WO1997017303A1 - Verre de couleur vert fonce - Google Patents

Verre de couleur vert fonce Download PDF

Info

Publication number
WO1997017303A1
WO1997017303A1 PCT/JP1996/003302 JP9603302W WO9717303A1 WO 1997017303 A1 WO1997017303 A1 WO 1997017303A1 JP 9603302 W JP9603302 W JP 9603302W WO 9717303 A1 WO9717303 A1 WO 9717303A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
terms
total
iron
Prior art date
Application number
PCT/JP1996/003302
Other languages
English (en)
French (fr)
Inventor
Mizuki Sasage
Takashi Kijima
Shiiro Tanii
Original Assignee
Asahi Glass Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company Ltd. filed Critical Asahi Glass Company Ltd.
Priority to US08/860,470 priority Critical patent/US6071840A/en
Priority to EP96937552A priority patent/EP0803479B1/en
Priority to JP51808397A priority patent/JP3256243B2/ja
Priority to DE69613346T priority patent/DE69613346T2/de
Publication of WO1997017303A1 publication Critical patent/WO1997017303A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/10Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce uniformly-coloured transparent products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • Y10S501/904Infrared transmitting or absorbing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • Y10S501/905Ultraviolet transmitting or absorbing

Definitions

  • the present invention relates to a dark green glass having a low visible light transmittance, a low ultraviolet transmittance and a low solar transmittance, and suitable for a rear window glass, a sunroof, etc. of a passenger car.
  • green glass having high visible light transmittance, low solar radiation transmittance and low ultraviolet transmittance has been used for windshields. It is preferable that the rear window glass and the like also exhibit a green color tone.
  • Nickel is not preferred because it sometimes results in the formation of nickel sulfide in the glass. Nickel sulfide can hardly be visually confirmed and does not harm the glass under normal conditions.However, if nickel sulfide is present in the glass after the quenching and tempering treatment, it undergoes crystal transition at room temperature and expands in volume. May generate enough stress to break glass.
  • JP-A-2-64038 (corresponding U.S. Pat. No. 4,873,206) No. 759,43 (corresponding European Patent Publication No. 482,533) describes a nickel-free glass having a visible light transmittance of less than 40%.
  • Japanese Patent Application Laid-Open No. 2-64038 has a problem that the solar radiation transmittance increases because the ability to block infrared rays is not so large.
  • the solar radiation transmittance is low, the iron content is large, so there are significant production problems such as the time required for changing the substrate.
  • Japanese Patent Application Laid-Open No. 6-247740 describes a glass in which the Ni0 component is replaced with a chromium component to reduce the visible light transmittance. However, this has a relatively long dominant wavelength and low stimulus purity by adding selenium over 15 PPm and aims to obtain a neutral (gray) color instead of a green color. Further, U.S. Pat.No. 5,411,922 describes a glass having a low visible light transmittance containing iron, cono-poly, and titanium as well as selenium of at least 10 Ppm as an essential component. It has been.
  • Se is a volatile and expensive substance at all, and more than 90% of the Se injected into the kiln is mixed with combustion exhaust gas and discharged outside the furnace. It is captured by the absorption liquid in the desulfurization absorption tower. Most of the Se in the solution is recovered and used as a raw material.However, in order to treat the remaining Se ions in the solution after the recovery sufficiently, a lot of capital investment and running is required. Cost is required. In Japan, regulations on the concentration of Se in industrial wastewater will be enforced from 1997.
  • Examples 11 to 13 of U.S. Pat.No. 5,411,922 describe the effect of titanium addition on specific glasses containing iron, cobalt, and selenium as essential components. . According to this, as the content of titanium is increased from 0 to 0.63% by weight, the dominant wavelength is changed from 484.6 nm to 541.4 nm, and the excitation purity is 9.3. % To 1.8%, making it easier to obtain neutral (gray) colors.
  • European Patent Publication No. 653388 discloses a gray glass to which Ni 0 and Z of 50 ppm or more or Se or 9 ppm or more are added.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, to contain only a small amount or no Se, and to reduce the visible light transmittance and the solar transmittance, the total iron content and the chromium content are reduced.
  • the goal is to obtain a glass that exhibits a low green color.
  • it is intended to obtain a glass which is easy to melt, is manufactured by a normal float glass manufacturing method, and exhibits a deep green color with significantly reduced ultraviolet transmittance.
  • the present invention is relative to the base component 1 00 parts by weight of a soda lime glass, as a coloring component, total iron in terms of F e 2 0 3:. 0.
  • the glass of the present invention typically has a visible light transmittance ( A light source) is 55% or less and the solar transmittance is 50% or less. When the thickness is 5 mm, the transmittance of light having a wavelength of 370 nm is 25% or less.
  • BEST MODE FOR CARRYING OUT THE INVENTION The glass of the present invention is obtained by adding a predetermined amount of a coloring component to 100 parts by weight of a base component composed of soda-lime glass. This coloring component is described below.
  • F e 2 0 3 becomes too large visible light transmittance and the content of total iron as calculated is less than 5 parts by weight 0.5, when 2 more than 0 parts by weight, heat is radiant heat of the flame is shut off at the time of melting It is difficult to reach the inside of the molten glass, making it difficult to melt. In addition, the specific gravity of the molten glass increases, and it takes a long time to change the base material, which poses significant production problems.
  • the total iron is 1 5-50% of the total iron content of bivalent iron as calculated as F e 2 0 3 is converted to the F e 2 0 3.
  • the solar radiation transmittance becomes too large. If it is more than 50%, the radiant heat of the flame is interrupted during melting, making it difficult for the heat to reach the inside of the molten glass, making it difficult to melt.
  • the formation of ferric sulfide facilitates the generation of amber color.
  • a preferable content of total iron is from 0.5 to 1.5 parts by weight with respect to the base component 1 00 parts by weight
  • the content of the preferred F e 0 is the mother component 100 wt It is 0.15 to 0.40 parts by weight, especially 0.20 to 0.40 parts by weight based on parts.
  • Titanium together with the cobalt and iron contained as coloring components, colors the glass dark green.
  • the invention by the addition of T i 0 2 in excess of 1.0 parts by weight relative to the base component 1 00 parts by weight, may reduce the need amount of S e.
  • green can be developed without including Se.
  • Titanium is a component that simultaneously absorbs ultraviolet light. In particular, it plays an important role in reducing the transmittance of light with a wavelength of 370 nm.
  • All titanium in terms of T i 0 2 is 1.0 parts by weight or less relative to the base component 1 00 parts by weight If it is below, it becomes difficult to obtain dark green glass as the transmittance of light with a wavelength of 370 nm increases, and if it exceeds 3.0 parts by weight, reaction with molten tin in a float bath Cannot be ignored.
  • the total titanium is at least 1.1 parts by weight based on 100 parts by weight of the mother component.
  • the glass of the present invention but not necessarily, the total cerium vanadium 0.5 parts by weight up to a total of vanadium in terms of V 2 0 5, but not necessarily, obtained by converting the cerium C e 0 2
  • the transmittance of light with a wavelength of 370 nm can be further reduced.
  • Cobalt is an essential component added to obtain low visible light transmittance. If the content of Co 0 is less than 0.003 parts by weight with respect to 100 parts by weight of the base component, the visible light transmittance becomes too large, and if it exceeds 0.02 parts by weight, the color tone of the glass becomes bluish.
  • the addition of Se is not essential, but may be added to adjust the light transmittance in the visible and ultraviolet regions.
  • the content exceeds 0.0008 parts by weight with respect to 100 parts by weight of the mother component, the main wavelength becomes long.
  • the addition amount is smaller. In that sense, it is preferably substantially not contained. That is, it is preferable not to exceed the amount inevitably mixed as an impurity.
  • the stimulus purity of the glass can be reduced to match that, and the color can be adjusted slightly closer to gray.
  • Se is added in an amount of 0.0002 parts by weight or more, preferably 0.0003 parts by weight or more, based on 100 parts by weight of the mother component.
  • the change in the stimulus purity due to the addition of Se is steep, and when the amount of Se added is large, the stimulus purity increases, and conversely, a dark green color cannot be obtained. There is.
  • the Fe 0 amount is set to 0.28 parts by weight or more, particularly 0.30 parts by weight or more based on 100 parts by weight of the base component.
  • the amount of Se added is 0.0008 parts by weight or less, preferably 0.0006 parts by weight or less based on 100 parts by weight of the mother component.
  • the addition of chromium is not essential, even if it is added especially to reduce the solar transmittance, Good.
  • the total chromium converted to C r 2 0 3 is more than 0.05 parts by weight with respect to the base component 1 0 Q part by weight, there is a possibility of foreign matter caused by the generation of Kuromai bets. In order to reduce such a risk, it is preferable that the amount of addition be smaller.
  • Nickel (NiO) is preferably not substantially contained in the present invention. Since the rear window glass and sunroof of an automobile, which is the main use of the present invention, are usually reinforced, if nickel is contained in the glass, there is a possibility that the glass may be naturally destroyed. Therefore, do not exceed the amount that is inevitably mixed as an impurity.
  • substantially none of Se, chromium, and nickel is contained.
  • nickel is not substantially contained, but 0.002 to 0.0008 parts by weight of Se is contained with respect to 100 parts by weight of the mother component. It becomes a glass exhibiting a reddish color.
  • the source one da-lime glass as a base component, in weight%, S i 0 2: 65 ⁇ 75 %, A 1 2 0 a: 0.;! ⁇ 5. 0%, N a 2 0 + K 2 0: 1 0 ⁇ 18%, C a 0: 5 ⁇ 1 5%, MgO: 0 ⁇ 6%, S Oa:. 0. 05 ⁇ 1 0%, Preferably, it consists of
  • S i 0 content 2 is poor weather resistance less than 65%, tends to be devitrified and greater than 75%.
  • a 1 2 0 content of 3 is less than 1% 0.1 and water resistance is lowered, the solubility decreases with more than 5%.
  • Na 20 and K 20 are components that promote melting of the raw material. If the total content of both is less than 10%, the effect is small, and if it is more than 18%, the weather resistance deteriorates.
  • C a0 and M gO are components that promote dissolution of the raw materials and improve weather resistance. If the content of CaO is less than 5%, the above-mentioned effect is small, and if it is more than 15%, devitrification tends to occur. MgO is not required, but can be added. However, if it exceeds 6%, devitrification tends to occur.
  • S 0 3 is used as a refining agent, usually remains in the 0.05 to 1.0 percent about glass.
  • the glasses of the present invention are particularly preferred as automotive rear window glasses and sunroofs, and typically have the following optical properties: That is, a glass having the above composition When the thickness is 5 mm, the visible light transmittance (A light source) Tva force is 55% or less, and the solar transmittance Te is 50% or less. Also, typically, the transmittance of ultraviolet light at a wavelength of 370 nm is 25% or less, preferably 20% or less.
  • the main wavelength D w measured by illuminant C is four hundred eighty to five hundred and sixty nm, preferably from 480 to 550 1 111, and most preferably a 490 ⁇ 520 nm, excitation purity P e is 4 to 16%, preferably 6 to 15%, particularly preferably 7 to 12%. Further, in the present invention, by dividing the visible light transmittance (A source) T va in the solar transmittance T e ratio
  • (Tva / Te) is preferably 1.3 or more. If this ratio is small, the glass will have low solar radiation blocking ability instead of visible light transmittance, that is, the glass will be apparently affected by the temperature of the outside air.
  • T ve ZT e is preferably in the condition as follows. First 1 All titanium in terms of T i 0 2 relative to the base component 1 00 parts by weight. 1 part by weight or more, especially 1. It is good preferable that two or more parts. Further, it is preferable that the proportion of bivalent iron as calculated as F e 2 0 3 Fe 2 0 3 in the total iron as calculated as of 30% or more. Further total iron as calculated as F e 2 0 3 with respect to the base component 1 00 parts by weight, 0.9 parts by weight or less, and particularly it is preferable to below 85 parts by weight 0.1.
  • the glass having the composition of embodiment A typically has a visible light transmittance (A light source) of 25 to 40% and a solar transmittance of 10 to 30% when having a thickness of 5 mm. is there.
  • a light source a visible light transmittance
  • solar transmittance 10 to 30% when having a thickness of 5 mm. is there.
  • T ve / T e is large and exhibits a relatively clear green color.
  • Another preferred composition (embodiment B) of the glass of the present invention is as follows. That is, for the mother component 1 00 parts by weight, as coloring components, total iron in terms of Fe 2 0 3:. 1. 0 ⁇ 2 0 parts by weight, the total of titanium in terms of T i 0 2: 1. 0 than ⁇ 3.0 parts by weight, CoO:. 0. 0 1 ⁇ 0 02 parts by weight, S e: 0- 0. 0008 parts by weight, the total chromium converted to C r 2 0 3:. 0 ⁇ 0 02 parts by weight, All vanadium in terms of V 2 Q 5:. 0 ⁇ 0 5 parts by weight, the total cerium arm in terms of C e 0 2:. 0 ⁇ 0 5 parts by weight containing, total iron as calculated as F e 2 0 3 the percentage of divalent iron translated into F e 2 0 3 in the one in which a 1 5-40%.
  • the glass of embodiment B typically has a visible light transmittance (A light source) of 40% or less and a solar transmittance of 30% or less when having a thickness of 5 mm.
  • T va ZT e is preferably in the condition as follows.
  • First base component 1 00 total titanium as calculated as T i 0 2 relative parts by weight 1.1 parts by weight or more, especially 1. It is preferred that two or more parts. Further, it is preferable that the proportion of bivalent iron as calculated as F e 2 0 3 in the total iron as calculated as F e 2 0 3 is 20% or more.
  • the total iron as calculated as F e 2 0 3 with respect to base 100 parts by weight of component 1. less 4 parts by weight.
  • a glass having a thickness of 5 mm, a visible light transmittance (A light source) of 25 to 40%, and a solar transmittance of 10 to 30% is obtained.
  • 0.000002 to 0.0008 part by weight more preferably 0.0003 to 0.0006 part by weight, can be added.
  • the total iron as calculated as F e 2 0 3 with respect to the base component 1 00 by weight part 1. and 2 parts by weight or more, a Co O 0. It is preferably at least 12 parts by weight. In this way, when the thickness is 5 mm, a glass having a visible light transmittance (A light source) of 25% or less and a solar transmittance of 20% or less is obtained.
  • a light source visible light transmittance
  • the following coloring component composition (aspect C) can be used within the range of the glass composition of the present invention.
  • coloring components total iron in terms of F e 2 0 3:. 0. 7 ⁇ 1 0 parts by weight, the total of titanium in terms of T i 0 2: 1. 0 super-3.0 parts by weight, Co O:. 0. 0 1 ⁇ 0 0 2 parts by weight, S e:. 0 ⁇ 0 0008 parts by weight or less, total chromium in terms of Cr 2 0 3:. 0. 02 ⁇ 0 05 parts by weight, V 2 0 5 All of vanadium in terms of:. 0-0 5 by weight part, the total cerium in terms of C e 0 2:. 0 ⁇ 0 5 parts by weight containing, F in the total iron as calculated as F e 2 0 3 the percentage of divalent iron in terms of e 2 0 3 is Ru 25-50% der.
  • T va ZT e is preferably in the condition as follows.
  • First base component 1 00 total titanium as calculated as T i 0 2 relative parts by weight 1.1 parts by weight or more, in particular 1. It is good preferable that two or more parts. Further, it is preferable that the proportion of bivalent iron as calculated as F e 2 0 3 in the total iron as calculated as F e 2 0 3 is 30% or more.
  • This glass typically has a visible light transmission (A light source) of less than 35% and a solar radiation transmission of less than 15% when it has a thickness of 5 mm.
  • the following coloring component composition (form D) in the glass composition of the present invention is preferred. be able to.
  • T va ZT e is preferably in the condition as follows.
  • the proportion of bivalent iron as calculated as F e 2 0 3 in the total iron as calculated as Fe 2 0 3 is set to be 30% or more. Further total iron as calculated as F e 2 0 3 with respect to the base component 1 0 0 part by weight, 0.9 parts by weight or less, and particularly it is preferable to below 85 parts by weight 0.1.
  • the glass having the composition of embodiment D typically has a visible light transmittance (A light source) of more than 40% to 55% when having a thickness of 5 mm, and a solar transmittance of 20 to 50%. 50%.
  • the dark green colored glass of the present invention is melted in a normal melting bath, that is, in a melting bath of Eve, in which fuel is burned on a bath surface of the molten glass and heated by its frame, and the molten glass is converted into a normal float bath. It can be manufactured by a method of supplying and forming a glass ribbon having a predetermined thickness.
  • the solar radiation transmittance Te is obtained according to JIS-R310. Visible light transmittance is measured using an A light source, and dominant wavelength and excitation purity are measured using a C light source.
  • the batches prepared so that the coloring components shown in Tables 1 to 3 are added to the mother component consisting of wt% are melted in a normal type of melting tank, and the molten glass is placed in a small float test facility connected to the melting tank. Was supplied to produce a dark green glass plate.
  • t- Fe 2 Oa total iron as calculated as F e 2 0 3
  • F e O, T i 0 2, C e 0 for 2 and V 2 Os units of the mother component if in terms of parts by weight relative to the amount 1 00 parts by weight
  • Co 0, Cr 2 0 units 3 and S e is indicated by a 1 0 part by weight relative to the total amount 1 00 parts by weight of the mother components, converted to REDOX (F e 2 0 3 did Units of percentage) of the bivalent iron as calculated as F e 2 0 3 of Zentetsuchu showed-in%.
  • the solar transmittance T e the visible light transmittance T va , and the transmittance at a wavelength of 370 nm T 37 .
  • Tables 1 to 3 show the results of determining the dominant wavelength Dw and the stimulus purity Pe (these values were all converted to a thickness of 5 mm).
  • Example 23 is the case with a reduced T i 0 2. Since the dominant wavelength is short, it can be seen that it has become bluish.
  • Example 24 does not contain Co 0 and shows an increase in visible light transmittance.
  • Example 25 shows a case where the iron content is small, and the transmittance is increased at a wavelength of 370 ⁇ m.
  • Example 26 shows a case where sodium nitrate was introduced into the raw material as an oxidizing agent to reduce the reduction ratio of iron. The main wavelength was shifted toward the reddish direction (longer wavelength side) and the solar transmittance was too low. Not reduced.
  • Example 27 shows the case where Co 0 was excessively added. The stimulus purity was remarkably high, and it was found that the dominant wavelength was short so that it became considerably bluish.
  • Example 28 has a very high stimulating purity due to the large amount of added Se.
  • Example 23 and Example 25 to 28 T v, ZT e ratio is small, and the visible light transmittance, poor balance of solar radiation transmittance. In other words, it is a glass that has a low solar radiation blocking performance.
  • Example 11 12 13 14 15 16 17 18 19 20 t-Fe 2 0 3 0.8 0.8 0.8 0.8 1.3 1.3 1.3 1.2 1.7 1.5
  • Example 21 22 23 24 25 26 27 28 t-Fe 2 0 3 0.8 0.8 0.8 0.8 0.4 0.8 0.4 1.3
  • Table 4 shows the results of simulation J performed by a computer within the scope of the present invention. .
  • Table 5 shows the results of a computer simulation of the field effect of Example 15 with the addition of a small amount of Se. It can be seen that once the purity of the irritant is lowered by the addition of Se, the tendency to increase again is shown by the excessive addition.
  • the dark green glass of the present invention has a low visible light transmittance, and has a significantly reduced solar transmittance and ultraviolet transmittance. Furthermore, it can be easily melted by a usual type of melting tank, and can be manufactured by the float method with excellent productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

曰月糸田
濃グリーン色ガラス 技術分野 本発明は低い可視光透過率、 低い紫外線透過率および低い日射透過率を有し、 乗用車の後部窓ガラスやサンルーフ等に適する濃グリーン色ガラスに関する。
背景技術 近年、 車両用ガラスの高品位化にともない、 使用部位ごとに最適のガラスが要 求されるようになっている。 たとえば、 乗用車の後部窓ガラスには、 5 m mの厚 さを有するとき、 可視光透過率 (A光源) が 2 5〜4 0 %であり、 日射透過率が 1 0〜3 0 %であるガラスであり、 サンルーフ用には、 可視光透過率 (A光源) が 3 0 %以下であり、 日射透過率が 2 0 %以下のガラスがよく使われるようにな つた。 これらのガラスに共通に求められる特性は、 低い可視光透過率および低い 日射透過率を有することであり、 好ましくは、 低い紫外線透過率、 特に波長 3 7 0 n mでの低い光透過率が求められる。
ところで、 近年、 風防ガラス用に、 高い可視光透過率を有するとともに、 低い 日射透過率および低い紫外線透過率を有するグリーン色ガラスが用いられるよう になっており、 車両の色の統一を図るためには、 後部窓ガラス等もグリーン系の 色調を呈することが好ましい。
従来良く知られた可視光透過率の比較的低い熱線吸収ガラスの多くは、 ニッケ ルを含有する。 しかし、 ニッケルは、 ガラス中でときどき硫化ニッケルの形成を もたらすので好ましくない。 硫化ニッケルは、 目視ではほとんど確認できず、 通 常の状態ではガラスに害を与えないが、 急冷強化処理後のガラス中に硫化ニッケ ルが存在すると、 常温で結晶転移して体積が膨張し、 ガラスを破壊するのに充分 な応力を発生させることがある。
特開平 2 - 6 4 0 3 8号 (対応米国特許第 4 8 7 3 2 0 6号) ゃ特開平 4一 2 7 5 9 4 3号 (対応欧州特許公開第 4 8 2 2 5 3号) には、 可視光透過率が 4 0 %より小さい、 ニッケルを含まないガラスが記載されている。 しかし、 特開平 2 - 6 4 0 3 8号記載のものは赤外線の遮断能があまり大きくないため、 日射透過 率が大きくなるという問題があり、 特開平 4 - 2 7 5 9 4 3号記載のものは日射 透過率は低いものの、 鉄の含有量が大きいため、 素地替えに時間を要するなどの 製造上の問題が大きい。
また、 特開平 6— 2 4 7 7 4 0号には N i 0成分をクロム成分に置き換えて、 可視光透過率を低減したガラスが記載されている。 しかし、 これはセレンを 1 5 P P m以上添加することにより、 比較的長い主波長と低い刺激純度を有するもの であり、 グリーン色ではなく中性 (グレー) 色を得ることを目的としている。 さらに、 米国特許明細書第 5 4 1 1 9 2 2号には、 鉄、 コノヽ'ルト、 チタンのほ か 1 0 P p m以上のセレンを必須成分とする低可視光透過率のガラスが記載され ている。 ガラス溶解窯内では、 S eはもつとも揮発しやすくかつ高価な物質であ り、 窯に投入した S eのうちの 9割以上が燃焼排ガスに混じって炉外に排出さ れ、 たとえば、 排煙脱硫の吸収塔で吸収液に捕捉される。 液中の S eの大部分は 回収され、 原料として利用されるが、 回収後の液中に残存する S eイオンが充分 に低減されるように処理するためには、 多くの設備投資とランニングコストが必 要になる。 日本では、 1 9 9 7年より産業排水中の S e濃度に対する規制が行わ れることになっている。
また、 米国特許明細書第 5 4 1 1 9 2 2号の例 1 1〜例 1 3では、 鉄、 コバル ト、 セレンを必須成分とする特定のガラスにおける、 チタン添加の影響について 記載されている。 これによれば、 チタンの含有量を 0〜0 . 6 3重量%まで増大 させるにつれ、 主波長が 4 8 4 . 6 n mから 5 4 1 . 4 n mまで変化するととも に刺激純度が 9 . 3 %から 1 . 8 %まで低下し、 中性 (グレー) 色が得られやす くなる。
特表平 6 - 5 0 3 3 0 0号 (対応欧州特許公開第 5 3 6 0 4 9号) には、 可視 光透過率が 4 0 %未満の熱線吸収ガラスを得るために、 鉄を 1重量%以上添加す るか、 C r 2 0 a を 0 . 0 2 5重量%以上添加するか、 のいずれかの手法をとる ことが記載されている。 欧州特許公開第 5 3 6 0 4 9号が主張する優先権の基礎 となる出願であるフランス国特許第 2682 1 02号も同様 ある。
鉄を 1重量%以上添加することは、 上記のように、 素地替えに時間を要するな どの製造上の問題点を誘起する場合がある。 一方 C r 2 03 を大量に添加するこ とは、 クロマイ トの生成による異物発生のおそれを生じさせる。 したがって、 特 表平 6 - 503300号に記載のような鉄とクロムのみの組み合わせによる技術 手段では、 さらに低い可視光透過率のガラスを得る場合に適用が困難である。 ま た、 可視光透過率が 25〜40%程度のガラスを得る場合でも、 安定な製造を可 能とする観点では、 より低い鉄の含有量とクロムの含有量とを両立できればきわ めてメリッ卜が大きい。
さらに、 欧州特許公開第 653388号には、 50 p pm以上の N i 0および Zまたは 9 p pm以上の S eを添加したグレーガラスが開示されている。
本発明の目的は従来技術の上記課題を解消し、 S eを少量しかまたは全く含ま ず、 可視光透過率および日射透過率の低さのわりには、 全鉄の含有量およびクロ ムの含有量が低い、 瀠グリーン色を呈するガラスを得ようとするものである。 また、 同時に溶融が容易で通常のフロートガラス製造法により製造され、 かつ 紫外線透過率を大幅に低くした、 濃グリーン色を呈するガラスを得ようとするも のである。 発明の開示 本発明は、 ソーダ石灰ガラスからなる母成分 1 00重量部に対し、 着色成分と して、 F e 2 03 に換算した全鉄: 0. 5〜2. 0重量部、 T i 02 に換算した 全チタン : 1. 0超〜 3. 0重量部、 Co O : 0. 003〜0. 02重量部、 S e : 0〜0. 0008重量部、 Cr 2 03 に換算した全クロム: 0〜0. 05重 量部、 Vz O s に換算した全バナジウム: 0~0. 5重量部、 Ce 02 に換算し た全セリウム: 0〜0. 5重量部を含有し、 Fe 2 03 に換算した全鉄中の F e 2 03 に換算した 2価の鉄の割合が 1 5〜50%である濃グリーン色ガラスを提 供する。
本発明のガラスは、 典型的には、 5mmの厚さを有するとき、 可視光透過率 ( A光源) が 55%以下、 日射透過率が 50%以下である。 ま 、 5mmの厚さを 有するとき、 波長 370 nmの光の透過率が 25 %以下である。 発明を実施するための最良の形態 本発明のガラスは、 ソーダ石灰ガラスからなる母成分 100重量部に対し、 所 定量の着色成分を含有せしめたものである。 この着色成分に関して、 以下に述べ る。
F e 2 03 に換算した全鉄の含有量が 0. 5重量部より少ないと可視光透過率 が大きくなりすぎ、 2. 0重量部より多いと、 溶融時に炎の輻射熱が遮断され熱 が溶融ガラスの内部へ到達しにく くなり溶融が困難となるとともに、 溶融ガラス の比重が大きくなり、 素地替えに時間を要するなどの製造上の問題が大きい。 この全鉄のうち、 F e 2 03 に換算した 2価の鉄の含有量が F e 2 03 に換算 した全鉄の 1 5〜50%である。 2価の鉄の含有量が 1 5%より少ないと日射透 過率が大きくなりすぎる。 50%より多いと溶融時に炎の輻射熱が遮断され熱が 溶融ガラスの内部へ到達しにくくなり溶融が困難となるとともに、 硫化第二鉄の 形成によってアンバー色を発生させやすくなる。
好ましい全鉄 (F e 2 03 換算) の含有量は、 母成分 1 00重量部に対して 0. 5〜1. 5重量部であり、 好ましい F e 0の含有量は、 母成分 100重量部 に対して 0. 1 5〜0. 40重量部、 特には 0. 20〜0. 40重量部である。 チタンは、 着色成分として含有されるコバルトおよび鉄とあいまって、 ガラス を濃グリーン色に着色する。 この種のガラスでは緑色を出すために、 鉄とコバル 卜で青味の勝るガラスを作り、 それに相当量の S eの添加によって赤味を付加し て緑色とすることが通常であるが、 本発明では、 母成分 1 00重量部に対して 1. 0重量部を超える T i 02 を添加することにより、 S eの必要添加量を低減 できる。 特に、 本発明では、 S eを含まなくとも緑を発色できる。
また、 チタンは同時に紫外線を吸収するための成分である。 特に、 波長 370 nmの光の透過率を低減するために重要な役割を果す。
T i 02 に換算した全チタンが、 母成分 1 00重量部に対して 1. 0重量部以 下であると、 波長 370 nmの光の透過率が大きくなるとと に濃グリーン色の ガラスを得ることが難しくなり、 3. 0重量部よりも大きいと、 フロートバス中 での溶融スズとの反応が無視できない。 好ましくは、 母成分 1 00重量部に対し て、 全チタンが 1. 1重量部以上である。
なお、 本発明のガラスには、 必須ではないが、 バナジウムを V2 05 に換算し た全バナジウムとして 0. 5重量部まで、 必須ではないが、 セリウムを C e 02 に換算した全セリウムとして 0. 5重量部まで、 含有させて波長 370 nmの光 の透過率をさらに低減できる。
コバルトは、 低い可視光透過率を得るために添加される必須成分である。 C o 0の含有量が母成分 1 00重量部に対して 0. 003重量部より少ないと可視光 透過率が大きくなりすぎ、 0. 02重量部より多いとガラスの色調が青みを帯び る。
S eの添加は必須ではないが、 可視部および紫外部の光透過率を調整するため に、 S eを添加してもよい。 その含有量が母成分 1 00重量部に対して 0. 00 08重量部を超えると、 主波長が長くなる。 また、 S eの含有量が多いと、 前述 のように排ガス処理に設備、 工数を多大に必要とするため、 添加量はより少ない ほうが好ましい。 その意味で、 好ましくは実質的に含有されない。 すなわち、 不 純物として不可避に混入する量を超えないことが好ましい。
もちろん、 車の内装色によっては、 それとの調和のためにガラスの刺激純度を 下げて、 ややグレーに近く色を調整することもできる。 このときは母成分 1 00 重量部に対して、 S eを 0. 0002重量部以上、 好ましくは 0. 0003重量 部以上添加する。 ただし、 本発明のガラスにおいて、 S eの添加による刺激純度 の変化は急峻であり、 S eの添加量が多いと、 逆に刺激純度が大きくなつて、 落 ち着いた緑色が得られなくなる場合がある。 特に、 日射透過率に対する可視光透 過率の比を高めるために、 F e 0量を母成分 100重量部に対して 0. 28重量 部以上、 特に 0. 30重量部以上とする場合にこの傾向は顕著である。 そのよう な観点からしても、 S eの添加量は母成分 1 00重量部に対して 0. 0008重 量部以下、 好ましくは、 0. 0006重量部以下とされる。
クロムの添加は必須ではないが、 特に日射透過率を低減するために添加しても よい。 ただし、 C r 2 03 に換算した全クロムが母成分 1 0 Q重量部に対して 0. 05重量部より多いと、 クロマイ トの生成による異物発生のおそれがある。 このようなおそれを少なくするために、 添加量はより少ないほうが好ましい。 ニッケル (N i O) は、 本発明では実質的に含有されないことが好ましい。 本 発明の主用途である自動車の後部窓ガラスやサンルーフは、 通常、 強化処理され るため、 ニッケルがガラスに含有されると自然破壊の因となるおそれがある。 し たがって、 不純物として不可避に混入する量を超えない。
以上より、 本発明での好ましい 1つの態様においては、 S e、 クロム、 ニッケ ルのいずれも実質的に含有されない。
また、 本発明での別の好ましい態様においては、 ニッケルは実質的に含有され ないが、 S eが母成分 1 00重量部に対して、 0. 0002〜0. 0008重量 部が含有され、 落ち着いた綠色を呈するガラスとなる。
母成分であるソ一ダ石灰ガラスについては、 重量%で、 S i 02 : 65〜75 %、 A 12 0 a : 0. ;!〜 5. 0%、 N a 2 0 + K2 0 : 1 0〜18%、 C a 0 : 5〜1 5%、 MgO : 0〜6%、 S Oa : 0. 05〜1. 0%、 からなること が好ましい。
S i 02 の含有量が 65%より少ないと耐候性が悪くなり、 75%より多いと 失透しやすくなる。 A 12 03 の含有量が 0. 1 %より少ないと耐水性が低下 し、 5%より多いと溶解性が低下する。
N a2 0、 K2 0は原料の溶融を促進する成分である。 両者の含有量が合量で 1 0%より少ないとその効果が小さく、 18%より多いと耐候性が悪くなる。
C a0、 M gOは原料の溶解を促進し耐候性を改善する成分である。 C aOの 含有量が 5%より少ないと上述の効果が小さく、 1 5%より多いと失透しやすく なる。 M gOは必須ではないが、 添加することができる。 ただし、 6%より多い と失透しやすくなる。
S 03 は清澄剤として用いられ、 通常、 0. 05~1. 0%程度ガラスに残存 する。
本発明のガラスは自動車の後部窓ガラスおよびサンルーフとして特に好まし く、 典型的には、 次の光学特性を有する。 すなわち、 上記組成のガラスであつ て、 厚さが 5mmであるとき、 可視光透過率 (A光源) Tva力 55%以下、 日射 透過率 Te が 50%以下である。 また、 典型的には、 波長 370 nmの紫外線透 過率が 25%以下、 好ましくは 20%以下である。 さらに、 上記光学特性に加え て、 典型的には、 C光源で測定した主波長 Dw が 480〜560 nm、 好ましく は480~550 1 111、 最も好ましくは 490〜 520 n mであって、 刺激純度 P e が 4〜1 6%、 好ましくは 6〜1 5%、 特に好ましくは 7〜1 2%である。 また、 本発明では、 可視光透過率 (A光源) Tvaを日射透過率 Te で除した比
( T va/T e ) が 1 . 3以上であることが好ましい。 この比が小さいと、 可視光 透過率のわりに日射遮断能が低い、 すなわち、 見かけのわりに外気の寒暖の影響 を受けやすいガラスになる。
後部窓ガラス用に適した光学特性を得るためには、 上記範囲中、 以下のような 着色成分組成 (態様 A) とすることが好ましい。
すなわち、 母成分 100重量部に対して、 Fe2 03 に換算した全鉄: 0. 7 〜1. 0重量部、 T i 02 に換算した全チタン: 1. 0超〜 3. 0重量部、 C o 0 : 0. 01〜 0. 02重量部、 S e : 0〜.0. 0008重量部、 C r 2 03 に 換算した全クロム: 0~0. 02重量部、 V 2 05 に換算した全バナジウム: 0 〜0. 5重量部、 Ce 02 に換算した全セリウム: 0〜0. 5重量部を含有し、 F e 2 03 に換算した全鉄中の F e 2 03 に換算した 2価の鉄の割合が 25〜 5 0 %である。
このうち、 日射透過率を下げて、 より TveZTe を大きくするためには、 以下 のような条件とすることが好ましい。 まず母成分 1 00重量部に対して T i 02 に換算した全チタンを 1 . 1重量部以上、 特に 1 . 2重量部以上にすることが好 ましい。 また、 F e 2 03 に換算した全鉄中の Fe 2 03 に換算した 2価の鉄の 割合が 30%以上となるようにすることが好ましい。 さらに母成分 1 00重量部 に対して F e 2 03 に換算した全鉄は、 0. 9重量部以下、 特には 0. 85重量 部以下にすることが好ましい。
前述のとおり、 車の内装色によっては、 それとの調和のためにややグレーに近 い落ち着いたグリーン色に調整することもでき、 このときは母成分 1 00重量部 に対して、 S eを 0. 0002〜0. 0008重量部、 より好ましくは 0. 00 03〜0. 0006重量部添加できる。 _
態様 Aの組成を有するガラスは、 典型的には、 5 mmの厚さを有するとき、 可 視光透過率 (A光源) が 25〜40%であり、 日射透過率が 1 0〜30%であ る。 また、 Tve/Te が大きく、 比較的はっきりしたグリーン色を呈する。
本発明のガラスの、 もうひとつ好ましい組成 (態様 B) として、 以下のような ものがある。 すなわち、 母成分 1 00重量部に対して、 着色成分として、 Fe2 03 に換算した全鉄: 1. 0〜2. 0重量部、 T i 02 に換算した全チタン: 1. 0超〜 3. 0重量部、 CoO : 0. 0 1〜0. 02重量部、 S e : 0— 0. 0008重量部、 C r 2 03 に換算した全クロム : 0〜0. 02重量部、 V2 Q5 に換算した全バナジウム: 0〜0. 5重量部、 C e 02 に換算した全セリウ ム: 0〜0. 5重量部を含有し、 F e 2 03 に換算した全鉄中の F e 2 03 に換 算した 2価の鉄の割合が 1 5〜40%となるものである。
態様 Bのガラスは、 典型的には、 5mmの厚さを有するとき、 可視光透過率 ( A光源) が 40%以下、 日射透過率が 30%以下である。
このうち、 日射透過率を下げて、 より TvaZTe を大きくするためには、 以下 のような条件とすることが好ましい。 まず母成分 1 00重量部に対して T i 02 に換算した全チタンを 1. 1重量部以上、 特には 1. 2重量部以上にすることが 好ましい。 また、 F e 2 03 に換算した全鉄中の F e 2 03 に換算した 2価の鉄 の割合が 20 %以上となるようにすることが好ましい。
また、 車両の後部ガラス窓として用いる場合は、 母成分 100重量部に対して F e 2 03 に換算した全鉄を 1. 4重量部以下とすることが好ましい。 このよう にして、 5mmの厚さを有するとき、 可視光透過率 (A光源) が 25〜40%で あり、 日射透過率が 10〜30%となるようなガラスが得られる。
この際、 車の内装色によっては、 それとの調和のためにややグレーに近い落ち 着いたグリ一ン色に調整することもでき、 このときは母成分 1 00重量部に対し て、 S eを 0. 0002〜0. 0008重量部、 より好ましくは 0. 0003〜 0. 0006重量部添加できるのは前述のとおりである。
また、 態様 Bの範囲で、 サンルーフ用途などに用いる場合は、 母成分 1 00重 量部に対して F e 2 03 に換算した全鉄を 1. 2重量部以上とし、 Co Oを 0. 0 1 2重量部以上とすることが好ましい。 このようにして、 5_mmの厚さを有す るとき、 可視光透過率 (A光源) が 25%以下であり、 日射透過率が 20%以下 となるようなガラスが得られる。
また、 サンルーフ用に適した光学特性を得るためには、 本発明のガラス組成の 範囲中で、 以下のような着色成分組成 (態様 C) とすることができる。 すなわ ち、 着色成分として、 F e 2 03 に換算した全鉄: 0. 7〜1. 0重量部、 T i 02 に換算した全チタン: 1. 0超〜 3. 0重量部、 Co O : 0. 0 1〜0. 0 2重量部、 S e : 0〜0. 0008重量部以下、 Cr 2 03 に換算した全クロム : 0. 02〜0. 05重量部、 V 2 05 に換算した全バナジウム: 0〜0. 5重 量部、 C e 02 に換算した全セリウム: 0~0. 5重量部を含有し、 F e2 03 に換算した全鉄中の F e 2 03 に換算した 2価の鉄の割合が 25〜50%であ る。
このうち、 日射透過率を下げて、 より TvaZTe を大きくするためには、 以下 のような条件とすることが好ましい。 まず母成分 1 00重量部に対して T i 02 に換算した全チタンを 1. 1重量部以上、 特に 1. 2重量部以上にすることが好 ましい。 また、 F e 2 03 に換算した全鉄中の F e 2 03 に換算した 2価の鉄の 割合が 30%以上となるようにすることが好ましい。
このガラスは、 典型的には、 5 mmの厚さを有するとき、 可視光透過率 (A光 源) が 35%以下であり、 日射透過率が 1 5%以下である。
後部もしくは後側部の窓ガラス用のうち、 比較的可視光透過率の高いガラスが 好まれる場合は、 本発明のガラス組成の範囲中、 以下のような着色成分組成 (態 様 D) とすることができる。
すなわち、 母成分 100重量部に対して、 F e 2 03 に換算した全鉄: 0. 5 〜1. 0重量部、 T i 02 に換算した全チタン: 1. 0超〜 3. 0重量部、 Co 0 : 0. 003〜0, 0 1 5重量部、 S e : 0~0. 0008重量部、 C r 2 03 に換算した全クロム: 0〜0. 02重量部、 V 2 05 に換算した全バナジゥ ム : 0〜0. 5重量部、 Ce 02 に換算した全セリウム : 0〜0. 5重量部を含 有し、 F e 2 03 に換算した全鉄中の F e 2 03 に換算した 2価の鉄の割合が 2 5〜50 %である。 態様 Aと同様に、 日射透過率を下げて、 より TvaZTe を大きくするために は、 以下のような条件とすることが好ましい。 まず母成分 1 00重量部に対して T i 02 に換算した全チタンを 1 · 1重量部以上、 特に 1. 2重量部以上にする ことが好ましい。 また、 Fe 2 03 に換算した全鉄中の F e 2 03 に換算した 2 価の鉄の割合が 30%以上となるようにすることが好ましい。 さらに母成分 1 0 0重量部に対して F e 2 03 に換算した全鉄は、 0. 9重量部以下、 特には 0. 85重量部以下にすることが好ましい。
態様 Dの組成を有するガラスは、 典型的には、 5 mmの厚さを有するとき、 可 視光透過率 (A光源) が 40%を超えて 55%までであり、 日射透過率が 20〜 50 %である。
本発明の濃グリーン色ガラスは、 通常の溶融槽、 すなわち、 溶融ガラスの浴面 上で燃料を燃焼しそのフレームにより加熱する夕イブの溶融槽により溶融し、 溶 融ガラスを通常のフロートバスに供給し、 所定厚さのガラスリボンに形成する方 法により、 製造できる。
なお、 本明細書を通じて、 日射透過率 Te は J I S - R 3 1 06により求めた ものである。 可視光透過率は A光源を、 主波長と刺激純度は C光源を、 それぞれ 用いて測定される。
以下に本発明の実施例を説明する。
原料としてケィ砂、 長石、 苦灰石、 ソーダ灰、 芒硝、 酸化第二鉄、 酸化チタ ン、 酸化コバルト等を用い、 S i 02 : 72. 1重量%、 A 12 03 : 1. 7重 量%、 C a 0 : 7. 8重量%、 MgO : 4. 1重量%、 N a2 0 : 1 3. 5重量 %、 K2 0 : 0. 5重量%および SO 3 : 0. 3重量%からなる母成分に表 1〜 3に示す着色成分が添加されるように調合したバッチを通常のタィブの溶融槽で 溶融し、 その溶融槽に接続された小型フロー卜試験設備に溶融ガラスを供給し濃 グリーン色のガラス板を製造した。
表 1〜3において、 t— Fe2 Oa (F e 2 03 に換算した全鉄) 、 F e O、 T i 02 、 C e 02 および V2 Os については、 単位は母成分の合量 1 00重量 部に対する重量部で示し、 Co 0、 Cr 2 03 および S eの単位は母成分の合量 1 00重量部に対する 1 0 重量部で示し、 REDOX (F e 2 03 に換算した 全鉄中の F e 2 03 に換算した 2価の鉄の割合) の単位は%で ·示した。
これらのガラス板について、 日射透過率 Te 、 可視光透過率 Tva、 波長 370 nmでの透過率 T37。 、 主波長 Dw および刺激純度 Pe (これらの値はいずれも 5 mm厚さに換算したもの) を求めた結果を表 1〜3に示す。
例 23は T i 02 を少なくした場合である。 主波長が短いことからかなり青味 がかってきていることがわかる。 例 24は C o 0を含有しておらず、 可視光透過 率の増大が見られる。 例 25は鉄の含有量が少ない場合であって、 波長 370 η mでの透過率の増大が見られる。 例 26は酸化剤として硝酸ナ卜リウムを原料に 導入して鉄の還元比を小さくした場合であって、 主波長が赤味の方向 (長波長 側) に寄っているとともに日射透過率があまり低減されていない。 例 27は C o 0を過剰に添加した場合であって、 刺激純度が著しく高くなるとともに、 主波長 が短いことから相当に青味がかってきていることがわかる。 例 28は、 S eの添 加量が多いため、 刺激純度が非常に高いガラスになっている。
なお、 例 23および例 25〜28は Tv,ZTe 比が小さく、 可視光透過率と、 日射透過率のバランスが悪い。 つまり、 見かけの割りには日射遮断性能の低いガ ラスになっている。
【表 1】
Figure imgf000014_0001
【表 2】
例 11 12 13 14 15 16 17 18 19 20 t-Fe203 0.8 0.8 0.8 0.8 1.3 1.3 1.3 1.2 1.7 1.5
FeO 0.22 0.22 0.20 0.27 0.36 0.24 0.25 0.26 0.26 0.26
Ti02 1.7 1.7 1.7 1.7 1.05 1.05 1.05 1.5 1.5 1.5
CoO 120 120 150 150 120 140 140 150 150 150 丄 1 on ϋΓ2ϋ3 UU
Se 5 3 8 3
Ce02 0.5
V205 0.3
REDOX 30 30 28 37 31 20 21 24 17 19
T e ( ) 24.9 25.4 25. 5 11.3 15.3. 17.2 18.9 12.9 1.9 3.3
1 a \7a) ¾7 7 0*4. J * U 21 9 11 n u
T 37 o (%) 6.3 7.5 9.0 14.5 6.0 4.3 5.9 12.5 7.7 12.6
D w (nm) 520 508 493 513 496 557 501 496 505 509
P e (%) 4.1 4.5 9.5 7.7 10.5 8.3 5.3 10.1 8.8 7.5
Tva/Te 1.48 1.48 1.34 1.37 1.92 1.36 1.46 1.70 3.31 3.38
【表 3】
例 21 22 23 24 25 26 27 28 t-Fe203 0.8 0.8 0.8 0.8 0.4 0.8 0.4 1.3
FeO 0.32 0.32 0.24 0.29 0.13 0.06 0.17 0.23
Ti02 1.7 1.7 0.8 1.7 1.7 1.7 1.5 1.05
CoO 120 120 165 150 100 300 140
Cr203 450 300
Se 15
REDOX 45 45 33 40 35 8 48 20
7.7 9.9 26.8 27.7 36.2 45.6 14.3 16.1
Tva(¾) 26.6 29.2 32.7 57.5 46.3 49.2 16.1 20.6
T 370 (¾) 9.8 13.4 28.4 12.4 46.2· 15.9 64.8 3.2
D w (nm) 529 508 467 557 486 565 475 571
P e ( ) 8.3 6.7 25.4 15.4 12.0 12.9 42.5 17.4
Tv./Te 3.44 2.96 1.22 2.07 1.28 1.08 1.13 1.28
また、 表 4は本発明の範囲内で、 行った、 計算機によるシミュレーショ ン結 J を示す。 .
【表 4】 例 29 30 31 32 33 34 35 36 t-Fez03 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
FeO 0.32 0.32 0.32 0.32 0.32 0.28 0.28 0.24
Ti02 1.4 1.6 1.6 1.8 1.8 1.6 1.8 1.8
CoO 160 150 160 150 160 160 160 160
Se
REDOX 40 40 40 40 40 35 35 30
T e (%) 18.5 17.8 17.5 16.8 16.5 19.5 18.6 20.6
T va (%) 29.7 30.4 28.8 29.6 28.0· 29.9 29.0 30.1
D w (nm) 490 493 492 495 493 491 493 493
P e (%) 15.2 12.4 13.7 10.9 12.1 13.0 11.4 10.7
Tv./Te 1.61 1.71 1.65 1.76 1.70 1.53 1.56 1.46
さらに、 表 5は、 例 1 5において、 S eを少量添加した場^効果について、 計算機のシミュレーションを行った結果を示す。 S eの添加により、 いったん刺 激純度は低くなるが、 過剰の添加により、 ふたたび増加傾向を示すことがわか る。
【表 5】
Figure imgf000018_0001
産業上の利用可能性 このように、 本発明の濃グリーン色ガラスは、 可視光透過率が低く、 日射透過 率および紫外線透過率を大幅に低下させたものである。 さらに、 通常のタイプの 溶融槽により容易に溶融でき、 生産性に優れたフロー卜法により製造できる。

Claims

言胄求の範囲 -
1. ソーダ石灰ガラスからなる母成分 1 00重量部に対し、 着色成分として、 Fe 2 03 に換算した全鉄: 0. 5〜2. 0重量部、 T i 02 に換算した全チタ ン : 1. 0超〜 3. 0重量部、 C o 0 : 0. 003〜0. 02重量部、 S e : 0 ~0. 0008重量部、 Cr 2 03 に換算した全クロム: 0〜0. 05重量部、 V2 0S に換算した全バナジウム: 0〜0. 5重量部、 Ce02 に換算した全セ リウム : 0〜0. 5重量部を含有し、 Fe 2 03 に換算した全鉄中の Fe2 03 に換算した 2価の鉄の割合が 1 5〜50%である濃グリーン色ガラス。
2. 5mmの厚さを有するとき、 可視光透過率 (A光源) が 55%以下、 日射 透過率が 50 %以下である請求項 1記載の濃グリ一ン色ガラス。
3. 5mmの厚さを有するとき、 波長 370 n mの光の透過率が 25 %以下で ある請求項 1または 2記載の濃グリーン色ガラス。
4. ソーダ石灰ガラスからなる母成分 100重量部に対し、 着色成分として、 F e 2 03 に換算した全鉄: 0. 7〜1. 0重量部、 T i 02 に換算した全チタ ン : 1. 0超〜 3. 0重量部、 C o 0 : 0. 01〜0. 02重量部、 S e : 0〜 0. 0008重量部、 C r 2 03 に換算した全クロム: 0〜0. 02重量部、 V 2 05 に換算した全バナジウム: 0〜0. 5重量部、 Ce02 に換算した全セ リウム: 0~0. 5重量部を含有し、 F e 2 03 に換算した全鉄中の Fe2 03 に換算した 2価の鉄の割合が 25〜 50 %である請求項 1記載の濃グリ一ン色ガ ラス。
5. 5 mmの厚さを有するとき、 可視光透過率 (A光源) が 25〜40%であ り、 日射透過率が 10〜30%である請求項 4記載の濃グリーン色ガラス。
6. ソーダ石灰ガラスからなる母成分 100重量部に対し、 着色成分として、 18
F e 2 03 に換算した全鉄: 1. 0〜2. 0重量部、 T i 024こ換算した全チタ ン: 1. 0超〜 3. 0重量部、 C o O : 0. 01〜0. 02重量部、 S e : 0〜 0. 000'8重量部、 C r 2 03 に換算した全クロム : 0〜0. 02重量部、 V2 0S に換算した全バナジウム: 0〜0. 5重量部、 Ce02 に換算した全セ リウム : 0〜0. 5重量部を含有し、 F e 2 03 に換算した全鉄中の Fe2 03 に換算した 2価の鉄の割合が 1 5〜 40 %である請求項 1記載の濃グリ一ン色ガ ラス。
7. ソーダ石灰ガラスからなる母成分 1 00重量部に対し、 着色成分として、 Fe 2 03 に換算した全鉄: 1. 0〜2. 0重量部、 T i 02 に換算した全チタ ン: 1. 0超〜 3. 0重量部、 C o 0 : 0. 01〜0. 02重量部、 S e : 0. 0002〜0. 0008重量部、 C r 2 03 に換算した全クロム : 0〜0. 02 重量部、 V 2 05 に換算した全バナジウム : 0〜0. 5重量部、 Ce Oz に換算 した全セリウム: 0〜0. 5重量部を含有し、 Fe 2 03 に換算した全鉄中の F e2 03 に換算した 2価の鉄の割合が 1 5〜40%である請求項 1記載の濃グリ ーン色ガラス。
8. 5mmの厚さを有するとき、 可視光透過率 (A光源) が 40%以下、 日射 透過率が 30 %以下である請求項 6または 7記載の濃グリ一ン色ガラス。
9. ソーダ石灰ガラスからなる母成分 1 00重量部に対し、 着色成分として、 F e 2 03 に換算した全鉄: 0. 7〜1. 0重量部、 T i 02 に換算した全チタ ン: 1. 0超〜 3. 0重量部、 CoO : 0. 01〜0. 02重量部、 S e : 0〜 0. 0008重量部以下、 Cr 2 03 に換算した全クロム : 0. 02〜0. 05 重量部、 V 2 05 に換算した全バナジウム: 0〜0. 5重量部、 Ce02 に換算 した全セリウム: 0〜0. 5重量部を含有し、 Fe 2 03 に換算した全鉄中の F e2 03 に換算した 2価の鉄の割合が 25〜50%である請求項 1記載の饞グリ —ン色ガラス。
1 0. 5mmの厚さを有するとき、 可視光透過率 (A光源) が 35%以下、 日 射透過率が 1 5 %以下である請求項 9記載の濃グリーン色ガラス。
1 1. ソーダ石灰ガラスからなる母成分 1 00重量部に対し、 着色成分とし て、 Fe 2 03 に換算した全鉄 ·· 0. 5〜1. 0重量部、 T i 02 に換算した全 チタン : 1. 0超〜 3. 0重量部、 C o 0 : 0. 003〜0. 015重量部、 S e : 0〜0. 0008重量部、 C r 2 03 に換算した全クロム ·· 0〜0. 02重 量部、 V 2 05 に換算した全バナジウム: 0〜0. 5重量部、 Ce02 に換算し た全セリウム : 0〜0. 5重量部を含有し、 Fe 2 03 に換算した全鉄中の F e 2 03 に換算した 2価の鉄の割合が 25〜50%である請求項 1記載の濃グリ ーン色ガラス。
1 2. 5mmの厚さを有するとき、 可視光透過率 (A光源) が 40%を超えて 55%までであり、 日射透過率が 20〜50%である請求項 1 1記載の濃グリー ン色ガラス。
13. ソーダ石灰ガラスは重量%で、 S i 02 : 65〜75%、 A 12 03 : 0. 1〜5. 0%、 N a2 0 + K2 0 : 10〜18%、 Ca0 : 5〜15%、 M g0 : 0〜6%、 S 03 : 0. 05〜1. 0%、 からなる請求項 1〜12いずれ か 1項記載の濃グリーン色ガラス。
14. 5mmの厚さを有するとき、 C光源を用いて測定した主波長が 480〜 560 n mである請求項 1〜 13いずれか 1項記載の澹グリ―ン色ガラス。
15. 可視光透過率 (A光源) を日射透過率で除した比が 1. 3以上である請 求項 1〜 14いずれか 1項記載の濃グリーン色ガラス。
1 6. 実質的に N i 0を含有しない請求項 1〜15いずれか 1項記載の濃グリ ーン色ガラス。 1 7· フロート法で製造される請求項〗〜 1 6いずれか i項記載の濃グリーン 色ガラス。
PCT/JP1996/003302 1995-11-10 1996-11-11 Verre de couleur vert fonce WO1997017303A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/860,470 US6071840A (en) 1995-11-10 1996-11-11 Dark green colored glass
EP96937552A EP0803479B1 (en) 1995-11-10 1996-11-11 Dense green colored glass
JP51808397A JP3256243B2 (ja) 1995-11-10 1996-11-11 濃グリーン色ガラス
DE69613346T DE69613346T2 (de) 1995-11-10 1996-11-11 Tiefgrünes gefärbtes glas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/292599 1995-11-10
JP29259995 1995-11-10

Publications (1)

Publication Number Publication Date
WO1997017303A1 true WO1997017303A1 (fr) 1997-05-15

Family

ID=17783879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003302 WO1997017303A1 (fr) 1995-11-10 1996-11-11 Verre de couleur vert fonce

Country Status (5)

Country Link
US (1) US6071840A (ja)
EP (1) EP0803479B1 (ja)
JP (1) JP3256243B2 (ja)
DE (1) DE69613346T2 (ja)
WO (1) WO1997017303A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825156A1 (en) * 1996-08-21 1998-02-25 Nippon Sheet Glass Co. Ltd. Ultraviolet/infrared absorbent low transmittance glass
EP0887320A1 (fr) * 1997-06-25 1998-12-30 Glaverbel Verre vert foncé sodo-calcique
US6455452B1 (en) 1998-03-16 2002-09-24 Ppg Industries Ohio, Inc. Bronze privacy glass
US6656862B1 (en) 1998-05-12 2003-12-02 Ppg Industries Ohio, Inc. Blue privacy glass
US6953758B2 (en) 1998-05-12 2005-10-11 Ppg Industries Ohio, Inc. Limited visible transmission blue glasses
US6979662B1 (en) * 1999-10-06 2005-12-27 Glaverbel Colored soda-lime glass
EP2312299A1 (en) 2002-03-09 2011-04-20 Kimberly-Clark Worldwide, Inc. Process for the detection of marked components of a composite article using infrared blockers
WO2015088026A1 (ja) * 2013-12-13 2015-06-18 旭硝子株式会社 紫外線吸収性ガラス物品
WO2017043631A1 (ja) * 2015-09-11 2017-03-16 旭硝子株式会社 紫外線吸収性ガラス物品
WO2017126595A1 (ja) * 2016-01-20 2017-07-27 旭硝子株式会社 紫外線吸収性ガラス
WO2017209148A1 (ja) * 2016-05-30 2017-12-07 日本板硝子株式会社 紫外線遮蔽ガラス板及び該ガラス板を用いた車両用ガラス窓
WO2018117193A1 (ja) * 2016-12-21 2018-06-28 旭硝子株式会社 紫外線吸収性ガラス

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103650A (en) * 1997-11-28 2000-08-15 Ppg Industries Ohio, Inc. Green privacy glass
FR2773556B1 (fr) * 1998-01-09 2001-07-13 Saint Gobain Vitrage Compositions de verre destinees a la fabrication de vitrages
JPH11292565A (ja) * 1998-04-13 1999-10-26 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
BE1012997A5 (fr) * 1998-06-30 2001-07-03 Glaverbel Verre sodo-calcique vert.
FR2781787B1 (fr) * 1998-07-31 2000-09-29 Glaverbel Verre sodo-calcique colore fonce
AU765740B2 (en) * 1999-06-11 2003-09-25 Vitro Flat Glass Llc Colored glass compositions and automotive vision panels with reduced transmitted color shift
PL196254B1 (pl) * 2000-06-19 2007-12-31 Glaverbel Barwne szkło sodowo-wapniowe
US6797658B2 (en) 2001-02-09 2004-09-28 Ppg Industries Ohio, Inc. Methods of adjusting temperatures of glass characteristics and glass articles produced thereby
US6878652B2 (en) * 2001-02-09 2005-04-12 Ppg Industries Ohio, Inc. Methods of adjusting glass melting and forming temperatures without substantially changing bending and annealing temperatures and glass articles produced thereby
US6753280B2 (en) * 2001-06-21 2004-06-22 Nippon Sheet Glass Co., Ltd. Ultraviolet/infrared absorbent green glass
US6596660B1 (en) 2001-10-26 2003-07-22 Visteon Global Technologies, Inc. Amber-free reduced blue glass composition
BE1014543A3 (fr) * 2001-12-14 2003-12-02 Glaverbel Verre sodo-calcique colore.
FR2833590B1 (fr) * 2001-12-19 2004-02-20 Saint Gobain Composition de verre bleu destinee a la fabrication de vitrages
US6953759B2 (en) * 2002-08-26 2005-10-11 Guardian Industries Corp. Glass composition with low visible and IR transmission
US7094716B2 (en) * 2002-10-04 2006-08-22 Automotive Components Holdings, Llc Green glass composition
DE10310671A1 (de) * 2003-03-12 2004-10-07 Dr.Ing.H.C. F. Porsche Ag Kraftfahrzeug mit einem Fahrzeugdach
US6995102B2 (en) * 2003-07-16 2006-02-07 Visteon Global Technologies, Inc. Infrared absorbing blue glass composition
GB0922064D0 (en) 2009-12-17 2010-02-03 Pilkington Group Ltd Soda lime silica glass composition
WO2013111881A1 (ja) 2012-01-27 2013-08-01 旭硝子株式会社 着色ガラス板およびその製造方法
CN104080750A (zh) 2012-01-27 2014-10-01 旭硝子株式会社 着色玻璃板及其制造方法
CN104080751A (zh) 2012-01-27 2014-10-01 旭硝子株式会社 着色玻璃板及其制造方法
KR101809772B1 (ko) * 2013-01-07 2017-12-15 주식회사 케이씨씨 짙은 녹회색 저투과 유리 조성물
CN107074620A (zh) 2014-09-08 2017-08-18 旭硝子株式会社 紫外线吸收性玻璃物品
EP3838857A1 (en) * 2019-12-20 2021-06-23 Schott AG Optical component and glass composition as well as use thereof
CN114804625B (zh) * 2022-04-23 2023-10-31 绵竹市红森玻璃制品有限责任公司 一种马尔斯绿玻璃瓶及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191881A (ja) * 1992-11-13 1994-07-12 Ppg Ind Inc 紫外線吸収性の淡緑色ガラス
JPH08217485A (ja) * 1995-02-20 1996-08-27 Nippon Sheet Glass Co Ltd 紫外線吸収ガラス
JPH08217486A (ja) * 1995-02-20 1996-08-27 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収ガラス
JPH08245238A (ja) * 1995-03-10 1996-09-24 Nippon Sheet Glass Co Ltd 低透過性ガラス
JPH08333138A (ja) * 1995-06-05 1996-12-17 Nippon Sheet Glass Co Ltd 低反射性熱線遮蔽ガラス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4106076A (en) * 1976-07-12 1978-08-08 Ncr Corporation Electrical component and bus element assembly
DE4203578C2 (de) * 1991-02-08 2000-10-19 Nippon Sheet Glass Co Ltd Glas für Fahrzeuge
FR2682101B1 (fr) * 1991-10-03 1994-10-21 Saint Gobain Vitrage Int Composition de verre colore destine a la realisation de vitrages.
GB9302186D0 (en) * 1993-02-04 1993-03-24 Pilkington Plc Neutral coloured glasses
AU666831B2 (en) * 1993-11-16 1996-02-22 Ppg Industries Ohio, Inc. Gray glass composition
US5411922A (en) * 1993-12-27 1995-05-02 Ford Motor Company Neutral gray-green low transmittance heat absorbing glass
EP0705800B1 (en) * 1994-10-05 1998-06-03 Asahi Glass Company Ltd. Deep gray colored glass
US5650365A (en) * 1995-09-21 1997-07-22 Libbey-Owens-Ford Co. Neutral low transmittance glass
AU714878B2 (en) * 1996-02-16 2000-01-13 Asahi Glass Company Limited Ultraviolet ray absorbing colored glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191881A (ja) * 1992-11-13 1994-07-12 Ppg Ind Inc 紫外線吸収性の淡緑色ガラス
JPH08217485A (ja) * 1995-02-20 1996-08-27 Nippon Sheet Glass Co Ltd 紫外線吸収ガラス
JPH08217486A (ja) * 1995-02-20 1996-08-27 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収ガラス
JPH08245238A (ja) * 1995-03-10 1996-09-24 Nippon Sheet Glass Co Ltd 低透過性ガラス
JPH08333138A (ja) * 1995-06-05 1996-12-17 Nippon Sheet Glass Co Ltd 低反射性熱線遮蔽ガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0803479A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825156A1 (en) * 1996-08-21 1998-02-25 Nippon Sheet Glass Co. Ltd. Ultraviolet/infrared absorbent low transmittance glass
EP0887320A1 (fr) * 1997-06-25 1998-12-30 Glaverbel Verre vert foncé sodo-calcique
US6335299B1 (en) 1997-06-25 2002-01-01 Glaverbel S.A. Gray green soda-lime glass
US6455452B1 (en) 1998-03-16 2002-09-24 Ppg Industries Ohio, Inc. Bronze privacy glass
US6656862B1 (en) 1998-05-12 2003-12-02 Ppg Industries Ohio, Inc. Blue privacy glass
US6953758B2 (en) 1998-05-12 2005-10-11 Ppg Industries Ohio, Inc. Limited visible transmission blue glasses
US6979662B1 (en) * 1999-10-06 2005-12-27 Glaverbel Colored soda-lime glass
EP2312299A1 (en) 2002-03-09 2011-04-20 Kimberly-Clark Worldwide, Inc. Process for the detection of marked components of a composite article using infrared blockers
US9878936B2 (en) 2013-12-13 2018-01-30 Asahi Glass Company, Limited Ultraviolet absorbing glass article
WO2015088026A1 (ja) * 2013-12-13 2015-06-18 旭硝子株式会社 紫外線吸収性ガラス物品
JPWO2015088026A1 (ja) * 2013-12-13 2017-03-16 旭硝子株式会社 紫外線吸収性ガラス物品
US11498864B2 (en) 2015-09-11 2022-11-15 AGC Inc. Ultraviolet-radiation absorbing glass product
WO2017043631A1 (ja) * 2015-09-11 2017-03-16 旭硝子株式会社 紫外線吸収性ガラス物品
JPWO2017043631A1 (ja) * 2015-09-11 2018-06-28 旭硝子株式会社 紫外線吸収性ガラス物品
JP2021063008A (ja) * 2015-09-11 2021-04-22 Agc株式会社 紫外線吸収性ガラス物品
US10626044B2 (en) 2015-09-11 2020-04-21 AGC Inc. Ultraviolet-radiation absorbing glass product
US10577276B2 (en) 2016-01-20 2020-03-03 AGC Inc. Ultraviolet-absorbent glass
WO2017126595A1 (ja) * 2016-01-20 2017-07-27 旭硝子株式会社 紫外線吸収性ガラス
JPWO2017126595A1 (ja) * 2016-01-20 2018-11-08 Agc株式会社 紫外線吸収性ガラス
WO2017209148A1 (ja) * 2016-05-30 2017-12-07 日本板硝子株式会社 紫外線遮蔽ガラス板及び該ガラス板を用いた車両用ガラス窓
JPWO2017209148A1 (ja) * 2016-05-30 2019-03-28 日本板硝子株式会社 紫外線遮蔽ガラス板及び該ガラス板を用いた車両用ガラス窓
US10988404B2 (en) 2016-05-30 2021-04-27 Nippon Sheet Glass Company, Limited Ultraviolet-shielding glass sheet and vehicle window pane using the glass sheet
JPWO2018117193A1 (ja) * 2016-12-21 2019-10-31 Agc株式会社 紫外線吸収性ガラス
WO2018117193A1 (ja) * 2016-12-21 2018-06-28 旭硝子株式会社 紫外線吸収性ガラス

Also Published As

Publication number Publication date
DE69613346T2 (de) 2002-05-02
DE69613346D1 (de) 2001-07-19
JP3256243B2 (ja) 2002-02-12
EP0803479A1 (en) 1997-10-29
EP0803479B1 (en) 2001-06-13
US6071840A (en) 2000-06-06
EP0803479A4 (en) 1998-06-10

Similar Documents

Publication Publication Date Title
WO1997017303A1 (fr) Verre de couleur vert fonce
US5478783A (en) Glass compositions
JP3280266B2 (ja) 赤外線及び紫外線吸収性緑色ガラス組成物
CN1043569C (zh) 灰色玻璃组合物
EP0649391B1 (en) Neutral, low transmittance glass
JP2544035B2 (ja) 高含鉄分・高還元率フリットガラス及びそれを用いた青色系熱線吸収ガラス
JPH0264038A (ja) 黒ずんだ、濁った灰色でニッケルを含まないガラス組成物
JP3264841B2 (ja) 濃グレー色ガラス
BRPI0809363A2 (pt) Vidro plano no formato de chapa, e vidraça
JPH08208266A (ja) 紫外線吸収グリーンガラス
JPH04502304A (ja) 赤外線吸収青色ガラス組成
CZ296656B6 (cs) Tabule skla a okenní tabule
JPH04310539A (ja) 赤外線・紫外線吸収ガラス
JPH10139475A (ja) 紫外線赤外線吸収低透過ガラス
PL190730B1 (pl) Kompozycja szklana i jej zastosowanie
JPH11217234A (ja) 濃グレー色ガラス
JP2003095691A (ja) 高透過ガラスおよびその製造方法
US6596660B1 (en) Amber-free reduced blue glass composition
JPH10265239A (ja) 紫外線赤外線吸収ガラス
JPH0859283A (ja) ブロンズガラス組成物
JP2000185934A (ja) 紫外線赤外線吸収ガラス
WO1998028234A1 (en) Spectral modifiers for glass compositions
JP3669019B2 (ja) 濃グレー色ガラス
US6605555B2 (en) Methods of increasing the redox ratio of iron in a glass article
JP4122558B2 (ja) 高可視光透過紫外線吸収ガラスおよび紫外線吸収着色ガラス板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08860470

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996937552

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996937552

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996937552

Country of ref document: EP