WO1997030320A1 - Appareil et procede de prechauffage de dechets metalliques a base de fer - Google Patents

Appareil et procede de prechauffage de dechets metalliques a base de fer Download PDF

Info

Publication number
WO1997030320A1
WO1997030320A1 PCT/JP1997/000383 JP9700383W WO9730320A1 WO 1997030320 A1 WO1997030320 A1 WO 1997030320A1 JP 9700383 W JP9700383 W JP 9700383W WO 9730320 A1 WO9730320 A1 WO 9730320A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
preheating
scrap
exhaust gas
iron
Prior art date
Application number
PCT/JP1997/000383
Other languages
English (en)
French (fr)
Inventor
Toshiya Harada
Yukinori Shigeyama
Mitsugu Takeuchi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US09/117,714 priority Critical patent/US6126716A/en
Priority to EP97902675A priority patent/EP0890809A1/en
Priority to KR1019980706166A priority patent/KR100287013B1/ko
Publication of WO1997030320A1 publication Critical patent/WO1997030320A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/562Manufacture of steel by other methods starting from scrap
    • C21C5/565Preheating of scrap
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • F27D13/002Preheating scrap
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S266/00Metallurgical apparatus
    • Y10S266/901Scrap metal preheating or melting

Definitions

  • the present invention relates to a preheating apparatus and a preheating method for recycling iron-based scrap, and more particularly to a rotary kiln type preheating furnace and a shaft furnace type preheating furnace which are provided in parallel in front of a melting furnace.
  • the present invention relates to a preheating apparatus and method for preheating an iron scrap, which is supplied to a melting furnace after being preheated and melted by arc heating or top-blown oxygen.
  • U.S. Pat. No. 4,852,858 discloses a method in which a raw material storage container in the form of a shaft is provided above a metal refining furnace, and the raw material is preheated by exhaust gas from the refining furnace.
  • a raw material storage container in the form of a shaft is provided above a metal refining furnace, and the raw material is preheated by exhaust gas from the refining furnace.
  • 6-46145 discloses a high thermal efficiency, but the lower part of the furnace is exposed to high-temperature gas, so that iron-based scraps are separated from each other. Fusion occurs, and the fused iron-based scrap needs to be cut with oxygen. Further, it is disclosed that when a water-cooled grate is provided, the filling rate is reduced and the thermal efficiency is reduced in order to secure a working space for the grate.
  • a rotary kiln for preheating iron-based scrap is disclosed in Japanese Patent Application Laid-Open No. 6-228662, in which the iron-based scrap is moved by constantly rotating so that it is difficult to fuse. It is disclosed that the thermal efficiency decreases due to the low scrap rate of the system.
  • iron-based scrap which does not contain organic matter, is usually heated, but pretreatment (sorting) is required for this purpose, which is costly.
  • the rotary kiln type preheating furnace constantly rotates the scrap by rotation, it is possible to introduce a relatively high temperature exhaust gas while avoiding fusion of the scrap. Further, with respect to the exhaust gas containing combustible components such as CO and H 2, it is easy and child use by introducing air or oxygen into a preheated by changing the latent heat of the exhaust gas into sensible heat.
  • the screen in the furnace The biggest problem is that the heat exchange rate is as low as 30 to 40% at most due to the low filling rate of the wrap; when a coarse or heavy scrap is charged, the refractory lining is used. There was a risk of damaging.
  • the shaft furnace type preheating furnace has the ability to achieve a high heat exchange rate because it fills the scrap and exchanges heat with the exhaust gas.
  • the heat exchange rate also decreases as the temperature of the gas decreases. In practice, the limit is about 70%.
  • the scrap is heated to a temperature of 800 ° C or more, and the scraps are fused together or the dust is clogged. There is a risk that pressure loss will increase.
  • a water-cooled grate is installed to avoid fusion, and a scrap is loaded on the grate to preheat.However, the filling rate in the furnace is reduced to secure the working space for the grate, and the heat is reduced. There is a problem that the exchange rate decreases.
  • Japanese Patent Application Laid-Open No. Hei 7-180975 discloses that a preheating inappropriate scrap having a small risk of fusing when preheated is injected into an arc furnace from a special charging section without preheating. Although an example of preventing deposition is shown, it is a problem that, even though it is a part, it is introduced into a high-temperature furnace without any preheating. Disclosure of the invention
  • the present invention provides a preheating device for preheating which eliminates disadvantages by taking advantage of both advantages, that is, a preheating device for an iron-based scrap which can preheat a wide range of dimensions and shapes with high efficiency while avoiding fusion.
  • the purpose is to provide a preheating method.
  • the preheating apparatus is an iron scrap preheating apparatus for preheating an iron scrap before melting it in a melting furnace, comprising: a rotary kiln type preheating furnace and a shaft furnace.
  • the preheating furnace and the mold preheating furnace are installed in parallel before the melting furnace, and the scraps preheated from both preheating furnaces are charged into the melting furnace.
  • a damper is installed between the shaft furnace type preheating furnace and the melting furnace to prevent the exhaust gas from the melting furnace from flowing directly into the shaft furnace type preheating furnace, and the exhaust gas is rotated by a rotary kiln.
  • An iron-based scrap preheating device characterized by a structure in which exhaust gas passed through a rotary kiln-type preheating furnace is guided to a mold-type preheating furnace and introduced into a shaft furnace-type preheating furnace. . It is preferable that the exhaust gas that has passed through the rotary kiln type preheating furnace be introduced from above the shaft furnace type preheating furnace and discharged from below. It is preferable to provide an air or oxygen inlet for combustible components in the exhaust gas in the single kiln type preheating furnace and the Z or shaft type preheating furnace.
  • the shaft furnace type preheating furnace can be equipped with a pusher type discharging mechanism and a grate opening and closing type discharging mechanism.
  • the preheating method of the present invention relates to a method of preheating an iron-based scrap which preheats the iron-based scrap before melting it in a melting furnace.
  • the iron-based scrap is preheated in parallel in both the furnace-type preheating furnace and charged into the melting furnace to prevent the exhaust gas from the melting furnace from flowing directly into the shaft-type preheating furnace.
  • the iron-based scrap is characterized in that exhaust gas is introduced into a rotary kiln-type preheating furnace, and exhaust gas that has passed through the rotary kiln-type preheating furnace is introduced into a shaft furnace-type preheating furnace. It is a preheating method.
  • the exhaust gas that has passed through the single kiln type preheating furnace is preferably introduced from above the shaft furnace type preheating furnace and discharged from below.
  • air or oxygen is introduced into the rotary kiln type preheating furnace and / or the shaft furnace type preheating furnace to burn combustible components in the exhaust gas and convert the exhaust heat of the exhaust gas into sensible heat.
  • FIG. 1 is a diagram showing an example of an iron-based scrap preheating apparatus according to the present invention.
  • FIG. 2 is a view showing another example of the iron-based scrap preheating apparatus according to the present invention.
  • FIG. 3 is a diagram showing the relationship between the secondary combustion rate of the exhaust gas according to the present invention in the furnace and the combustion rate in a single kiln.
  • FIG. 4 is a diagram showing a scrap preheating temperature of an example of the present invention together with a comparative example.
  • a rotary kiln type preheating furnace and a shaft furnace type preheating furnace are provided in parallel in front of the melting furnace.
  • large scraps could damage the refractory lining when inserted into a rotary kiln-type preheating furnace, but they had good air permeability even when filled, and they were fused. It is suitable for charging into a shaft type preheating furnace because of its poor quality.
  • a damper is installed between the shaft furnace type preheating furnace and the melting furnace to prevent the exhaust gas from the melting furnace from flowing directly into the shaft furnace type preheating furnace. Exhaust gas into a rotary kiln-type preheating furnace.
  • the scrub at the bottom of the shaft furnace type preheating furnace as described above. There is a danger that the scraps will heat up to temperatures above 800 ° C and the scraps will fuse together. For this reason, the provision of a damper prevents exhaust gas from entering.
  • the exhaust gas that has passed through the rotary kiln type preheating furnace is introduced into the shaft furnace type preheating furnace.
  • the exhaust gas is preheated in the scrap-type kiln-type preheating furnace and the temperature of the scrap is reduced, the scrap is melted even when introduced into the shaft-type preheating furnace. The problem of wearing is unlikely.
  • the heat exchange rate of the shaft type preheating furnace is high, it is possible to preheat the scrap sufficiently even with the exhaust gas whose temperature has dropped.o
  • exhaust gas is introduced into the furnace of a shaft furnace type preheating furnace, and is introduced into the bottom of the furnace of the shaft furnace type and discharged from the furnace top.
  • the scrap at the bottom of the furnace is not heated excessively, and the increase in pressure loss due to clogging of the fusion dust can be prevented more reliably.
  • the scrap at the bottom of the furnace is extremely heated, increasing the risk of fusion.
  • the dust in the exhaust gas tends to accumulate at the furnace bottom, which is the exhaust gas introduction portion in the packed bed, and the pressure loss increases easily.
  • the exhaust gas discharged from the melting furnace contains a large amount of flammable gas such as CO, H, etc.
  • all or part of the flammable gas is burned in the preheating furnace, so that not only the sensible heat of the exhaust gas but also the latent heat Can also be used effectively for scrap preheating.
  • the position for introducing air or oxygen for this combustion be near the gas inlet of a rotary kiln that can secure a combustion space.
  • combustion in a shaft furnace is also effective. It is desirable to determine the amount of combustion considering the following: o
  • the temperature of the refractory surface and steel shell of the rotary kiln is within the allowable range.
  • refractory surface 130 ° C steel temperature ⁇ 300 ° C.
  • FIG 3 shows an explanatory diagram for the secondary combustion of exhaust gas.
  • Yokoyuki i is the secondary combustion rate in the melting furnace
  • the vertical axis is the combustion rate in the rotary kiln.
  • the furnace secondary combustion rate C 0 2 concentration Z in the exhaust gas in the exhaust gas (C 0 + C 0) concentration
  • mouth Ichita Li one kiln combustion rate - burned in Russia over data rie key in Lun C 0 gas amount This is the amount of CO in exhaust gas that is introduced into the kiln.
  • the point where the theoretical exhaust gas combustion temperature in the rotary kiln exceeds 180 ° C is defined as the limit of combustion in the rotary kiln, and the solid line in the figure is determined.
  • the optimum range of the secondary combustion rate in the furnace is from about 10% to 60%, while the combustion rate in the single-tally kiln is about 50% to 10%. It is possible to increase it to 0%, and it was found that the effect of the present invention can be sufficiently expected in this region. That is, the preferred exhaust gas combustion rate of the present invention is shown in the hatched solid line (below).
  • FIG. 1 and FIG. 2 show an example of a preheating device for an iron-based scrap of the present invention.
  • Fig. 1 shows an example in which a pusher-type dispensing mechanism 11 for loading the melting furnace 1 by pushing out a scrap from the furnace bottom is provided in a shaft furnace-type preheating furnace 3.
  • Figure 2 shows a grate open / close dispensing mechanism that loads scraps, preheats them, opens and closes them sequentially, and loads the scraps into melting furnace 1. 3, wherein a space is formed between a plurality of grate opening and closing dispensing mechanisms 12.
  • a 300 mm or less shredder chip 5a that is inappropriate to be charged into the shaft furnace type preheating furnace 3 is put into the rotary kiln type preheating furnace 2 from above.
  • a scrap 5b of 300 mm or more that can ensure air permeability even after filling is charged into the shaft furnace type preheating furnace 3 from the furnace top.
  • iron scraps are classified into, for example, A scrap and B scrap.
  • a scrap is a scrap suitable for a single kiln type kiln type preheating furnace.It has a mean diameter of 30 mm or less and a thin or small spherical piece with a thickness of 3 mm or less. It is.
  • the types include shredder scraps, new short chips, and cans.
  • B scrap is a scrap suitable for a shaft type preheating furnace and has a relatively large thickness with an average diameter of 30 Om m or more.
  • the types include crop waste, heavy waste, and press waste.
  • a damper 6 is provided in the inclined part 4 at the lower part of the shaft furnace type preheating furnace 3, and the scrap 5b in the shaft furnace type preheating furnace 3 is dispensed by a pusher type shown in Fig. 1. Only when dispensing by the grate opening and closing dispensing mechanism 12 shown in FIG. In other cases, DANNO 16 is closed, and exhaust gas 9 from melting furnace 1 is introduced into the preheating furnace 2 of the kiln type, and the rotary kiln type preheating furnace 2 is rotated while rotating. Preheat the dust 5a. In this case, the 1 200 ° C without wearing shoe LESSON da one scrap 5 a GaToru the goal, introducing air to burn the CO or H 2 in the exhaust gas 9 as needed.
  • Exhaust gas 9 exiting from the single kiln type preheating furnace 2 is introduced into the shaft furnace type preheating furnace 3 through the exhaust gas conduit 7 from above, and exhausted from the lower exhaust port 8. Then, the scrap 5b in the shaft type preheating furnace 3 is uniformly preheated.
  • the scrap preheating furnace 3 Since the scrap preheating furnace 3 is filled with scrap 5b, it is necessary to control the preheating to 800 ° C or less in order to prevent fusion. Therefore, when the temperature exceeds 800 ° C, the preheating temperature is adjusted by adjusting the packed bed height of scrap 5b or adjusting the amount of air or oxygen introduced into the rotary kiln type preheating furnace 2. Control to 800 ° C or less. Conversely, when the exhaust gas temperature is too low, also introducing air or oxygen in the sheet catcher oice furnace type preheating furnace 3, by burning CO or H 2 in the exhaust gas 9 can also this increasing the preheating temperature .
  • the melting temperature can be efficiently reached. Can be preheated.
  • Exhaust gas amount generated from the melting furnace is 4000 Nm 3 Z hr, the exhaust gas temperature is 1 0 00 ° C, the exhaust gas components CO: 60% by volume, C0 2: 30% by volume, N 1 0% by volume of the melting furnace in total 20 t
  • the scrap was heated under the following conditions using a rotary kiln type preheating furnace with a preheating efficiency of 30% and a shaft furnace type preheating furnace with a preheating efficiency of 50%.
  • the preheating efficiency refers to the ratio of the amount of heat transferred to the scrap to the sensible heat of the introduced exhaust gas.
  • Rotary kiln type preheating furnace and shaft furnace type preheating furnace are arranged in parallel. After the exhaust gas generated from the melting furnace passed through the rotary kiln-type preheating furnace, it was introduced into a shaft furnace-type preheating furnace to preheat the scrap. Regarding the scrap, A scrap was supplied to the rotary kiln type preheating furnace at a rate of 10 t / hr, and B scrap was supplied to the shaft furnace type preheating furnace at a rate of 10 t / hr. As a result, the scrap preheating temperature was 3933 ° C for A waste and 447 ° C for B waste, and the scrap temperature was improved as compared with Comparative Examples 1 and 2 described later.
  • the scrap was preheated in a rotary kiln type preheating furnace under the same conditions as in Example 1 except that 20% of the CO gas contained in the exhaust gas was burned by air or oxygen. As a result, the scrap preheating temperature was further improved to 645 ° C for A waste and 717 ° C for B waste.
  • Calendar A was supplied at a rate of 20 tZhr with the same conditions of exhaust gas, and was used for preheating using only a rotary kiln type preheating furnace.
  • the scrap preheating temperature was 208 ° C for all scraps.
  • B waste was supplied at the rate of 20 tZhr using the same exhaust gas and preheated.
  • the scrap preheating temperature was 329 ° C. for all the scraps.
  • Fig. 3 plots the combustion rate in the furnace and the combustion rate in a single kiln of Example 2 in Fig. 3, and Fig. 4 shows the scrap preheating temperature for the example and the comparative example. The results are shown. From FIG. 4, it can be seen that in Example 2, even when the scrap temperature is high and the combustion rate in the single-tally kiln is 20%, a considerable effect is obtained.
  • Example 1 where there was no combustion in the rotary kiln, the preheating using the single rotary kiln type preheating furnace and the shaft type preheating furnace in parallel with the parallel heating type kiln type preheating furnace of the present example was compared with the preheating with the single preheating furnace of the comparative example. It can be seen that the preheating efficiency has been significantly improved. Industrial applicability
  • a scrap can be charged and preheated independently in each preheating furnace, and furthermore, air or air can be preheated. Since it has an oxygen inlet and the exhaust gas combustion rate in each preheating furnace can be adjusted, a wide range of types, sizes and shapes of scraps can be preheated with high efficiency while avoiding fusion. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)

Description

明 細 書 鉄系スク ラ ップの予熱装置およびその方法
技術分野
本発明は、 鉄系スク ラ ップの再利用のための予熱装置および予熱 方法に関する ものであり、 特に溶解炉の前段に並列に設けたロータ リ ーキルン型予熱炉およびシャフ ト炉型予熱炉により鉄系スク ラ ッ プを予熱した後、 溶解炉へ供給しアーク加熱または上吹き酸素によ つて溶解する鉄系スクラ ップの予熱装置および予熱方法に関する も のである。 背景技術
鋼の電気炉精鍊または転炉精鍊においては、 鉄源と しての鉄系ス ク ラ ップを事前に予熱または何らかの事前加熱をするためには多大 の熱エネルギーを要する。 このため、 加熱を実施すると しても操業 コス ト的にはメ リ ツ 卜が小さ く 、 かつそのための加熱装置を設ける にも多大の設備費用が必要となる。 最近では、 資源のリサイ クルの 観点から、 鉄系スクラ ップの鉄源と しての位置付けがこれまで以上 に重要性を増してきた。 鉄系スクラ ップの リサイ クルを効率よ く 行 うために、 その鉄源と して有効に活用でき、 かつ省エネルギー化の 観点からも有利とするために、 溶解精鍊に要する トータルの熱エネ ルギーをできるだけ低減し、 かつコス ト的にも有利な予熱技術の開 発が望まれている。
この分野の公知技術では、 スク ラ ップ溶解の公知文献と して、 " 電気炉" (日本鉄鋼協会発行、 第 27, 28回白石記念講座 「普通鋼電 気炉のス トラテジィ 一」 、 平成 6年 1 1月) に、 鉄系スク ラ ップ溶解 は高い消費電力を要し操業コス トがア ップする。 これはフラ ッ トバ ス化 (溶け落ち時) 以^の熱効率の低下によるとの記載がある。 た、 転炉型鉄系スク ラ ップ溶解方法と しては、 "鉄と鋼" vo l . 78 ( 1992), p. 520 (日本鉄鋼協会発行) に、 多量の排ガスを処理するた めには建設コス トが増大し、 かつ精鍊後は溶銑であるため、 後工程 に転炉が必要との報告がある。 米国特許 No. 4852858には、 シ ャ フ ト 状の原料収納容器を金属精鍊炉の上部に設け、 精鍊炉の排ガスによ つて原料を予熱する方法が開示されている。 しかし、 この技術では 予熱条件を一定に制御するこ とは難し く 精鍊条件のバラツキが大き く なり易い。 その結果と して製品品質の安定化は充分に得られ難い 。 また、 別のシ ャ フ 卜型予熱炉と して、 特公平 6 — 46145 号公報に 、 高い熱効率が得られるが、 炉下部では高温ガスにさ らされるため 鉄系スク ラ ップ同士が融着を起こ し、 この融着した鉄系スク ラ ップ を酸素切断する必要が生ずる。 さ らに、 水冷火格子を設けた場合に は、 火格子の稼動空間を確保するため充塡率が低下し熱効率が低下 するこ とが開示されている。
鉄系スク ラ ップ予熱用のロータ リ 一キルンについては、 特開平 6 — 228662号公報に、 常に回転するこ とにより鉄系スク ラ ップを移動 させるため融着しにく いが、 鉄系スク ラ ップ充塡率が低いため熱効 率が低下するこ とが開示されている。 他方、 通常では有機物を含ま ない鉄系スク ラ ップを加熱しているが、 このための事前処理 (選別 ) が必要となり コス トが高く なつている。
上記ロータ リ ーキルン型予熱炉は、 常に回転によってスク ラ ップ を揺動させるため、 スク ラ ップの融着を回避しながら比較的高温度 の排ガスを導入するこ とが可能である。 また、 COや H 2等の可燃成分 を含む排ガスに対しては、 空気や酸素を導入して排ガスの潜熱を顕 熱に変えて予熱に利用するこ とが容易である。 しかし、 炉内のスク ラ ップ充塡率が低いため、 熱交換率がせいぜい 30〜40 %と低いのが 最大の問題点であり; また粗大なスクラ ップや重量の大きいスクラ ップを装入すると内張り耐火物を損傷する危険があった。
一方、 シ ャ フ ト炉型予熱炉は、 スク ラ ップを充塡して排ガスと熱 交換するため高い熱交換率を達成できる力 <、 ガスの低温化にと もな い熱交換率も低下するので、 現実的には約 70 %が限界である。 また 、 炉底部で特に寸法の小さいスクラ ッ プが高温の排ガスに晒される と 800 °C以上の温度にまで加熱され、 スク ラ ップ同士が融着したり 、 ダス トが詰ま ったり して圧損が増加する危険がある。 融着を避け るために水冷火格子を設け、 火格子上にスクラ ップを積載して予熱 する例もあるが、 火格子の稼働空間を確保するために炉内充填率が 低く なり、 熱交換率が低下する問題がある。 この点から、 特開平 7 一 1 80975号公報には、 予熱すると融着する危険がある寸法の小さい 予熱不適ス ク ラ ッ プを予熱しないで専用投入部からアーク炉に投入 するこ とにより融着を防止する例が示されているが、 一部分である とはいえ、 全く 予熱しないで高温の炉へ投入する点が問題である。 発明の開示
以上のよ う に、 ロータ リ ーキルン型予熱炉も シ ャ フ ト炉型予熱炉 も一長一短がある。 そこで本発明は、 双方の長所を生かして欠点を 解消 した予熱、 すなわち広範囲の寸法、 形状のスク ラ ップを融着を 回避しつつ高効率で予熱できる鉄系スク ラ ップの予熱装置および予 熱方法を提供するこ とを目的とする。
本発明の予熱装置は、 鉄系ス ク ラ ッ プを溶解炉で溶解する前に予 熱する鉄系スク ラ ップの予熱装置において、 ロータ リ 一キルン型予 熱炉と シ ャ フ ト炉型予熱炉とを溶解炉の前段に、 並列に設け、 双方 の予熱炉から予熱されたスクラ ップを溶解炉に装入する構造と し、 シ ャ フ ト炉型予熱炉と溶解炉との間にダンバ一を設け、 溶解炉から の排ガスがシ ャ フ ト炉型'予熱炉に直接流入するのを防止し、 排ガス をロータ リ 一キルン型予熱炉へ導人し、 ロータ リ 一キルン型予熱炉 を通過した排ガスをシ ャ フ 卜炉型予熱炉へ導入する構造と したこ と を特徴とする鉄系スクラ ップの予熱装置である。 ロータ リ ーキルン 型予熱炉を通過した排ガスは、 シ ャ フ ト炉型予熱炉の上方から導入 し、 下方から排出する構造とするのが好ま しい。 口一タ リ 一キルン 型予熱炉および Zまたはシ ャ フ ト炉型予熱炉には、 排ガス中の可燃 成分を燃焼させるための空気または酸素導入口を設けるのが好ま し い。 また、 シ ャ フ ト炉型予熱炉には、 プッ シヤ ー型払出 し機構や火 格子開閉型払出 し機構を備えるこ とができ る。
また、 本発明の予熱方法は、 鉄系スク ラ ップを溶解炉で溶解する 前に予熱する鉄系スク ラ ップの予熱方法において、 溶解炉の前段で ロータ リ ーキルン型予熱炉と シ ャ フ ト炉型予熱炉の双方で並列に鉄 系スク ラ ッ プを予熱して溶解炉に装入し、 溶解炉からの排ガスがシ ャ フ ト炉型予熱炉に直接流入するのを防止し、 排ガスをロータ リ 一 キルン型予熱炉に導入し、 ロータ リ ーキルン型予熱炉を通過した排 ガスをシ ャ フ ト炉型予熱炉へ導入するこ とを特徴とする鉄系スク ラ ップの予熱方法である。 口一タ リ 一キルン型予熱炉を通過した排ガ スは、 シ ャ フ ト炉型予熱炉の上方から導入し、 下方から排出するの が好ま しい。 ロータ リ ーキルン型予熱炉および/またはシ ャ フ ト炉 型予熱炉に空気または酸素を導入して排ガス中の可燃成分を燃焼さ せ、 排ガス潜熱を顕熱に転換するのが好ま しい。 図面の簡単な説明
第 1 図は本発明に係る鉄系スクラ ップの予熱装置の例を示す図で ある。 第 2 図は本発明に係る鉄系スク ラ ップの予熱装置の他の例を示す 図である。 ' ― 第 3 図は本発明に係る排ガスの炉内二次燃焼率と口一タ リ 一キル ン内燃焼率の関係を示す図である。
第 4 図は本発明の実施例のスク ラ ップ予熱温度を比較例とと もに 示す図である。 発明を実施するための最良の形態
以下に本発明の特徴および限定理由について詳述する。
本発明では、 溶解炉の前段にロータ リ ーキルン型予熱炉と シ ャ フ ト炉型予熱炉とを並列に設ける。 前述したように、 寸法の大きいス クラ ップは、 ロータ リ ーキルン型予熱炉に装入すると内張り耐火物 を損傷する危険があつたが、 充塡しても通気性がよ く 、 融着しにく いので、 シャフ ト炉型予熱炉に装入するのに適している。 逆に、 寸 法の小さいス ク ラ ッ プをシ ャ フ ト炉型予熱炉に装入する と通気性を 害したり、 融着を生じたりする危険があるが、 口一タ リ ーキルン型 予熱炉では内張り耐火物を損傷する危険もなく 、 揺動によ り適切に 予熱される。 したがって、 本発明のよ うに溶解炉の前段に口一タ リ 一キルン型予熱炉と シ ャ フ ト炉型予熱炉とを並列に設けておけば、 スクラ ップの寸法、 形状等の特性に応じて適切な予熱炉を選んで装 入するこ とにより、 いずれか一方だけを使用 して予熱する場合に生 じる問題を回避するこ とができる。
溶解炉からの排ガスについては、 シ ャ フ ト炉型予熱炉と溶解炉と の間にダンバ一を設け、 溶解炉からの排ガスがシ ャ フ ト炉型予熱炉 に直接流入するのを防止して排ガスをロータ リ 一キルン型予熱炉へ 導入する。 高温である溶解炉からの排ガスを直接シ ャ フ 卜炉型予熱 炉に導入すると、 前述のよ うにシ ャ フ ト炉型予熱炉の底部のスクラ ップが 800 °C以上の温度にまで加熱され、 スクラ ップ同士が融着す る危険がある。 このため、 ダンパーを設けることにより排ガスの^ 入を防止する。 一方、 ロータ リ ーキルン型予熱炉では回転のため融 着の危険はな く 、 むしろ熱交換率が 30〜 40 %と低い欠点を高温の排 ガスを直接導入するこ とにより補ってスクラ ップを高温まで予熱す るこ とが可能となる。
ロータ リ ーキルン型予熱炉を通過した排ガスは、 シャフ 卜炉型予 熱炉へ導入する。 このようにすれば、 排ガスは口一タ リ ーキルン型 予熱炉においてスクラ ップを予熱して温度が低下しているので、 シ ャフ ト炉型予熱炉へ導入してもスクラ ップが融着する問題は生じに く い。 また、 シャフ ト炉型予熱炉は熱交換率が高いので、 温度が低 下した排ガスを用いてもスクラ ップを十分予熱することが可能であ o
排ガスをシャフ ト炉型予熱炉へ導入する方法は、 一般的に行われ ているよう に、 シャフ ト炉型予熱炉の炉底へ導入し、 炉頂から排出 する方法があるが、 上方から導人し、 下方から排出すると、 炉底部 のスク ラ ップが極端に加熱されるこ とがな く 、 融着ゃダス ト詰ま り による圧損増加をより確実に防止できる。 すなわち、 排ガスを炉底 へ導入し、 炉頂から排出する向流の熱交換では、 炉底部のスク ラ ッ プが極端に加熱され、 融着の危険が高ま る。 さ らに、 排ガス中のダ ス 卜が充填層内の排ガス導入部である炉底部に堆積しやすいこ とと も相ま って、 圧損増加が大き く なりやすい。 これに対し、 排ガスを 上方から導入し、 下方から排出すると、 低温のスク ラ ップに高温の 排ガスが接触し、 その後並流の熱交換になるので、 スクラ ップが極 端に加熱されることはない。 また、 ダス トが堆積しやすい箇所と最 も高温となる箇所とが異なるこ と もあって、 融着ゃダス ト詰ま りに よる圧損増加を確実に防止できるのである。 また、 口一タ リ 一キルン型予熱炉ゃシャフ 卜炉型予熱炉に空気導 入口を設けておけば; ^ガスの顕熱だけではスク ラ ップの予熱がネ 十分な場合などには、 この空気導入口から空気または酸素を導入し て排ガス中の C O, H 2といった可燃成分を燃焼させ、 排ガス潜熱を顕 熱に転換して予熱に有効に利用するこ とができる。 特に、 口一タ リ 一キルン型予熱炉では、 融着を生じずに 1 200 °C程度までの予熱が可 能であるので、 この手段が有効である。
前記予熱炉内の二次燃焼について、 さ らに説明する。
溶解炉から出た排ガス中に C O, H 等の可燃性ガスを多 く 含む 場合、 予熱炉内でその可燃性ガスの全部または一部を燃焼させるこ とにより、 排ガス顕熱のみならず、 潜熱をも有効にスク ラ ッ プ予熱 に利用できる。 この燃焼のための空気または酸素の導入位置は、 燃 焼空間を確保できるロータ リ一キルンのガス導入口付近が望ま しい 。 また、 多段燃焼する場合にはシ ャ フ ト炉の燃焼も効果的である。 燃焼量については以下のこ とを考慮して決定するこ とが望ま しい o
• ロータ リ ーキルンの耐火物表面および鉄皮の温度が許容範囲内 に収ま る こ と。
例えば、 耐火物表面 1 3 0 0 °C、 鉄皮温度≤ 3 0 0 °C。
' スク ラ ップが予熱後、 溶着または酸化溶解しない程度にする こ と。
例えば、 口一タ リ 一キルン出口スクラ ップ温度≤ 1 2 0 0 °C、 シ ャ フ ト炉出口スクラ ップ温度≤ 8 0 0 °C。
• 燃焼後の排ガス量が排風能力を越えないこ と。
前記燃焼の制約からロータ リ 一キルンにおいて、 排ガスの完全燃 焼ができない場合には、 ロータ リ ーキルン通過後、 再度空気または 酸素を導入して燃焼を行う と、 より有効に潜熱を利用する こ とが可 能となる。
図 3 に排ガスの二次燃焼についての説明図を示す。 この図で横幸 i は溶解炉炉内での二次燃焼率で、 縦軸はロータ リ ーキルン内燃焼率 を示す。 こ こで、 炉内二次燃焼率 =排ガス中 C 0 2 濃度 Z排ガス中 ( C 0 + C 0 ) 濃度、 口 一タ リ 一キルン内燃焼率 - ロ ー タ リ ーキ ルン内で燃焼する C 0ガス量ノロ一タ リ 一キルンに導入される排ガ ス中 C O量である。 さ らに、 ロータ リ ーキルン内の理論排ガス燃焼 温度が 1 8 0 0 °C (完全燃焼した場合の例) を越える点を、 ロータ リ ーキルン内燃焼の限界と して、 図中の実線が決められた。 この発 明者の知見から、 炉内二次燃焼率の最適領域は約 1 0 %から 6 0 % までにあり、 それに対して、 口一タ リ ーキルン内燃焼率は約 5 0 % から 1 0 0 %まで増加させるこ とは可能であり、 この領域で本発明 の効果は十分に期待できるこ とがわかった。 すなわち、 本発明の好 ま しい排ガス燃焼率は前記実線の斜線内 (以下) で示される。
以下に、 本発明について添付の図面に基づいてさ らに詳述する 第 1 図および第 2 図に本発明の鉄系スク ラ ップの予熱装置の例を 示す。 第 1 図は、 炉底のスクラ ップを押し出すこ とにより溶解炉 1 へ装入するプッ シ ヤ ー型払出し機構 1 1をシ ャ フ ト炉型予熱炉 3 に備 えた例であり、 第 2図は、 スク ラ ップを積載して予熱し、 順次開閉 してス ク ラ ッ プを溶解炉 1 へ装入する火格子開閉型払出 し機構 1 2を シ ャ フ ト炉型予熱炉 3 に備えた例で、 かつ複数の火格子開閉型払出 し機構 1 2間に空間を形成したものである。
鉄系スクラ ップのう ち、 シ ャ フ ト炉型予熱炉 3 に装入するのが不 適切な 300mm以下のシュ レ ッ ダ一屑 5 aをロータ リ ーキルン型予熱 炉 2 に上方から、 また、 充塡しても通気性を確保できる 300mm以上 のスクラ ップ 5 bをシ ャ フ ト炉型予熱炉 3 に炉頂から装入する。 溶 解炉 1 へのスク ラ ッ プ払出 し速度はロータ リ ーキル ン型予熱炉 : シ ャ フ ト炉型予熱炉 = 4 : 6 の割合と し、 ロータ リ 一キルン型予熱炉 2 からは連続装入、 シ ャ フ ト炉型予熱炉 3 からはバッチ装入また 半連続装入とする。
本発明では、 鉄ス ク ラ ッ プの分類と して、 例えば A屑および B屑 に仕分けされる。 A屑は口一タ リ 一キルン型予熱炉に適したスクラ ップで、 サイズは平均径で 3 0 O m m以下で、 肉厚が 3 m m以下の 薄片で構成された屑または小球状の屑である。 種類と しては、 シュ レッダ一屑、 短片の新断屑、 缶屑等がこれに含まれる。 この A屑を シ ャ フ ト炉内に充墳すると、 空隙率の低下により通気性が阻害され たり、 また薄肉の場合には酸化発熱により スクラ ップ同士の融着が 発生し易く なる。 しかし、 口 一タ リ 一キルンの場合には揺動により 融着は回避される。
B屑はシ ャ フ ト炉型予熱炉に適したスク ラ ップで、 サイズは平均 径で 3 0 O m m以上で、 比較的肉厚のある屑である。 種類と しては 、 クロ ップ屑、 重量屑、 プレス屑等がこれに含まれる。 この B屑を ロータ リ 一キルンに装入すると、 搬送時の内側耐火物の損傷が問題 となるが、 シ ャ フ ト炉に装入した場合には通気性、 融着性共に問題 とならない範囲まで装入が可能である。
シ ャ フ ト炉型予熱炉 3下部の傾斜部 4 にはダンパー 6 を設け、 シ ャ フ 卜炉型予熱炉 3 内のスクラ ップ 5 bを、 第 1 図に示すプッ シ ャ 一型払出 し機構 1 1または第 2 図に示す火格子開閉型払出 し機構 1 2に よ って払い出す時のみダンバ一 6 を開とする。 その他の場合はダン ノ 一 6 を閉と しておき、 溶解炉 1 の排ガス 9 は口一夕 リ ーキルン型 予熱炉 2 に導入し、 ロータ リ ーキルン型予熱炉 2 を回転させながら シ ュ レ ッ ダ一屑 5 aを予熱する。 この時、 シュ レ ッ ダ一屑 5 aが融 着しない 1 200 °Cを目標と し、 必要に応じて空気を導入して排ガス 9 中の COまたは H 2を燃焼させる。 口一タ リ 一キルン型予熱炉 2 を出た排ガス 9 は、 排ガス導管 7 を 介してシ ャ フ ト炉型予^炉 3 に上部から導入し、 下部の排気口 8 ら排気する こ とによって、 シ ャ フ ト炉型予熱炉 3 内のスク ラ ップ 5 bを均一に予熱する。
シ ャ フ ト炉型予熱炉 3 内にはスク ラ ップ 5 bが充塡されているの で、 融着を防止するため、 800 °C以下に予熱を制御する必要がある 。 そのため、 800°Cを越える場合にはスク ラ ップ 5 bの充塡層高さ を調整したり、 ロータ リ ーキルン型予熱炉 2 における空気または酸 素導入量を調整したり して予熱温度を 800 °C以下に制御する。 逆に 、 排ガス温度が低すぎる場合は、 シ ャ フ ト炉型予熱炉 3 においても 空気または酸素を導入し、 排ガス 9 中の COまたは H 2を燃焼させて予 熱温度を高めるこ と もできる。
以上の一連の操作により、 シ ャ フ ト炉型予熱炉に不適切なシユ レ ッダ一屑からロータ リ 一キルン型予熱炉に不適切な大型屑までを融 着の限界温度まで効率的に予熱するこ とができる。
次に、 本発明の実施例について説明する。 実施例
溶解炉から発生する排ガス量が 4000Nm 3 Z h r 、 排ガス温度が 1 0 00 °C、 排ガス成分が CO: 60容量%, C0 2 : 30容量%, N 1 0容量% の溶解炉で総量 20 t Z h r のスクラ ップを溶解する際、 予熱効率 30 %のロータ リ ーキルン型予熱炉と予熱効率 50 %のシ ャ フ ト炉型予熱 炉とを用いて、 以下の各条件でスクラ ップを予熱した。 ただし、 こ こで予熱効率とは、 導入された排ガスの顕熱に対して、 スクラ ップ に伝達される熱量の割合を言う。
実施例 1
ロータ リ ーキルン型予熱炉と シ ャ フ ト炉型予熱炉とを並列に配置 し、 溶解炉から発生した排ガスをロータ リ ーキルン型予熱炉通過後 、 シャフ ト炉型予熱炉に導入し、 スク ラ ップの予熱を行った。 スク— ラ ップについては、 ロータ リ ーキルン型予熱炉に A屑を 1 0 t / h r、 シャフ ト炉型予熱炉に B屑を 1 0 tノ h rの速度で独立に供給 した。 その結果、 スク ラ ップ予熱温度は、 A屑が 3 9 3 °C、 B屑が 4 4 7 °Cとなり、 後述の比較例 1 および 2 に比べてスク ラ ップ温度 が向上した。
実施例 2
ロータ リ ーキルン型予熱炉で、 排ガス中に含まれる COガス量のう ち 20 %を空気または酸素によって燃焼させた以外は、 実施例 1 と同 一の条件でスクラ ップを予熱した。 その結果、 スク ラ ップ予熱温度 は、 A屑が、 6 4 5 °C、 B屑が 7 1 7 °Cと更に向上した。
比較例 1
ロータ リ 一キルン型予熱炉のみを用いて、 同一条件の排ガスで A 暦を 2 0 t Z h rの速度で供給し、 予熱に供した。 スクラ ップ予熱 温度は、 全スク ラ ップと も 2 0 8 °Cであった。
比較例 2
シャフ ト炉型予熱炉のみを用いて、 同一条件の排ガスで B屑を 2 0 t Z h r の速度で供給し、 予熱に供した。 スク ラ ップ予熱温度は 、 全スク ラ ップと も 3 2 9 °Cであった。
以上の実施例について、 図 3 に実施例 2 の炉内燃焼率と口一タ リ 一キルン内燃焼率をプロ ッ 卜 し、 図 4 に実施例および比較例につい てスク ラ ップ予熱温度の結果を示す。 図 4 から実施例 2では、 スク ラ ップ温度が高く 、 口一タ リ ーキルン内での燃焼率 2 0 %でも、 か なりの効果があることがわかる。 ロータ リ ーキルン内での燃焼がな い実施例 1 においても、 比較例の単一の予熱炉による予熱より実施 例の並列したロータ リ 一キルン型予熱炉と シャ フ ト炉型予熱炉によ る予熱の効率は顕著に向上している こ とがわかる。 産業上の利用可能性
本発明によれば、 シャ フ ト炉型予熱炉と 口一タ リ ーキルン型予熱 炉を並列に設けるので、 各予熱炉に独立にスク ラ ップを装入 · 予熱 でき、 さ らに空気または酸素導入口を有し各予熱炉での排ガス燃焼 率も調整できるので、 広範囲の種類、 サイズおよび形状のスク ラ ッ プを融着を回避して、 高効率で予熱するこ とが可能となる。

Claims

請 求 の 範 囲
1 . 予熱した鉄系スク ラ ップを主原料とする溶解炉と、 溶解炉か ら発生する排ガスを導入してスクラ ップを予熱する予熱装置と、 予 熱後の排ガスを処理する排ガス処理装置を有する鉄系スク ラ ップの 予熱装置において、 ロ ータ リ 一キルン型予熱炉と シ ャ フ ト炉型予熱 炉を溶解炉の前段に並列に設け、 前記溶解炉の排ガスを先ずロータ リ 一キルン型予熱炉に導入し、 前記ロータ リ ーキルン型予熱炉の排 ガスをシャフ ト炉型予熱炉に導入する構造と して、 鉄系スク ラ ップ を両方の予熱炉で独立に装入 * 予熱後、 溶解炉へ供給可能と したこ とを特徴とする鉄系ス ク ラ ッ プの予熱装置。
2 . 前記シ ャ フ ト炉型予熱炉と溶解炉との間にダンパーを設け、 溶解炉からの排ガスがシ ャ フ ト炉型予熱炉に直接流入するこ とを防 止した請求の範囲 1 記載の鉄系ス ク ラ ッ プの予熱装置。
3 . 前記ロータ リ ーキルン型予熱炉を通過した排ガスをシ ャ フ ト 炉型予熱炉の上方から導入し、 下方から排出する構造と した請求の 範囲 1 または 2記載の鉄系スクラ ップの予熱装置。
4 . 前記シ ャ フ ト炉型予熱炉にプッ シ ヤ ー型払出し機構を設けた 請求の範囲 1 から 3 のいずれかに記載の鉄系スク ラ ップの予熱装置
5 . 前記シ ャ フ ト炉型予熱炉が火格子開閉型払出 し機構を備えた 請求の範囲 1 から 3 のいずれかに記載の鉄系スク ラ ップの予熱装置
6 . 予熱した鉄系スク ラ ップを主原料とする溶解炉と、 溶解炉か ら発生する排ガスを導入してスクラ ップを予熱する予熱装置と、 予 熱後の排ガスを処理する排ガス処理装置を有する鉄系ス ク ラ ッ プの 予熱装置において、 ロータ リ ーキルン型予熱炉と シ ャ フ ト炉型予熱 炉を溶解炉の前段に並列に設げ、 前記溶解炉の排ガスを先ずロータ リ ーキルン型予熱炉に導入し、 前記口一タ リ 一キルン型予熱炉の排— ガスをシ ャ フ ト炉型予熱炉に導入する構造と して、 さ らに前記口一 タ リ ーキルン型予熱炉およびシ ャ フ ト炉型予熱炉の少な く と も一つ に排ガス中の可燃成分を燃焼するための空気または酸素導入ロを設 け、 各予熱炉での燃焼割合を調整できるこ とを特徴とする鉄系スク ラ ップの予熱装置。
7 . 鉄系スク ラ ップを溶解炉で溶解する前に予熱する鉄系スクラ ップの予熱方法において、 溶解炉の前段で並列に設けられたロータ リ一キルン型予熱炉と シ ャ フ 卜炉型予熱炉の両方に、 鉄系スク ラ ッ プを装入し、 溶解炉からの排ガスがシ ャ フ ト炉型予熱炉に直接流人 するのを防止して排ガスをロータ リ ーキルン型予熱炉に導入し、 口 一夕 リ ーキルン型予熱炉を通過した排ガスをシ ャ フ ト炉型予熱炉へ 導入して予熱するこ とを特徴とする鉄系スク ラ ップの予熱方法。
8 . 前記ロータ リ 一キルン型予熱炉を通過した排ガスをシ ャ フ 卜 炉型予熱炉の上方から導入し、 下方から排出する請求の範囲 7記載 の鉄系スクラ ップの予熱方法。
9 . 前記ロータ リ ーキルン型予熱炉およびシ ャ フ ト炉型予熱炉の 少な く と も一つに空気または酸素を導入して排ガス中の可燃成分を 、 各予熱炉での燃焼割合を制御して燃焼させる請求の範囲 7 または 8記載の鉄系スク ラ ップの予熱方法。
1 0. 前記鉄スクラ ップ系スクラ ップの平均径が 3 0 0 m m以下の スク ラ ップをロータ リ ーキルン型予熱炉に、 平均径が 3 0 0 m m以 上のスク ラ ップをシ ャ フ ト炉型予熱炉に装入し予熱する請求の範囲 7 から 9 のいずれかに記載の鉄系スクラ ップの予熱方法。
1 1. 前記ロータ リ ーキルン型予熱炉の予熱温度が 1 2 0 0 °C以下 で、 シ ャ フ ト炉型予熱炉では 8 0 0 °C以下である請求の範囲 Ί 記載 のいずれかに記載の鉄系スク ラ ップの予熱方法。
PCT/JP1997/000383 1996-02-13 1997-02-13 Appareil et procede de prechauffage de dechets metalliques a base de fer WO1997030320A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/117,714 US6126716A (en) 1996-02-13 1997-02-13 Iron-base scrap preheating apparatus and method
EP97902675A EP0890809A1 (en) 1996-02-13 1997-02-13 Iron-base scrap preheating apparatus and method
KR1019980706166A KR100287013B1 (ko) 1996-02-13 1997-02-13 예열 철계 스크랩 제조방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4841096A JP3092083B2 (ja) 1996-02-13 1996-02-13 鉄系スクラップの予熱装置および予熱方法
JP8/48410 1996-02-13

Publications (1)

Publication Number Publication Date
WO1997030320A1 true WO1997030320A1 (fr) 1997-08-21

Family

ID=12802544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000383 WO1997030320A1 (fr) 1996-02-13 1997-02-13 Appareil et procede de prechauffage de dechets metalliques a base de fer

Country Status (6)

Country Link
US (1) US6126716A (ja)
EP (1) EP0890809A1 (ja)
JP (1) JP3092083B2 (ja)
KR (1) KR100287013B1 (ja)
CN (1) CN1211316A (ja)
WO (1) WO1997030320A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926059A1 (de) * 1999-06-08 2000-12-14 Sms Demag Ag Vorwärmeinrichtung
WO2001020046A1 (en) * 1999-09-14 2001-03-22 Danieli Technology, Inc. High temperature premelting apparatus
DE19956578A1 (de) * 1999-11-25 2001-05-31 Sms Demag Ag Verfahren und Vorrichtung zum Vorwärmen und zum kontinuierlichen Einbringen einer Charge in einen Elektrolichtbogenofen
DE10355549A1 (de) * 2003-11-27 2005-06-23 Intracon Gmbh Chargiergutvorwärmer
WO2013044410A1 (zh) * 2011-09-28 2013-04-04 河北文丰钢铁有限公司 冶炼用罐
KR101462465B1 (ko) * 2013-12-04 2014-11-20 한국에너지기술연구원 배가스 부분 재순환 스크랩 예열장치, 예열방법, 그 예열장치를 갖는 전기 아크로 및 그 전기 아크로의 작동방법
KR101567866B1 (ko) * 2014-03-07 2015-11-10 주식회사 에스에이씨 전기 아크로 및 전기 아크로의 스크랩 예열 방법
CN103994654B (zh) * 2014-05-05 2015-07-08 河北中北环保科技有限公司 一种可连续生产的回转炉及其生产方法
CN108413775A (zh) * 2017-03-11 2018-08-17 张昌剑 回转式托指竖井废钢预热系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821691A (ja) * 1994-07-07 1996-01-23 Nkk Corp 電気炉による鉄スクラップの予熱溶解方法
JPH08271164A (ja) * 1995-03-31 1996-10-18 Nippon Steel Corp スクラップの予熱・溶解装置
JPH08285475A (ja) * 1995-04-11 1996-11-01 Nippon Steel Corp 鉄系スクラップの予熱方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2328046A1 (fr) * 1975-10-14 1977-05-13 Siderurgie Fse Inst Rech Procede et dispositif d'elaboration d'acier a partir de produits solides riches en fer
DE3713369A1 (de) * 1987-04-21 1988-11-10 Kortec Ag Chargiergutvorwaermer zum vorwaermen von chargiergut eines metallurgischen schmelzaggregates
JPH0646145A (ja) * 1992-07-24 1994-02-18 Nippon Telegr & Teleph Corp <Ntt> 発信者情報通知サービス方法
JPH06228662A (ja) * 1993-02-03 1994-08-16 Daido Steel Co Ltd 鉄系スクラップの予熱方法
JPH07190629A (ja) * 1993-04-15 1995-07-28 Ishikawajima Harima Heavy Ind Co Ltd スクラップ原料予熱装入装置
JPH07180975A (ja) * 1993-12-21 1995-07-18 Daido Steel Co Ltd 製鋼用アーク炉におけるスクラップ予熱装置
DE69613316T2 (de) * 1995-03-31 2002-02-28 Nippon Steel Corp., Tokio/Tokyo Verfahren und vorrichtung zum vorheizen und schmelzen von schrott
JPH0914865A (ja) * 1995-06-29 1997-01-17 Nkk Corp 電気炉におけるスクラップの予熱装置および予熱方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821691A (ja) * 1994-07-07 1996-01-23 Nkk Corp 電気炉による鉄スクラップの予熱溶解方法
JPH08271164A (ja) * 1995-03-31 1996-10-18 Nippon Steel Corp スクラップの予熱・溶解装置
JPH08285475A (ja) * 1995-04-11 1996-11-01 Nippon Steel Corp 鉄系スクラップの予熱方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0890809A4 *

Also Published As

Publication number Publication date
EP0890809A4 (ja) 1999-02-17
EP0890809A1 (en) 1999-01-13
JPH09217991A (ja) 1997-08-19
JP3092083B2 (ja) 2000-09-25
CN1211316A (zh) 1999-03-17
KR100287013B1 (ko) 2001-05-02
KR19990082433A (ko) 1999-11-25
US6126716A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
CN1102662C (zh) 废钢铁料的预热的设备和预热方法
JPH0442452B2 (ja)
SU1496637A3 (ru) Способ непрерывного рафинировани стали в электропечи и устройство дл его осуществлени
WO2001018256A1 (fr) Procede et equipement pour la fusion du metal
SE452476B (sv) Forfarande for smeltning av jernskrot
EP2409101A1 (en) Steel production facility
WO1997030320A1 (fr) Appareil et procede de prechauffage de dechets metalliques a base de fer
JP2009102697A (ja) 溶鋼の製造方法
US5889810A (en) Apparatus for preheating and melting of scrap and process for the same
KR101016999B1 (ko) 철 어글로머레이트를 예열하기 위한 방법
US5066325A (en) Cogeneration process for production of energy and iron materials, including steel
US3900696A (en) Charging an electric furnace
JPH0914865A (ja) 電気炉におけるスクラップの予熱装置および予熱方法
EP1160337A1 (en) Process to preheat and carburate directly reduced iron (DRI) to be fed to an electric arc furnace (EAF)
JP4762420B2 (ja) ロータリーキルンを用いた酸化鉄の溶融還元方法
US20020002880A1 (en) Process to preheat and reduce directly reduced iron (DRI) to be fed to an electric arc furnace (EAF)
EP1226283B1 (en) High temperature premelting apparatus
US3964897A (en) Method and arrangement for melting charges, particularly for use in the production of steel
JPH0633129A (ja) 熔鋼を製造する方法及びその装置
JPH1114263A (ja) 金属溶解炉および金属溶解方法
WO2024185210A1 (ja) 溶鉄の製造方法
JPH1047860A (ja) 複式アーク溶解炉およびそれを用いた冷鉄源の溶解方法
KR100384636B1 (ko) 트윈전기로에서의스크랩예열방법
WO2009034544A2 (en) Static slope reduction furnace
JP3451901B2 (ja) 移動型炉床炉の操業方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97192245.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09117714

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997902675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980706166

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997902675

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980706166

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980706166

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997902675

Country of ref document: EP