WO1997033080A1 - Otto-motor mit druckwellenlader - Google Patents

Otto-motor mit druckwellenlader Download PDF

Info

Publication number
WO1997033080A1
WO1997033080A1 PCT/CH1997/000079 CH9700079W WO9733080A1 WO 1997033080 A1 WO1997033080 A1 WO 1997033080A1 CH 9700079 W CH9700079 W CH 9700079W WO 9733080 A1 WO9733080 A1 WO 9733080A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure wave
catalytic converter
engine
wave charger
pressure
Prior art date
Application number
PCT/CH1997/000079
Other languages
English (en)
French (fr)
Inventor
Urs Wenger
Original Assignee
Swissauto Engineering S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swissauto Engineering S.A. filed Critical Swissauto Engineering S.A.
Priority to JP53129197A priority Critical patent/JP4196413B2/ja
Priority to BR9708311A priority patent/BR9708311A/pt
Priority to AU17638/97A priority patent/AU704941B2/en
Priority to CA002247393A priority patent/CA2247393C/en
Priority to EP97903197A priority patent/EP0885352B1/de
Priority to AT97903197T priority patent/ATE188274T1/de
Priority to US09/142,106 priority patent/US6089211A/en
Priority to DE59700932T priority patent/DE59700932D1/de
Publication of WO1997033080A1 publication Critical patent/WO1997033080A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/42Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Pressure wave superchargers are known per se, exhaust gas and air being brought into direct contact briefly in cells open at both ends. Attempts have been made by various companies to use pressure wave superchargers in automobile construction, most of the attempts aimed at increasing the performance of the engine. As far as is known, pressure wave loaders were only built in series in connection with diesel engines.
  • a supercharged engine in which a three-way catalytic converter is arranged at the outlet and is only switched on when driving slowly.
  • a device for detoxifying the exhaust gas of an internal combustion engine is known, a three-way catalytic converter being used, followed by an oxidation catalytic converter. The temperature increase in the oxidation catalytic converter is measured and used for a feedback control.
  • the invention is explained below with reference to a drawing of an embodiment.
  • the single figure shows schematically an Otto engine according to the invention with efficient exhaust gas purification.
  • the Otto engine 1 an internal combustion engine, a throttle valve 2 in the intake duct 3 and a three-way catalytic converter 4 in the outlet 15.
  • the engine which can be any known internal combustion engine such as an automobile or aircraft engine and with the intake manifold 16, the fan 17 and the drive 18 and the three-way catalytic converter 4 form a conventional gasoline engine, as described at the beginning as prior art.
  • a pressure wave charger 5 is added to this conventional gasoline engine, preferably with a charge air cooler 6 is operated in the intake duct and optionally has a drive 7, which can be electrical or mechanical or can also be omitted if the pressure wave charger is suitably shaped and dimensioned.
  • a supercharger throttle valve 10 In the air inlet 8 there is an air filter 9 and - in contrast to the known pressure wave supercharger systems - a supercharger throttle valve 10.
  • An oxidation catalytic converter 12 is arranged on the exhaust 11 as a second catalytic converter.
  • the lambda probe 13, the temperature sensor 14 and the so-called wastegate flap 19 are used to control the catalysts.
  • the arrows in the channels indicate the course of the air and gas flows, and it can be seen from this diagram that the fresh air is sucked in at the air inlet 8 and reaches the pressure wave charger 5 via the air filter 9 and the charger throttle valve 10.
  • the majority of the fresh air is compressed there by the action of the exhaust gases and fed to the internal combustion engine 1 via the charge air cooler 6 and the throttle valve 2.
  • a small part of the fresh air, in the form of purge air, passes through the pressure wave charger 5 into the exhaust 11 and mixes there with the exhaust gases.
  • the exhaust gases come from the internal combustion engine 1 via the three-way catalytic converter 4 to the pressure wave charger 5 and then, mixed with fresh air, pass through the oxidation catalytic converter 12 to the exhaust 11.
  • the wastegate flap 19 can be opened when the boost pressure is too high, so that some of the exhaust gases are directed past the pressure wave charger 5, thereby producing a smaller pressure ratio. This achieves a better overall efficiency for the drive unit and thus reduces fuel consumption.
  • a wastegate flap other means known per se for controlling the boost pressure can also be used.
  • the charger throttle valve 10 is used to control the purge air. It can be used to reduce the amount of fresh air entering the exhaust. This increases the exhaust gas temperature in the oxidation catalytic converter 12 so that it reaches its light-off temperature more quickly and thus achieves a higher degree of conversion.
  • the signal from the temperature sensor 14 can be used as a variable for controlling the charger throttle valve.
  • the engine speed and the pressure after the throttle valve 2 can also serve as further control variables.
  • the lambda probe 13 provides the controlled variable for the mixture formation.
  • the engine is operated with a lambda ratio of 1 or with a slight excess of fuel.
  • the three-way catalytic converter in conjunction with the electronically controlled mixture preparation (lambda probe) is currently the most effective catalytic exhaust gas purification system. Simultaneous conversion of all three pollutant components is possible, whereby a stoichiometric fuel-air mixture (lambda 1) that is as precise as possible is required.
  • These three components are HC, CO and N0 X.
  • the control range Lambda 1 By shifting the control range Lambda 1 to the richer side, however, the N0 X can be converted and removed very efficiently. However, this would lead to a reduction in the conversion rate of the remaining two components and would therefore not make sense if only a three-way catalyst is used.
  • a pressure wave charger increases the efficiency of the internal combustion engine and also allows an excess air to be generated by the pressure wave charger in the exhaust system, where the use of an oxidation catalytic converter reduces the remaining pollutants, which largely consist of HC and CO exist, can be optimally converted. Depending on the catalyst coating, a substantial NO x conversion rate can also be achieved in the oxidation catalyst.
  • burner 22 instead of a burner 22 as described, other heating devices, e.g. an electrically operated heater can be used. It is important to favorably influence both the function of the catalytic converter and the charger.
  • a pressure wave charger with an Otto engine thus enables a large increase in performance and before especially the use of a downstream oxidation catalytic converter, whereby the three-way catalytic converter can remove the one pollutant component, the NO x , more efficiently than with a conventionally used three-way catalytic converter and, on the other hand, the remaining pollutants, HC and CO, through the excess air in the oxidation catalytic converter with a particularly high conversion rate can be.

Abstract

Der Otto-Motor (1) ist mit einem Druckwellenlader (5) ausgestattet und besitzt einen Dreiwegkatalysator (4). Zwecks effizienter Beseitigung der Schadstoff-Komponenten HC, CO und NOX ist dem Dreiwegkatalysator ein Oxydations-Katalysator (12) nachgeschaltet, wobei der Oxydations-Katalysator zwischen dem Auslass des Druckwellenladers und dem Auspuff (11) angeordnet ist. Damit kann der Oxydations-Katalysator mit Luftüberschuss arbeiten, der aus dem Druckwellenlader stammt. Eine solche Kombination ergibt bei hoher spezifischer Leistung eine wesentliche Verminderung der Schadstoffe.

Description

OTTO-MOTOR MIT DRUCKWELLENLADER
Otto-Motoren werden nun seit über 100 Jahren gebaut und werden ständig hinsichtlich Leistung und Verminderung des Kraftstoffverbrauches verbessert. Dabei kann die Verminderung des Kraftstoffverbrauches bei konventionellen Otto-Motoren nur schrittweise erfolgen, da inzwischen bereits erhebliche Verbesserungen durchgeführt worden sind. Ausserdem wurde in letzter Zeit intensiv daran gearbeitet, den Schadstoffausstoss zu verringern, und dazu werden in Abgasreinigungssystemen verschiedene Katalysatoren verwendet, wobei sich der geregelte Dreiwegkatalysator durchgesetzt hat, der eine simultane Konversion der drei massgeblichen Schadstoffkomponenten ermöglicht.
Druckwellenlader an sich sind bekannt, wobei Abgas und Luft kurzzeitig in an beiden Enden offenen Zellen in direkten Kontakt gebracht werden. Es sind von verschiedenen Firmen Versuche unternommen worden, Druckwellenlader im Automobilbau zu verwenden, dabei zielten die meisten Versuche darauf ab, die Leistung des Motors zu erhöhen. Soweit bekannt, wurden Druckwellenlader in Serie nur im Zusammenhang mit Diesel-Motoren gebaut.
Aus der EP-A-0 415 128 ist ein Motor gemäss Oberbegriff von Anspruch 1 bekannt, worin vorgeschlagen wird, in einer Brennkraftmaschine mit einem Druckwellenlader die Alterung des Katalysators dadurch zu minimieren, dass der Katalysator motornahe angeordnet und durch die Ladeluft gekühlt wird.
Aus den Patent Abstracts of Japan Vol. 011, No. 392 (M- 601), June 24, 1987 ist ein Motor mit Aufladung bekannt, bei welchem am Auslass ein Dreiwegkatalysator angeordnet ist, der nur bei Langsamfahren eingeschaltet wird. Aus der DE-C-37 32 301 ist eine Vorrichtung zur Entgiftung des Abgases einer Brennkraftmaschine bekannt, wobei ein Dreiwegkatalysator verwendet wird, dem ein Oxydations- Katalysator nachgeschaltet ist. Dabei wird die Temperaturerhöhung im Oxydations-Katalysator gemessen und für eine Rückkopplungsregelung verwertet.
Ausgehend von diesem Stand der Technik ist es Aufgabe der vorliegenden Erfindung einen Otto-Motor anzugeben, der sowohl eine wesentlich höhere spezifische Leistung als auch einen wesentlich geringeren Schadstoffausstoss aufweist. Diese Aufgabe wird mit dem Otto-Motor gemäss Patentanspruch 1 gelöst, der eine Kombination eines Otto-Motors mit einem Druckwellenlader, einem Dreiwegkatalysator und zusätzlich einem Oxydations-Katalysator offenbart.
Weitere Merkmale und Vorteile sind in den abhängigen Ansprüchen definiert, insbesondere auch Mittel zur Verhinderung von Nachteilen beim Kaltstart.
Die Erfindung wird im folgenden anhand einer Zeichnung eines Ausführungsbeispiels näher erläutert. Die einzige Figur zeigt schematisch einen erfindungsgemässen Otto-Motor mit effizienter Abgasreinigung.
In der einzigen Figur erkennt man den Otto-Motor 1 , ein Verbrennungsmotor, eine Drosselklappe 2 im Ansaugkanal 3 und einen Dreiwegkatalysator 4 im Auslass 15. Der Motor, der irgend ein bekanr =r Verbrennungsmotor wie Automobil- oder Flugmotor sein tn und mit dem Saugrohr 16, dem Ventilator 17 und dem .-.btrieb 18 gezeichnet ist sowie der Dreiwegkatalysator 4 bilden einen herkömmlichen Otto-Motor, wie er eingangs als Stand der Technik beschrieben ist.
Zu diesem herkömmlichen Otto-Motor ist ein Druckwellenlader 5 beigegeben, der vorzugsweise mit einem Ladeluftkühler 6 im Ansaugkanal betrieben wird und gegebenenfalls einen Antrieb 7 aufweist, der elektrisch oder mechanisch sein kann oder aber bei geeigneter Formgebung und Dimensionierung des Druckwellenladers auch entfallen kann. Im Lufteinlass 8 befindet sich ein Luftfilter 9 und - in Abweichung zu den bekannten Druckwellenladersystemen - eine Lader-Drosselklappe 10. Am Auspuff 11 ist als zweiter Katalysator ein Oxydationskatalysator 12 angeordnet. Zur Steuerung der Katalysatoren dienen die Lambda-Sonde 13, der Temperaturfühler 14 sowie die sogenannte Wastegate-Klappe 19.
Die Pfeile in den Kanälen weisen auf den Verlauf der Luft- und Gasströme hin, und man entnimmt diesem Schema, dass die Frischluft beim Lufteintritt 8 angesogen wird und über das Luftfilter 9 und die Lader-Drosselklappe 10 in den Druckwellenlader 5 gelangt. Dort wird der grösste Teil der Frischluft durch die Aktion der Abgase verdichtet und über den Ladeluftkühler 6 und die Drosselklappe 2 dem Verbrennungsmotor 1 zugeführt. Ein kleiner Teil der Frischluft gelangt, in Form von Spülluft, durch den Druckwellenlader 5 in den Auspuff 11 und vermischt sich dort mit den Abgasen. Die Abgase kommen vom Verbrennungsmotor 1 über den Dreiwegkatalysator 4 zum Druckwellenlader 5 und gelangen anschliessend, mit Frischluft durchsetzt, über den Oxydationskatalysator 12 zum Auspuff 11.
Die Wastegate-Klappe 19 kann bei zu hohem Ladedruck geöffnet werden, so dass ein Teil der Abgase am Druckwellenlader 5 vorbeigeleitet wird wodurch ein kleineres Druckverhältnis erzeugt wird. So erzielt man einen besseren Gesamtwirkungsgrad für die Antriebseinheit und reduziert somit den Treibstoffverbrauch. Anstatt einer Wastegate-Klappe können auch andere, an sich bekannte Mittel zur Steuerung des Ladedruckes verwendet werden. Die Lader-Drosselklappe 10 dient zur Steuerung der Spülluft. Mit ihr kann der Anteil an Frischluft, der in den Auspuff gelangt, reduziert werden. Dadurch wird die Abgastemperatur beim Oxydationskatalysator 12 erhöht, damit dieser schneller seine Anspringtemperatur erreicht und somit einen höheren Konvertierungsgrad erzielt. Das Signal des Temperaturfühlers 14 kann als Grosse für die Steuerung der Lader-Drosselklappe verwendet werden. Als weitere Steuergrössen können u. a. auch die Drehzahl des Motors sowie der Druck nach der Drosselklappe 2 dienen. Die Lambda-Sonde 13 liefert die Regelgrösse für die Gemischbildung.
Der Motor wird mit einem Lambdaverhaltnis von 1 oder mit leichtem Treibstoffüberschuss betrieben. Bekanntermassen stellt der Dreiwegkatalysator in Verbindung mit der elektronisch geregelten Gemischaufbereitung (Lambda-Sonde) das derzeit wirksamste katalytische Abgasreinigungssystem dar. Dabei ist eine simultane Konversion aller drei Schadstoffkomponenten möglich, wobei ein möglichst exaktes stöchiometrisches Kraftstoff-Luft-Gemisch (Lambda 1 ) erforderlich ist. Bei diesen drei Komponenten handelt es sich um HC, CO und N0X. Durch eine Verschiebung des Regelbereichs Lambda 1 zur fetteren Seite können jedoch die N0X sehr effizient konvertiert und entfernt werden. Dies würde jedoch zu einer Verminderung der Konvertierungsrate der übrigen zwei Komponenten führen und wäre daher nicht sinnvoll, falls nur ein Dreiwegkatalysator verwendet wird.
Durch die Verwendung eines Druckwellenladers wird der Wirkungsgrad des Verbrennungsmotors gesteigert und ermöglicht auch dadurch, dass durch den Druckwellenlader in der Auspuffanläge ein Luftüberschuss erzeugt wird, dort die Verwendung eines Oxydationskatalysators, wodurch die verbleibenden Schadstoffe, die zum grössten Teil aus HC und CO bestehen, optimal konvertiert werden können. Je nach Katalysatorbeschichtung kann auch im Oxydationskatalysator noch eine wesentliche NOx-Konvertierungsrate erreicht werden.
Falls die Abgastemperatur am Auslass 15 gering ist, z.B. beim Kaltstart, wird die Konvertierungsrate am Katalysator kleiner, woraus sich hohe Abgasemissionen ergeben.
Ferner wird der Druckwellenprozess im Lader immer problematischer, je tiefer die Abgastemperaturen sind, wobei dieser Prozess im Extremfall ganz zum Erliegen kommen kann. Daher kann zu Beginn bei kaltem Motor nur ein reduzierter Ladedruck erreicht werden, was zu einer geringen Motorleistung führt.
Diesen beiden Problemen kann dadurch entgegengewirkt werden, dass zwischen dem Auslass 15 und dem Dreiweg- Katalysator 4 ein Brenner 22 angeordnet wird, der bei tiefer Abgastemperatur eingeschaltet wird. Dadurch wird einerseits der Katalysator schneller auf seine optimale Betriebstemperatur gebracht und andererseits gelangen die Gase mit höherer Temperatur zum Lader. Dadurch kommt der Druckwellenprozess bereits bei kaltem Motor in Gang und die ganze Motorleistung steht zur Verfügung. In Fig. 1 ist ausserdem die Luftzufuhr 20 und die Brennstoffzufuhr 21 für den Brenner 22 erkennbar.
Anstatt eines beschriebenen Brenners 22 können auch andere Heizeinrichtungen, z.B. eine elektrisch betriebene Heizung verwendet werden. Wichtig ist dabei, sowohl die Funktion des Katalysators als auch des Laders günstig zu beeinflussen.
Die Verwendung eines Druckwellenladers mit einem Otto-Motor ermöglicht somit eine grosse Leistungssteigerung und vor allem auch den Einsatz eines nachgeschalteten Oxydations- Katalysators, wodurch der Dreiwegkatalysator die eine Schadstoffkomponente, das NOx, effizienter beseitigen kann als bei einem herkömmlich verwendeten Dreiwegkatalysator und andererseits die verbleibenden Schadstoffe, HC und CO, durch den Luftüberschuss im Oxydationskatalysator mit besonders grosser Konvertierungsrate entfernt werden können.
Aus diesem System resultiert eine erhebliche Reduzierung der Schadstoffe im Vergleich zu herkömmlichen Otto- Motoren. Es ist sebstverständlich, dass im Vergleich zu einem konventionellen Otto-Motor durch die Verwendung eines Druckwellenladers bei gleicher Leistung beispielsweise ein kleinerer Motor mit geringerem Treibstoffverbrauch oder ein Motor mit insgesamt kleinerem Gewicht verwendet werden kann und dies bei erheblich kleinerem Schadstoffausstoss.

Claims

Patentansprüche
1. Otto-Motor in Kombination mit einem Druckwellenlader (5) und einem geregelten Dreiwegkatalysator (4), dadurch gekennzeichnet, dass dem Dreiwegkatalysator (4) ein Oxydationskatalysator (12) nachgeschaltet ist, der zwischen dem Auslass des Druckwellenladers (5) und dem Auspuff (11) angeordnet ist.
2. Motor nach Anspruch 1, dadurch gekennzeichnet, dass am Einlass zum Druckwellenlader (5) eine Lader-Drosselklappe (10) angeordnet ist, um die Spülluftmenge zu steuern.
3. Motor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass am Auslass des Druckwellenladers (5) Steuermittel angeordnet sind, um den Ladedruck zu regeln.
4. Motor nach Anspruch 3, dadurch gekennzeichnet, dass die Steurmittel eine Wastegate-Klappe (19) enthalten.
5. Motor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Druckwellenlader (5) einen Antrieb (7) aufweist, der zur Drehzahlstabilisierung des Zellenrotors im Druckwellenlader dient und elektrisch oder mechanisch angetrieben ist.
6. Motor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zwischen dem Auslass (15) des Motors und dem Dreiwegkatalysator (4) eine Heizeinrichtung (22) angeordnet ist, um bei niedrigen Abgastemperaturen sowohl den Dreiwegkatalysator (4) schneller auf seine optimale Betriebs-Temperatur zu bringen als auch den Druckwellen- Lader schneller in Betrieb zu setzen.
7. Motor nach Anspruch 6, dadurch gekennzeichnet, dass die Heizeinrichtung ein Brenner (22) mit Luft- und Brennstoffzufuhr (20, 21 ) ist.
PCT/CH1997/000079 1996-03-05 1997-03-03 Otto-motor mit druckwellenlader WO1997033080A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP53129197A JP4196413B2 (ja) 1996-03-05 1997-03-03 内燃機関システム
BR9708311A BR9708311A (pt) 1996-03-05 1997-03-03 Motor de ciclo otto com carregador por onda de pressão
AU17638/97A AU704941B2 (en) 1996-03-05 1997-03-03 Spark ignition engine with pressure-wave supercharger
CA002247393A CA2247393C (en) 1996-03-05 1997-03-03 Spark ignition engine with pressure-wave supercharger
EP97903197A EP0885352B1 (de) 1996-03-05 1997-03-03 Otto-motor mit druckwellenlader
AT97903197T ATE188274T1 (de) 1996-03-05 1997-03-03 Otto-motor mit druckwellenlader
US09/142,106 US6089211A (en) 1996-03-05 1997-03-03 Spark ignition engine with pressure-wave supercharger
DE59700932T DE59700932D1 (de) 1996-03-05 1997-03-03 Otto-motor mit druckwellenlader

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP96810128.7 1996-03-05
EP96810128 1996-03-05

Publications (1)

Publication Number Publication Date
WO1997033080A1 true WO1997033080A1 (de) 1997-09-12

Family

ID=8225555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1997/000079 WO1997033080A1 (de) 1996-03-05 1997-03-03 Otto-motor mit druckwellenlader

Country Status (12)

Country Link
US (1) US6089211A (de)
EP (1) EP0885352B1 (de)
JP (1) JP4196413B2 (de)
KR (1) KR100485463B1 (de)
CN (1) CN1077205C (de)
AT (1) ATE188274T1 (de)
AU (1) AU704941B2 (de)
BR (1) BR9708311A (de)
CA (1) CA2247393C (de)
DE (1) DE59700932D1 (de)
ES (1) ES2142144T3 (de)
WO (1) WO1997033080A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899435A1 (de) * 1997-08-29 1999-03-03 Swissauto Engineering S.A. Gasdynamische Druckwellenmaschine
EP0899436A1 (de) 1997-08-29 1999-03-03 Swissauto Engineering S.A. Verbrennungsmaschine mit Druckwellenmaschine
DE10026359B4 (de) * 2000-05-27 2010-10-14 Volkswagen Ag Abgasreinigungsanlage für eine fremdgezündete, aufgeladene Verbrennungskraftmaschine und Verfahren zum Betrieb derselben
DE102011116029B3 (de) * 2011-10-17 2012-09-06 Benteler Automobiltechnik Gmbh Verfahren zur Regelung einer Abgastemperaturan einem Eintritt in einen Druckwellenlader
DE102021110658A1 (de) 2021-04-27 2022-10-27 Volkswagen Aktiengesellschaft Brennkraftmaschine mit elektrischer Abgasturbine und Abgasnachbehandlungseinrichtung stromauf der Abgasturbine

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6354078B1 (en) * 1996-02-22 2002-03-12 Volvo Personvagnar Ab Device and method for reducing emissions in catalytic converter exhaust systems
DE29916158U1 (de) * 1999-09-14 1999-12-09 Emitec Emissionstechnologie Katalytischer Konverter zum Reinigen von Abgas und Abgasreinigungsanordnung mit einem katalytischen Konverter
US6589314B1 (en) 2001-12-06 2003-07-08 Midwest Research Institute Method and apparatus for agglomeration
ES2252338T3 (es) 2002-03-18 2006-05-16 Swissauto Engineering S.A. Sobrealimentador por ondas de presion gasodinamico.
DE50204469D1 (de) * 2002-06-28 2006-02-16 Swissauto Eng Sa Verfahren zur Regelung einer Verbrennungsmaschine mit einer gasdynamischen Druckwellenmaschine
US6745568B1 (en) * 2003-03-27 2004-06-08 Richard K. Squires Turbo system and method of installing
JP4161903B2 (ja) * 2003-12-25 2008-10-08 トヨタ自動車株式会社 排ガス浄化装置
FR2880655B1 (fr) * 2005-01-10 2010-08-20 Renault Sas Compensation d'une perte de puissance dans un vehicule comportant un catalyseur
DE102006020522A1 (de) 2006-05-03 2007-11-08 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
RU2436970C2 (ru) * 2008-06-13 2011-12-20 Ямаха Хацудоки Кабусики Кайся Двигатель внутреннего сгорания, транспортное средство, морское судно и способ подачи вторичного воздуха для двигателя внутреннего сгорания
DE102008052113A1 (de) 2008-10-20 2010-04-22 Benteler Automobiltechnik Gmbh Verbrennungskraftmaschine mit einem Druckwellenlader und Verfahren zum Betreiben von Nebenaggregaten einer Verbrennungskraftmaschine
US8522536B2 (en) * 2009-05-21 2013-09-03 Southwest Research Institute Exhaust aftertreatment systems for gasoline and alternative-fueled engines, with reduction of HC, CO, NOx, and PM
US20120192558A1 (en) * 2009-10-06 2012-08-02 Toyota Jidosha Kabushiki Kaisha Supercharging system for internal combustion engine
DE102010008385A1 (de) * 2010-02-17 2011-08-18 Benteler Automobiltechnik GmbH, 33102 Verfahren zur Einstellung eines Ladedruckes
US20130037008A1 (en) * 2010-04-20 2013-02-14 Toyota Jidosha Kabushiki Kaisha Pressure wave supercharger
DE102010054505B4 (de) * 2010-12-14 2014-06-12 Benteler Automobiltechnik Gmbh Druckwellenladeranordnung und Verfahren zum Betreiben einer Druckwellenladeranordnung
DE102011118766A1 (de) 2011-11-17 2013-05-23 Benteler Automobiltechnik Gmbh Ottomotor mit Druckwellenlader und Dreiwegekatalysator
DE102011118765A1 (de) 2011-11-17 2013-05-23 Benteler Automobiltechnik Gmbh Ottomotor mit Druckwellenlader und Dreiwegekatalysator
WO2014205168A1 (en) 2013-06-21 2014-12-24 Eaton Corporation Supercharger exhaust bypass
ES2683422T3 (es) * 2014-07-24 2018-09-26 Antrova Ag Cargador de ondas de presión y método para el funcionamiento de un cargador de ondas de presión
ES2729605T3 (es) * 2014-10-13 2019-11-05 Antrova Ag Método y dispositivo para regular una presión de carga en un motor de combustión interna con un cargador de ondas de presión
CN106321291A (zh) * 2015-07-07 2017-01-11 上海汽车集团股份有限公司 排量可调节的压力波增压器
AT517669A1 (de) * 2015-09-04 2017-03-15 Ge Jenbacher Gmbh & Co Og Brennkraftmaschine
US10746090B2 (en) 2018-08-27 2020-08-18 The Boeing Company High altitude internal combustion engine/turbocharger exhaust combustor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159337A (ja) * 1984-01-27 1985-08-20 Mazda Motor Corp 過給機付エンジン
US4553387A (en) * 1981-08-11 1985-11-19 Bbc Brown, Boveri & Company, Limited Supercharged internal combustion engine with exhaust particulates filter
JPS6220614A (ja) * 1985-07-18 1987-01-29 Mazda Motor Corp 圧力波過給機付エンジン
JPS62159717A (ja) * 1986-01-04 1987-07-15 Mitsubishi Motors Corp 圧力交換型過給機付エンジン
US4702075A (en) * 1984-11-09 1987-10-27 Bbc Brown, Boveri & Company, Limited Process and device for operating a diesel engine with an exhaust-gas particle filter
DE3732301C1 (en) * 1987-09-25 1989-05-18 Comuna Metall Vorrichtungs Und Emission control device for an internal combustion engine
EP0415128A1 (de) * 1989-08-30 1991-03-06 Asea Brown Boveri Ag Schaltung einer Brennkraftmaschine
JPH0494420A (ja) * 1990-08-07 1992-03-26 Mazda Motor Corp 圧力波過給機付エンジンの排気装置
JPH06200746A (ja) * 1993-01-08 1994-07-19 Mazda Motor Corp 圧力波過給機付エンジンの排気装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244324A (en) * 1975-10-07 1977-04-07 Ishikawajima Harima Heavy Ind Co Ltd Denitric acid device used for a diesel engine
US4562753A (en) * 1983-08-31 1986-01-07 Emhart Industries, Inc. Apparatus for adjusting individual cams of a pusher conveyor
JPS6220630A (ja) * 1985-07-19 1987-01-29 Mazda Motor Corp 圧力波過給機付エンジン
JPH0623531B2 (ja) * 1986-01-09 1994-03-30 トヨタ自動車株式会社 デイ−ゼルエンジンの排気浄化装置
JPH06220614A (ja) * 1993-01-22 1994-08-09 Kubota Corp 真空蒸着装置
DE4335153C2 (de) * 1993-10-15 1995-09-21 Porsche Ag Abgasanlage für eine Brennkraftmaschine mit einem Abgas-Turbolader

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553387A (en) * 1981-08-11 1985-11-19 Bbc Brown, Boveri & Company, Limited Supercharged internal combustion engine with exhaust particulates filter
JPS60159337A (ja) * 1984-01-27 1985-08-20 Mazda Motor Corp 過給機付エンジン
US4702075A (en) * 1984-11-09 1987-10-27 Bbc Brown, Boveri & Company, Limited Process and device for operating a diesel engine with an exhaust-gas particle filter
JPS6220614A (ja) * 1985-07-18 1987-01-29 Mazda Motor Corp 圧力波過給機付エンジン
JPS62159717A (ja) * 1986-01-04 1987-07-15 Mitsubishi Motors Corp 圧力交換型過給機付エンジン
DE3732301C1 (en) * 1987-09-25 1989-05-18 Comuna Metall Vorrichtungs Und Emission control device for an internal combustion engine
EP0415128A1 (de) * 1989-08-30 1991-03-06 Asea Brown Boveri Ag Schaltung einer Brennkraftmaschine
JPH0494420A (ja) * 1990-08-07 1992-03-26 Mazda Motor Corp 圧力波過給機付エンジンの排気装置
JPH06200746A (ja) * 1993-01-08 1994-07-19 Mazda Motor Corp 圧力波過給機付エンジンの排気装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 326 (M - 441) 21 December 1985 (1985-12-21) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 196 (M - 601) 24 June 1987 (1987-06-24) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 392 (M - 653) 22 December 1987 (1987-12-22) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 328 (M - 1281) 16 July 1992 (1992-07-16) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 563 (M - 1693) 27 October 1994 (1994-10-27) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899435A1 (de) * 1997-08-29 1999-03-03 Swissauto Engineering S.A. Gasdynamische Druckwellenmaschine
EP0899436A1 (de) 1997-08-29 1999-03-03 Swissauto Engineering S.A. Verbrennungsmaschine mit Druckwellenmaschine
WO1999011912A1 (en) * 1997-08-29 1999-03-11 Swissauto Engineering S.A. Internal combustion engine with pressure wave machine
WO1999011914A1 (de) * 1997-08-29 1999-03-11 Swissauto Engineering S.A. Gasdynamische druckwellenmaschine
US6325054B1 (en) 1997-08-29 2001-12-04 Swissauto Engineering S.A. Internal combustion engine with pressure wave machine
US6367460B1 (en) 1997-08-29 2002-04-09 Swissauto Engineering S.A. Gas-dynamic pressure wave machine
DE10026359B4 (de) * 2000-05-27 2010-10-14 Volkswagen Ag Abgasreinigungsanlage für eine fremdgezündete, aufgeladene Verbrennungskraftmaschine und Verfahren zum Betrieb derselben
DE102011116029B3 (de) * 2011-10-17 2012-09-06 Benteler Automobiltechnik Gmbh Verfahren zur Regelung einer Abgastemperaturan einem Eintritt in einen Druckwellenlader
DE102021110658A1 (de) 2021-04-27 2022-10-27 Volkswagen Aktiengesellschaft Brennkraftmaschine mit elektrischer Abgasturbine und Abgasnachbehandlungseinrichtung stromauf der Abgasturbine

Also Published As

Publication number Publication date
US6089211A (en) 2000-07-18
CN1212744A (zh) 1999-03-31
JP4196413B2 (ja) 2008-12-17
ATE188274T1 (de) 2000-01-15
CA2247393C (en) 2004-09-07
KR100485463B1 (ko) 2005-07-18
EP0885352A1 (de) 1998-12-23
EP0885352B1 (de) 1999-12-29
DE59700932D1 (de) 2000-02-03
CN1077205C (zh) 2002-01-02
AU1763897A (en) 1997-09-22
AU704941B2 (en) 1999-05-06
CA2247393A1 (en) 1997-09-12
BR9708311A (pt) 1999-08-03
JP2000506239A (ja) 2000-05-23
KR19990087470A (ko) 1999-12-27
ES2142144T3 (es) 2000-04-01

Similar Documents

Publication Publication Date Title
EP0885352B1 (de) Otto-motor mit druckwellenlader
DE4139291B4 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine mit Abgasturboaufladung
DE69732461T2 (de) Kraftstoffeinspritzsteuervorrichtung für einen Motor mit direkter Einspritzung
EP0899436B1 (de) Verbrennungsmaschine mit Druckwellenmaschine
DE102016211274A1 (de) Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
EP0994245B1 (de) Verfahren und Vorrichtung zur Verminderung der abgasseitigen Bauteilbelastung von Brennkraftmaschinen
EP3344863A1 (de) Verfahren sowie vorrichtung zur abgasnachbehandlung einer brennkraftmaschine
DE102017203267A1 (de) Brennkraftmaschine mit einer Abgasanlage
EP1682755B1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1417405B1 (de) Verfahren zur regelung eines verbrennungsmotors mit abgasrückführung sowie einrichtung zur durchführung des verfahrens
DE102019107514A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors sowie Verbrennungsmotor
DE102016120846B4 (de) Verfahren zum Aufheizen eines Abgasnachbehandlungselements sowie Kraftfahrzeug mit einem solchen Abgasnachbehandlungselement
DE69722260T2 (de) Vorrichtung und verfahren zum reduzieren der abgasemissionen in systemen mit katalytischen konvertern
EP3683427A1 (de) Abgasnachbehandlung eines verbrennungsmotors
DE19812829B4 (de) Verfahren für die Regelung einer Brennkraftmaschine mit innerer Verbrennung
DE102009051028B4 (de) Antriebsaggregat sowie Verfahren zum Betreiben eines Antriebsaggregats
DE10217589A1 (de) Verfahren zum Aufheizen eines Katalysators im Abgastrakt einer Brennkraftmaschine
DE102021119349B4 (de) Verfahren zur Steuerung eines Verbrennungsmotors mit Sekundärluftsystem
DE102022108338B3 (de) Brennkraftmaschine und zugehöriges Betriebsverfahren
DE102019006494B4 (de) Abgasanlage für eine Verbrennungskraftmaschine eines Kraftfahrzeugs, Antriebseinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug
DE102021205170A1 (de) Brennkraftmaschine mit einer stromab eines Frischgasverdichters abzweigenden Sekundärluftleitung
DE60009286T2 (de) Verfahren zur abgasreinigung von brennkraftmaschinen
DE102021107433A1 (de) Verbrennungsmotor sowie Verfahren zum Betreiben eines Verbrennungsmotors
DE102021112909A1 (de) Verfahren zur Steuerung eines Verbrennungsmotors mit Sekundärluftsystem
WO2018138013A1 (de) Verfahren zum reinigen von abgas einer verbrennungskraftmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97192832.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997903197

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2247393

Country of ref document: CA

Ref document number: 2247393

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09142106

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/A/1998/007124

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1019980706896

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997903197

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1019980706896

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997903197

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980706896

Country of ref document: KR