WO1997012835A1 - Poudre hydrophobe d'oxyde de metal et son utilisation - Google Patents

Poudre hydrophobe d'oxyde de metal et son utilisation Download PDF

Info

Publication number
WO1997012835A1
WO1997012835A1 PCT/JP1996/002836 JP9602836W WO9712835A1 WO 1997012835 A1 WO1997012835 A1 WO 1997012835A1 JP 9602836 W JP9602836 W JP 9602836W WO 9712835 A1 WO9712835 A1 WO 9712835A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide powder
silicone oil
epoxy
hydrophobic metal
Prior art date
Application number
PCT/JP1996/002836
Other languages
English (en)
French (fr)
Inventor
Akira Nishihara
Yukiya Yamashita
Hideaki Sakurai
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9701096A external-priority patent/JP3344203B2/ja
Priority claimed from JP9701196A external-priority patent/JP3344204B2/ja
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Priority to DE69608660T priority Critical patent/DE69608660T2/de
Priority to EP96932045A priority patent/EP0799791B1/en
Publication of WO1997012835A1 publication Critical patent/WO1997012835A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3692Combinations of treatments provided for in groups C09C1/3615 - C09C1/3684
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09716Inorganic compounds treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to a hydrophobic metal oxide powder suitable for being added to an electrophotographic developer for the purpose of improving fluidity of a toner and controlling chargeability, and an electrophotographic developer containing the same.
  • the development process in photolithography is performed by attaching toner to an electrostatic latent image on a photoreceptor.
  • Ordinary electrophotographic developers contain, in addition to the toner, a carrier for imparting charge to the toner by triboelectric charging and for transporting the toner to a development area on the photoreceptor.
  • a toner is composed of a thermoplastic resin, a colorant, and a charge control agent, and a magnetic powder such as iron or ferrite (iron oxide) is used as the carrier.
  • various additives can be added to a developer for the purpose of controlling charge of the toner, improving fluidity and cleaning properties of the toner, and the like.
  • a hydrophobic gold oxide powder obtained by hydrophobizing the surface of a metal oxide powder such as silica, alumina, or titania with an organic material is used as an agent for improving the fluidity and cleaning properties of the toner. Is added to the electrophotographic developer. It is also known to use such a hydrophobic metal oxide powder as a charge control agent. Therefore, in this type of hydrophobic metal oxide powder, hydrophobicity and triboelectricity are important properties S, and these properties depend on the type and amount of the organic substance used for the surface treatment of the metal oxide powder. Controlled.
  • Japanese Patent Publication No. 53-22447 discloses that a metal oxide powder surface-treated with amino silane (an amino group-containing silane adhesive) is used as a positive charge control agent for toner. It has been proposed to use Also, Japanese Patent Application Laid-Open No. 62-52561 discloses an electron-emitting device containing, as a positive charge controlling agent, a powder obtained by treating a gas phase method with an epoxy group-containing silane and then with an amine. Photographic toners are disclosed. Metal oxide powders that have been surface-treated with such silanes generally cannot have sufficiently high hydrophobicity, and the effect of improving the fluidity and cleaning properties of the toner is insufficient. .
  • JP-A-6-80406 and JP-A-6-83099 disclose that a gold oxide powder surface-treated with an organopolysiloxane containing an epoxy group and a polyalkylene imide is used for improving fluidity and charging toner. It is described that it is added to the frost developer for both purposes of controlling the properties.
  • Polyalkyleneimine for example, polyethylenimine
  • aminium force ⁇ a polymer type amide of a polymer i containing a large number of amino groups per molecular weight
  • the surface of the powder is exposed by the polyalkylene imide chain having a particularly high hydrophilicity, so that the hydrophobicity and the fluidity are insufficient.
  • JP-A-63-155155 describes an electrostatic image developer containing inorganic fine particles which is first treated with a silicone oil having an epoxy group, and then treated with an amino compound.
  • the inorganic fine particles thus treated in two steps have uncertain control of the banding property and / or have insufficient hydrophobicity.
  • the object of the present invention is to achieve a relatively low S coverage!
  • the present invention provides a hydrophobic metal oxide powder having a high degree of hydrophobicity and fluidity, and a developer for electrophotography containing the same, which can control the triboelectric charging property in a wide range by using is there.
  • the object is to simultaneously treat the surface of the metal oxide powder with a silicone oil having an epoxy group and an amine compound having an active hydrogen, or to mix an epoxy group and an amine obtained by preliminarily reacting them. This can be achieved by performing a surface treatment with a silicone oil having a hydroxyl group. If it is desired to further improve the hydrophobicity, straight silicone oil may be used in combination.
  • straight silicone oil can be additionally used.
  • the silicone oil having an epoxy group and an amino group can be added to the silicone oil having an epoxy group in a smaller amount than the amount required to react with all the epoxy groups. It can be prepared by reacting a non-polymeric amide compound having a amide group or a secondary amino group.
  • the hydrophobic metal oxide powder of the present invention preferably has a hydrophobization rate of at least 60% as measured by a transmittance method.
  • an electrophotographic developer containing the hydrophobic metal oxide powder.
  • the type of the metal oxide powder to be subjected to is not particularly limited, and can be selected according to the application.
  • the preferred metal oxides for improving the fluidity of the toner are silica, alumina or titania (titanium oxide), but for some applications other metal oxides such as zirconia (zirconium oxide), zinc oxide and tin oxide Gold oxide powder can also be used.
  • the diameter of the gold JS oxide powder may be selected according to the application. In order to improve the fluidity of the toner, it is preferable to use a powder having a specific surface area of 50 mV or more.
  • the metal oxide may be a composite oxide of two or more metals or a mixture of two or more metal oxides.
  • the metal oxide powder is preferably synthesized by a gas phase method.
  • the gold oxide powder synthesized by the gas phase method is suitable for improving the fluidity of the toner because the particles have less aggregation.
  • a method of synthesizing metal oxide powder by a gas phase method for example, a method of decomposing a metal chloride such as gay tetrachloride is known, and industrially synthesized products are commercially available. T / JP96 / 02836
  • a silicone oil having an epoxy group hereinafter referred to as an epoxy-modified silicone oil
  • an amine compound having a secondary amino group an amine compound having active hydrogen
  • a silicone oil having an epoxy group and an amino group hereinafter referred to as epoxy Modified silicone oil
  • the epoxy group has the effect of firmly binding the silicone oil to the gold oxide powder, and each modified silicone oil imparts hydrophobicity to the metal oxide powder. If the effect of imparting hydrophobicity is insufficient, the effect of imparting hydrophobicity can be enhanced by using a straight silicone oil in addition to the modified silicone oil.
  • the amino group changes the banding property of the gold oxide powder in the positive direction, and the type of the amino group greatly changes the chargeability imparted to the powder.
  • Epoxy-amino-modified silicone oil is less than the stoichiometric amount necessary to react with epoxy-modified silicone oil (hereinafter referred to as epoxy-modified silicone oil) with all its epoxy groups. It is preferably prepared by reacting an amide compound having a primary and / or secondary amino group. Conversely, a silicone oil having primary and / or secondary amino groups (hereinafter referred to as amino-modified silicone oil) reacts with all of the primary and secondary amino groups. It is also possible to prepare a silicone oil having an epoxy group and an amino group by reacting a bifunctional or more epoxy compound with a larger amount than the amount required for the above.
  • the surface treatment of the gold oxide powder according to the present invention is carried out by using an epoxy-modified silicone oil and an amine compound having a number of primary and / or secondary amino groups smaller than the total number of epoxy groups. And force to react these beforehand, or reaction It is used together without using it, and in some cases, using straight silicone oil. If the total number of primary and secondary amino groups in the amine compound is larger than the total number of epoxy groups in the silicone oil, the hydrophobicity and fluidity of the surface-treated metal oxide powder are greatly reduced. I do. If the two are reacted in advance, the epoxy group reacts almost completely and disappears, so that it is necessary to perform the surface treatment at a higher temperature, and the formed coating is bonded to the powder surface. Power drops.
  • the epoxy-modified silicone oil and the amine compound have a molar ratio of the total number of primary and secondary amino groups in the amine compound to the total number of epoxy groups in the silicone oil of 0.1 to 0. 9, especially preferably in a ratio within the range of 0.2 to 0.8. If the molar ratio is less than 0.1, the number of amino groups to be introduced is small, and the control of the chargeability becomes insufficient. On the other hand, when the above molar ratio exceeds 0.9, the stability over time of the hydrophobic metal oxide powder obtained after the surface treatment is deteriorated. In addition, when the amide compound is reacted in advance, if the molar ratio exceeds 0.9, the number of unreacted epoxy groups decreases, resulting in an unreacted epoxy group. In addition, the binding of the compound to the powder becomes insufficient and unreacted amide compound tends to remain, which is not preferable because it adversely affects the stability of charging or the improvement in hydrophobicity.
  • This reaction proceeds by simply mixing the two components at room temperature or by stirring the mixture in a polar solvent such as an alcohol. If desired, the reaction may be heated to a temperature at which the reaction components do not volatilize. If the amide compound contains a primary amide group, the above reaction generates an —NH group, which may further react with the epoxy group. Since the reactivity is considered to be low, the stoichiometry can be estimated from the ratio of the reactive amino group to the epoxy group as described above.
  • Epoxy-modified silicone oil is an oily organopolysiloxane having an epoxy group.
  • Epoxy-modified silicone oil having a structure having a dimethylpolysiloxane skeleton at the terminal and Z or a side chain is commercially available.
  • the preferred epoxy-modified silicone oil has a glycidyl group as an epoxy group, and the epoxy equivalent is preferably 200 to 3000 g / raol. When the epoxy equivalent exceeds 3000 g / mol, the cause is unknown, but it is difficult to obtain a sufficient effect when reacted with an amine compound.
  • the viscosity of the silicone oil is preferably in the range of 5 to 100 cSt at 25 ° C. When the viscosity exceeds 100 cSt, the fluidity is reduced, and when the viscosity is less than 5 cSt, the metal oxide powder tends to volatilize during surface treatment.
  • Particularly preferred epoxy-modified silicone oils are those having dalicidyl groups at both ends of the molecule and having an epoxy equivalent of 300 to 1000 g / rao U and a viscosity at 25 ° C of 10 to 50 cSt. . More preferably, the epoxy-modified silicone oil has glycidyl groups at both ends of the molecule. The presence of a glycidyl group in the side chain in addition to both ends may reduce the hydrophobicity.
  • Examples of commercially available epoxy-modified silicone oils include KF-101. KF-102. KF-103. KF-105, X-22-163A, X-22-169AS manufactured by Shin-Etsu Silicone Co., Ltd. , X-22-163B. X-22-1 163C, X-22-169B, etc .; SF8411, SF8413, SF8421, etc., manufactured by Toray 'Dauco One' Silicone; and Toshiba Silicone Corp. TSF4730, TSF4731, TSL9946. TSL9986, TSL9906, and the like.
  • the amine compound which is preliminarily reacted with the epoxy-modified silicone oil or is not used for the surface treatment the amine compound which is reactive with the epoxy group and the Z compound or the Z compound are used.
  • a non-polymer type amine compound having a amino group is used.
  • a polymer type amine compound such as polyalkylene imide is used, as described above, the polymer is exposed!
  • the surface is substantially high molecular weight amine (highly hydrophilic) ?” As a result, the hydrophobicity of the metal oxide powder after the surface treatment is extremely low, and therefore the effect of improving the fluidity becomes insufficient.
  • the chargeability of the hydrophobic metal oxide powder of the present invention greatly changes depending on the type of the amine compound. That is, when the amide compound adheres to the surface of the metal oxide powder, the amide compound generally changes the chargeability in the positive direction. Depending on the type of min compound Significantly different. Therefore, by changing the type and amount of the amine compound, the chargeability of a hydrophobic metal oxide powder, for example, a silica powder (the frictional charge measured by the method described later) can be improved. It is possible to control to a desired value within a wide range from a negative charge of about 500 uC / g to a positive charge of more than 300 C / g. Accordingly, the kind of the amine compound may be selected according to the desired level of chargeability required for the toner.
  • the effect of the amine compound on the chargeability is generally as follows.
  • aliphatic primary amine ( ⁇ 2 : R 1 is an alkyl group having 4 to 20 carbon atoms, and an ether group may be present in the alkyl group),
  • aromatic amines aromatic amines having one or more primary or secondary amino groups, such as aniline, toluidine, etc.
  • Heterocyclic amines heterocyclic amines having one or more primary or secondary amino groups, such as pyrrol, imidazole, indole, etc.
  • Aliphatic secondary amines (ITR 2 NH: R 1 and R 2 are the same or different alkyl groups having 1 to 10 carbon atoms, and an alkyl group may have an ether bond),
  • R 2 NXNHR 3 may be the same or different and each may be a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • X may be an alkylene group having 1 to 10 carbon atoms
  • Triamine R'R 2 NXNR 3 YNHr: R 'R 2 , R 3 are the same as a hydrogen atom or an alkyl group having 1 to 10 carbon atoms (but not all hydrogen atoms) However, the alkyl group may have an ether linkage, and both X and ⁇ are alkylene groups having 1 to 10 carbon atoms.) And higher tetraalkyl groups such as tetraamine. Mom,
  • Alicyclic amines (alicyclic amines having one or more primary or secondary amino groups, such as piperazine, piperidine, etc.),
  • Bi-purified ring amines eg, triazine
  • aliphatic amides eg, biazine
  • the selection of the amide compound to be actually used may be determined after investigating the effect of providing the charge by experiment. Further, two or more amide compounds can be used. In this case, as a result of the mixing, the charge imparting behavior of the amide compound may be changed from the above.
  • Shiia Mi emissions compound when it is desired to impart positive charge, said Jia Mi emissions, Chi immediately, the general formula: is a compound represented by R 'R 2 NXNHR 3. Since this compound can impart high positive chargeability with a relatively small amount of addition as compared with other amine compounds, it is useful as a flow improver for positive chargeability toner.
  • Ru can efficiently good Ku stably obtain a metal oxide powder having a triboelectric charge in the range of: in the middle, R 'and R 2 is an alkyl group having 1 to 6 carbon atoms Wherein R 3 is a hydrogen atom or an alkyl group having from i to 6 carbon atoms, and X-force-(CH) n-(where n is an integer of from 2 to 4) gives Preferred. As the number of carbon atoms of the alkyl bonded to the nitrogen atom increases, the hydrophobicity of the metal oxide powder increases, and a stable banding property tends to be obtained.
  • metal oxide powders with stable negative charge are also useful for negative toner.
  • a method of controlling the amount of the amide compound having a large effect of imparting the positive charge as described above to obtain a metal oxide having the desired negative charge There is a method of using an amide compound having a relatively small effect.
  • an amide compound having a large positive charge-imparting effect is used, a desired negative banding property can be obtained with a small amount of added S, and the positive charge-imparting effect is relatively small. In compounds, the chargeability is unlikely to change with the amount of addition, so that it is easy to obtain stable negative chargeability.
  • a straight silicone oil can be used in combination with the surface treatment.
  • Straight silicone oil is an unmodified silicone oil that binds to glycerol with a methyl, hydroxy, phenyl, and / or hydrogen group.
  • Specific examples of straight silicone oils include dimethyl silicone oil, methyl phenyl silicone oil and methyl hydridic silicone oil. In this Preferred is dimethyl silicone oil, which is the cheapest and has a wide viscosity range.
  • For straight silicone corn oil 25. It is preferable to use one with a viscosity of 10 to 100 cst at C.
  • Examples of commercially available straight silicone oils include KF-96, KF-99, KF-50, KF-54, and KF-56 manufactured by Shin-Etsu Silicon; Douco One's Silicone SH200, PRX413, SH510, SH702, SH705, SH550, SH704, etc .; Toshiba Silicone TSF451, YF3800, TSF484, TSF483, TSF43 TSF437. TSF4300, YF3804, TSL9546, TSL95586: and Nippon Tunicer Co., Ltd. 45, 31, FZ-3805, FZ-3702, FZ-3122 and the like.
  • the surface treatment of the metal oxide powder according to the present invention may be performed by a conventionally known method, and may be either a wet method or a dry method.
  • the dry method is preferred because it is less likely to cause agglomeration.
  • the dry method also uses a small amount of processing liquid and powder to him ? It is also advantageous in that the amount is easy to control and the operation is simple.
  • Surface treatment by a dry method includes, for example, preliminarily reacting or reacting an epoxy-modified silicone oil with an amine compound while thoroughly stirring a metal oxide powder in a suitable closed container.
  • the epoxy-modified silicone oil and the amide compound can be added simultaneously or before or after.
  • the materials used for surface treatment can be diluted or dissolved with a solvent (eg, alcohol, ketone, hydrocarbon, etc.).
  • the metal oxide powder is heated under a nitrogen stream at a temperature in the range of 80 to 250, preferably in the range of 100 to 170, to solidify the silicone oil on the surface of the metal oxide powder. And remove the solvent at the same time if necessary: Silicon oil has epoxy groups that are highly reactive with the surface of the metal oxide powder.
  • the surface coating can be achieved by the heat treatment. If the above-mentioned dry treatment is difficult depending on the type of metal oxide powder, metal oxide is added to a solution obtained by dissolving silicone oil (and an amino compound) in an appropriate organic solvent. It is also possible to perform a surface treatment by a wet method, such as heating as described above, after immersing the substance powder and recovering it from the solution.
  • the gold oxide powder is converted into an amide compound bonded to the powder surface via epoxy-modified silicone oil or an epoxy compound bonded to the powder surface mainly via epoxy groups.
  • the chargeability is changed by the amino group in the Noa-Mino modified silicone oil, and the powder surface is made hydrophobic by the silicon oil.
  • silicone oil (and amide compounds) are firmly bonded to the powder surface, they are less susceptible to the effects of the environment such as moisture and have properties such as hydrophobicity and banding. There is little change with time and the stability is excellent.
  • the amount of the silicone oil and the amine compound coated on the surface of the metal oxide powder should be such that the desired chargeability can be obtained as described above, and at the same time, sufficient hydrophobicity (fluidity) is imparted. select.
  • silicone oil or the combined amount of modified silicone oil and straight silicone oil, if used together. It is preferable to use the metal oxide powder in an amount of 5 to 40 parts by weight, particularly 10 to 30 parts by weight per 100 parts by weight of the metal oxide powder.
  • the amount of the amine compound used or the amount of the amino group in the epoxy amino-modified silicone oil is determined by the 0H group present on the surface of the metal oxide powder and the primary, secondary, and tertiary groups.
  • the use of the above modified silicone oil in a molar ratio of 0.1 to 1.0, particularly 0.2 to 0.6, with respect to the total number of the amino groups is advantageous in terms of the charge-imparting effect. Is preferred.
  • the value of the hydrophobicity measured by the transmittance method should be 60% or more, preferably 70% or more, and more preferably 80% or more.
  • the transmittance method is a method for experimentally determining the hydrophobicity of a powder. According to this method, 1.0 g of powder and 100 ml of water are placed in a separation funnel for extraction and vigorously stirred for 10 minutes. After that, let stand for 10 minutes and withdraw a small amount of suspended liquid from the bottom of the separation funnel. This extracted The value obtained by expressing the transmittance of the suspension for light at 550 nm with the transmittance of pure water as 100% is defined as the hydrophobicity of the powder.
  • the chargeability of the obtained hydrophobic metal oxide powder can be evaluated by measuring a friction band 5 by a blow-off method.
  • the method of measuring the triboelectric charge amount on iron by the blow-off method is specified in literatures such as “Coloring Materials” 55 [9] 630-636 (1982).
  • the friction band fi was determined by the method defined in the “coloring material”.
  • the hydrophobic metal oxide powder of the present invention may be used as an additive for improving the fluidity and cleaning properties of a toner in an electrophotographic developer used in a copying machine or a printer, or as a charge controlling agent. It can be contained as As a result, a developer for electrophotography having a stable repellency and excellent fluidity can be obtained.
  • the addition s of hydrophobic metal oxide powder The range of 0.1 to 20% by weight based on the total weight of the toner is practically desirable.
  • the amount added is generally greater than when used as a flow improver.
  • a range of 0.1 to 3% by weight is usually sufficient.
  • toner and a carrier to be mixed with the toner may be the same as those of a conventionally known electrophotographic developer.
  • the fluidity of the toner containing the hydrophobic metal oxide powder is evaluated by the following g-size shaking method.
  • a styrene-acrylic copolymer resin having 18% by weight of carbon dispersed therein is pulverized and classified into an average particle diameter of 7 ⁇ 3; um.
  • 5 g of the obtained toner is put into a 100 mesh (opening 150 m) IS sieve, shaken for i minutes by an electromagnetic sieve shaker, and then the percentage of the toner weight that has passed through the sieve (%) And this value is used as the fluidity of the toner.
  • the higher the fluidity of the toner the less the occurrence of capri and a decrease in image density when electrophotographic development is performed using the toner.
  • the hydrophobic metal oxide powder of the present invention can also improve the fluidity of resin powder in addition to toner, and is used as a fluidizing agent for powdery plastics, an additive for powder coatings, and the like. Can be used even if. T / JP96 / 02836
  • This example shows that the surface treatment of the metal oxide powder is simultaneously performed with the epoxy-modified silicone oil and the amine compound.
  • the powder was charged into a stainless steel container equipped with a stirrer, and suspended while stirring under a nitrogen atmosphere at room temperature.
  • the epoxy-modified silicone oil described in 3 and the amine compound were simultaneously sprayed on the powder. Silicone oil and amine compounds were used after dissolving in methanol or hexane.
  • the amount of epoxy-modified silicone oil used is the total number of epoxy groups
  • Table 3 shows the total number of secondary amino groups (secondary ⁇ ) (both in mmol).
  • Ph phenyl Of the above amide compounds, polyethyleneimine of i is a polymer type compound. It is unsuitable for use in the present invention. .
  • the gold oxide powder is further stirred at room temperature for 30 minutes, then externally heated under a nitrogen stream, heated to 150'C over 30 minutes, and heated to this temperature for 1 hour. It was allowed to cool down to the room with stirring.
  • the number in parentheses is the total number of N / 1.2 class N number.
  • a metal oxide powder is surface-treated with an epoxy-amino-modified silicone oil obtained by previously reacting an epoxy-modified silicone oil with an amide compound.
  • an epoxy-amino-modified silicone oil obtained by previously reacting an epoxy-modified silicone oil with an amide compound.
  • Epoxy 23 1 Modified silicone oil and amide compound were mixed at 50 ° C for 24 hours to react in advance and then used as a fog except that they were used for fog.
  • Table 4 summarizes the results of the hydrophobization rate of the obtained hydrophobic metal oxide powder, the triboelectric charge S against iron powder, the fluidity of the toner containing the powder, and the life test of the electrophotographic developer. Shown. The meanings of the symbols in Table 4 are as shown in Tables 1 and 2.
  • This example shows an example in which a metal oxide powder is simultaneously surface-treated with an epoxy-modified silicone oil, an amine compound, and a straight silicone oil.
  • Example 5 A metal oxide powder was surface-treated in the same manner as in Example 1 except that a straight silicone oil was used for spraying in addition to the epoxy-modified silicone oil and the amine compound.
  • Table 5 summarizes the results of the hydrophobization rate of the obtained hydrophobic metal oxide powder and the triboelectric charge amount against the iron powder, the fluidity of the toner containing the powder, and the life test of the electrophotographic developer. The meanings of the symbols in Table 5 are as shown in Tables 1 and 2 ⁇ (Example 4)
  • the metal oxide powder was prepared using epoxy / amino-modified silicone oil obtained by pre-reacting epoxy-modified silicone oil with an amine compound and straight silicone oil. An example of surface treatment of is shown.
  • Example 6 The same procedure as in Example 1 was carried out except that the epoxy-modified silicone oil and the amide compound were mixed and reacted all day and night with 50 parts, and straight silicone oil was used for injection.
  • the metal oxide powder was subjected to a surface treatment.
  • Table 6 summarizes the hydrophobization rate of the obtained hydrophobic metal oxide powder and the triboelectric charge amount with respect to the iron powder, the fluidity of the toner containing the powder, and the life test of the electrophotographic developer. The meanings of the symbols in Table 6 are as shown in Tables 1 and 2.
  • the triboelectric charge of the metal oxide powder can be reduced from 300 ⁇ u to a negative charge of -500 ui /%. It can be freely controlled in a wide range up to the positive chargeability exceeding C /, and regardless of the positive or negative chargeability required for the toner, the hydrophobic metal oxide of the present invention can be controlled. It can be handled by physical powder. In addition, the accuracy of charging control is high.
  • the heating temperature for the surface treatment may be relatively low, and a hydrophobic metal oxide powder in which the coating of silicone oil is firmly bonded to the metal oxide powder can be obtained.
  • This metal oxide powder has excellent hydrophobicity and charging stability over time, and has little property deterioration during use or storage. Therefore, the electrophotographic developer containing the hydrophobic metal oxide powder maintains good fluidity even under high temperature and high humidity conditions, and increases the number of copies that can obtain good images without capri. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

明 細 書 疎水性金属酸化物粉体とその用途 (技術分野)
本発明は、 トナーの流動性改善および帯電性制御等の目的で電子写真用現像剤 に添加するのに適した疎水性金属酸化物粉体と、 これを含有する電子写真用現像 剤とに関する。
(背景技術)
¾子写真法における現像プロセスは、 感光体上の静電潜像に トナーを付着させ ることにより行われる。 通常の電子写真用現像剤は、 トナーに加えて、 トナーに 摩擦帯電によって電荷を付与し、 かつ感光体上の現像領域に トナーを搬送するた めのキヤ リ ァーを含有する。 一般に、 トナーは熱可塑性樹脂、 着色剤および帯電 制御剤からなり、 キャ リア一と しては鉄またはフェライ 卜 (酸化鉄) のような磁 性粉末が使用される。 トナーとキャ リアー以外に、 トナーの帯電制御、 トナーの 流動性およびク リーニング性の改善等の目的で、 各種の添加剤を現像剤に添加で きることが知られている。
例えば、 シリ カ、 アルミ ナ、 チタニア等の金属酸化物粉体の表面を有機物によ り疎水化した疎水性金厲酸化物粉体は、 トナーの流動性ゃク リ ーニング性の改善 剤と して電子写真用現像剤に添加されている。 また、 このような疎水性金属酸化 物粉体を電荷制御剤と して用いること も知られている。 従って、 この種の疎水性 金属酸化物粉体では疎水性と摩擦帯電性が重要な性 Sとなり、 これらの性質は金 «酸化物粉体の表面処理に用いる有機物の種類や彼 量によつて制御される。 一般に金属酸化物粉体の表面処理において、 ア ミ ン系有機化合物により粉体を 表面処理すると、 粉体の負の帯電性が減少するか、 または粉体に正の帯電性が付 与されることは公知であり、 このようにア ミ ン系有機化合物で表面処理した金属 酸化物粉体を トナーの電荷制御剤に使用すること も既に提案されている。
例えば、 特公昭 53 - 22447 号公報には、 ア ミ ノ シラン (ア ミ ノ基含有シラン力 ップリ ング剤) で表面処理した金属酸化物粉末を トナーの正電荷制御剤と して使 用することが提案されている。 また、 特開昭 62— 52561 号公報には、 気相法シ リ 力をエポキシ基含有シラ ンで、 次いでア ミ ン類で処理して得た粉末を正電荷制御 剤と して含有する電子写真用 トナーが開示されている。 このようなシラ ン類で表 面処理した金属酸化物粉体は、 一般に疎水性を十分に高くすることができず、 卜 ナ一の流動性やク リ ーニング性の改善効果が不十分となる。
特開平 6 - 80406 号公報および同 6 - 83099 号公報には、 エポキシ基を含有す るオルガノ ポリ シロキサンとポリ アルキレンィ ミ ンで表面処理した金厲酸化物粉 体を、 流動性改善と トナーの帯電性制御の両方の目的で霜子写真用現像剤に添加 することが記載されている。 し力、し、 ァ ミ ンと して用いるポ リ アルキレンィ ミ ン (例、 ポ リ エチレンィ ミ ン) 力 <、 分子量当たり多数のァ ミ ノ基を含有する高分子 iの重合体型ァ ミ ンであり、 この親水性が比絞的高いポ リ アルキレ ンィ ミ ン連鎖 で粉体の表面が aわれるようになるため、 疎水性と流動性が不十分となることが 判明した。
特開昭 63— 155155号公報には、 先ずエポキシ基を有するシ リ コーンオイルで処 理し、 次いでァミ ノ化合物で処理した無機微粒子を含有する静電像現像剤が記載 されている。 しかし、 このよう に 2段処理した無機微粒子は、 帯籩性の制御が不 確実であるか、 および または疎水性が不十分である。
本発明の目的は、 比絞的少 Sの被?!で摩擦帯電性を広い範囲で制御する ことが でき、 同時に高い疎水性と流動性も付与された疎水性金属酸化物粉体、 な らびに これを含有する電子写真用現像剤を提供することである。
(発明の開示)
上記目的は、 金属酸化物粉体を、 エポキシ基を有するシ リ コーンオイルと活性 水素を有するア ミ ン化合物とで同時に表面処理するか、 或いはこれらを予め反応 させて得られるエポキシ基とァ ミ ノ基とを有するシ リ コー ンオイルで表面処理す ることにより達成することができる。 疎水性をさ らに改善したい場合には、 ス ト レー ト シリ コーンオイルを併用 してもよい。
本発明により、
①エポキシ基を有するシ リ コーンオイルと、 その全エポキシ基数より少ない数の 一級およびノまたは二級ア ミ ノ基を有する非重合体型のア ミ ン化合物とで同時に 表面処理することにより形成された表面彼覆を有する疎水性金属酸化物粉体、 お よび
②エポキシ基とア ミ ノ基とを有するシリ コーンオイルで表面処理することにより 形成された表面彼覆を有する疎水性金属酸化物粉体、
が提供される。
①と②の表面処理には、 さ らにス 卜 レー ト シリ コーンオイルを併用することが できる。
上記②において、 エポキシ基とア ミ ノ基とを有するシ リ コーンオイルは、 ェポ キシ基を有するシ リ コーンオイルに、 その全エポキシ基と反応するのに必要な量 より少量の、 一級およびノもし く は二級ァ ミ ノ基を有する非重合体型のァ ミ ン化 合物を反応させることにより調製することができる。
本発明の疎水性金属酸化物粉体は、 好ま し く は透過率法によつて測定された疎 水化率が 60 %以上の値を示す。
本発明によればまた、 この疎水性金 ¾酸化物粉体を含有する電子写真用現像剤 も提供される。
(発明を実施するための最良の形態)
本発明で表面被?!が施される金属酸化物粉体の種類は特に制限されず、 用途に 応じて選択することができる。 トナーの流動性改善用に好ま しい金属酸化物は、 シリ カ、 アルミ ナまたはチタニア (酸化チタ ン) であるが、 用途によっては、 ジ ルコニァ (酸化ジルコニウム) 、 酸化亜鉛、 酸化錫などの他の金厲酸化物の粉体 も使用できる。
金 JS酸化物粉体の拉径も用途に応じて選択すればよい。 トナーの流動性改善用 には、 比表面稷が 50 m V 以上の粉体を使用することが好ま しい。
金属酸化物は、 2種以上の金属の複合酸化物または 2種以上の金属酸化物の混 合物であってもよい。
金属酸化物粉体は、 気相法により合成されたものが好ま しい。 気相法で合成さ れた金 酸化物粉体は、 粒子の凝集が少ないので、 トナーの流動性改善用に適し ている。 気相法による金属酸化物粉体の合成は、 例えば、 四塩化ゲイ素等の金属 塩化物の分解による方法が知られており、 工業的に合成された製品が市販されて T/JP96/02836
4 いる。
本発明によれば、 金属酸化物粉体の表面に、 ①エポキシ基を有するシ リ コー ン オイル (以下、 ェポキシ変性シ リ コーンオイルという) と、 .その全エポキシ基数 より少ない数の一級および Zもし く は二級ァ ミ ノ基を有するァ ミ ン化合物 (=活 性水素を持つア ミ ン化合物) 、 または②エポキシ基とア ミ ノ基とを有するシ リ コ ーンオイル (以下、 エポキシ ア ミ ノ変性シリ コーンオイルという) 、 または③ 上記の①もし く は②に加えてさ らにス ト レー ト シ リ コー ンオイル、 を用いた表面 処理により彼?!を形成する。
エポキシ基はシ リ コーンオイルを金厲酸化物粉体に強固に結合させる作用を果 たし、 各変性シ リ コーンオイルは金属酸化物粉体に疎水性を付与する。 疎水性の 付与効果が不足する場合には、 変性シ リ コーンオイルに加えてス ト レー ト シ リ コ ーンオイルを併用することで、 疎水性の付与効果を高めることができる。 ァ ミ ノ 基は金厲酸化物粉体の帯 «性を正方向に変化させ、 ァ ミ ノ基の種類によって、 粉 体に付与される帯電性が大き く変化する。
エポキシノア ミ ノ変性シ リ コーンオイルは、 ェポキシ基を有するシ リ コーンォ ィル (以下、 エポキシ変性シリ コーンオイルという) に、 その全エポキシ基と反 応するのに必要な化学量論量より少量の、 一級および もしく は二級ァ ミ ノ基を 有するァ ミ ン化合物を反応させることにより調製するこ とが好ま しい。 逆に、 一 級および も しく は二級ァ ミ ノ基を有するシ リ コーンオイル (以下、 ァ ミ ノ変性 シリ コーンオイルという) に、 その一級および二級ァ ミ ノ基の全部と反応するの に必要な量より多量の、 2官能性以上のエポキシ化合物を反応させること によつ ても、 エポキシ基とア ミ ノ基とを有するシリ コーンオイルを調製することは可能 である。 し力、し、 容易に入手できる 2官能性以上のエポキシ化合物の種類が極め て限られているので、 最初の反応に比べると調製可能なシ リ コー ンオイルの種類 が著しく少なく なるので、 本発明の目的の一つである摩擦帯電性を広い範囲で制 御する点では不利になる。
従って、 本発明による金厲酸化物粉体の表面処理は、 エポキシ変性シ リ コーン オイルと、 その全エポキシ基数より少ない数の一級および/もしく は二級ァ ミ ノ 基を有するァ ミ ン化合物とを用い、 これらを予め反応させておく 力、、 或いは反応 させずに一緒に使用 し、 場合によりス ト レー 卜 シ リ コー ンオイルを併用して、 行 う ことになる。 シリ コーンオイル中の総エポキシ基数よりア ミ ン化合物中の一級 および二級ァ ミ ノ基の合計数の方が多く なると、 表面処理した金属酸化物粉体の 疎水性と流動性が大き く 低下する。 また、 両者を予め反応させる場合には、 ェポ キシ基がほぼ完全に反応して消失するため、 表面処理をより高温で行う必要が生 じ、 また形成された被覆の粉体表面との結合力が低下する。
エポキシ変性シ リ コーンオイルとア ミ ン化合物は、 シ リ コーンオイル中の総ェ ポキシ基数に対するア ミ ン化合物中の一級および二級ァ ミ ノ基の合計数のモル比 が 0. 1〜0. 9 、 特に 0. 2〜0. 8 の範囲内となる割合で使用することが好ま しい。 上記モル比が 0. 1 未満では、 導入されるァ ミ ノ基の数が少なく 、 帯電性の制御が 不十分となる。 一方、 上記モル比が 0. 9 を超えると、 表面処理後に得られる疎水 性金属酸化物粉体の経時安定性が悪化する。 また、 ァ ミ ン化合物を予め反応させ る場合には、 上記モル比が 0. 9 を越えると、 未反応エポキシ基の数が少なく なり , 被?!の粉体への結合が不十分となる上、 未反応のァ ミ ン化合物が残留する傾向が あり、 これは帯電の安定性或いは疎水性の向上の悪影響を与えるので好ま し く な い。
この両者を予め反応させて使用する場合には、 この反応により、 シ リ コー ンォ ィル中のエポキシ基の一部がア ミ ン化合物の一級または二級ア ミ ノ基と反応して 開環し、 エポキシ基に代わつて一 0H基と一 NR基 (ァ ミ ノ基) がシ リ コーンオイル に導入される。 その結果、 未反応のエポキシ基と反応で導入されたァ ミ ノ基とを 有する、 エポキシ/ア ミ ノ変性シ リ コーンオイルが得られる。
この反応は、 室温で単に両成分を混合するか、 アルコール等の極性溶媒中で攬 拌するだけで進行するが、 所望により反応成分が揮発しない程度の温度に加熱し てもよい。 なお、 ア ミ ン化合物が一級ァ ミ ン基を含有していると、 上記反応によ り— NH基が生成し、 この基がさ らにエポキシ基と反応する可能性もあるが、 その 可能性は低いと考えられるので、 上記のように反応性ァ ミ ノ基とエポキシ基の比 率で化学量論量を推定することができる。
エポキシ変性シ リ コーンオイルは、 エポキシ基を有する油伏のオルガノ ポ リ シ ロキサンのこ とである。 例えば、 グリ シジル基および または脂環式エポキシ甚 をジメチルポ リ シロキサン骨格の末端および Zまたは側鎖に有する構造を持つェ ポキシ変性シ リ コーンオイルが市販されている。
好ま しいエポキシ変性シ リ コーンオイルは、 エポキシ基と してグリ シジル基を 有し、 エポキシ当量は好ま し く は 200~ 3000 g/rao lである。 エポキシ当量が 3000 g/mo lを超えると、 原因は不明であるが、 ア ミ ン化合物と反応させた場合に十分 な効果が得られにく く なる。 シ リ コーンオイルの粘度は、 25°Cで 5〜100 cS t の 範囲が好ま しい。 粘度が 100 cS t を超えると流動性が低下し、 粘度が 5 c S t未満 では金属酸化物粉体の表面処理中に揮発し易い。
特に好ま しいエポキシ変性シ リ コーンオイルは、 分子の両末端にダリ シ ジル基 を有する、 エポキシ当量が 300〜1000 g/rao U 25°Cでの粘度が 10〜 50 c S tのもの である。 さ らに好ま し く は、 このエポキシ変性シ リ コーンオイルは、 分子の両末 端だけにグリ シジル基を有しているものである。 両末端に加えて側鎖にもグリ シ ジル基が存在すると、 疎水性が低下する ことがある。
エポキシ変性シ リ コーンオイルの市販品の例と しては、 信越シリ コー ン社製の KF- 101. KF- 102. KF- 103. KF- 105, X-22- 163A, X-22- 169AS, X-22- 163B. X - 22 - 1 63C, X-22- 169B等 ; 東レ ' ダウコ一二ング ' シ リ コーン社製の SF841 1 , SF8413, SF8421等 ; ならびに東芝シ リ コー ン社製の TSF4730, TSF4731 , TSL9946. TSL9986, TSL9906 等が例示される。
エポキシ変性シ リ コーンオイルと予め反応させるか、 或いは反応させずに一褚 に表面処理に使用するァ ミ ン化合物と しては、 エポキシ基と反応性である一扱お よび Zまたは二扱ア ミ ノ基を有する非重合体型のア ミ ン化合物を使用する。 ポ リ アルキレンィ ミ ンのような重合体型のア ミ ン化合物を使用すると、 前述したよう に被?!表面が実質的に高分子量ァ ミ ン (比铰的親水性が高い) で?!われること と なり、 表面処理後の金属酸化物粉体の疎水性が非常に低く 、 従って流動性改善効 果も不十分となる。
後で実施^でも例 IIするように、 このア ミ ン化合物の種類によって、 本発明の 疎水性金属酸化物粉体の帯電性が大き く 変化する。 即ち、 金属酸化物粉体の表面 にァ ミ ン化合物が付着すると、 ァ ミ ン化合物は一般に帯電性を正の方向に変化さ せるが、 その変化させる程度 (正帯電性の付与効果) はァ ミ ン化合物の種類によ り大き く異なる。 そのため、 ア ミ ン化合物の種類と量を変化させるこ と によ り 、 疎水性金属酸化物粉体、 例えばシ リ カ粉体の帯電性 (後述する方法で測定 した摩 擦帯電量) を、 一 500 u C/g 程度の負帯電性から、 300 C/g を超えるような正 帯電性までに及ぶ、 広い範囲内で所望の値に制御することが可能になる。 従って. ァ ミ ン化合物の種類は、 トナーに要求される所望の帯電性のレベルに応じて選択 すればよい。
ァ ミ ン化合物が帯電性に及ぼす影響は、 一般には次の通りである。
(A) 正帯霍性の付与効果が比铰的小さいア ミ ン
(1) 脂肪族一級ァ ミ ン (ΙΓΝΗ2: R1は炭素数 4〜20のアルキル基で、 アルキル 基中にエーテル桔台があってもよい) 、
(2) 芳香族ァ ミ ン ( 1つ以上の一級または二級ア ミ ノ基を持つ芳香族ァ ミ ン 、 例えばァニリ ン、 トルイ ジン等) 、
(3) 複素環ァ ミ ン ( 1つ以上の一級または二級ア ミ ノ基を持つ複素環ァ ミ ン、 例えばピロ一ル、 イ ミ ダゾール、 イ ン ドール等) 。
(Β) 正帯電性の付与効果が大きいァ ミ ン
(1) 脂肪族二級ア ミ ン (ITR2NH: R1と R2はいずれも炭素数 1〜10の同一または 異なるアルキル基で、 アルキル基中にエーテル結合があってもよい) 、
(2) ジァ ミ ン (R'R2NXNHR3: 、 R2、 R3はいずれも水素原子または炭素数 i〜 10のアルキル基で同一でも異なっていてもよ く 、 アルキル基中にエーテル桔合が あってもよく 、 X は炭素数 1〜10のアルキレン基である) 、
(3) 卜 リ アミ ン (R'R2NXNR3YNHr: R' R2、 R3、 はいずれも水素原子または 炭素数 1〜10のアルキル基 (但し、 全てが水素原子ではない) で同一でも異 つ ていてもよく 、 アルキル基中にエーテル桔合があってもよく 、 X 、 Υ はいずれも 炭素数 1〜 10のアルキレン基である) 、 および類似のテ トラア ミ ン等の高次マ ミ ン、
(4) 脂環式ァ ミ ン ( 1つ以上の一級または二級ア ミ ノ基を持つ脂環弍ァ ミ ン 、 例えばピぺラジン、 ピぺリ ジン等) 、
(5) —級もし く は二級ア ミ ノアルキル基を持った複紫環ァ ミ ン (例、 ト リ ア ジ ン) または脂頊式ァ ミ ン (例、 ビぺラジン) 。 この場合の複素環ァ ミ ンまたは脂 環式ァ ミ ンは三級ア ミ ノ基のみを有するものでもよい。
以上はあく まで目安であり、 実際に使用するア ミ ン化合物の選択は、 実験によ りその帯電付与効果を調査してから決定すればよい。 また、 ァ ミ ン化合物は 2種 以上を使用すること もできる。 その場合には、 混合の桔果と して、 ァ ミ ン化合物 の帯電性付与の挙動が上記から変化すること もある。
正帯電性を付与したい場合に特に好ま しいア ミ ン化合物は、 上記ジア ミ ン、 即 ち、 一般式 : R ' R 2 N X N H R 3で示される化合物である。 この化合物は、 他のア ミ ン化合物に比べて、 比較的少量の添加量で高い正帯電性を付与することができる ので、 正帯電性 トナーの流動性改善剤と して有用な + 10〜+ 250 C/ g の範囲内 の摩擦帯電量を持つ金属酸化物粉体に効率よ く 安定して得ることができ る: 中で も、 R 'および R 2が炭素数 1 〜 6のアルキル基であり、 R 3が水素原子または炭素数 i〜 6のアルキル基であり、 X力 - (CH) n - ( nは 2〜 4の整数) であるジァ ミ ン が、 正帯電性の付与に好ま しい。 窒素原子に結合しているアルキルの炭素数が大 きいほど、 金属酸化物粉体の疎水性が高く なり、 安定した帯 ¾性が得られる傾向 がある。
一方、 安定した負帯電性 (例えば、 — 100 〜― 200 C/g )を持つ金属酸化物粉 体もまた、 負帯霍性の トナー用に有用である。 この場合、 上記のよ うな正帯電性 の付与効果が大きいァ ミ ン化合物の添加量を制御して目的とする負帯電性を有す る金属酸化物を得る方法と、 上記の正帯電性の付与効果が比絞的小さいァ ミ ン化 合物を使用する方法とがある。 正帯電性の付与効果が大きいァ ミ ン化合物を用い ると、 少ない添加 Sで目的とする負帯霪性を得るこ とができ、 正帯電性の付与効 果が比铰的小さいァ ΐ ン化合物では、 帯電性がその添加量で変化しにく いため、 安定した負帯電性を得やすい。
変性シ リ コーンオイルだけでは疎水性付与効果が不十分である場合に 、 表面 処理にス ト レー ト シ リ コー ンオイ ルを併用する こ とができ る。 ス ト レー ト シ リ コ ーンオイルとは、 ゲイ素に結合するのがメ チル基、 ヒ ドロキシル基、 フ ニニル基 および または水素である未変性のシリ コーンオイルである。 ス ト レー 卜 シ リ コ ーンオイルの具体例と しては、 ジメ チルシ リ コー ンオイル、 メチルフ ニ二ルシ リ コーンオイル及びメ チルハイ ドロ ジヱ ンシ リ コー ンオイ ルが挙げられる。 この中 で最も安価で、 粘度の幅も広いジメチルシ リ コーンオイルが好ま しい。 ス ト レー ト シ リ コーンオイルは、 25。Cでの粘度が 10~ 100cs tのものを使用する こ とが好ま しい。
ス ト レー ト シ リ コーンオイルの市販品の例と しては、 信越シ リ コ一ン社製の KF -96 、 KF-99 、 KF-50 、 KF-54 、 KF-56 等 ; 東レ ' ダウコ一二ング ' シ リ コー ン 社製の SH200 、 PRX413、 SH510 、 SH702 、 SH705 、 SH550 、 SH704 等 ; 東芝シ リ コーン社製の TSF451、 YF3800、 TSF484、 TSF483、 TSF43 TSF437. TSF4300 、 YF 3804、 TSL9546 、 TSL95586: ならびに日本ュニカー社製のい 45、 い 31、 FZ-3805 、 FZ-3702 、 FZ-3122 等が例示される。
本発明による金属酸化物粉体の表面処理は、 従来公知の方法で実施すればよ く 、 湿式法と乾式法のいずれでもよい。 ただし、 金属酸化物粉体が気相法で合成され たものである場合には、 乾式法の方が凝集を生じにく いので好ま しい。 乾式法は また、 処理液の使用量が少なく 、 粉体への彼?!量の制御が容易で、 操作も簡便で ある点でも有利である。
乾式法による表面処理は、 例えば、 金属酸化物粉体を適当な閉鎖型容器内で十 分攒拌しながら、 エポキシ変性シ リ コーンオイルとア ミ ン化合物とを、 予め反応 させ、 或いは反応させずに滴下あるいは噴 して加えることにより実施できる: 反応させずに添加する場合、 エポキシ変性シ リ コ一ンオイルとァ ミ ン化合物は、 同時または前後して添加することができる。 必要であれば、 表面処理に使用する 材料を溶媒 (例、 アルコール、 ケ ト ン、 炭化水素等) で希釈または溶解して用い ること もできる。
エポキシ変性シ リ コーンオイルとア ミ ン化合物、 またはこれらの反応で得られ たエポキシ,/ア ミ ノ変性シ リ コーンオイルを、 場合によりス ト レー ト シ リ コー ン オイルと一緒に加えた後、 金属酸化物粉体を窒素気流下で 80〜250 ての範囲の温 度、 好ま しく は 100〜170 ての範囲の温度で加熱して、 シリ コーンオイルを金属 酸化物粉体の表面に強固に結合させ、 必要であれば同時に溶媒を除去する: シ リ コーンオイルが、 金属酸化物粉体の表面との反応性が高いエポキシ基を有してい るため、 このような比抆的低温での加熱処理により表面被 を達成するこ とがで きる。 なお、 金属酸化物粉体の種類により、 上記のような乾式の処理が困難な場合に は、 シ リ コーンオイル (およびァ ミ ノ化合物) を適当な有機溶媒に溶解させた溶 液に金属酸化物粉体を浸演し、 溶液から回収した後、 上記のように加熱するとい つた湿式法で表面処理を行う こと も可能である。
この表面処理により、 金厲酸化物粉体は、 エポキシ変性シリ コーンオイルを介 して粉体表面に桔合したァ ミ ン化合物、 または粉体表面に主にエポキシ基を介し て桔合したエポキシノア ミ ノ変性シリ コーンオイル中のァ ミ ノ基によって、 帯電 性が変化すると同時に、 シ リ コー ンオイルにより粉体表面が疎水性となる。 また, シ リ コーンオイル (およびァミ ン化合物) が粉体表面に強固に桔合されているた め、 湿気等の環境の影罾を受けにく く 、 疎水性や帯籩性などの特性の経時変化が 少なく、 安定性に優れている。
金属酸化物粉体の表面に被覆するシ リ コーンオイルおよびア ミ ン化合物の量は. 前述したように所望の帯電性が得られ、 同時に十分な疎水性 (流動性) も付与さ れるように選択する。 十分な疎水性を確保するには、 シ リ コー ンオイル (ス ト レ 一ト シ リ コーンオイルを併用する場合には、 変性シ リ コーンオイルと ス ト レー ト シ リ コーンオイルの合計量) を、 金属酸化物粉体 100 重量部当たり 5〜40重量部, 特に 10〜30重量部の範囲の量で使用することが好ま しい。 また、 ァ ミ ン化合物の 使用量またはエポキシ ア ミ ノ変性シ リ コーンオイル中のア ミ ノ基の量は、 金属 酸化物粉体の表面に存在する 0H基と一級、 二級および三級ァ ミ ノ基の合計数との モル比が 0. 1〜1. 0 、 特に 0. 2〜0. 6 となる範囲内で上記変性シ リ コー ンオイル を使用することが、 帯電性付与効果の面からは好ま しい。
表面処理により得られた疎水性金属酸化物粉体は、 その疎水性の程度が高いほ ど、 金厲酸化物粉体の吸湿性が咸少して'显度に対する トナーの帯電量の変化を小 さ く し、 かつ凝集を防ぐ効果 (流動性改善効果) が高ま り、 利用価値が高い。 実 用上は、 透過率法によって測定される疎水化率の値が 60 %以上、 好ま し く は 70% 以上、 さ らに好ま しく は 80 %以上の値を持てばよい。
透過率法は、 粉体の疎水化率を実験的に求める方法である。 この方法によれば, 粉体 1. 0 gと水 100 m lを抽出用分別漏斗に入れ、 10分間激しく振遒攒拌する。 そ の後 10分間静置し、 分別漏斗の底から少量の懸港液を抜き出す。 この抜き出した 懸濁液の 550 nmの光に対する透過率を、 純水の透過率を 100 %と して表した値を その粉体の疎水化率とする。
また、 得られた疎水性金属酸化物粉体の帯電性は、 ブローオフ法により摩擦帯 ¾5を測定することにより評価できる。 ブローオフ法による鉄に対する摩擦帯電 量の測定方法は、 例えば 「色材」 55 [9] 630-636 ( 1982)等の文献に規定されてい る。 本発明では、 この 「色材」 に規定されている方法で摩擦帯 fiを求めた。 本発明の疎水性金属酸化物粉体は、 複写機やプリ ンターに用いられる電子写真 用現像剤に、 トナーの流動性やク リーニング性を改善するための添加剤と して、 或いは電荷制御剤と して含有させることができる。 それにより、 安定した帯霍性 と優れた流動性を持つ電子写真用現像剤が得られる。 また、 複写機等に用いられ るシ リ コーンゴムロールに含有させて帯霍性を制御するためにも使用でき る s 電子写真用現像剤に含有させる場合、 疎水性金属酸化物粉体の添加 sは、 トナ 一の総重量に基づいて 0. 1〜20重量%の範囲が実用上は望ま しい。 電荷制御剤と して使用する場合は、 流動性改善剤と して使用する場合より添加量が一般に多く なる。 流動性改善剤の場合は通常は 0. 1〜 3重量%の «5囲で十分である。
トナーのその他の成分、 および トナーに配合するキャ リ アーについては、 従来 より公知の電子写真用現像剤と同様でよい。
疎水性金属酸化物粉体を含む 卜ナ一の流動性は、 本発明では次に还ベる g¾い振 逢法により評価する。 この方法では、 カーボン 18重量%を分散させたスチ レ ン一 ァク リ ル共重合樹脂を粉砕し、 平均粒径 7 ± 3 ;u mに分級して得た榭 S旨粉 10 gに 対し、 表面処理した金属酸化物粉体 0. 05 gを加え、 機械的に 30秒間混合して トナ 一を調製する。 得られた トナー 5 gを 100 メ ッ シュ (目の開き 150 m ) の ISい に入れ、 電磁式篩い振 ¾器により i 分間振 ¾した後、 この篩いを通過した トナー 重量の割合 (%) を求め、 この値を トナーの流動性とする。 この トナーの流動性 が高いほど、 これを用いて電子写真の現像を行った際に、 カプリの発生や画像濃 度の低下が起こりにく い。
なお、 本発明の疎水性金属酸化物粉体は、 トナーの他に、 樹脂粉末の流動性を 改善することもでき、 粉末状プラスチ ッ クの流動化剤、 粉体塗料の添加剤などと しても利用することができる。 T/JP96/02836
1 2
^下、 実施例により本発明を具体的に説明するが、 実施例は例示にすぎず、 本 発明を制限するものではない。
(実施例 1 )
本実施例は、 エポキシ変性シ リ コーンオイルとア ミ ン化合物とで同時に金属酸 化物粉体を表面処理する冽を示す。
表 3 に記載の金厲酸化物粉体 20 gを加熱乾燥してから、 攢拌機を備えたステン レス鋼製の容器に仕込み、 室温で窒素雰囲気下に攙拌しながら浮遊状態にし、 表 3 に記載のェポキシ変性シリ コーンオイルとア ミ ン化合物とを同時に上記粉体に 喷霧した。 シ リ コーンオイルとア ミ ン化合物はメ タ ノ ールまたはへキサンに溶解 させて使用した。 エポキシ変性シ リ コーンオイルの使用量は総エポキシ基数で、 ァ ミ ン化合物の使用量はア ミ ノ基 (一級、 二級、 三級) の合計数 (=総 N数) と —級 +二級ア ミ ノ基の合計数 (し 2級 Ν数)(いずれも単位は mmo l ) で表 3 に示し た。
なお、 表 3 に示したエポキシ変性シ リ コーンオイルとア ミ ン化合物の 己号の意 味は、 それぞれ次の表 1 および表 2に示す通りである。 表 1
Figure imgf000014_0001
' 僂越シリコーン社 ¾ : 2 曰本ュニカー社 ¾: 1 東レダウコーニング社製 表 2
Figure imgf000015_0001
反応性 N数-一級アミノ基十二级ァミノ基の合 ft数
n— B u - n—ブチル: P h =フエ二ル 上記ア ミ ン化合物のうち、 i のポリエチレンイ ミ ンは重合体型の化合物であり . 本発明で使用するには不適切なものである。
喷搽終了後、 金 酸化物粉体をさらに室温で 30分間攪拌した後、 窒素気流下で 外部加熱を行い、 30分かけて 150 'Cまで昇温させ、 この温度に 1 時間加熱した後. 撮拌を铳けながら室 ¾まで放冷した。
得られた疎水性金 酸化物粉体の疎水化率と鉄粉に対する摩擦帯 ¾ S、 ならび にこれを含むトナーの流動性、 を上記のようにして測定した拮果を、 表 3 に併せ て示す。
また、 流勳性試験に用いた金 «酸化物を含有する トナー 30 gを酸化鉄粉 1000 g と混合して ¾子写真用現像剤を作製し、 この現像剤を市販の電子写真複写機に入 れて寿命テス トを行った桔果も表 3に併せて示す。 なお、 実施 の金 JS酸化物粉 末を用いた現像剤では、 高温多湿 (28て、 85% RT) の現境下においても良好な画 像を示した。 表 3
Figure imgf000016_0001
(注) 1 : ( ) 内は総エポキシ基数 (mmol)
2 : ( ) 内は総 N数 /1.2級 N数 (隨 ol)
3 :画像にカプリを生ずるまでのコピー枚数
(実施例 2 )
本実施列は、 エポキシ変性シ リ コーンオイルとア ミ ン化合物とを予め反応させ て得たエポキシノア ミ ノ変性シ り コー ンオイ ルで金属酸化物粉体を表面処理する 例を示す。
エポキシ23 1変性シ リ コーンオイルとア ミ ン化合物とを 50°Cで一昼夜混合すること により予め反応させてから、 喷霧に使用 した以外は、 実施例 1 と同様にして金属 酸化物粉体を表面処理した。 得られた疎水性金属酸化物粉体の疎水化率と鉄粉に 対する摩擦帯電 Sならびにこれを含む トナーの流動性および電子写真用現像剤の 寿命テ ス 卜の结果を表 4 にま と めて示す。 表 4 中の記号の意味は表 1 および 2 に 示した通りである。
O 表 4
\
金属酸化物 表面処理"二用いた材 \ \料 摩 擦 疎水化 on 備 粉体 流勅性
験 エポキシ変性 ァ ミ ン 帯電 £ 率 テス 卜 3 考 (比表面積 1 |Ί J _' 'チ 1 |L
Να m2/g) rnnol) 1 (咖 Ol) 2 ( "C/g) (%) {%) (枚)
1 a (8/4) 4 ¾Πυ» 0 U0U0U
2 a (5/2.5) -310 85 86 〉40 000
3 a (2/1) -510 83 92 〉43.000 実 4 b (4/4) 51 92 90 >40.000
5 A (5) 42 80 90 〉38. 000
6 243 86 82 >35, 000
(200)
7 e (16/4) 83 83 了 8 > 31. 000 施 8 -480 90 90 >40, 000
9 -288 95 92 〉45. 000
10 g (4/4) -243 93 87 >38, 000
11 B (5) 155 82 85 >35. 000 m! 12 C (5) 171 84 83 >35. 000
13 B (5) 260 88 83 >33. 000 シリカ (130) h (8/4)
14 C (5) 256 75 94 >38. 000
15 チタニア (50) 310 88 85 >32. 000
A (5)
16 アルミナ (画 289 92 91 〉41. 000
17 f (10/10) -230 53 70 22.000 比 シリカ (200)
18 186 30 21 8.000 铰 A (5)
j 19 "二 7 (50) i (10/10) 232 36 16 8. 000 例
1 20 アルミナ (觸 309 40 19 7. 000
( ) 内は総エポキシ基数 (mmo l )
( ) 内は総 N数 1. 2級 N数 (画 1)
画像に力ブリを生ずるまでのコピー枚数 (実施例 3 )
本実施例は、 エポキシ変性シ リ コーンオイルとア ミ ン化合物とス 卜 レー ト シ リ コーンオイルで同時に金属酸化物粉体を表面処理する例を示す。
ェポキシ変性シ リ コーンオイルとア ミ ン化合物に加えて、 ス ト レー ト シ リ コー ンオイルを噴霧に使用した以外は、 実施例 1 と同様にして金属酸化物粉体を表面 処理した。 得られた疎水性金属酸化物粉体の疎水化率と鉄粉に対する摩擦帯電量 ならびにこれを含む トナーの流動性および電子写真用現像剤の寿命テス 卜の結果 を表 5 にま とめて示す。 表 5中の記号の意味は表 1 および 2 に示した通りである < (実施例 4 )
本実施冽は、 エポキシ変性シ リ コーンオイルとア ミ ン化合物とを予め反応させ て得たエポキシ/ア ミ ノ変性シ リ コーンオイルとス ト レー ト シ リ コーンオイ ルと で金属酸化物粉体を表面処理する例を示す。
エポキシ変性シリ コーンオイルとァ ミ ン化合物とを 50てで一昼夜混合すること により予め反応させたものと、 ス ト レー ト シ リ コー ンオイルとを噴 に使用した 以外は、 実施例 1 と同様にして金属酸化物粉体を表面処理した。 得られた疎水性 金属酸化物粉体の疎水化率と鉄粉に対する摩擦帯電量ならびにこれを含む トナー の流動性および電子写真用現像剤の寿命テス 卜の桔果を表 6 にまとめて示す。 表 6中の記号の意味は表 1 および 2 に示した通りである。
1 7 表 5
Figure imgf000019_0001
(注) 1 ( ) 内は総エポキシ基数 o l)
2 ( ) 内は 1 · 2級 N数 Z総 N数 ol) 3 画像に力ブリ力く生ずるまでのコピー枚数 W 7/12835
1 8 表 6 試 金 酸化物 表面処理に用いた材料 碟 7k仆 an 備 粉体 流動性
験 1 A tX ァ ϊン ス レー 帯電量 テス 卜3 シリコ-ンれル シリコーン
Ν raVg) (.mmol) 1 (mmo 1 ) 2 オイル (g) ( iiC/z 6) (%) /οノ
1 F (2) 380 88 88 > 2.000
G (2) 43/ 92 85
a >37.000 ο (4/8)
0 H (2) 412 90 94 >40.000
4 1 (2) 332 95 89 > 40.000
D a (2.5/5) -80 87 96 〉41.000
6 a (1/2) -463 89 90 〉38 000 了 D (5) b (4/4) lb 94 93 > 36.000
8 c (4/6) 130 94 94 〉40.000 シリカ (200)
9 d (4/6) 289 90 94 >41.000
IKL 10 e (4/16) 1/8 89 92 >41.000 ,
11 f (4/4) - 354 97 8ι > 37, 000 f) F (2)
g (4/4) - 25b 96 88 >42.000
1
10 h (4/8) 88 91 〉36.000
14 A (5) o
298 85 90 >41.000 lb C (5) 41 ΩΛ
90 86 〉40.000 丄 b E (5) 8ί >39.000 a (4/8)
11 ンリカ (130) 10 on
98 88 > 39.000 Λ
ナター了 (50) D (5) 93 >35.000
La ル ナ(100) 41 no 93 〉43.0 o00 on F (2) ^丄 U o i IT, 000
21 G (2) 350 60 71 20.000 a (10/20)
比 22 H (2) 284 59 65 19, 000 シリカ (200)
23 I (2) 271 48 66 19.000 ί交 24 D (5) f (10/10) 241 64 61 19.000
125 112 34 60
伊 1 26 m (130) F (2) L45 44 21 12.000 i (10/10)
! 27 "二ア (50) 235 39 9 8.000
128 アルミナ(100) 278 41 33 9.000
(注) 1 ( ) 内は総エポキシ基数 (mmol)
2 ( ) 内は反応性 N数/総 N数 (mmol)
3 画像にカプリが生ずるまでのコビー枚数 (産業上の利用可能性)
表 3 〜 6 からわかるように、 表面処理に使用したア ミ ン化合物の種類やその量 によって、 金属酸化物粉体の摩擦帯電量を、 - 500 u i/% 程度の負帯電性から、 300 u C/ を超えるような正帯電性までに及ぶ広い範囲で自由に制御することが でき、 トナーに要求される帯電性が正負のいずれのレベルのものであっても、 本 発明の疎水性金属酸化物粉体で対応することができる。 また、 帯電性制御の精度 も高い。
さ らに、 表面処理の加熱温度が比絞的低温でよく 、 それにより金属酸化物粉体 にシ リ コーンオイルの被覆が強固に結合した疎水性金属酸化物粉体が得られる。 この金属酸化物粉体は、 疎水性や帯電性の経時安定性に優れ、 使用中または保存 中の特性劣化が少ない。 そのため、 この疎水性金属酸化物粉体を含有する電子写 真用現像剤は、 高温多湿の条件下でも流動性が良好に保持され、 カプリ のない良 好な画像が得られる複写枚数が増大する。
以上に本発明をその好適態様について説明したが、 本発明の範囲を逸脱せずに 多く の変更をなすことができることは当業者には理解されよう。

Claims

請 求 の 範 囲
1 . エポキシ基を有するシ リ コーンオイルと、 その全エポキシ基数より少ない 数の一級およびノまたは二級ァ ミ ノ基を有する非重合体型のァ ミ ン化合物とで同 時に表面処理することにより形成された表面被覆を有する疎水性金属酸化物粉体。
2 . エポキシ基とア ミ ノ基とを有するシ リ コーンオイルで表面処理する こ とに より形成された表面彼?!を有する疎水性金属酸化物粉体。
3 . エポキシ基とア ミ ノ基とを有するシ リ コーンオイルが、 ェボキシ基を有す るシ リ コーンオイルに、 その全エポキシ基と反応するのに必要な Sより少量の、 一級およびノも し く は二級ア ミ ノ基を有する非重合体型のア ミ ン化合物を反応さ せることにより得られたものである、 請求項 2記載の疎水性金属酸化物粉体。
4 . エポキシ基を有するシ リ コーンオイルと、 その全エポキシ基数より少ない 数の一級およびノまたは二級ァ Ϊ ノ基を有する非重合体型のァ ミ ン化合物と、 ス 卜 レー ト シ リ コーンオイルとで同時に表面処理することにより形成された表面被 覆を有する疎水性金) S酸化物粉体。
5 . エポキシ基とア ミ ノ基とを有するシ リ コーンオイルとス 卜 レー ト シ リ コー ンオイルとで表面処理することにより形成された表面被覆を有する疎水性金属酸 化物粉体。
6 . エポキシ基とア ミ ノ基とを有するシリ コーンオイルが、 エポキシ基を有す るシ リ コー ンオイルに、 その全エポキシ基と反応するのに必要な量より少 gの、 一級および/もし く は二級ァ ミ ノ基を有する非重合体型のァ ミ ン化合物を反応さ せることにより得られたものである、 請求項 5記載の疎水性金属酸化物粉体。
7 . ェポキシ基を有するシ リ コーンオイルがエポキシ当量 200〜3000 g /mo lの ものであり、 ア ミ ン化合物が一般式 : R l R 2 N X N H R 3 (式中、 、 R 2および R 3 は同一または異なっていてよく 、 それぞれ水素または炭素数 1 〜10のアルキル基 であり、 このアルキル基中にエーテル結合があってもよ く 、 Xは炭素数 1 〜10の アルキレン基である) で示される化合物であり、 + 10〜十 250 u C/g の Ϊ5囲内の 摩擦帯霍量を有する、 請求項 1 、 3、 4 または 6記載の疎水性金属酸化物粉体。
8 . ア ミ ン化合物の一般式において、 R 'および R 2が炭素数 1 〜 6のアルキル基 であり、 R3が水素または炭素数 1 ~ 6のアルキル基であり、 Xが -(CH)n- (nは 2〜 4の整数) である、 請求項 7記載の疎水性金属酸化物粉体。
9. エポキシ基を有するシ リ コーンオイルが、 分子の両末端にグリ シジル基を 有する、 エポキシ当量が 300〜1000 g/moU 25°Cでの粘度が 10〜50 cStのシ リ コ ー ンオイルである、 請求項 1、 3、 4 または 6記載の疎水性金属酸化物粉体。
10. ァ ミ ン化合物を、 シ リ コーンオイル中の総エポキシ基数に対するア ミ ン化 合物中の一級および二級ァ ミ ノ基の合計数のモル比が 0.1-0.9 の範囲内となる Sで使用する、 請求項 1、 3、 4 または 6記載の疎水性金属酸化物粉体。
11. シ リ コーンオイルを、 金属酸化物粉体 100 重量部当たり 5〜40重量部の:! で表面処理に使用する、 請求項 1 ないし 6のいずれか 1 項に記載の疎水性金属酸 化物粉体。
12. 金属酸化物がシリ カ、 アルミ ナまたはチタニアである請求項 1 ないし 6の いずれか 1項に記載の疎水性金属酸化物粉体。
13. 透過率法によって測定された疎水化率が 60%以上の値を示す請求項 1 ない し 6のいずれか 1項に記載の疎水性金属酸化物粉体。
14. 請求頊 1 ないし 6のいずれか 1項に記載の疎水性金属酸化物粉体を含有す ることを持徴とする、 電子写真用現像剤。
PCT/JP1996/002836 1995-10-02 1996-09-30 Poudre hydrophobe d'oxyde de metal et son utilisation WO1997012835A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69608660T DE69608660T2 (de) 1995-10-02 1996-09-30 Hydrophobes metalloxidpulver und dessen verwendung
EP96932045A EP0799791B1 (en) 1995-10-02 1996-09-30 Hydrophobic metal oxide powder and use thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP7/255145 1995-10-02
JP25514695 1995-10-02
JP25514595 1995-10-02
JP7/255146 1995-10-02
JP9701096A JP3344203B2 (ja) 1996-04-18 1996-04-18 疎水性金属酸化物粉体とその用途
JP8/97010 1996-04-18
JP9701196A JP3344204B2 (ja) 1996-04-18 1996-04-18 疎水性金属酸化物粉体とその用途
JP8/97011 1996-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/447,830 Continuation US6265126B1 (en) 1995-10-02 1999-11-23 Hydrophobic metal oxide powder and application thereof

Publications (1)

Publication Number Publication Date
WO1997012835A1 true WO1997012835A1 (fr) 1997-04-10

Family

ID=27468497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002836 WO1997012835A1 (fr) 1995-10-02 1996-09-30 Poudre hydrophobe d'oxyde de metal et son utilisation

Country Status (4)

Country Link
US (1) US6265126B1 (ja)
EP (1) EP0799791B1 (ja)
DE (1) DE69608660T2 (ja)
WO (1) WO1997012835A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855751B2 (en) * 2000-02-24 2005-02-15 Mitsubishi Materials Corporation Silica powder and method for producing the same
KR100855228B1 (ko) 2004-12-06 2008-08-29 쇼와 덴코 가부시키가이샤 표면개질 코런덤 및 수지조성물

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992857B1 (en) * 1998-05-11 2007-04-11 Nippon Aerosil Co., Ltd. Fine powder of hydrophobic metal oxide, method for producing it, and toner composition for electrophotography
US6420078B1 (en) * 2000-12-28 2002-07-16 Xerox Corporation Toner compositions with surface additives
EP1577264B1 (en) 2002-12-27 2013-05-08 Nippon Aerosil Co., Ltd. Highly dispersible, fine, hydrophobic silica powder and process for producing the same
WO2008027561A2 (en) 2006-09-01 2008-03-06 Cabot Corporation Surface-treated metal oxide particles
WO2009059382A1 (en) 2007-11-09 2009-05-14 Pacific Polymers Pty Ltd Hydrophobic modification of mineral fillers and mixed polymer systems
WO2009071991A2 (en) * 2007-12-06 2009-06-11 Henkel Ag & Co. Kgaa Nanoparticle silica filled benzoxazine compositions
US11786036B2 (en) 2008-06-27 2023-10-17 Ssw Advanced Technologies, Llc Spill containing refrigerator shelf assembly
US8286561B2 (en) 2008-06-27 2012-10-16 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
WO2010042668A1 (en) 2008-10-07 2010-04-15 Ross Technology Corporation Spill resistant surfaces having hydrophobic and oleophobic borders
US9074778B2 (en) 2009-11-04 2015-07-07 Ssw Holding Company, Inc. Cooking appliance surfaces having spill containment pattern
BR112012023312A2 (pt) 2010-03-15 2019-09-24 Ross Tech Corporation desentupidor e métodos de produção de superfícies hidrofóbicas
JP2014512417A (ja) 2011-02-21 2014-05-22 ロス テクノロジー コーポレーション. 低voc結合剤系を含む超疎水性および疎油性被覆物
JP5163821B1 (ja) * 2011-08-12 2013-03-13 堺化学工業株式会社 被覆酸化マグネシウム粒子、その製造方法、放熱性フィラー及び樹脂組成物
DE102011085428A1 (de) 2011-10-28 2013-05-02 Schott Ag Einlegeboden
RU2496573C2 (ru) * 2011-12-12 2013-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет архитектуры и строительства" (ПГУАС) Способ получения сорбента для удаления углеводородной пленки с поверхности воды
EP2791255B1 (en) 2011-12-15 2017-11-01 Ross Technology Corporation Composition and coating for superhydrophobic performance
BR112014032676A2 (pt) 2012-06-25 2017-06-27 Ross Tech Corporation revestimentos elastoméricos que têm propriedades hidrofóbicas e/ou oleofóbicas
CN115926494B (zh) * 2022-11-22 2024-06-04 中信钛业股份有限公司 一种改善塑料型材专用二氧化钛粉体喷流性的生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137305A (ja) * 1983-01-27 1984-08-07 Nippon Aerojiru Kk 表面改質金属酸化物微粉末の製造方法
JPH0680406A (ja) * 1992-08-31 1994-03-22 Mitsubishi Materials Corp 疎水性金属酸化物粉体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155155A (ja) * 1986-12-19 1988-06-28 Konica Corp 静電像現像剤および静電像現像方法ならびに画像形成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137305A (ja) * 1983-01-27 1984-08-07 Nippon Aerojiru Kk 表面改質金属酸化物微粉末の製造方法
JPH0680406A (ja) * 1992-08-31 1994-03-22 Mitsubishi Materials Corp 疎水性金属酸化物粉体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0799791A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855751B2 (en) * 2000-02-24 2005-02-15 Mitsubishi Materials Corporation Silica powder and method for producing the same
KR100855228B1 (ko) 2004-12-06 2008-08-29 쇼와 덴코 가부시키가이샤 표면개질 코런덤 및 수지조성물

Also Published As

Publication number Publication date
EP0799791A1 (en) 1997-10-08
US6265126B1 (en) 2001-07-24
EP0799791A4 (en) 1998-01-21
DE69608660T2 (de) 2001-02-01
EP0799791B1 (en) 2000-05-31
DE69608660D1 (de) 2000-07-06

Similar Documents

Publication Publication Date Title
WO1997012835A1 (fr) Poudre hydrophobe d&#39;oxyde de metal et son utilisation
JP3318997B2 (ja) 疎水性シリカ粉体、その製法および電子写真用現像剤
JP5230067B2 (ja) 表面被覆シリカ、およびその製造方法
JP2002116575A (ja) トナー組成物及びそれを用いた画像形成装置
JP2004338969A (ja) シラン表面処理球状シリカチタニア系微粒子、その製造方法、および、それを用いた静電荷像現像用トナー外添剤
JP2006096641A (ja) 改質疎水化シリカ及びその製造方法
JP4743845B2 (ja) 疎水性正帯電シリカ微粉末、その製造方法ならびにそれを外添剤として添加した静電潜像現像用トナー
US5424129A (en) Composite metal oxide particle processes and toners thereof
JP3344204B2 (ja) 疎水性金属酸化物粉体とその用途
JP3319114B2 (ja) 疎水性シリカ粉体、その製法とそれを含む電子写真用現像剤
JP3367349B2 (ja) 疎水性金属酸化物粉体とその用途
JP3344203B2 (ja) 疎水性金属酸化物粉体とその用途
JP3166014B2 (ja) 疎水性酸化チタンおよび電子写真用現像剤
JP3367350B2 (ja) 疎水性金属酸化物粉体とその用途
JPS63101855A (ja) 静電荷像現像剤
US7083888B2 (en) External additive for electrostatically charged image developing toner
JP2022047458A (ja) 複合無機酸化物粉体、複合無機酸化物粉体を含有する粉体塗料組成物、複合無機酸化物粉体を含有する電子写真のトナー組成物、複合無機酸化物粉体の製造方法
JP3930236B2 (ja) 静電荷像現像用トナー外添剤
JP3965496B2 (ja) 電子写真現像剤
JP2964750B2 (ja) 疎水性シリカ
JP4318070B2 (ja) 表面改質シリカ微粉末
JP7548806B2 (ja) 新規な複合無機酸化物粉体、複合無機酸化物粉体を含有する粉体塗料組成物、複合無機酸化物粉体を含有する電子写真のトナー組成物、複合無機酸化物粉体の製造方法
JPH11322329A (ja) 疎水性金属酸化物微粉末及びその製造方法並びに電子写真用トナー組成物
JPH11322306A (ja) 表面改質金属酸化物微粉末の製造方法及び電子写真用トナー組成物の製造方法
CA2125427C (en) Composite metal oxide particle processes and toners thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996932045

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 849082

Date of ref document: 19970602

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996932045

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996932045

Country of ref document: EP