enhancing the directionality of radiated light.
  • thermocouple or a radiation thermometer is used to detect the temperature of the object to be treated, but it is convenient to use a radiation thermometer because it can be measured from outside the reaction vessel.
  • the radiation thermometer includes a detector 5 and a temperature converter 6, and the detector 5 captures radiation emitted from the object to be processed, and sends the intensity to a temperature converter 6 to convert the intensity into a temperature.
  • the obtained temperature (actually, the voltage or current value corresponding to the temperature) is output to the temperature controller 7 and the temperature detected by the radiation thermometer and the preset temperature (the preset temperature control)
  • the preset temperature the preset temperature control
  • a semiconductor substrate 2 is radiated by a radiant heating unit 3 while flowing a reaction gas 4 composed of a carrier gas and a reaction material on the surface side of the semiconductor substrate 2.
  • a desired temperature for example, 800 ° C. to 1200 ° C.
  • a desired thin film can be grown on the surface of the semiconductor crystal substrate 2 by a chemical reaction of the reaction gas 4.
  • various quality characteristics such as the thickness, electric characteristics, and crystallinity of the thin film to be formed are reduced. Not what you want.
  • the actual attained temperature is affected by the properties of the object to be processed, and if the temperature deviates from the set temperature, it will appear as variation in the quality characteristics of the thin film to be produced. This is not limited to the case of growing the thin film, but is a problem common to the case where the object to be processed is subjected to heat treatment.
  • the set temperature of the object to be processed is determined by inputting a desired value to a control circuit of a temperature controller.
  • the properties of the object to be processed, especially factors such as the resistivity of the object to be processed and the dopant concentration, were considered irrelevant to the temperature reached by the object to be processed and were not considered at all. Therefore, it was believed that the set temperature of the object was determined irrespective of the resistivity or dopant concentration of the object, and that the heat treatment of the object was performed at the set temperature. .
  • the heat treatment condition of the epitaxial growth is influenced by the resistivity or the dopant concentration of the substrate as the object to be processed, and the emissivity of the object to be processed is affected by the resistivity or the dopant concentration of the object. It has been found that this is because the measured value of the radiation thermometer is inconsistent with the actual temperature of the object to be processed.
  • the present invention has been made in view of such a problem, and in a case where an object to be processed is heated by a radiant heating device using a radiation thermometer as a temperature detector, the dopant concentration of the object to be processed or It is an object of the present invention to provide a heat treatment method and a radiant heating device capable of performing heat treatment at a truly desired temperature regardless of resistivity. Disclosure of the invention
  • the present inventors heat the object to be processed with a radiant heating device.
  • the heat treatment condition or the measurement data is adjusted according to the dopant concentration or the resistivity of the object to be treated.
  • the invention described in claim 1 of the present invention is a radiation thermometer as a temperature detector.
  • the temperature of the object to be processed is truly desired by correcting the temperature according to the dopant roughness or resistivity of the object to be processed. It is characterized in that the heat treatment is carried out at a temperature at which the heat treatment is performed.
  • the heat treatment is performed at the truly desired temperature by modifying the temperature according to the dopant concentration or the resistivity of the work, which was not considered at all as a condition of the conventional heat treatment.
  • the manufactured thin film or the like also has desired quality characteristics.
  • the invention described in claim 2 of the present invention is the heat treatment method according to claim 1, wherein the correction of the temperature is performed by previously determining the dopant concentration or resistivity of the object to be processed. It is characterized by changing the set value of the ultimate temperature of the object to be processed according to the difference between the actual temperature of the object to be processed and the measured value of the radiation thermometer.
  • the invention described in claim 3 of the present invention is the heat treatment method according to claim 1, wherein the correction of the temperature is obtained in advance with respect to a dopant concentration or a resistivity of the object. The measurement is performed by modifying the measured value of the radiation thermometer according to the difference between the actual temperature of the object to be processed and the measured value of the radiation thermometer.
  • the target object can be controlled to the actual desired temperature by changing the set value of the temperature to be controlled and controlling the temperature to the set value.
  • the measured value detected by the radiation thermometer may be corrected so that the temperature of the object to be processed is controlled as the true temperature.
  • claim 4 of the present invention is a heat treatment method according to any one of claims 1 to 3, Four
  • the object to be processed is a silicon single crystal substrate, and its dopant concentration is not less than 1 ⁇ 10 19 atoms / cm 3 and not more than the maximum solubility of the dopant in silicon (Claim 4).
  • the object to be processed is a p-type silicon single crystal substrate, and its resistivity is not more than 0.01 ⁇ cm within a range of not more than the maximum solubility of the dopant in silicon (Claim 5).
  • a silicon single crystal thin film is vapor-phase grown on a silicon single crystal substrate (Claim 6).
  • the radiation is determined by the dopant concentration or resistivity of the substrate.
  • the rate of change is effective to correct for this.
  • the heat treatment temperature be a truly desired temperature.
  • a radiation heating device comprising: a radiation thermometer; and a temperature controller for adjusting power supplied to the radiation heating lamp so that a temperature detected by the radiation thermometer becomes equal to a preset temperature.
  • the dopant concentration or resistivity of the object to be processed is input in advance to the temperature controller, and the temperature detected by the radiation thermometer is corrected and calculated according to the dopant concentration or resistivity of the object to be processed.
  • the temperature of the object to be processed is calculated, and the temperature of the object to be processed can be controlled based on the calculated value (claim 7).
  • the radiation thermometer may be a pre-input dopant concentration of the object or
  • the true temperature of the object to be processed is calculated by correcting the detected temperature according to the resistivity, and the calculated value is output to the temperature controller (Claim 8).
  • the dopant concentration or resistivity of the object to be processed is input in advance to a temperature controller or a temperature converter of the radiation thermometer. If the detected temperature can be controlled by correcting the detected temperature according to the value of the target, even if the target has a low resistance, the target can be truly treated without being affected by these. Heat treatment can be performed at a desired temperature.
  • the object to be processed when the object to be processed is heated by a radiant heating device using a radiation thermometer as a temperature detector, the temperature of the object to be processed is controlled regardless of the dopant concentration or the resistivity of the object.
  • a heat treatment method and a radiant heating device capable of performing a heat treatment at a truly desired temperature are provided.
  • the object to be processed is always and easily set as the true desired temperature without being affected by the resistivity or the dopant concentration. It can be heat treated.
  • FIG. 1 is a schematic configuration diagram of a radiant heating device.
  • FIG. 112 is an example of a calibration curve used for correcting temperature in the present invention.
  • FIG. 5 is a diagram showing a temperature correction value for the drag coefficient.
  • the present inventors have investigated the relationship between the resistivity of the substrate as the object to be processed and the radiant light, and have found that low-resistivity (0.01 ⁇ ⁇ cm or less) silicon, which has recently been favorably used.
  • a semiconductor single crystal substrate has a higher light absorption rate (ie, emissivity) than a conventionally used silicon semiconductor single crystal substrate having a resistivity (0.01 ⁇ ⁇ cm to: 10 ⁇ ⁇ cm).
  • a radiation thermometer is composed of a detector and a temperature converter.
  • the detector captures radiation emitted from the object to be processed, and sends the intensity to a temperature converter to convert it into temperature.
  • the emissivity (absorption rate) of the object to be processed is input to the temperature converter, and the temperature is calculated using the emissivity. It is stored in Therefore, if the emissivity of the substrate to be processed changes depending on the dopant concentration or resistivity of the substrate, accurate temperature conversion cannot be performed, and the temperature detected by the radiation thermometer and the actual processing There will be a discrepancy with the body temperature.
  • the present inventors can easily and accurately adjust the temperature of a target object to a desired temperature by correcting the temperature according to the dopant concentration or the resistivity of the target object.
  • the present invention has been completed with the idea of performing heat treatment at a temperature.
  • the radiant heating device of the present invention accommodates an object to be processed 2 such as a semiconductor substrate in a reaction vessel 8 made of, for example, transparent quartz, and is provided outside the reaction vessel.
  • the object to be processed can be heated by irradiating the object to be processed 2 with energy from the heating unit 3 by radiant light.
  • the radiant heating unit is composed of a radiant heating lamp 9 such as a halogen lamp and an infrared lamp, and a mirror surface 10 for enhancing the directionality of radiated light.
  • a radiation thermometer disposed outside the reaction vessel 8 is used.
  • the radiation thermometer includes a detector 5 and a temperature converter 6, and the detector 5 captures radiation emitted from the object to be processed, and sends the intensity to the temperature converter 6 to convert the intensity into a temperature.
  • the obtained temperature is output to the temperature controller 7, and the power supplied to the radiant heating lamp 9 is set so that the temperature detected by the radiation thermometer and the set temperature previously input to the temperature controller 7 become equal.
  • the object 2 is maintained at a desired temperature.
  • a feature of the radiant heating device of the present invention is that the dopant concentration or resistivity of the object to be processed can be input in advance to the temperature controller 7 or the temperature converter 6 of the radiation thermometer, and the temperature detected according to this value is detected. The point is that it can be controlled by correction calculation.
  • the dopant concentration or resistivity of the object 2 can be input to the temperature controller 7, and the dopant concentration of the object 2 previously input is Or depending on the resistivity
  • the temperature (actually, current or voltage) input from the thermometer is corrected and calculated to determine the true temperature of the object, and the temperature of the object is calculated so that the calculated value and the set temperature are equal. Temperature control can be performed.
  • the temperature converter 6 of the radiation thermometer includes the dopant concentration of the object 2 or Allows input of resistivity, and corrects when data input from detector 5 is converted to temperature by temperature converter 6 in accordance with the previously input dopant concentration or resistivity of workpiece 2. The calculation is performed to determine the true temperature of the object to be processed, and the calculated value is output to the temperature controller 7.
  • the dopant concentration or resistivity of the object to be processed is input in advance to a temperature controller or a temperature converter of the radiation thermometer. It is said that the temperature detected according to these values can be corrected and calculated and controlled, so that even if a low-resistance substrate is used as the object to be processed, The object to be processed can always and easily be subjected to the heat treatment at the true desired temperature without being affected by the resistivity or the dopant concentration.
  • a method of correcting a temperature and a correction value necessary for heat-treating the object to be treated as a truly desired temperature irrespective of its resistivity and dopant concentration A silicon single crystal substrate having a diameter of 200 mm was used as the reaction gas, and chlorosilane was used as a reaction gas and hydrogen was introduced as a carrier gas, and the silicon single crystal substrate was irradiated with a radiation heating unit 3 to about 800. C-1200.
  • An example will be described in which an epitaxial layer of a silicon single crystal thin film is grown on a silicon single crystal substrate by heating to C.
  • the temperature controller 7 or the temperature converter 6 of the radiation thermometer By automatically correcting the temperature, the silicon single crystal substrate 2 can be heat-treated at a truly desired temperature.
  • the dopant concentration or resistivity and the calibration curve may be input to the temperature controller 7 or the temperature converter 6 of the radiation thermometer to automatically correct the temperature. Even if the set value of the ultimate temperature is corrected according to the above calibration curve and input to the temperature controller, the same effect can be obtained.
  • FIG. 2 shows a typical example of the calibration curve as a temperature correction value for the resistivity of the silicon single crystal substrate 2.
  • This calibration curve uses a thermocouple and a radiation thermometer at the same time as a temperature detector in a radiant heating device. The thermocouple is brought into direct contact with the silicon single crystal substrate 2, and the substrate temperature is directly measured as much as possible. The silicon single crystal substrate 2 is 1 1 50. Heated to C, the measured values of the two were compared, and the difference was determined.
  • a radiation heating device using a radiation thermometer as the temperature detector
  • a silicon single crystal substrate which has been particularly favorably used as an object to be processed in recent years and has a resistivity of 0.01 ⁇ ⁇ cm or less (dopant concentration, 1 ⁇ 10 19 atoms / cm 3 or more,
  • dopant concentration 1 ⁇ 10 19 atoms / cm 3 or more
  • the emissivity can be easily corrected as a function of time, and the temperature of the temperature controller or the radiation thermometer can be corrected. What is necessary is just to input it to the converter and to perform the correction operation.
  • the temperature is automatically corrected by inputting the dopant concentration or resistivity and the calibration curve to the temperature controller 7 or the temperature converter 6 of the radiation thermometer in the method of correcting the temperature.
  • the method and the method of correcting the set value of the reached temperature in the first place according to the calibration curve and inputting the corrected value to the temperature controller have been described by way of example, but the present invention is not limited to this.
  • the same effect can be obtained by modifying the power supplied to the radiant heating lamp or modifying the emissivity of silicon input to the temperature converter of the radiation thermometer.
  • the calibration curve has been described by way of example in the case where the temperature correction amount to be added to the resistivity of the p-type (borondove) silicon single crystal substrate is to be added.
  • the invention is not limited to this, and a calibration curve is created by calculating a temperature correction amount to be added to an n-type (for example, phosphorus, antimony, arsenic-doped) silicon single crystal substrate in the same manner.
  • n-type for example, phosphorus, antimony, arsenic-doped
  • the object to be processed by the apparatus of the present invention is not particularly limited. If the apparatus of the present invention is applicable, various objects such as semiconductor silicon, various compound semiconductors, and various oxides may be used. This may be the case where a heat treatment is performed on a single crystal or the like.
  • the heat treatment applied to the object to be processed in the apparatus of the present invention is not particularly limited.
  • it can be used for various heat treatments such as device processes such as so-called annealing, hydrogen heat treatment, oxygen heat treatment, nitrogen heat treatment, and dopant diffusion, in addition to the growth of the epitaxial film and the CVD film.
  • the object 2 is processed one by one.
  • the single-wafer method is adopted, a case where a plurality of sheets are processed at a time may be used.
  • the “object to be processed” in the claims of the present invention is processed at a time. It refers to the entire set of objects to be processed, and their dopant concentrations or resistivity must be the same or similar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

明 細 書 熱処理方法および輻射加熱装置 技術分野
本発明は、 輻射加熱装置で被処理体を加熱処理する場合において、 特 には低抵抗の半導体シリコン単結晶基板に種々の熱処理、 C V D膜成長, ェビタキシャル成長等を行う場合において、 被処理体を真に所望の温度 として加熱処理することができる方法および輻射加熱装置に関するもの である。 背景技術
半導体デバイスは、 例えばシリ コン単結晶基板、 化合物半導体単結晶 基板等を被処理体として、 これに種々の熱処理を施すことによって製造 されている。 そして、 これらの被処理体に種々の熱処理、 C V D膜成長、 ェビタキシャル成長等を行う場合、 輻射加熱装置が用いられることも多 い。
従来から用いられている輻射加熱装置の概略の構成を図 1に示した。 この輻射加熱装置 1は、 例えば透明石英でできた反応容器 8中に半導体 基板等の被処理体 2を収容し、 該反応容器外に配置された輻射加熱ュニ ッ ト 3から被処理体 2に輻射光によるエネルギーを照射することによつ て、 被処理体を加熱することができるようになつている。 前記輻射加熱 ユニッ トは、 例えばハロゲンランプ、 赤外線ランプ等の輻射加熱ランプ 9と輻射光の方向性を強化するための鏡面 1 0から構成される。
被処理体の温度の検出には、 熱電対または放射温度計が用いられるが、 反応容器外から測定できるので、 放射温度計を用いるのが便利である。 放射温度計は、 検出器 5と温度変換器 6から構成され、 被処理体から発 せられる輻射光を検出器 5がとらえ、 その強度を温度変換器 6に送って 温度に換算する。 得られた温度 (実際は、 温度に相当する電圧または電 流値) は、 温度制御器 7に出力され、 放射温度計によって検出された温 度と予め入力された設定温度 (予め設定して温度制御器に入力する温度) とが等しくなるように輻射加熱ランプ 9に供給する電力を調整すること によって、 被処理体 2が所望の温度に維持されるようになつている。 このような輻射加熱装置によって、 被処理体を熱処理する方法として は、 例えば半導体基板 2の表面側にキャリアガスと反応原料からなる反 応ガス 4を流しつつ、 輻射加熱ユニッ ト 3で半導体基板 2を所望の温度、 例えば 8 0 0 °C〜 1 2 0 0 Cに加熱すれば、 反応ガス 4の化学反応によ り、 半導体結晶基板 2の表面に所望の薄膜を成長させることができる。 この場合、 当然ながら熱処理が施される被処理体の温度が、 実際に所 望の温度となっていなければ、 作製される薄膜の厚さ、 電気特性、 結晶 性等の種々の品質特性が、 所望のものとはならない。 また、 処理される 被処理体の性質によって、 実際の到達温度が影響され、 設定温度とのず れを生ずると、 作製される薄膜の品質特性のバラツキとなって現れるこ とになる。 これは、 上記薄膜の成長の場合に限られず、 被処理体に熱処 理を加える場合に共通した問題である。
したがって、 被処理体に熱処理をする場合、 被処理体の所望温度と実 際の温度を一致させることが重要で、 特に上記輻射加熱装置において、 温度の検出に放射温度計を用いた場合のように、 被処理体の温度を直接 測定するのではなく、 反応容器外から間接的に測定する方法において注 意する必要がある。
前記図 1に代表される輻射加熱装置を用いた従来の熱処理方法では、 被処理体の設定温度は、 温度制御器の制御回路に所望値を入力すること により行われており、 被処理体の性質、 特に被処理体の抵抗率あるいは ド一パン ト濃度といったファクタ一については、 被処理体の到達温度と は無関係とされ、 全く考慮されていなかった。 したがって、 これら被処 理体の抵抗率あるいはドーパント濃度にかかわらず、 被処理体の設定温 度は決定され、 その設定値通りの温度で被処理体の熱処理がなされてい るものと信じられていた。
ところが、 近年ではマイクロプロセッサ用のシリコン半導体単結晶薄 膜のェビタキシャル成長による製造においては、 p型で極めて低い抵抗 率 ( 0 . 0 1 Ω · c m以下) のシリコン半導体単結晶基板が好んで用い られるようになり、 同一の製造条件の下で製造したはずの単結晶薄膜の 特性が、 従来用いられてきた抵抗率 ( 0 . O l Q ' c n!〜 l O Q ' c m ) の基板上に製造したものと、 上記極めて低い抵抗率の基板上に製造した ものとでは異なることが判明した。
すなわち、 被処理体たる基板の抵抗率またはドーパン ト濃度によって、 ェピタキシャル成長という熱処理の条件が影響されており、 これは被処 理体の抵抗率あるいはドーパント濃度によって、 該被処理体の輻射率が 変わり、 これに起因して放射温度計の測定値に、 被処理体の実温度との 不一致が生じているためであることがわかった。
本発明は、 このような問題点に鑑みなされたもので、 温度検出器とし て放射温度計を用いた輻射加熱装置によって被処理体を加熱処理する場 合において、 被処理体のドーパン ト濃度または抵抗率にかかわらず、 被 処理体の温度を真に所望する温度にして加熱処理することができる熱処 理方法および輻射加熱装置を提供することを目的とする。 発明の開示
上記課題を解決するため、 本発明者らは輻射加熱装置で被処理体を熱 処理する場合において、 被処理体のドーパント濃度または抵抗率に応じ て熱処理条件あるいは測定データを調整することとしたもので、 本発明 の請求項 1に記載した発明は、 温度検出器として放射温度計を用いた輻 射加熱装置によって被処理体を加熱処理する方法において、 前記被処理 体のドーパント濂度または抵抗率に応じて温度の補正を行うことにより、 前記被処理体の温度を真に所望する温度にして加熱処理することを特徴 とする。
このように、 従来熱処理の条件としては全く勘案されていなかった、 被処理体のドーパント漉度または抵抗率に応じて温度に修正を加えるこ とによって、 被処理体を真に所望温度として熱処理することができ、 製 造される薄膜等も所望の品質特性をもつものとなる。
また、 本発明の請求項 2に記載した発明は、 請求項 1記載の熱処理方 法であって、 前記温度の補正は、 前記被処理体のドーパント濃度または 抵抗率に対して予め求めた該被処理体の実温度と放射温度計の測定値と の差に応じて、 被処理体の到達温度の設定値を変更することにより行な うことを特徴とする。 さらに、 本発明の請求項 3に記載した発明は、 請 求項 1記載の熱処理方法であって、 前記温度の補正は、 前記被処理体の ド一パン ト濃度または抵抗率に対して予め求めた該被処理体の実温度と 放射温度計の測定値との差に応じて、 放射温度計の測定値に修正を加え ることにより行なうことを特徴とする。
このように、 温度の補正方法としては、 制御する温度の設定値を変更 し、 その設定値に温度制御することによって、 被処理体を実際の所望温 度に制御することができるし、 また、 放射温度計が検出した測定値に修 正を加え、 真の温度として、 その温度に被処理体を制御してもよい。 さらに、 本発明の請求項 4、 請求項 5、 請求項 6に記載した発明は、 請求項 1ないし請求項 3のいずれか 1項に記載の熱処理方法であって、 4
前記被処理体はシリコン単結晶基板であり、 そのドーパン ト濃度は、 1 X 1 0 1 9 a t o m s / c m 3 以上、 該ド一パントのシリコンに対する最 大溶解度以下である (請求項 4 ) 、 前記被処理体は p型シリコン単結晶 基板であり、 ドーパン トのシリコンに対する最大溶解度以下の範囲内で、 その抵抗率は 0 . 0 1 Ω · c m以下である (請求項 5 ) 、 前記熱処理は、 シリコン単結晶基板上にシリコン単結晶薄膜を気相成長させる (請求項 6 ) 、 ことをそれそれ特徴とする。
このように、 本発明の熱処理方法は、 ド一パントを高濃度にド一プし たシリコン単結晶基板を被処理体として熱処理をする場合に、 基板のド —パン ト濃度または抵抗率によって輻射率が変化するために、 その修正 をするのに有効であり、 特にはシリコン単結晶基板上にシリコン単結晶 薄膜を気相成長させる場合には、 製造される薄膜には高度の品質特性が 要求されるので、 熱処理温度が真に所望の温度になっていることが要求 される。
次に、 本発明の請求項 7、 請求項 8に記載した発明は、 少なく とも被 処理体を収容する反応容器と、 被処理体を加熱する輻射加熱ランプと、 被処理体の温度を検出する放射温度計と、 放射温度計によって検出され た温度と予め入力された設定温度とが等しくなるように輻射加熱ランプ に供給する電力を調整する温度制御器と、 からなる輻射加熱装置であつ て、
前記温度制御器に、 予め被処理体のドーパン ト濃度または抵抗率を入 力し、 この被処理体のドーパント濃度または抵抗率に応じて、 前記放射 温度計によって検出した温度を修正演算して真の被処理体の温度を算出 し、 この算出値をもとに被処理体の温度制御をすることができるように した (請求項 7 ) 、
前記放射温度計は、 予め入力された被処理体のドーパント濃度または 抵抗率に応じて、 検出した温度を修正演算して真の被処理体の温度を算 出し、 この算出値を温度制御器に出力するようにした (請求項 8 ) 、 こ とをそれそれ特徴とする。
このように、 温度検出器として放射温度計を用いた輻射加熱装置にお いて、 予め温度制御器あるいは放射温度計の温度変換器に被処理体のド —パント濃度または抵抗率を入力し、 これらの値に応じて検出した温度 を修正演算して制御することができるものとすれば、 例え低抵抗の被処 理体であっても、 これらの影響を受けることなく、 被処理体を真に所望 温度で熱処理することができる。
すなわち、 本発明によって、 温度検出器として放射温度計を用いた輻 射加熱装置によって被処理体を加熱処理する場合において、 被処理体の ドーパント濃度または抵抗率にかかわらず、 被処理体の温度を真に所望 する温度にして加熱処理することができる熱処理方法および輻射加熱装 置が提供される。
したがって、 例え被処理体として低抵抗の基板が用いられる場合であ つても、 これらの抵抗率あるいはド一パント濃度の影響を受けることな く、 被処理体を常にしかも簡単に真の所望温度として熱処理することが できる。
したがって特に、 今後ますます高集積化、 高精度化が進み、 その製造 工程における熱処理の正確性が要求される、 半導体基板の種々の熱処理, C V D膜成長、 あるいはェビタキシャル膜成長等において、 本発明の熱 処理方法および輻射加熱装置は利用価値が高い。 図面の簡単な説明
図 1は、 輻射加熱装置の概略構成図である。
11 2は、 本発明で、 温度を補正する場合に用いる検量線の一例で、 抵 抗率に対する温度補正値を示した図である。 発明を実施するための最良の形態
以下、 本発明を更に詳細に説明するが、 本発明はこれらに限定される ものではない。
本発明者らは、 被処理体たる基板の抵抗率と輻射光との関係を調査し たところ、 近年好んで用いられるようになった低抵抗率 ( 0 . 0 1 Ω · c m以下) のシリコン半導体単結晶基板においては、 従来用いられてき た抵抗率 ( 0 . 0 1 Ω · c m〜: 1 0 Ω · c m ) のシリコン半導体単結晶 基板よりも光の吸収率 (すなわち輻射率) が大きいことがわかった。 こ れにより、 シリコン半導体単結晶基板の抵抗率またはドーパント濃度が、 熱処理時に放射温度計が検出する測定値に影響していることがわかり、 したがってこのような低抵抗の基板を熱処理する場合、 基板は設定温度 と異なった温度で熱処理されており、 これがために製造されるェピタキ シャル薄膜等の特性に変動を来していることがわかった。
すなわち、 前述のように放射温度計は検出器と温度変換器から構成さ れ、 被処理体から発せられる輻射光を検出器がとらえ、 その強度を温度 変換器に送って温度に換算する。 この温度の換算は、 温度変換器に被処 理体の放射率 (吸収率) を入力し、 これを使って温度の算出が行われる のであるが、 この放射率は通常一定値として温度変換器に記憶されてい る。 したがって、 被処理体たる基板の放射率が、 基板のドーパン ト濃度 または抵抗率によって変わるようなことがあると、 正確な温度の換算が できなくなり、 放射温度計の検出温度と、 実際の被処理体の温度とに不 一致が生じることになるのである。
そこで、 本発明者らは、 被処理体のド一パン 卜濃度または抵抗率に応 じて温度に補正を加えることで、 簡単にかつ正確に被処理体を所望温度 で熱処理することを着想し、 本発明を完成させたものである。
以下、 本発明の実施形態について、 図 1を参照しながら詳細に説明す る。
本発明の輻射加熱装置は、 従来の輻射加熱装置と同様に、 例えば透明 石英でできた反応容器 8中に半導体基板等の被処理体 2を収容し、 該反 応容器外に配置された輻射加熱ュニッ ト 3から被処理体 2に輻射光によ るエネルギーを照射することによって、 被処理体を加熱することができ るようになっている。 前記輻射加熱ュニッ トは、 例えばハロゲンランプ、 赤外線ランプ等の輻射加熱ランプ 9と輻射光の方向性を'強化するための 鏡面 1 0から構成される。
被処理体の温度の検出には、 反応容器 8の外に配置される放射温度計 が用いられている。 放射温度計は、 検出器 5と温度変換器 6から構成さ れ、 被処理体から発せられる輻射光を検出器 5がとらえ、 その強度を温 度変換器 6に送って温度に換算する。 得られた温度は、 温度制御器 7に 出力され、 放射温度計によって検出された温度と温度制御器 7に予め入 力された設定温度とが等しくなるように輻射加熱ランプ 9に供給する電 力を調整することによって、 被処理体 2が所望の温度に維持されるよう になっている。
これらの点については、 基本的には従来の装置と変わらない。
本発明の輻射加熱装置の特徴は、 予め温度制御器 7あるいは放射温度 計の温度変換器 6に被処理体のドーパント濃度または抵抗率を入力でき るようにし、 この値に応じて検出した温度を修正演算して制御できる点 にある。
すなわち、 本発明の装置の第一の実施形態としては、 温度制御器 7に、 被処理体 2のドーパン ト濃度または抵抗率を入力できるようにし、 この 予め入力された被処理体 2のドーパント濃度または抵抗率に応じて、 放 射温度計から入力された温度 (実際は、 電流または電圧) を修正演算し て真の被処理体の温度を割り出し、 得られた算出値と設定温度とが等し くなるように被処理体の温度制御をすることができるようになつている, 次に、 本発明の装置の第二の実施形態としては、 放射温度計の温度変 換器 6に、 被処理体 2のド一パント濃度または抵抗率を入力できるよう にし、 この予め入力された被処理体 2のドーパント濃度または抵抗率に 応じて、 検出器 5から入力されたデータを温度変換器 6で温度に変換す る際に、 修正演算して真の被処理体の温度を割り出し、 この算出値を温 度制御器 7に出力するようにした。
このような本発明の装置では、 温度検出器として放射温度計を用いた 輻射加熱装置において、 予め温度制御器あるいは放射温度計の温度変換 器に被処理体のド一パント濃度または抵抗率を入力することができ、 こ れらの値に応じて検出した温度を修正演算して制御することができるも のとされるので、 例え被処理体として低抵抗の基板が用いられる場合で あっても、 これらの抵抗率あるいはドーパント濃度の影響を受けること なく、 被処理体を常にしかも簡単に真の所望温度として熱処理すること ができる。
次に、 本発明の装置および熱処理方法において、 被処理体をその抵抗 率、 ドーパント濃度にかかわらず、 真に所望温度として熱処理するため に必要な温度の補正方法、 補正値について、 被処理体 2として直径 2 0 0 m mのシリコン単結晶基板を用い、 これに反応ガスとして、 クロロシ ランを水素をキャリアガスとして導入しながら、 輻射加熱ュニヅ ト 3で シリコン単結晶基板を約 8 0 0。C〜 1 2 0 0。Cに加熱することによって、 シリコン単結晶基板上にシリコン単結晶薄膜のェビタキシャル層を成長 させる場合を例として説明する。
まず、 ドーパント濃度または抵抗率に応じて温度を補正するには、 こ れら ドーパン ト濃度または抵抗率に対する補正量を示す検量線を作成す る必要がある。
そして、 求められた検量線にしたがって温度を補正すれば良いので、 予めこのドーパント濃度または抵抗率に対する補正量を、 前記温度制御 器 7または放射温度計の温度変換器 6に入力しておけば、 自動的に温度 を補正して真に所望する温度でシリコン単結晶基板 2の熱処理をするこ とができる。
この場合、 上述のように、 ド一パン ト濃度または抵抗率および検量線 を温度制御器 7または放射温度計の温度変換器 6に入力し、 自動的に温 度の補正をしてもよいが、 そもそもの到達温度の設定値を、 上記検量線 に従い補正して温度制御器に入力しておいても、 同様の効果を奏するこ とができる。
検量線については、 シリコン単結晶基板 2の抵抗率に対する温度補正 値として、 代表的な例を図 2に示した。
これは、 p型のシリコン単結晶基板 2の抵抗率に対して放射温度計の 測定値に加えられるべき、 温度補正量を示したものである。 この検量線 は、 輻射加熱装置において、 温度検出器として熱電対と放射温度計を同 時に用い、 熱電対についてはシリコン単結晶基板 2に直接接触させ、 可 能な限り基板の温度を直接測定するものとし、 シリコン単結晶基板 2を 1 1 50。Cに加熱し、 両者の測定値を比較してその差から求めたもので ある。
この検量線を見ると、 抵抗率が約 0. 0 12 Ω · cm以上では広い抵 抗率範囲に渡って補正の必要はないが、 0. O l Q ' cm以下 ( ドーパ ント濃度 l x l 019a t oms/cm3 以上) では、 補正を行わないと 多い場合には 10 °C以上の幅で温度のずれが生じることがわかる。
したがって、 温度検出器として放射温度計を用いた輻射加熱装置によ つて、 被処理体として近年特に好んで用いられているシリコン単結晶基 板で、 抵抗率が 0 . 0 1 Ω · c m以下 (ドーパント澧度、 1 X 1 0 1 9 a t o m s / c m 3 以上、 該ドーパントのシリコンに対する最大溶解度以 下) であるものを用い、 これにシリコン単結晶薄膜を気相成長させる、 ェピタキシャル層を成長させる熱処理を行う場合には、 図 2の検量線に したがった温度の補正が必要であることがわかる。
この場合、 低抵抗率のシリコン単結晶基板上に、 これと異なる抵抗率 のェビタキシャル層を成長させる場合には、 測定精度に新たな誤差を生 じる原因になるとの疑問も生じ得る。 確かに表面に成長するェビ夕キシ ャル層の放射率は、 基板の放射率とは異なるものになるが、 放射温度計 が検出する輻射光は、 被処理体たるシリコン単結晶基板全体からのもの であるから、 表面に成長した薄膜の影響は、 無視し得る程度に小さく、 基板の厚さに対して無視し得ないほどの、 よほど成長層が厚い場合にだ け勘案すれば良い。 その場合においても、 成長させるェビタキシャル層 の抵抗率および成長速度がわかっているのであるから、 時間に対する関 数として簡単に放射率を修正することができ、 前記温度制御器または放 射温度計の温度変換器に入力しておき、 修正演算させれば良い。
なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施 形態は、 例示であり、 本発明の特許請求の範囲に記載された技術的思想 と実質的に同一な構成を有し、 同様な作用効果を奏するものは、 いかな るものであっても本発明の技術的範囲に包含される。
例えば、 上記実施形態においては、 温度の補正の仕方につき、 ドーパ ント濃度または抵抗率および検量線を温度制御器 7または放射温度計の 温度変換器 6に入力し、 自動的に温度の補正をする方法、 そもそもの到 達温度の設定値を、 検量線に従い補正して温度制御器に入力する方法に ついて例を挙げて説明したが、 本発明はこれには限定されず、 同様の作 用効果は、 輻射加熱ランプに供給される電力に修正を加えたり、 あるい は放射温度計の温度変換器に入力されるシリコンの放射率に修正を加え る等によってもまったく同様の効果が得られる。
また、 上記実施形態においては、 直径 2 0 0 mmのシリコン単結晶基 板にェビタキシャル層を成長させる場合につき例を挙げて説明したが、 本発明はこれには限定されず、 同様の作用効果は、 直径 3 0 0 m m以上 あるいは 4 0 0 m m以上といった大直径のシリコン単結晶基板に熱処理 を加える場合にもあてはまるし、 逆に 1 5 0 m m以下といつたシリコン 単結晶基板に適用しても効果があることは言うまでもない。
また、 上記実施形態では、 検量線は、 p型 (ボロンドーブ) のシリコ ン単結晶基板の抵抗率に対して、 加えられるべき温度補正量を求める場 合につき、 例をあげて説明したが、 本発明はこれには限定されず、 同様 の方法で n型 (例えば、 リン、 アンチモン、 ひ素ドーブ) のシリコン単 結晶基板に対して加えられるべき、 温度補正量を求めて検量線を作成し、 本発明の作用効果を発揮することができる。 そして、 検量線は、 抵抗率 に対して求めるのではなく、 用いたドーパント濃度に対して求めても、 同様な作用効果が得られることは言うまでもない。
また、 本発明の装置で処理される被処理体としても特に限定されるも のではなく、 本発明の装置が適用可能なものであれば、 半導体シリコン、 種々の化合物半導体の他、 種々の酸化物単結晶等の熱処理をする場合で あってもよい。
また、 本発明の装置で被処理体に加えられる熱処理についても特に限 定されるものではない。 例えば、 ェビタキシャル膜成長、 C V D膜成長 の他、 いわゆるァニール、 水素熱処理、 酸素熱処理、 窒素熱処理、 ドー パン ト拡散等のデバイス工程等種々の熱処理で用いることができる。
また、 本実施形態では被処理体 2は、 1枚ずつ処理される、 いわゆる 枚葉式を採用しているが、 一度に複数枚を処理する場合であってもよい, この場合、 本発明の特許請求の範囲に言う 「被処理体」 とは、 一度に処 理される被処理体の集合全体を指しており、 それらのドーパント濃度ま たは抵抗率は同一または近似するものである必要がある。

Claims

請求の範囲
1. 温度検出器として放射温度計を用いた輻射加熱装置によって被処理 体を加熱処理する方法において、 前記被処理体のド一パント濃度または 抵抗率に応じて温度の補正を行うことにより、 前記被処理体の温度を真 に所望する温度にして加熱処理する、 ことを特徴とする熱処理方法。
2. 前記温度の補正は、 前記被処理体のド一パント濃度または抵抗率に 対して予め求めた該被処理体の実温度と放射温度計の測定値との差に応 じて、 被処理体の到達温度の設定値を変更することにより行なう、 こと を特徴とする請求項 1記載の熱処理方法。
3. 前記温度の補正は、 前記被処理体のド一パント濃度または抵抗率に 対して予め求めた該被処理体の実温度と放射温度計の測定値との差に応 じて、 放射温度計の測定値に修正を加えることにより行なう、 ことを特 徴とする請求項 1記載の熱処理方法。
4. 前記被処理体はシリコン単結晶基板であり、 そのドーパン卜濃度は、 l x l 019a t oms/cm3 以上、 該ド一パントのシリコンに対する 最大溶解度以下である、 ことを特徴とする請求項 1ないし請求項 3のい ずれか 1項に記載の熱処理方法。
5. 前記被処理体は p型シリ コン単結晶基板であり、 ド一パン トのシリ コンに対する最大溶解度以下の範囲内で、 その抵抗率は 0. 0 1 Ω · c m以下である、 ことを特徴とする請求項 1ないし請求項 3のいずれか 1 項に記載の熱処理方法。
6. 前記熱処理は、 シリコン単結晶基板上にシ リコン単結晶薄膜を気相 成長させる、 ことを特徴とする請求項 1ないし請求項 5のいずれか 1項 に記載の熱処理方法。
7. なくとも被処理体を収容する反応容器と、 被処理体を加熱する輻 射加熱ランプと、 被処理体の温度を検出する放射温度計と、 放射温度計 によって検出された温度と予め入力された設定温度とが等しくなるよう に輻射加熱ランプに供給する電力を調整する温度制御器と、
からなる輻射加熱装置において、
前記温度制御器に、 予め被処理体のドーパント濃度または抵抗率を入 力し、 この被処理体のドーパン ト濃度または抵抗率に応じて、 前記放射 温度計によって検出した温度を修正演算して真の被処理体の温度を算出 し、 この算出値をもとに被処理体の温度制御をすることができるように した、 ·
ことを特徴とする輻射加熱装置。
8 . 少なくとも被処理体を収容する反応容器と、 被処理体を加熱する輻 射加熱ランプと、 被処理体の温度を検出する放射温度計と、 放射温度計 によって検出された温度と予め入力された設定温度とが等しくなるよう に輻射加熱ランプに供給する電力を調整する温度制御器と、
からなる輻射加熱装置において、
前記放射温度計は、 予め入力された被処理体のドーパン 卜濃度または 抵抗率に応じて、 検出した温度を修正演算して真の被処理体の温度を算 出し、 この算出値を温度制御器に出力するようにした、
ことを特徴とする輻射加熱装置。
PCT/JP1997/000734 1996-03-12 1997-03-10 Procede de traitement thermique et dispositif de chauffage a rayonnement WO1997034318A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/142,646 US6072164A (en) 1996-03-12 1997-03-10 Heat-treating method and radiant heating device
EP97905470A EP0910115A4 (en) 1996-03-12 1997-03-10 HEAT TREATMENT METHOD AND OVEN BASED ON RADIATION HEAT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8083327A JPH09246200A (ja) 1996-03-12 1996-03-12 熱処理方法および輻射加熱装置
JP8/83327 1996-03-12

Publications (1)

Publication Number Publication Date
WO1997034318A1 true WO1997034318A1 (fr) 1997-09-18

Family

ID=13799342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000734 WO1997034318A1 (fr) 1996-03-12 1997-03-10 Procede de traitement thermique et dispositif de chauffage a rayonnement

Country Status (6)

Country Link
US (1) US6072164A (ja)
EP (1) EP0910115A4 (ja)
JP (1) JPH09246200A (ja)
KR (1) KR19990087737A (ja)
TW (1) TW333666B (ja)
WO (1) WO1997034318A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210057245A1 (en) * 2019-08-22 2021-02-25 SCREEN Holdings Co., Ltd. Heat treatment method and heat treatment apparatus of light irradiation type

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310328B1 (en) * 1998-12-10 2001-10-30 Mattson Technologies, Inc. Rapid thermal processing chamber for processing multiple wafers
DE10031447B4 (de) 2000-06-28 2004-10-28 Hengst Gmbh & Co.Kg Vorrichtung zum Erwärmen von schmelzfähigem Material
DE10255098A1 (de) 2002-11-26 2004-06-03 Mattson Thermal Products Gmbh Verfahren zum Herstellen eines Kalibrationswafers
JP2005122816A (ja) 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd ディスクローディング装置
JP2007095889A (ja) * 2005-09-28 2007-04-12 Ushio Inc 光照射式加熱方法
JP2008235858A (ja) * 2007-02-20 2008-10-02 National Institute Of Advanced Industrial & Technology 半導体表面温度測定方法及びその装置
WO2008102596A1 (ja) * 2007-02-20 2008-08-28 National Institute Of Advanced Industrial Science And Technology 半導体表面温度測定方法及びその装置
JP5012554B2 (ja) * 2008-02-19 2012-08-29 株式会社Sumco エピタキシャルウェーハの製造方法
JP5349819B2 (ja) * 2008-03-25 2013-11-20 大日本スクリーン製造株式会社 熱処理装置
JP5562529B2 (ja) * 2008-04-17 2014-07-30 大日本スクリーン製造株式会社 熱処理装置
EP2337066A1 (en) * 2009-12-15 2011-06-22 Excico France Method for making a semiconductor device by laser irradiation
US20180286719A1 (en) * 2017-03-28 2018-10-04 Nuflare Technology, Inc. Film forming apparatus and film forming method
JP7372074B2 (ja) 2019-08-07 2023-10-31 株式会社Screenホールディングス 熱処理方法
US20220322492A1 (en) * 2021-04-06 2022-10-06 Applied Materials, Inc. Epitaxial deposition chamber

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102123A (ja) * 1985-10-30 1987-05-12 Hitachi Ltd 温度計測方法
JPS62110127A (ja) * 1985-11-07 1987-05-21 Koyo Rindobaagu Kk 光加熱処理装置における被加熱処理物温度の測定方法
JPS62296512A (ja) * 1986-06-17 1987-12-23 Fujitsu Ltd 気相成長装置
JPH03165514A (ja) * 1989-11-24 1991-07-17 Fujitsu Ltd 半導体装置の製造方法及び製造装置
JPH04713A (ja) * 1989-12-26 1992-01-06 Sumitomo Metal Ind Ltd 基板の加熱装置
JPH0448724A (ja) * 1990-06-15 1992-02-18 Hitachi Ltd 半導体熱処理装置
JPH07218345A (ja) * 1994-01-28 1995-08-18 Hitachi Zosen Corp 高温物体の測温装置
JPH07240378A (ja) * 1994-02-28 1995-09-12 Toshiba Corp 半導体薄膜製造装置
JPH07286904A (ja) * 1993-12-16 1995-10-31 Texas Instr Inc <Ti> マルチゾーンリアルタイム放射率補正方法及び装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956538A (en) * 1988-09-09 1990-09-11 Texas Instruments, Incorporated Method and apparatus for real-time wafer temperature measurement using infrared pyrometry in advanced lamp-heated rapid thermal processors
US5147498A (en) * 1990-04-09 1992-09-15 Anelva Corporation Apparatus for controlling temperature in the processing of a substrate
US5114242A (en) * 1990-12-07 1992-05-19 Ag Processing Technologies, Inc. Bichannel radiation detection method
US5156461A (en) * 1991-05-17 1992-10-20 Texas Instruments Incorporated Multi-point pyrometry with real-time surface emissivity compensation
US5359693A (en) * 1991-07-15 1994-10-25 Ast Elektronik Gmbh Method and apparatus for a rapid thermal processing of delicate components
US5377126A (en) * 1991-09-13 1994-12-27 Massachusetts Institute Of Technology Non-contact temperature measurement of a film growing on a substrate
US5823681A (en) * 1994-08-02 1998-10-20 C.I. Systems (Israel) Ltd. Multipoint temperature monitoring apparatus for semiconductor wafers during processing
US5755511A (en) * 1994-12-19 1998-05-26 Applied Materials, Inc. Method and apparatus for measuring substrate temperatures
US5830277A (en) * 1995-05-26 1998-11-03 Mattson Technology, Inc. Thermal processing system with supplemental resistive heater and shielded optical pyrometry

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102123A (ja) * 1985-10-30 1987-05-12 Hitachi Ltd 温度計測方法
JPS62110127A (ja) * 1985-11-07 1987-05-21 Koyo Rindobaagu Kk 光加熱処理装置における被加熱処理物温度の測定方法
JPS62296512A (ja) * 1986-06-17 1987-12-23 Fujitsu Ltd 気相成長装置
JPH03165514A (ja) * 1989-11-24 1991-07-17 Fujitsu Ltd 半導体装置の製造方法及び製造装置
JPH04713A (ja) * 1989-12-26 1992-01-06 Sumitomo Metal Ind Ltd 基板の加熱装置
JPH0448724A (ja) * 1990-06-15 1992-02-18 Hitachi Ltd 半導体熱処理装置
JPH07286904A (ja) * 1993-12-16 1995-10-31 Texas Instr Inc <Ti> マルチゾーンリアルタイム放射率補正方法及び装置
JPH07218345A (ja) * 1994-01-28 1995-08-18 Hitachi Zosen Corp 高温物体の測温装置
JPH07240378A (ja) * 1994-02-28 1995-09-12 Toshiba Corp 半導体薄膜製造装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, Vol. 1189, (1990), NULMAN J., "Emissivity Issues in Pyrometric Temperature Monitoring for RTP Systems", pages 72-82. *
See also references of EP0910115A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210057245A1 (en) * 2019-08-22 2021-02-25 SCREEN Holdings Co., Ltd. Heat treatment method and heat treatment apparatus of light irradiation type
US11876006B2 (en) * 2019-08-22 2024-01-16 SCREEN Holdings Co., Ltd. Heat treatment method and heat treatment apparatus of light irradiation type

Also Published As

Publication number Publication date
KR19990087737A (ko) 1999-12-27
JPH09246200A (ja) 1997-09-19
TW333666B (en) 1998-06-11
EP0910115A1 (en) 1999-04-21
EP0910115A4 (en) 2000-02-02
US6072164A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
US6507007B2 (en) System of controlling the temperature of a processing chamber
WO1997034318A1 (fr) Procede de traitement thermique et dispositif de chauffage a rayonnement
US8967860B2 (en) Low temperature measurement and control using low temperature pyrometry
US5809211A (en) Ramping susceptor-wafer temperature using a single temperature input
US6393210B1 (en) Rapid thermal processing method and apparatus
US5994676A (en) Method for calibrating the temperature of an epitaxy reactor
JP2001521284A (ja) 高速昇降温処理(rtp)システムにおける半導体ウェーハの酸化方法
JP3269463B2 (ja) 薄膜成長温度の補正方法
JP3764689B2 (ja) 半導体製造方法および半導体製造装置
EP0709488A1 (en) Method and apparatus for thin film growth
JPH0557733B2 (ja)
JP4978608B2 (ja) エピタキシャルウエーハの製造方法
JPH05102044A (ja) エピタキシヤル成長装置
JPH07201765A (ja) 熱処理装置および熱処理方法
Apte et al. Temperature Uniformity Optimization Using Three-Zone Lamp and Dynamic Control in Rapid Thermal Multiprocessor
JPH07200076A (ja) 熱処理装置
JP2021174807A (ja) エピタキシャルウェーハの製造システム及びエピタキシャルウェーハの製造方法
CN111900099B (zh) 退火设备的温度监控方法
JPH03142948A (ja) ウエーハの表面温度測定方法
WO2002000971A1 (fr) Procede de fabrication d&#39;une tranche epitaxiale en silicium et tranche epaxiale en silicium ainsi obtenue
JPH07200077A (ja) 熱処理装置
JPH04359125A (ja) 温度測定装置とこれを用いた被加熱体の温度測定装置
JP4391734B2 (ja) 半導体装置の製造方法
Lerch et al. Temperature measurement of wafers with varying multilayer structures during rapid thermal annealing
Mazzola et al. Boron Compensation of 6H Silicon Carbide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997905470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09142646

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980707208

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997905470

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980707208

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997905470

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019980707208

Country of ref document: KR