WO1997012185A1 - Refrigerateur pour enceinte - Google Patents

Refrigerateur pour enceinte Download PDF

Info

Publication number
WO1997012185A1
WO1997012185A1 PCT/JP1996/002832 JP9602832W WO9712185A1 WO 1997012185 A1 WO1997012185 A1 WO 1997012185A1 JP 9602832 W JP9602832 W JP 9602832W WO 9712185 A1 WO9712185 A1 WO 9712185A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooling operation
time
refrigerator
container
Prior art date
Application number
PCT/JP1996/002832
Other languages
English (en)
French (fr)
Inventor
Shigeto Tanaka
Arika HORIKAWA
Kenji Tanimoto
Hisaaki Takaoka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US09/043,310 priority Critical patent/US6119471A/en
Priority to DK03002478T priority patent/DK1306631T3/da
Priority to DK96932041T priority patent/DK0853223T3/da
Priority to AU70968/96A priority patent/AU7096896A/en
Priority to DE69631671T priority patent/DE69631671T2/de
Priority to EP96932041A priority patent/EP0853223B1/en
Publication of WO1997012185A1 publication Critical patent/WO1997012185A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/003Transport containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/003Arrangement or mounting of control or safety devices for movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/36Visual displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments

Definitions

  • the present invention relates to a container refrigeration apparatus, and more particularly to a display of a history of the temperature in a refrigerator.
  • some container refrigeration systems have a temperature storage device as disclosed in Japanese Utility Model Application Laid-Open No. 4-96933.
  • This temperature storage device amplifies a temperature signal from a temperature sensor for detecting the temperature in the refrigerator, and then inputs a drive signal to a servo motor of a recording van via a servo amplifier to drive the recording pen.
  • the temperature storage device is configured to display and record the history of the internal temperature on the recording paper by the recording vane.
  • the refrigeration container equipped with the container refrigeration system described above has the power to be transported for a long time by a container ship.
  • the recording paper mentioned above was generally replaced every time the person in charge of transportation changes .
  • the luggage recipient could not determine the status during transportation.
  • the first invention is capable of displaying an operation time at which a predetermined deviation has occurred with respect to a set temperature so that the entire history of the internal temperature can be recognized. It is intended to do so.
  • Another object of the present invention is to display the duration of the rapid cooling operation so that the history of the cooling state can be recognized.
  • the internal temperature is stored at predetermined time intervals, and in particular, the average internal temperature or the peak temperature during the defrost operation is stored and displayed, and the entire internal temperature history is recognized. It is intended to be intelligible.
  • the first solution taken by the present invention is as follows: first, a compressor (41), a condenser (42), an expansion mechanism (4E), and an evaporator.
  • a container refrigeration system is provided, which is provided with a refrigerant circuit (40) that is connected in sequence with a vessel (43), and controls the operation of the refrigerant circuit (40) to cool the inside of the refrigerator.
  • a cooling operation means (62) for executing a cooling operation so that the temperature in the refrigerator is maintained at the set temperature is provided. Further, when the internal temperature becomes a cooling operation at or above a preset deviation from the set temperature, an accumulation storage means for storing an accumulation time obtained by accumulating the cooling operation time at or above the deviation temperature together with the deviation temperature. Is provided. In addition, when a command signal for integration display is input, the integration storage means (65) reads the integration time and the deviation temperature stored in the integration storage means, and displays the integrated data reading means (66) input in the display section (7S). It is provided well.
  • the accumulation storage means (65) accumulates and stores the operation time longer than a predetermined deviation. For example, if a deviation temperature that is +1 ° C higher than the set temperature is set, the operation time exceeding this deviation temperature is calculated.
  • a second solution taken by the present invention is that, instead of the integration storage means (65) and the integration data reading means (66) of the first solution, the internal temperature is set in advance with respect to the set temperature.
  • An integration storage means (65) is provided for storing an integration time obtained by integrating the constant time every time the rotation time continues for a predetermined time, and the integration storage means (65) is stored when an integration display command signal is input.
  • An integrated data reading means (66) for reading out the obtained integrated time and deviation temperature and displaying it on the display section (7S) is provided.
  • the accumulation storage means (65) accumulates and stores the operation time of a predetermined deviation or more for each predetermined time period when the operation time exceeds a predetermined time period. For example, if a deviation temperature that is higher than the set temperature by +1 ° C is set, the operation time that is equal to or greater than the predetermined deviation is integrated every 5 minutes.
  • the second solution since the operation time exceeding the predetermined deviation is added at regular intervals, it is possible to reduce the need to provide unnecessary information to the recipient of the package. Can be. In other words, simply adding up may give the impression that operation outside the set temperature has been performed for a long period of time. By integrating this over a certain period of time, unnecessary information provision can be prevented while maintaining a certain level of accuracy.
  • the third solution adopted by the present invention is based on the premise that the container refrigeration apparatus is the same as the first solution described above. Then, after the pull-down operation means (61) for executing the rapid J cooling operation for rapidly cooling the inside of the refrigerator and the rapid cooling operation by the pull-down operation means (61), the temperature in the refrigerator is maintained at the set temperature.
  • a cooling operation means (62) for executing a cooling operation.
  • pull-down display command means (64) for outputting a command signal for displaying the operation time and the internal temperature during the rapid cooling operation by the pull-down operation means (61) on the display unit (7S). ing.
  • the pull-down display command means (64) outputs a command signal and displays the internal temperature and the rapid cooling on the display (7S).
  • the operation time is displayed, for example, indicating that the current internal temperature is “30 ° C.” and the pull-down operation time is “124 hours”. Therefore, according to the third solution, the pull-down operation time and the internal temperature are displayed during the pull-down operation. Then, it is possible to know the rapid cooling operation time. As a result, the quality of the package can be easily determined.
  • the fourth solution taken by the present invention is based on the premise that the container refrigeration system is the same as the first solution.
  • Cooling operation means (62) for executing a cooling operation so that the temperature in the refrigerator is maintained at the set temperature is provided.
  • temperature storage means for storing the internal temperature at predetermined time intervals, and for storing the average internal temperature during the time interval as the internal temperature. Have been.
  • the temperature storage means (67) stores the internal temperature at each preset time interval, and stores the average internal temperature during the time interval. Remember the average inside temperature for each case.
  • a fifth solution taken by the present invention is a means for storing the internal temperature at predetermined time intervals instead of the temperature storage means (67) of the fourth solution, If a peak temperature occurs during the defrost operation of the defrost operation means (63) during the time interval, a temperature storage means (67) for storing the peak temperature as the internal temperature is provided.
  • the temperature storage means (67) force ⁇ , the internal temperature at every preset time interval, and as the internal temperature during defrost operation, the peak temperature during the time interval. Occurs, the peak temperature is stored.
  • the peak temperature of the defrost operation since the peak temperature of the defrost operation is stored, it can be accurately determined whether or not the normal operation has been performed. In other words, when the constant instantaneous temperature during the time interval is stored, the peak temperature may not be stored. On the other hand, since defrost operation is basically performed every predetermined time, if the peak temperature is not stored, a misunderstanding that normal operation has not been performed may occur. The force to be shifted ⁇ and the peak temperature are always stored, so it is possible to accurately determine whether or not normal operation has been performed.
  • a sixth solution taken by the present invention is a means for storing the internal temperature at predetermined time intervals instead of the temperature storage means (67) of the fourth solution, Temperature storage for storing the average internal temperature during the time interval as the internal temperature if the defrost operation of the defrost operation means (63) is continued over the entire time interval and no peak temperature occurs during the time interval. Means (67) are provided.
  • the temperature storage means (67) stores the internal temperature at each preset time interval, and stores the peak temperature during the time interval as the internal temperature during the defrost operation. If not, the average chamber temperature during the time interval is stored. That is, the average internal temperature during the defrost operation is stored as it is.
  • the seventh solution taken by the present invention is the temperature storage means (67) in any one of the fourth solution to the sixth solution, wherein a temperature display command signal is input. ) Is provided with temperature data reading means (68) for reading out the internal temperature stored in the storage section and displaying it on the display section (7S).
  • the temperature data reading means (68) reads out the internal temperature stored in the temperature storage means (67) and displays it on the display section (7S). Will be displayed.
  • the average inside temperature is read and displayed, so that the history of the inside temperature can be known accurately and quickly, so that the quality judgment of the package can be performed. Can be done accurately.
  • FIG. 1 is a block diagram showing the configuration of the present invention.
  • FIG. 2 is a perspective view of the refrigeration container.
  • FIG. 3 is a cross-sectional view of the refrigeration apparatus.
  • FIG. 4 is a configuration diagram of the controller.
  • FIG. 5 is a front view of the display input unit showing a pull-down display.
  • FIG. 6 is a front view of the display input unit showing the integrated history display.
  • FIG. 7 is a characteristic diagram of the internal temperature indicating the accumulated time.
  • FIG. 8 is a front view of the display input unit showing the temperature history display.
  • FIG. 9 is a control flowchart showing the storage operation of the internal temperature.
  • FIG. 10 is another control flowchart showing the storage operation of the internal temperature.
  • FIG. 11 is a characteristic diagram showing the internal temperature.
  • FIG. 12 is a characteristic diagram of the internal temperature indicating another storage operation.
  • the refrigerated container (10) is loaded with various types of cargo, and transports the cargo in a cooled state by a container ship or a container vehicle.
  • the refrigeration container (10) is configured such that a container refrigeration device (20) is attached to a container body (11), and the container body (11) has one surface (the left side surface in FIG. 2). Is formed in a rectangular box having an opening.
  • the refrigerating device (20) also serves as a lid for closing the opening surface of the container body (11), and a refrigerant circuit (40) is provided inside a casing (30) having a predetermined thickness. It is housed and stored.
  • the casing (30) is formed by attaching a partition wall (32) in parallel to the inside of a main body wall (31), and the main body wall (31) is formed of a heat insulating material or the like to form a container main body (11). ), And a storage space (33) for equipment depressed inward is formed in the lower half.
  • a cooling space (34) is formed between the main body wall (31) and the partition (32) above the storage space (33), and is located inside the storage space (33).
  • An air passage (35) is formed continuously with the cooling space (34), and the upper end of the cooling space (34) and the lower end of the air passage (35) are inside the container body (11), respectively.
  • the refrigerant circuit (40) includes a compressor (41), a condenser (42), an expansion mechanism (4E), and an evaporator (43) connected in order, and the compressor (41) and the condenser (41).
  • the refrigerant circuit (40) the refrigerant compressed by the compressor (41) is condensed by the condenser (42), decompressed by the expansion mechanism (4E), and then evaporated by the evaporator (43) to be sent to the compressor (41).
  • the air inside the container body (11) flows into the cooling space (34), is cooled by the evaporator (43), and then flows through the air passage (35), and then returns to the container body (11). To cool the interior.
  • a controller (50) for controlling the cooling operation of the refrigerant circuit (40) is provided in the storage space (33), and controls the capacity and the like of the compressor (41) so that the temperature in the refrigerator becomes the set temperature. I have. As shown in FIG. 4, the controller (50) is configured such that a display input unit (70) is force-coupled to a central control unit CPU (60).
  • the CPU (60) is provided with a cooling operation means (62) and a defrost operation means (63) in addition to the pull-down operation means (61) at the start of operation.
  • the pull-down operation means (61) operates the compressor (41) at full load to execute a rapid cooling operation, and the temperature in the refrigerator falls rapidly to a control temperature range (hereinafter referred to as an in-range).
  • the refrigerant circuit (40) is controlled to perform
  • the cooling operation means (62) executes the cooling operation once the temperature in the refrigerator falls within the in-range due to the pull-down operation, and controls the refrigerant circuit (40) so that the temperature in the refrigerator maintains the in-range.
  • This in-range is set to have a predetermined temperature range with respect to the set temperature. For example, the in-range is set to a temperature range of ⁇ 1 ° C with respect to the set temperature, and the set temperature is set to 0 ° C. In the case of chilled mode (refrigerated mode), it becomes frozen mode (refrigerated mode) at 120 ° C.
  • the defrosting operation means (63) executes a defrosting operation using a hot gas or an electric heater. For example, during a pull-down operation, the defrosting operation is executed every four hours, and the temperature in the chamber is reduced. When the cooling operation is maintained within the in-range, the defrost operation is performed at selected intervals of 12 hours or 24 hours. Ma In addition, the defrost operation means (63) executes the defrost operation when the temperature inside the refrigerator becomes higher than the in-range, and when the state of higher temperature than the in-range continues for 30 minutes.
  • the display input unit (70) is used to input the set temperature and display the internal temperature.
  • the input keys (71) are used to switch the set keys (7K-1) for inputting the set temperature, etc., the up key (7K-2) and the down key (7K-3) for switching the displayed contents, and the mode.
  • a replace enter key (7K-4) and a trip start key (7K-5) for writing the start of operation control are provided.
  • the first display section (72) has a 4-digit segment display section (7S), a blow-out temperature display section (771), and a return temperature display section (7L-2), which indicate items to be displayed with light-emitting elements. And an alarm display section (7L-3) and a set display section (7L4).
  • the second display section (73) is configured to display information data such as a set temperature.
  • the lamp display section (74) is provided with a compressor display section (7M-1), a defrost display section (7M-2), and an in-range display section (7M-3), each of which indicates an operation state by a light emitting element. .
  • a compressor display section (7M-1) is provided with a compressor display section (7M-1), a defrost display section (7M-2), and an in-range display section (7M-3), each of which indicates an operation state by a light emitting element. .
  • the CPU (60) is provided with a pull-down display instruction means (64).
  • the pull-down display command means (64) displays the operation time during the rapid cooling operation by the pull-down operation means (61) and the internal temperature on the first display section (72) of the display input section (70) every predetermined time.
  • the command signal for alternately displaying is output.
  • the pull-down display command means (64) When the cargo is loaded into the freezing container (10) and the cooling operation is started, the pull-down operation means (61) Sets the compressor (41) to full load and executes the rapid cooling operation.
  • the pull-down display command means (64) outputs a command signal to the display input unit (70), and displays the internal temperature and the quick cooling operation time (pull-down operation time) on the first display unit (72). .
  • the current inside temperature is "30 ° C" and the The display indicates that the run-down operation time is "124 hours" by switching every second.
  • the pull-down operation time is longer than the pull-down operation temperature because the internal temperature is initially high during the pull-down operation. Important for quality control. Therefore, how much pull-down operation is continued is indicated as a kind of as in the refrigerator temperature, and the judgment data for receiving the refrigerated container (10) during the above-mentioned burundon operation is displayed. .
  • the switching display between the inside temperature and the rapid cooling operation time is performed until the inside temperature enters the in-range.
  • the first display section (72) of the display input section (70) turns on the blowout temperature display section (7L-1), and the compressor display section (7M- 1) lights up, and the second display (73) has, for example, a setting of “0 ° C” and a 24-hour defrost timer for performing defrosting every 24 hours. Is displayed.
  • the receiver of the package can recognize the operation time if the rapid cooling operation is being performed (pull-down operation) by looking at the display / input section (70). It can be used as a material for judging the quality of luggage.
  • One accumulation history display
  • the CPU (60) is provided with integrated storage means (65) and integrated data reading means (66).
  • the accumulation storage means (65) sets the accumulated time obtained by accumulating the cooling operation time equal to or more than the deviation temperature together with the deviation temperature when the inside temperature of the refrigerator becomes a cooling operation with a predetermined deviation or more from the set temperature. ⁇ "
  • the integrated data reading means (66) reads the integrated time and the deviation temperature stored in the integrated storage means (65) and displays the first display on the display input section (70). Displayed in part (72).
  • the rapid cooling operation by the pull-down operation means (61) is completed, and Upon entering the in-range, the cooling operation means (62) controls the capacity and the like of the compressor (41) so as to maintain the inside temperature in the in-range.
  • the accumulation storage means (65) accumulates and stores the operation time equal to or more than the predetermined deviation. For example, in FIG. 7, when the integration temperature SP + 1 having a deviation higher by +1 than the set temperature SP is set, the operation time exceeding the deviation temperature (+1) is integrated. Then, in the case of the temperature characteristic (2) in Fig. 7, the operation time (1) in the lower part of Fig. 7 is integrated, and in this case, the integration storage means (65) adds 4 minutes, 4 minutes, and 3 minutes to 11 minutes. I will remember.
  • the up key (7K-2) and the down key in the display input section (70) Turn on the alarm display (7L-3) with (7 -3). Since d-code is provided as one piece of information in this alarm item, if this d-code is set, a command signal for integrating display will be input. Then, the integrated data reading means (66) reads the integrated time and the deviation temperature stored in the integrated storage means (65) and displays them on the segment display section (7S). For example, in FIG. 6, when the deviation temperature is 3 ° C. and the temperature is SP + 3, it indicates that the operation time is +3 hours higher than the set temperature SP by 10 hours.
  • the CPU (60) is provided with a temperature storage means (67) and a temperature data reading means (68).
  • the temperature storage means (67) is a means for storing the internal temperature at predetermined time intervals, and stores the internal temperature as the internal temperature during the cooling operation of the cooling operation means (62) during the time interval.
  • the average internal temperature is stored, and when the peak temperature occurs during the time interval as the internal temperature during the defrost operation of the defrost operation means (63), the peak temperature is calculated, and the defrost operation is performed over the entire time interval. If the defrost operation of the means (63) is continued and no peak temperature occurs during the time interval, the average internal temperature during the time interval is stored as the internal temperature as the internal temperature. I do.
  • the temperature storage means (67) stores the internal temperature every 30 minutes.
  • the temperature data reading means (68) reads the internal temperature stored in the temperature storage means (67), and reads the first display section (72) of the display input section (70). To be displayed.
  • the temperature storage means (67) stores the temperature in the refrigerator during normal operation excluding the pull-down operation during transportation of the refrigerated container (10). Therefore, before describing the storage operation, the display operation will be described.
  • the luggage receiver, etc. presses the enter key (7K-4) on the display / input unit (70) for 3 seconds, when retrieving the luggage, etc., wants to recognize the history of the temperature inside the refrigerator.
  • a command signal for temperature display is input, and the temperature data reading means (68) is stored in the temperature storage means (67).
  • the internal temperature is read and displayed on the segment display (7S).
  • the internal temperature of the segment display section (7S) switches from 30 to 0.1 ° C., and the second display section (73) turns off. Then, the data of the storage temperature closest to the present is displayed every second, retroactively in the past. If you want to stop the display operation during this display, press the set key (7K-1) on the display input section (70), and the display will switch to the current refrigerator temperature display. Next, the storage operation during the cooling operation by the temperature storage means (67) will be described based on the control flow charts of FIGS. 9 and 10.
  • FIG. 9 the control flow charts
  • step ST1 the data ⁇ of the in-chamber temperature detected by the blow-out temperature sensor (not shown) is fetched. Subsequently, the process proceeds to step ST2, in which a 1-minute sampling timer is started, and the process proceeds to step ST3, where it is determined whether or not the mouthing starts.
  • step ST3 the process proceeds from step ST3 to step ST4 to determine whether or not the defrost operation is to be started. In the normal cooling operation after the pull-down operation, this defrost operation is basically performed at intervals of 12 hours or 24 hours set in advance. If not, the process proceeds from step ST4 to step ST5 to determine whether or not the timer has counted up.
  • step ST3 until the timer set in step ST2 counts up, and repeats the above operation.
  • the process proceeds from step ST5 to step ST6, and the next data of the internal temperature is captured. Then, the process proceeds to step ST7, where the average value of the data No. and data No. is calculated, the calculated data is rewritten to the data No., the process returns to step ST2, and the above operation is repeated.
  • the data of the inside temperature is taken in every 1 minute sampling time, and the average value with the previous data is replaced with the data.
  • step ST7 the data 1, which is the average value per minute calculated in step ST7 above, is logged and restarted.
  • the defrost operation is started, for example, when the point F in FIG. 11 is reached, the process proceeds from the step ST4 to the step ST5, and it is determined whether or not the mouth ging is started.
  • step ST 9 the process proceeds from step ST 9 to step ST 10 until this logging start timing is reached, and it is determined whether or not the defrost operation has been completed. Until the defrost operation has been completed, the process returns to step ST 9 to start the mouth ging and defrost. The determination that the operation has ended is repeated.
  • step ST7 the average internal temperature D2 up to the start of this defrost operation is calculated as the data in step ST7.
  • the process moves from step ST9 to step ST11, and the average inside-chamber temperature D2 from point c to the start F of the defrost operation is recorded as data. Write as 1 and move to step ST10. Then, in FIG. 11, between point c and point d, the defrost operation has been started halfway, and the average internal temperature D2 up to the start of this defrost operation is calculated as the data in step ST7.
  • the process moves from step ST9 to step ST11, and the average inside-chamber temperature D2 from point c to the start F of the defrost operation is recorded as data. Write as 1 and move to step ST10. Then, in FIG.
  • step ST10 the force that ends the defrost operation and shifts from step ST10 to step ST12 described above ⁇
  • the force at the end of this defrost operation In the vicinity, the peak temperature DH of the internal temperature will occur. Therefore, the peak temperature DH is replaced with the data 1, and the process proceeds to step ST13, and waits at step ST13 until the mouthing of the mouth is started.
  • step ST13 is performed, and the process proceeds to the step ST14.
  • the operation from 1 will be restarted.
  • step ST7 the average internal temperature between e ⁇ f and f ⁇ g calculated in step ST7 is written.
  • step ST 21 when the defrost operation is started at the point F in FIG. 12, it is determined in step ST 21 whether or not to start the mouth-ging, and the process proceeds to step ST 22 until the timing to start the mouth-ging is performed. It is determined whether or not the mouth rinsing operation is completed, and the process returns to step ST 21 until the defrost operation is completed, and the determination of the start of the mouth ging and the termination of the defrost operation is repeated.
  • Step ST23 to Step ST25 are performed, and Steps ST12 to ST14 in FIG. 9 are performed.
  • Steps ST12 to ST14 in FIG. 9 are performed.
  • step ST 21 the process proceeds from the step ST 21 to the step ST 26, and writes the average internal temperature D 2 from the point b to the start F of the defrost operation as data 1. Subsequently, the process proceeds to step ST27, in which the timer is started in the same manner as in step ST2, and the process proceeds to step ST28, where it is determined whether or not it is time to start the mouth ging.
  • step ST28 Until the start time of the logging, the process proceeds to step ST28, and then proceeds to step ST29 to determine whether or not the defrost operation has been completed, and proceeds to step ST30 until the defrost operation has been completed. It is determined whether or not the timer has counted up. The process returns from step ST30 to step ST28 until this timer counts up. When the timer counts up, the process proceeds from step ST30 to step ST31, that is, when one minute force has elapsed after the data No. has been fetched, the next data No. of the internal temperature is fetched. Then, the process proceeds to step ST32, calculates the average value of the data 1 and data ⁇ ⁇ , rewrites the calculated data to data ⁇ , returns to step ST27, and repeats the above operation.
  • the data of the internal temperature is taken in at the sampling time of 1 minute, and the average value with the previous data is replaced with data 1. Then, when the time interval of 30 minutes elapses, for example, when the point d in FIG. 12 is reached, the mouthing start time is reached. Therefore, the process proceeds from step ST28 to step ST26, and proceeds to step ST32.
  • the data 1, which is the average value per minute, calculated in step ⁇ ⁇ ⁇ ⁇ is logged, and the operation in step ST27 is performed. In other words, between point c and point d in FIG. 12 is in the middle of executing the defrost operation, and the inside temperature is in the process of rising. Therefore, as shown in D3 of FIG.
  • the average chamber temperature for each minute will be mouthed and memorized.
  • step ST32 the force for calculating the average internal temperature in step ST32 is terminated, so that the defrost operation ends, so that the determination in step ST29 becomes YES and the step ST29 becomes YES.
  • the peak temperature DH is written as data 1 (see steps ST23 to ST25).
  • the points f and g in FIG. 12 are the same as in FIG.
  • the pull-down operation time and the internal temperature are alternately displayed during the pull-down operation. If a rapid cooling operation is in progress at the time of receiving, etc., the rapid cooling operation time can be known. As a result, the quality of the package can be easily determined.
  • the operating time of the predetermined deviation from the set temperature during the normal cooling operation and the deviation temperature are stored, and the operation time and the deviation temperature can be displayed.
  • the history of the internal temperature can be known at the time of receipt of the information. In particular, since there is no need to replace the recording paper as in the case of conventional recording paper, the entire history during transportation can be known, so that the quality of the package can be accurately determined.
  • the average internal temperature at a predetermined time interval during a normal cooling operation is stored for each time interval, the internal state is compared with a case where a constant instantaneous temperature during the above time interval is stored. Can be accurately reflected. Then, since the average inside temperature is read and displayed, the history of the inside temperature can be known accurately and a3 ⁇ 4, so that the quality judgment of the package can be performed accurately.
  • the peak temperature DH of the defrost operation since the peak temperature DH of the defrost operation is stored, it can be accurately determined whether or not the normal operation has been performed. In other words, if a fixed instantaneous temperature during the time interval is stored, the peak temperature DH may not be stored. On the other hand, since the differential opening operation is basically performed every predetermined time, if the peak temperature DH is not stored, it may be misunderstood that the normal operation has not been performed, but the peak temperature DH must be stored. Therefore, it can be accurately determined whether or not normal operation has been performed.
  • the accumulation storage means (65) simply accumulates the cooling operation time equal to or higher than the deviation temperature.
  • the accumulation storage means (65) may perform divisional accumulation for each predetermined section.
  • the accumulation storage means (65) is configured such that, when the internal temperature becomes a cooling operation that is equal to or more than a preset deviation from the set temperature, the cooling operation time that exceeds the deviation temperature together with the deviation temperature continues for a certain period of time. The accumulated time obtained by accumulating the predetermined time is stored in the storage section.
  • a 5-minute counter is used to calculate the integration temperature SP + 1. If the exceeded operation time continues for 5 minutes, the 5 minutes are added. As a result, in the case of the temperature characteristic 2 in Fig. 7, 7 minutes of the operation time 2 in the lower part of Fig. 7 are integrated as 5 minutes, and 9 minutes are also integrated as 5 minutes. Will store 10 minutes by adding 5 minutes and 5 minutes. If the above operation continues for 10 minutes, the 5-minute counter counts twice, so 10 minutes is stored. Accordingly, since the operation time exceeding the predetermined deviation temperature SP + 1 is added at regular intervals, it is possible to reduce the need to provide unnecessary information to the recipient of the package. In other words, the simple integration may give the impression that operation outside the set temperature has been performed for a long time. By integrating this at regular intervals, it is possible to prevent unnecessary information provision while maintaining constant accuracy.
  • the average internal temperature during defrost operation is stored as it is, but as another invention, if the peak temperature DH does not occur in the section, The previous average internal temperature may be displayed, and the average internal temperature D2 may be copied as it is between the points c and d in FIG.
  • the container refrigeration apparatus of the present invention it is useful for recognizing the entire history of the internal temperature, and useful for recognizing the cooling state, This is useful when recognizing the internal temperature or peak temperature during defrost operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Control Of Temperature (AREA)

Description

曰月 糸田
コ ンテナ用冷凍装置
[技術分野 ]
本発明は、 コンテナ用冷凍装置に関し、 特に、 庫内温度の履歴表示に係るもので あ O o
[背景技術 ]
従来より、 コンテナ用冷凍装置には、 実開平 4— 9 6 0 3 3号公報に開示されて いるように、 温度記憶装置を備えているものがある。 この温度記憶装置は、 庫内温度 を検出する温度センサからの温度信号を増幅等した後、 サーボアンプを介して記録べ ンのサーボモータに駆動信号を入力し、 該記録ペンを駆動させる。 そして、 上記温度 記憶装置は、 記録べンによつて記録紙に庫内温度の履歴を表示して記録するようにし ている。
-解決課題 - 上述したコンテナ用冷凍装置を備えた冷凍コンテナは、 コンテナ船によって長期 間運搬されることになる力 上述した記録紙は、 運搬責任者が代わるたびに取り換え られることが一般であった。
したがって、 上記記録紙が取り換えられていると、 荷物の受取者は、 運搬時の状 況を判別することができなかった。 つまり、 運搬時の庫内温度の履歴を知ることがで きないので、 受取時の荷物の品質を判別することができないという問題があった。 本発明は、 斯かる点に鑑みてなされたもので、 1の発明は、 設定温度に対して所 定偏差が生じた運転時間を表示可能にし、 庫内温度の履歴全体を認識し得るようにす ることを目的とするものである。
また、 他の発明は、 急速冷却運転の継続時間を表示するようにして冷却状態の履 歴を認識し得るようにすることを目的とするものである。 また、 他の発明は、 所定の時間間隔ごとに庫内温度を記憶し、 特に、 平均庫内温 度又はデフロスト運転時のピーク温度を記憶して表示可能にし、 庫内温度の履歴全体 を認、識し得るようにすることを目的とするものである。
[発明の開示 ]
上記の目的を達成するために、 図 1に示すように、 本発明が講じた第 1の解決手 段は、 先ず、 圧縮機 (41) と凝縮器 (42) と膨張機構 (4E) と蒸発器 (43) とが順に 接続されてなる冷媒回路 (40) を備え、 該冷媒回路 (40) を運転制御して庫内を冷却 するコンテナ用冷凍装置を前提としている。
そして、 庫内温度が設定温度に維持されるように冷却運転を実行する冷却運転手 段 (62) が設けられている。 更に、 庫内温度が設定温度に対して予め設定された偏差 以上の冷却運転になると、 該偏差温度と共に、 偏差温度以上の冷却運転時間を積算し た積算時間を記憶する積算記憶手段 (65) が設けられている。 加えて、 積算表示の指 令信号が入力されると、 上記積算記憶手段 (65) 力記憶した積算時間と偏差温度とを 読み出して表示部 (7S) に表示する積算データ読出し手段 (66) 力く設けられている。
上記第 1の解決手段では、 急速冷却運転後の冷却運転時において、 積算記憶手段 (65) が、 所定偏差以上の運転時間を積算して記憶する。 例えば、 設定温度に対して + 1 °Cだけ高い偏差温度が設定されている場合、 この偏差温度を越えた運転時間を積 算する。
したがって、 上記第 1の解決手段によれば、 通常の冷却運転中における設定温度 に対する所定偏差の運転時間を積算した時間とその偏差温度とを記憶するようにし、 その運転時間と偏差温度とを表示可能にしたために、 荷物の受取り時等に庫内温度の 履歴を知ることができる。 特に、 従来の記録紙のような取り換えが行われることがな いので、 運搬中の全体の履歴を知ることができるので、 荷物の品質判定を正確に行う ことができる。 また、 本発明が講じた第 2の解決手段は、 上記第 1の解決手段の積算記憶手段 (65) 及び積算データ読出し手段 (66) に代えて、 庫内温度が設定温度に対して予め 設定された偏差以上の冷却運転になると、 該偏差温度と共に、 偏差温度以上の冷却運 転時間が一定時間継続するごとに該一定時間を積算した積算時間を記憶する積算記憶 手段 (65) を設けると共に、 積算表示の指令信号が入力されると、 上記積算記憶手段 (65) が記憶した積算時間と偏差温度とを読み出して表示部 (7S) に表示する積算デ 一夕読出し手段 (66) を設けたものである。
上記第 2の解決手段では、 積算記憶手段 (65) が、 所定偏差以上の運転時間が一 定時間継続するとこの一定時間ごとに積算して記憶する。 例えば、 設定温度に対して + 1 °Cだけ高い偏差温度が設定されている場合、 5分ごとに所定偏差以上の運転時間 を積算することになる。
その後、 庫内温度の履歴を認識したい場台、 積算表示の指令信号を入力すると、 表示部 (7S) に積算記憶手段 (65) 力 <記憶した積算時間と偏差温度とを読み出して表 示することになる。
したがって、 上記第 2の解決手段によれば、 所定偏差を越えた運転時間を一定時 間ごとに積算するようにしたために、 荷物の受取人等に不必要な情報を提供すること を少なくすることができる。 つまり、 単純に積算した場合、 設定温度より外れた運転 が長期間行われたかのような印象を与えることになる場合がある。 これを一定時間ご と積算することによって、 一定の精度を保持しつつ不必要な情報提供を防止すること ができる。 また、 本発明が講じた第 3の解決手段は、 上記第 1の解決手段と同様なコンテナ 用冷凍装置を前提としている。 そして、 庫内を急速に冷却する急 J 冷却運転を実行す るプルダウン運転手段 (61) と、 該プルダウン運転手段 (61) による急速冷却運転の 後に、 庫内温度が設定温度に維持されるように冷却運転を実行する冷却運転手段 (62) とが設けられている。 加えて、 上記プルダウン運転手段 (61) による急速冷却運転中 の運転時間と庫内温度とを表示部 (7S) に表示させるための指令信号を出力するプル ダウン表示指令手段 (64) が設けられている。
上記第 3の解決手段では、 プルダウン運転手段 (61) が急速冷却運転を実行する と、 プルダウン表示指令手段 (64) が、 指令信号を出力して表示部 (7S) に庫内温度 と急速冷却運転時間とを表示し、 例えば、 現在の庫内温度が " 3 0 °C" であり、 且つ プルダゥン運転時間が " 1 2 4時間" である旨などを表示することになる。 したがって、 上記第 3の解決手段によれば、 プルダウン運転中ではプルダウン運 転時間と庫内温度とを表示するようにしたために、 荷物の受取人等は、 荷物の受取り 時等に急速冷却運転中であれば、 その急速冷却運転時間を知ることができる。 この結 果、 荷物の品質判定を容易に行うことができる。 また、 本発明が講じた第 4の解決手段は、 上記第 1の解決手段と同様なコンテナ 用冷凍装置を前提としている。 そして、 庫内温度が設定温度に維持されるように冷却 運転を実行する冷却運転手段 (62) が設けられている。 加えて、 予め設定された時間 間隔ごとに庫内温度を記憶する手段であって、 該庫内温度として時間間隔の間におけ る平均庫内温度を記憶する温度記憶手段 (67) 力 <設けられている。
上記第 4の解決手段では、 温度記憶手段 (67) が、予め設定された時間間隔ごと の庫内温度であって、 該時間間隔の間の平均庫内温度を記憶し、 例えば、 3 0分ごと の平均庫内温度を言己憶する。
したがって、 上記第 4の解決手段によれば、 運転中における所定時間間隔の平均 庫内温度を時間間隔ごとに記憶するようにしたために、 上記時間間隔の間の一定の瞬 時温度を記憶する場合に比して庫内状態を正確に反映させることができる。 また、 本発明が講じた第 5の解決手段は、 上記第 4の解決手段の温度記憶手段 (67) に代えて、 予め設定された時間間隔ごとに庫内温度を記憶する手段であって、 該時間間隔の間にデフロスト運転手段 (63) のデフロスト運転中のピーク温度が生じ ると庫内温度として該ピーク温度を記憶する温度記憶手段 (67) を設けたものである。
上記第 5の解決手段では、 温度記憶手段 (67) 力 <、 予め設定された時間間隔ごと の庫内温度であって、 デフロスト運転中における庫内温度として、 時間間隔の間にピ 一ク温度が生じると該ピーク温度を記憶する。
したがって、 上記第 5の解決手段によれば、 デフロスト運転のピーク温度を記憶 するようにしたために、 正常な運転が行われたか否かを正確に判定することができる。 つまり、 時間間隔の間の一定の瞬時温度を記憶するようにした場台、 ピーク温度が記 憶されない場合が生ずる。 一方、 デフロスト運転は原則的に所定時間ごとに行われる のでピーク温度が記憶されてないと、 正常運転が行われていなかつたという誤解が生 ずることになる力 <、 ピーク温度を必ず記憶するようにしているので、 正常運転が行わ れたか否かを正確に判定することができる。 また、 本発明が講じた第 6の解決手段は、 上記第 4の解決手段の温度記憶手段 (67) に代えて、 予め設定された時間間隔ごとに庫内温度を記憶する手段であって、 該時間間隔の全体に亘つてデフロスト運転手段 (63) のデフロスト運転が継続し且つ 時間間隔の間にピーク温度が生じないと庫内温度として時間間隔の間の平均庫内温度 を記憶する温度記憶手段 (67) を設けたものである。
上記第 6の解決手段では、 温度記憶手段 (67)が、予め設定された時間間隔ごと の庫内温度であって、 デフロスト運転中における庫内温度として、 時間間隔の間にピ ーク温度が生じないと該時間間隔の間の平均庫内温度を記憶する。 つまり、 デフロス ト運転中の平均庫内温度をそのまま記憶する。
したがって、 上記第 6の解決手段によれば、 所定の時間間隔の間でデフロスト運 転が終了することなく続行すると、 平均庫内温度を記憶するようにしたために、 実際 の庫内状態を正確に示すことができ、 荷物の品質判定を正確に行うことができる。 また、 本発明が講じた第 7の解決手段は、 上記第 4の解決手段から第 6の解決手 段までの何れか 1において、 温度表示の指令信号が入力されると、 温度記憶手段 (67) が記憶した庫内温度を読み出して表示部 (7S) に表示する温度データ読出し手段 (68) を設けたものである。
上記第 7の解決手段では、 温度表示の指令信号が入力されると、 温度データ読出 し手段 (68) 力上記温度記憶手段 (67) が記憶した庫内温度を読み出して表示部 (7S) に表示することになる。
した力 つて、 上記第 7の解決手段によれば、 平均庫内温度を読み出して表示する ようにしたために、 庫内温度の履歴を正確に且つ迅速に知ることができるので、 荷物 の品質判定を正確に行うことができる。
[ 図面の簡単な説明 ]
図 1は、 本発明の構成を示すブロック図である。 図 2は、 冷凍コンテナの斜視図である。
図 3は、 冷凍装置の断面図である。
図 4は、 コントローラの構成図である。
図 5は、 プルダウン表示を示す表示入力部の正面図である。
図 6は、 積算履歴表示を示す表示入力部の正面図である。
図 7は、 積算時間を示す庫内温度の特性図である。
図 8は、 温度履歴表示を示す表示入力部の正面図である。
図 9は、 庫内温度の記憶動作を示す制御フロー図である。
図 1 0は、 庫内温度の記憶動作を示す他の制御フロー図である。
図 1 1は、 庫内温度を示す特性図である。
図 1 2は、 他の記憶動作を示す庫内温度の特性図である。
[発明を Hifeするための の形態 ]
以下、 本発明の実施形態を図面に基づいて詳細に説明する。
図 2及び図 3に示すように、 冷凍コンテナ (10) は、 各種の荷物が積み込まれ、 該荷物を冷却状態のままコンテナ船ゃコンテナ車によつて運搬するものである。
該冷凍コンテナ (10) は、 コンテナ本体 (11) にコンテナ用冷凍装置 (20) 力《取 り付けられて構成されており、 コンテナ本体 (11) は、 一面 (図 2における左側の側 面) が開口された矩形状の箱体に形成されている。
上記冷凍装置 (20) は、 コンテナ本体 (11) の開口面を閉鎖する蓋体を兼用して おり、 厚さが所定薄さに形成されたケーシング (30) の内部に冷媒回路 (40) が収納 されて構成されている。 該ケーシング (30) は、 本体壁 (31) の内側に隔壁 (32) が 平行に取り付けられて形成されており、 該本体壁 (31) は、 断熱材等で形成されてコ ンテナ本体 (11) に密着固定されると共に、 下半部には、 内側に凹む機器類の収納空 間 (33) が形成されている。
また、 上記本体壁 (31) と隔壁 (32) との間は、 収納空間 (33) の上方に位置し て冷却空間 (34) が形成されると共に、 収納空間 (33) の内側に位置して空気通路 (35) が冷却空間 (34) に連続して形成されており、 上記冷却空間 (34) の上端及び 空気通路 (35) の下端がそれぞれコンテナ本体 (11) の内部である庫内に連通してい る ( 上記冷媒回路 (40) は、 圧縮機 (41) と凝縮器 (42) と膨張機構 (4E) と蒸発器 (43) とが順に接続されて成り、 圧縮機 (41) 及び凝縮器 (42) が凝縮器ファン (42 -F) と共に収納空間 (33) に設置され、 蒸発器 (43) が蒸発器ファン (43-F) と共に 冷却空間 (34) に設置されている。 そして、 上記冷媒回路 (40) は、 圧縮機 (41) で 圧縮した冷媒を凝縮器 (42) で凝縮させ、 膨張機構 (4E) で減圧した後に蒸発器 (43) で蒸発させて圧縮機 (41) に戻る循環を行わせる。 一方、 コンテナ本体 (11) の庫内 空気は冷却空間 (34) に流れて蒸発器 (43) で冷却された後、 空気通路 (35) を流れ てコンテナ本体 (11) に吹き出し、 庫内を冷却している。
上記冷媒回路 (40) の冷却運転を制御するコントローラ (50) は、 収納空間 (33) に設置され、 圧縮機 (41) の容量等を制御して庫内温度が設定温度になるようにして いる。 該コントローラ (50) は、 図 4に示すように、 中央制御部である C P U (60) に表示入力部 (70) 力連係されて構成されている。 そして、 該 C P U (60) には、 運 転開始時のプルダウン運転手段 (61) の他、 冷却運転手段 (62) 及びデフロスト運転 手段 (63) が設けられている。
該プルダウン運転手段 (61) は、 運転開始時に圧縮機 (41) をフルロードで運転 して急速冷却運転を実行し、 庫内温度が制御温度範囲 (以下、 インレンジという。 ) に急速に低下するように冷媒回路 (40) を制御する。
上記冷却運転手段 (62) は、 プルダウン運転によって庫内温度が一旦インレンジ 内に低下すると冷却運転を実行し、 庫内温度がィンレンジを維持するように冷媒回路 (40) を制御する。 このインレンジは、 上記設定温度に対して所定の温度範囲をもつ て設定され、 例えば、 上記設定温度に対して ± 1 °Cの温度範囲に設定されており、 こ の設定温度が 0 °Cの場合、 チルドモード (冷蔵モード) に、 一 2 0 °Cの場合、 フロー ズンモ一ド (冷凍モード) になる。
上記デフロスト運転手段 (63) は、 蒸発器 (43) がフロストすると、 ホッ トガス 又は電気ヒータによるデフロスト運転を実行し、 例えば、 プルダウン運転中は 4時間 ごとにデフロスト運転を実行し、 庫内温度がインレンジ内に維持された冷却運転時は、 選択設定された 1 2時間又は 2 4時間等の間隔ごとにデフロスト運転を実行する。 ま た、 上記デフロスト運転手段 (63) は、 庫内温度がインレンジより高温になると、 こ のインレンジより高温状態が 3 0分継続した際、 デフロス卜運転を実行する。 . 上記表示入力部 (70) は、 設定温度の入力や庫内温度の表示を行い、 入力キー群 (71) の他、 第 1表示部 (72) と第 2表示部 (73) とランプ表示部 (74) とが設けら れている。 該入力キー群 (71) は、 設定温度等を入力するセッ トキ一 (7K-1) と、 表 示内容を切り換えるアップキー (7K- 2) 及びダウンキー (7K-3) と、 モードを切り換 えるエンターキー (7K-4) と、 運転制御の開始を書き込むトリップスタートキー (7K -5) とが設けられている。
上記第 1表示部 (72) は、 4桁のセグメ ン卜表示部 (7S) の他、 発光素子で表示 事項を示す吹出温度表示部 (7レ 1) とリターン温度表示部 (7L- 2) とアラーム表示部 (7L-3) とセッ ト表示部 (7レ 4) とが設けられている。
上記第 2表示部 (73) は、 設定温度などの情報データを表示するように構成され ている。
上記ランプ表示部 (74) は、 発光素子によって運転状況を示す圧縮機表示部 (7M -1) とデフロスト表示部 (7M-2) とインレンジ表示部 (7M-3) とが設けられている。 一プルダウン表示一
本発明の特徴として、 上記 C P U (60) には、 プルダウン表示指令手段 (64) が 設けられている。
該プルダウン表示指令手段 (64) は、 プルダウン運転手段 (61) による急速冷却 運転中の運転時間と庫内温度とを表示入力部 (70) の第 1表示部 (72) に所定時間ご とに交互に表示させるための指令信号を出力する。
そこで、 上記プルダウン表示指令手段 (64) の表示動作について、 図 5に基づい て説明すると、 例えば、 荷物が冷凍コンテナ (10) に積み込まれて冷却運転を開始す ると、 プルダウン運転手段 (61) が圧縮機 (41) をフルロードにして急速冷却運転を 実行する。 そして、 上記プルダウン表示指令手段 (64) は、 指令信号を表示入力部 (70) に出力し、 第 1表示部 (72) に庫内温度と急速冷却運転時間 (プルダウン運転 時間) とを表示する。 例えば、 図 5では現在の庫内温度が " 3 0 °C" であり、 且つプ ルダウン運転時間が " 1 2 4時間" である旨を 1秒ごとに切り換えて表示することに なる。
つまり、 荷物の受取人等の立場としては、 冷凍コンテナ (10) を受け取る場合、 プルダウン運転中はもともと庫内温度が高い状態であるので、 プルダウン運転中の庫 内温度よりプルダウン運転時間の方が品質管理上重要である。 このため、 どの程度の プルダウン運転を継続しているのかを庫内温度の asの一種として示し、 上記ブルダ ゥン運転中に冷凍コンテナ (10) を受け取る場合の判断データを表示するようにして いる。
上記庫内温度と急速冷却運転時間との切換え表示は、 庫内温度がィンレンジに入 るまで行われる。 尚、 この際、 表示入力部 (70) の第 1表示部 (72) は、 吹出温度表 示部 (7L-1) が点灯すると共に、 ランプ表示部 (74) の圧縮機表示部 (7M- 1) が点灯 し、 第 2表示部 (73) は、 例えば、 設定^が " 0 °C" である旨と、 2 4時間ごとに デフロストを行うための 2 4時間デフロストタイマが設定されている旨を表示する。
したがって、 荷物の受取人等は、 荷物の受取り時に、 上記表示入力部 (70) を見 て、 現在、 急速冷却運転中 (プルダウン運転中) であれば、 その運転時間を認識する ことができ、 荷物の品質の判定資料とすることができる。 一積算履歴表示一
本発明の特徴として、 上記 C P U (60) には、 積算記憶手段 (65) と積算データ 読出し手段 (66) とが設けられている。
該積算記憶手段 (65) は、 庫内温度が設定温度に対して予め設定された偏差以上 の冷却運転になると、 該偏差温度と共に、 偏差温度以上の冷却運転時間を積算した積 算時間を SETLS ^"る。
該積算データ読出し手段 (66) は、 積算表示の指令信号が入力されると、 積算記 憶手段 (65) が記憶した積算時間と偏差温度とを読み出して表示入力部 (70) の第 1 表示部 (72) に表示する。
そこで、 上記積算記憶手段 (65) 及び積算データ読出し手段 (66) の記憶動作及 び表示動作について、 図 5及び図 6に基づいて説明する。
先ず、 プルダウン運転手段 (61) による急速冷却運転が終了し、 庫内温度が一旦 インレンジに入ると、 冷却運転手段 (62) が庫内温度をインレンジ内に維持するよう に圧縮機 (41) の容量等を制御する。
この冷却運転時、 つまり、 通常運転時では、 積算記憶手段 (65) が、所定偏差以 上の運転時間を積算して記憶している。 例えば、 図 7において、 設定温度 SPに対して + 1 だけ高い偏差の積算用温度 SP+1が設定されている場合、 この偏差温度 (+1) を 越えた運転時間を積算する。 そして、 図 7の温度特性①の場合、 図 7下段の運転時間 ①を積算し、 この場合、 積算記憶手段 (65) は、 4分と 4分と 3分とを加算して 1 1 分を記憶することになる。
その後、 荷物の受取人等は、 荷物の受取り時等に庫内温度の履歴を認識したい場 合、 図 6に示すように、 表示入力部 (70) におけるアップキー (7K- 2) 及びダウンキ 一 (7 -3) でアラーム表示部 (7L- 3) を点灯させる。 このアラーム事項内の 1つの情 報として dコードが設けられているので、 この dコードに設定すると、 積算表示の指 令信号が入力される。 そして、 積算データ読出し手段 (66) は、 積算記憶手段 (65) が記憶した積算時間と偏差温度とを読み出してセグメント表示部 (7S) に表示する。 例えば、 この図 6においては、 3 °Cの偏差温度 SP+3の場合で、 設定温度 SPより + 3 だけ高い運転時間が 1 0時間であつた旨を示すことになる。
尚、 上記設定温度 SPに対して— 1 °Cだけ低い偏差の積算用 i¾SP-lが設定されて いる場台、 図 6においては、 " d— 1 CJ によって、 — 1 °Cだけ低い運転時間を表示 することになる。
—温度履歴表示—
本発明の特徴として、 上記 C P U (60) には、 温度記憶手段 (67) と温度データ 読出し手段 (68) とが設けられている。
該温度記憶手段 (67) は、 予め設定された時間間隔ごとに庫内温度を記憶する手 段であって、 該庫内温度として時間間隔の間における冷却運転手段 (62) の冷却運転 中の平均庫内温度を記憶し、 デフロスト運転手段 (63) のデフロスト運転中における 庫内温度として、 時間間隔の間にピーク温度が生じると該ピーク温度を、 また、 時間 間隔の全体に亘つてデフロスト運転手段 (63) のデフロスト運転が継続し且つ時間間 隔の間にピーク温度が生じないと庫内温度として時間間隔の間の平均庫内温度を記憶 する。 例えば、 温度記憶手段 (67) は、 3 0分間隔ごとに庫内温度を記憶する。
上記温度データ読出し手段 (68) は、 温度表示の指令信号が入力されると、 温度 記憶手段 (67) が記憶した庫内温度を読み出して表示入力部 (70) の第 1表示部 (72) に表示する。
そこで、 履歴表示としての温度表示動作について説明すると、 温度記憶手段 (67) は、 冷凍コンテナ (10) の運搬中におけるプルダウン運転を除いた通常運転時の庫内 温度を記憶している。 そこで、 この記憶動作を説明する前に、 表示動作について説明 する。
荷物の受取人等は、 荷物の受取り時等に庫内温度の履歴を認識したい場台、 表示 入力部 (70) におけるエンターキー (7K-4) を 3秒間押し続ける。 このエンターキー (7K-4) の操作によって温度表示の指令信号が入力されることになり、 温度データ読 出し手段 (68) は、 温度記憶手段 (67) カ 己憶した 3 0分間隔の庫内温度を読み出し てセグメント表示部 (7S) に表示する。
例えば、 この図 8においては、 セグメント表示部 (7S) の庫内温度が 3 0 から 0. 1 °Cに切換わり、 第 2表示部 (73) が消灯する。 そして、 最も現在に近い庫內温 度のデータから 1秒ごとに過去に遡って順番に表示する。 この表示中に表示動作を中 止したい場合には、 表示入力部 (70) におけるセッ トキ一 (7K- 1) を押すと、 現在の 庫内温度表示に切り換わることになる。 次に、 上記温度記憶手段 (67) による冷却運転時における記憶動作について図 9 及び図 1 0の制御フロー図に基づき説明する。
先ず、 運転が開始されてプルダウン運転が終了すると、 ステップ ST 1において、 図示しない吹出温度センサが検出した庫内温度のデータ①を取り込む。 続いて、 ステ ップ ST 2に移り、 1分のサンプリング用タイマをスタートさせてステップ ST 3に移り、 口ギングの開始か否かを判定する。
この口ギング開始は、 図 1 1及び図 1 2の庫内温度特性における a点〜 g点で示 される 3 0分間隔のデータ書き込み時であって、 a— bの間等においては口ギングの 開始時期でないので、 上記ステップ ST 3からステップ ST 4に移り、 デフロスト運転の 開始か否かを判定する。 このデフロスト運転は、 プルダウン運転後の通常の冷却運転においては、 原則的 に予め設定された 1 2時間又は 2 4時間等の間隔ごとに行われるようになっているの で、 このデフロスト運転を行っていない場合、 上記ステップ ST 4からステップ ST 5に 移り、 タイマが力ゥントアップしたか否かを判定する。
上記ステップ ST 2で設定したタイマがカウントアップするまで上記ステップ ST 3 に移り、 上述の動作を繰り返す。 一方、 タイマがカウントアップすると、 つまり、 デ 一タ①を取り込んでから 1分が経過すると、 上記ステップ ST 5からステップ ST 6に移 り、 次の庫内温度のデータ②を取り込むことになる。 そして、 ステップ ST 7に移り、 上記データ①とデータ②との平均値を算出して算出データをデータ①に書き換え、 ス テツプ ST 2に戻り、 上述の動作を繰り返すことになる。
すなわち、 1分のサンプリングタイムごとに庫内温度のデータを取り込み、 前回 のデータとの平均値をデータ①に置き換えている。
その後、 3 0分の時間間隔が経過すると、 例えば、 図 1 1の b点や c点及び図 1 2の b点になると、 口ギング開始時期となるので、 上記ステツプ ST 3からステップ ST 8に移り、 上記ステップ ST 7で算出している 1分ごとの平均値であるデータ①をロギ ングしてリスタートすることになる。 つまり、 通常の冷却運転時においては、 図 1 1 の D1に示すように、 3 0分ごとの平均庫内温度を口ギングして記憶し、 上記ステップ ST 1力、らの動作を再開することになる。 次いで、 デフロスト運転が開始されると、 例えば、 図 1 1の F点となると、 上記 ステップ ST 4からステップ ST 5に移り、 口ギングの開始か否かを判定する。 このロギ ング開始時期になるまでステップ ST 9からステップ ST 1 0に移り、 デフロスト運転の 終了か否かを判定し、 デフロスト運転が終了するまで、 上記ステップ ST 9に戻り、 口 ギングの開始とデフロスト運転の終了との判定を繰り返すことになる。
つまり、 図 1 1において、 c点と d点との間では、 途中でデフロスト運転が開始 されており、 このデフロス卜運転の開始までの平均庫内温度 D2をステップ ST 7でデー 夕①として算出しているので、 口ギング開始時期になると (図 1 1 d点参照) 、 上記 ステップ ST 9からステップ ST 1 1に移り、 c点からデフロスト運転の開始 Fまでの平 均庫内温度 D2をデータ①として書き込み、 ステップ ST 1 0に移ることになる。 その後、 図 1 1において、 d点と e点との間では、 デフロスト運転が終了して上 記ステップ ST 1 0からステップ ST 1 2に移ることになる力《、 このデフロスト運転の終 了時点の近傍では、 庫内温度のピーク温度 DHが生じることになる。 そこで、 このピー ク温度 DHをデータ①に置き換えてステップ ST 1 3に移り、 口ギングの開始時期になる までステップ ST 1 3に待機する。
そして、 図 1 1の e点になると、 口ギングの開始になるので、 上記ステップ ST 1 3力、らステップ ST 1 4に移り、 データ①としてピーク温度 DHを書き込み、 リスタート して上記ステツプ ST 1からの動作を再開することになる。
その後の図 1 1の f点及び g点では、 上記ステップ ST 7で算出された e— f 間及 び f - g間の平均庫内温度が書き込まれることになる。
—方、 上記デフロスト運転が 3つの時間間隔に跨がって実行された場合、 図 1 0 に示すようになる。 この図 1 0の制御フローは、 図 9のステップ ST 1からステップ ST 8間では同じ動作が行われ、 図 9の A部分からステップ ST 2 1に移ることになる。 つ まり、 図 1 2の F点でデフロスト運転が開始されると、 ステップ ST 2 1で口ギングの 開始か否かを判定し、 口ギングの開始時期になるまでステップ ST 2 2に移り、 デフ口 スト運転の終了か否かを判定し、 デフロスト運転が終了するまで、 ステップ ST 2 1に 戻り、 口ギングの開始とデフロスト運転の終了との判定を繰り返す。
そして、 上記口ギングの開始時期になるまでにデフロスト運転が終了すると、 ス テツプ ST 2 3力、らステップ ST 2 5までの動作が行われ、 図 9のステップ ST 1 2からス テツプ ST 1 4と同様に、 ピーク温度 DHをデータ①として書き込む。
—方、 図 1 2の c点になると、 上記ステップ ST 2 1からステップ ST 2 6に移り、 b点からデフロスト運転開始 Fまでの平均庫内温度 D2をデータ①として書き込む。 続 いて、 ステップ ST 2 7に移り、 上記ステップ ST 2と同じようにタイマをスタートさせ てステップ ST 2 8に移り、 口ギングの開始時期か否かを判定する。
該ロギングの開始時期になるまでステップ ST 2 8力、らステップ ST 2 9に移り、 デ フロス卜運転が終了したか否かを判定し、 該デフロスト運転が終了するまでステップ ST 3 0に移り、 タイマがカウントアップしたか否かを判定する。 このタイマがカウン トアップするまでステップ ST 3 0からステップ ST 2 8に戻る。 上記タイマがカウン卜アップすると、 ステップ ST 3 0からステップ ST 3 1に移り、 つまり、 データ①を取り込んでから 1分力《経過すると、 次の庫内温度のデータ②を取 り込む。 そして、 ステップ ST 3 2に移り、 上記データ①とデータ②との平均値を算出 して算出データをデータ①に書き換え、 ステップ ST 2 7に戻り、 上述の動作を繰り返 すことになる。
具体的に、 上記 1分のサンプリングタイムごとに庫内温度のデー夕を取り込み、 前回のデータとの平均値をデータ①に置き換える。 そして、 3 0分の時間間隔が経過 すると、 例えば、 図 1 2の d点になると、 口ギング開始時期となるので、 上記ステツ プ ST 2 8からステップ ST 2 6に移り、 上記ステップ ST 3 2で算出している 1分ごとの 平均値であるデータ①をロギングして上記ステップ ST 2 7力、らの動作を行うことにな る。 つまり、 図 1 2の c点と d点との間は、 デフロスト運転を実行している途中であ り、 庫内温度が上昇過程であるので、 図 1 2の D3に示すように、 3 0分ごとの平均庫 内温度をそのまま口ギングして記憶することになる。
また、 図 1 2の d点と e点との間では、 ステップ ST 3 2の平均庫内温度を算出し ている力 デフロスト運転が終了するので、 ステップ ST 2 9の判定が Y E Sとなって ステップ ST 2 3に移ることになる。 この結果、 上述したように、 図 1 2の e点では、 ピーク温度 DHをデータ①として書き込むことになる (ステップ ST 2 3〜ステップ ST 2 5参照) 。 その後、 図 1 2の f 点及び g点では、 図 1 1と同様である。
-本実施形態の効果 - 以上のように、 本実施形態によれば、 プルダウン運転中ではプルダウン運転時間 と庫内温度とを交互に表示するようにしたために、 荷物の受取人等は、 荷物の受取り 時等に急 ϋ冷却運転中であれば、 その急速冷却運転時間を知ることができる。 この桔 果、 荷物の品質判定を容易に行うことができる。
また、 通常の冷却運転中における設定温度に対する所定偏差の運転時間とその偏 差温度とを記憶するようにし、 その運転時間と偏差温度とを表示可能にしたために、 荷物の受取人等は、 荷物の受取り時等に庫内温度の履歴を知ることができる。 特に、 従来の記録紙のような取り換えが行われることがないので、 運搬中の全体の履歴を知 ることができるので、 荷物の品質判定を正確に行うことができる。 また、 通常の冷却運転中における所定時間間隔の平均庫内温度を時間間隔ごとに 記憶するようにしたために、 上記時間間隔の間の一定の瞬時温度を記憶する場合に比 して庫内状態を正確に反映させることができる。 そして、 この平均庫内温度を読み出 して表示するようにしたために、 庫内温度の履歴を正確に且つ a¾に知ることができ るので、 荷物の品質判定を正確に行うことができる。
また、 デフロスト運転のピーク温度 DHを記憶するようにしたために、 正常な運転 が行われたか否かを正確に判定することができる。 つまり、 時間間隔の間の一定の瞬 時温度を記憶するようにした場合、 ピーク温度 DHが記憶されない場合が生ずる。 一方、 デフ口スト運転は原則的に所定時間ごとに行われるのでピーク温度 DHが記憶されてな いと、 正常運転が行われていなかつたという誤解が生ずることになるが、 ピーク温度 DHを必ず記憶するようにしているので、 正常運転が行われたか否かを正確に判定する ことができる。
また、 所定の時間間隔の間でデフロスト運転が終了することなく続行すると、 平 均庫内温度を記憶するようにしたために、 実際の庫内状態を正確に示すことができ、 荷物の品質判定を正確に行うことができる。 一その他の実施の形態一
上記実施形態における積算記憶手段 (65) は、 偏差温度以上の冷却運転時間を単 純に積算したが、 他の実施形態として所定区間ごとに区分積算するようにしてもよい。 つまり、 積算記憶手段 (65) は、 庫内温度が設定温度に対して予め設定された偏差以 上の冷却運転になると、 該偏差温度と共に、 偏差温度以上の冷却運転時間が一定時間 継続するごとに該一定時間を積算した積算時間を記憶する。
具体的に、 図 7において、 設定温度 SPに対して + 1 °Cだけ高い偏差の積算用温度 SP+1が設定されている場合、 例えば、 5分カウンタによって、 この積算用温度 SP+1を 越えた運転時間が 5分継続すると、 その 5分を積算する。 この結果、 図 7の温度特性 ②の場合、 図 7下段の運転時間②のうち 7分は 5分として積算し、 9分も 5分として 積算するので、 この場台、 積算記憶手段 (65) は、 5分と 5分とを加算して 1 0分を 記憶することになる。 尚、 上記運転が 1 0分間継続すると 5分カウンタが 2回カウン 卜するので 1 0分を記憶する。 したがつて、 所定の偏差温度 SP+1を越えた運転時間を一定時間ごとに積算するよ うにしたために、 荷物の受取人等に不必要な情報を提供することを少なくすることが できる。 つまり、 単純積算した場合、 設定温度より外れた運転が長期間行われたかの ような印象を与えることになる場合がある。 これを一定時間ごと積算することによつ て、 一定の精度を保持しつつ不必要な情報提供を防止することができる。
また、 図 1 2の c点と d点との間では、 デフロスト運転中の平均庫内温度をその まま記憶するようにしたが、 他の発明として、 区間内でピーク温度 DHが生じない場合、 前回の平均庫内温度を表示するようにしてもよく、 この図 1 2の c点と d点との間で は平均庫内温度 D2をそのままコピーするようにしてもよい。
[産 の利用可 ]
以上のように、 本発明によるコンテナ用冷凍装置によれば、 庫内温度の履歴全体 を認識する場合に有用であり、 また、 冷却状態の を認識する場合に有用であり、 更にまた、 平均庫内温度やデフロスト運転時のピーク温度を認識する場合に有用であ
6 一

Claims

請 求 の 範 囲
1 . 圧縮機 (41) と凝縮器 (42) と膨張機構 (4E) と蒸発器 (43) とカ顺に接続 されてなる冷媒回路 (40) を備え、 該冷媒回路 (40) を運転制御して庫内を冷却する コンテナ用冷凍装置において、
庫内温度が設定温度に維持されるように冷却運転を実行する冷却運転手段 (62) 庫内温度が設定温度に対して予め設定された偏差以上の冷却運転になると、 該偏 差温度と共に、 偏差温度以上の冷却運転時間を積算した積算時間を記憶する積算記憶 手段 (65) と、
積算表示の指令信号が入力されると、 上記積算記憶手段 (65) が記憶した積算時 間と偏差温度とを読み出して上記表示部 (7S) に表示する積算データ読出し手段 (66) と
を備えていることを特徴とすコンテナ用冷凍装置。
2. 圧縮機 (41) と凝縮器 (42) と膨張機構 (4E) と蒸発器 (43) とが順に接続 されてなる冷媒回路 (40) を備え、 該冷媒回路 (40) を運転制御して庫内を冷却する コンテナ用冷凍装置において、
庫内温度が設定温度に維持されるように冷却運転を実行する冷却運転手段 (62) と、
庫内温度が設定温度に対して予め設定された偏差以上の冷却運転になると、 該偏 差温度と共に、 偏差温度以上の冷却運転時間が一定時間継続するごとに該一定時間を 積算した積算時間を記憶する積算記憶手段 (65) と、
積算表示の指令信号が入力されると、 上記積算記憶手段 (65) 力記憶した積算時 間と偏差温度とを読み出して上記表示部 (7S) に表示する積算データ読出し手段 (66) と
を備えていることを特徴とすコンテナ用冷凍装置。
3. 圧縮機 (41) と凝縮器 (42) と膨張機構 (4E) と蒸発器 (43) とが順に接続 されてなる冷媒回路 (40) を備え、 該冷媒回路 (40) を運転制御して庫内を冷却する コンテナ用冷凍装置において、
庫内を急速に冷却する急速冷却運転を実行するプルダウン運転手段 (61) と、 該プルダウン運転手段 (61) による急速冷却運転の後に、 庫内温度が設定温度に 維持されるように冷却運転を実行する冷却運転手段 (62) と、
上記プルダウン運転手段 (61) による急速冷却運転中の運転時間と庫内温度とを 表示部 (7S) に表示させるための指令信号を出力するプルダウン表示指令手段 (64) と
を備えていることを特徴とすコンテナ用冷凍装置。
4. 圧縮機 (41) と凝縮器 (42) と膨張機構 (4E) と蒸発器 (43) とが順に接続 されてなる冷媒回路 (40) を備え、 該冷媒回路 (40) を運転制御して庫内を冷却する コンテナ用冷凍装置において、
庫内温度が設定温度に維持されるように冷却運転を実行する冷却運転手段 (62) 予め設定された時間間隔ごとに庫内温度を言己憶する手段であつて、 該庫内温度と して時間間隔の間における平均庫内温度を記憶する温度記憶手段 (67) と
を備えていることを特徴とすコンテナ用冷凍装置。
5. 圧縮機 (41) と凝縮器 (42) と膨張機構 (4E) と蒸発器 (43) とが順に接続 されてなる冷媒回路 (40) を備え、 該冷媒回路 (40) を運転制御して庫内を冷却する コンテナ用冷凍装置において、
庫内温度が設定温度に維持されるように冷却運転を実行する冷却運転手段 (62) と、
該冷却運転手段 (62) による冷却運転中に蒸発器 (43) がフロストすると、 冷却 運転手段 (62) に代ってデフロスト運転を実行するデフロスト運転手段 (63) と、 予め設定された時間間隔ごとに庫内温度を記憶する手段であつて、 該時間間隔の 間にデフロスト運転手段 (63) のデフロスト運転中のピーク温度が生じると庫内温度 として該ピーク温度を記憶する温度記憶手段 (67) と を備えていることを特徴とすコンテナ用冷凍装置。
6. 圧縮機 (41) と凝縮器 (42) と膨張機構 (4E) と蒸発器 (43) と力く順に接続 されてなる冷媒回路 (40) を備え、 該冷媒回路 (40) を運転制御して庫内を冷却する コンテナ用冷凍装置において、
庫内温度が設定温度に維持されるように冷却運転を実行する冷却運転手段 (62) と、
該冷却運転手段 (62) による冷却運転中に蒸発器 (43) がフロストすると、 冷却 運転手段 (62) に代ってデフロス卜運転を実行するデフロスト運転手段 (63) と、 予め設定された時間間隔ごとに庫内温度を記憶する手段であつて、 該時間間隔の 全体に亘つてデフロス卜運転手段 (63) のデフロスト運転が継続し且つ時間間隔の間 にピーク温度が生じないと庫内温度として時間間隔の間の平均庫内温度を記憶する温 度記憶手段 (67) と
を備えていることを特徴とすコンテナ用冷凍装置。
7. 請求項 4から請求項 6までの何れか 1記載のコンテナ用冷凍装置において、 温度表示の指令信号が入力されると、 温度記憶手段 (67) が記憶した庫内温度を 読み出して表示部 (7S) に表示する ^データ読出し手段 (68) を備えている ことを特徴とすコンテナ用冷凍装置。
PCT/JP1996/002832 1995-09-29 1996-09-27 Refrigerateur pour enceinte WO1997012185A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/043,310 US6119471A (en) 1995-09-29 1996-09-27 Refrigerator for container
DK03002478T DK1306631T3 (da) 1995-09-29 1996-09-27 Köleanlæg til container
DK96932041T DK0853223T3 (da) 1995-09-29 1996-09-27 Köleanlæg til container
AU70968/96A AU7096896A (en) 1995-09-29 1996-09-27 Refrigerator for container
DE69631671T DE69631671T2 (de) 1995-09-29 1996-09-27 Kälteanlage für behälter
EP96932041A EP0853223B1 (en) 1995-09-29 1996-09-27 Refrigerator for container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/253676 1995-09-29
JP7253676A JP2885148B2 (ja) 1995-09-29 1995-09-29 コンテナ用冷凍装置

Publications (1)

Publication Number Publication Date
WO1997012185A1 true WO1997012185A1 (fr) 1997-04-03

Family

ID=17254623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002832 WO1997012185A1 (fr) 1995-09-29 1996-09-27 Refrigerateur pour enceinte

Country Status (7)

Country Link
US (1) US6119471A (ja)
EP (2) EP1306631B1 (ja)
JP (1) JP2885148B2 (ja)
AU (1) AU7096896A (ja)
DE (2) DE69634838T2 (ja)
DK (1) DK0853223T3 (ja)
WO (1) WO1997012185A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035453A1 (fr) * 1998-01-12 1999-07-15 Safetherm S.A. Procede de traitement de donnees relatives au transport de materiel biologique et dispositif pour sa mise en oeuvre
CN107461977A (zh) * 2016-06-02 2017-12-12 中国科学院沈阳自动化研究所 一种半导体制冷温控箱的智能温控方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568172B1 (ko) * 1999-06-26 2006-04-05 삼성전자주식회사 냉장고 및 그 제어방법
US6725180B2 (en) * 2001-01-12 2004-04-20 Ingersoll-Rand Company Environmental monitoring system
US6711908B2 (en) * 2001-07-16 2004-03-30 Maytag Corporation Refrigerator having power outage duration feature
US20030198135A1 (en) * 2002-04-19 2003-10-23 Beatty John S. Material temperature exposure timer apparatus and method
US7617690B2 (en) * 2004-11-02 2009-11-17 Helmer, Inc. Blood products freezer with event log
US7827811B2 (en) * 2006-01-09 2010-11-09 Maytag Corporation Refrigerator control including a hidden features menu
US20090103587A1 (en) * 2007-10-22 2009-04-23 Cooper Anthony A Monitoring apparatus and corresponding method
DE202009006295U1 (de) * 2009-02-23 2010-07-29 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
US20110202170A1 (en) * 2010-02-09 2011-08-18 Dawes Dennis K Access and inventory control for climate controlled storage
JP2013113562A (ja) * 2011-11-30 2013-06-10 Fuji Electric Co Ltd 車両用冷却装置
EP2634515B1 (en) * 2012-02-29 2019-09-04 Electrolux Professional S.p.A. Blast chiller apparatus and a method to sanitize a blast chiller apparatus
US9657988B1 (en) * 2012-12-21 2017-05-23 Steven C. Horinek Drying system for protective eyewear
AU2014292968B2 (en) 2013-07-26 2019-06-20 Helmer Scientific, Llc Medical products storage device including access control
WO2016000750A1 (en) * 2014-06-30 2016-01-07 A.P. Møller A/S Method for reducing ice formation in a cooling unit
CN104154703B (zh) * 2014-07-22 2016-08-17 海信容声(广东)冰箱有限公司 变频冰箱的频率控制方法
CN107279448B (zh) 2017-06-28 2022-12-27 中绅科技(广东)有限公司 双节流预冷保鲜冰淇淋机冷控装置及冷控方法及冰淇淋机
DE102018132719A1 (de) * 2018-08-03 2020-02-06 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190619A (ja) * 1983-04-14 1984-10-29 キヤリア・コ−ポレイシヨン 情報記録装置
JPH04137019A (ja) * 1990-09-27 1992-05-12 Shin Meiwa Ind Co Ltd 温度管理を要する物品の運送管理方法
JPH0496033U (ja) 1991-01-09 1992-08-20
JPH06129758A (ja) * 1992-10-16 1994-05-13 Mitsubishi Heavy Ind Ltd コンテナ用冷凍ユニットのデータ記録方式

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568568A (en) * 1978-11-15 1980-05-23 Tokyo Shibaura Electric Co Chamber temperature indicator
JPS58127080A (ja) * 1982-01-22 1983-07-28 ダイキン工業株式会社 冷凍・冷蔵ユニットの温度制御装置
GB8329622D0 (en) * 1983-11-05 1983-12-07 Systematic Micro Ltd Temperature monitoring system
US4604871A (en) * 1985-01-17 1986-08-12 General Electric Company Over-temperature warning system for refrigerator appliance
EP0495464B1 (en) * 1991-01-15 1996-05-15 Thermo King Corporation Refrigeration temperature control system
US5123251A (en) * 1991-07-11 1992-06-23 Thermo King Corporation Method of operating a transport refrigeration unit
US5262758A (en) * 1991-09-19 1993-11-16 Nam Young K System and method for monitoring temperature
US5161384A (en) * 1992-02-10 1992-11-10 Thermo King Corporation Method of operating a transport refrigeration system
JP3265406B2 (ja) * 1992-12-16 2002-03-11 株式会社日立製作所 冷凍空調装置の運転記録装置
US5437163A (en) * 1994-08-22 1995-08-01 Thermo King Corporation Method of logging data in a transport refrigeration unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190619A (ja) * 1983-04-14 1984-10-29 キヤリア・コ−ポレイシヨン 情報記録装置
JPH04137019A (ja) * 1990-09-27 1992-05-12 Shin Meiwa Ind Co Ltd 温度管理を要する物品の運送管理方法
JPH0496033U (ja) 1991-01-09 1992-08-20
JPH06129758A (ja) * 1992-10-16 1994-05-13 Mitsubishi Heavy Ind Ltd コンテナ用冷凍ユニットのデータ記録方式

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035453A1 (fr) * 1998-01-12 1999-07-15 Safetherm S.A. Procede de traitement de donnees relatives au transport de materiel biologique et dispositif pour sa mise en oeuvre
CN107461977A (zh) * 2016-06-02 2017-12-12 中国科学院沈阳自动化研究所 一种半导体制冷温控箱的智能温控方法
CN107461977B (zh) * 2016-06-02 2019-07-19 中国科学院沈阳自动化研究所 一种半导体制冷温控箱的智能温控方法

Also Published As

Publication number Publication date
EP1306631A3 (en) 2004-04-07
EP1306631B1 (en) 2005-06-08
AU7096896A (en) 1997-04-17
DE69634838D1 (de) 2005-07-14
JP2885148B2 (ja) 1999-04-19
EP1306631A2 (en) 2003-05-02
DE69634838T2 (de) 2006-03-23
EP0853223A4 (en) 2000-06-21
EP0853223B1 (en) 2004-02-25
EP0853223A1 (en) 1998-07-15
DE69631671D1 (de) 2004-04-01
DE69631671T2 (de) 2004-07-29
DK0853223T3 (da) 2004-06-28
JPH0996474A (ja) 1997-04-08
US6119471A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
WO1997012185A1 (fr) Refrigerateur pour enceinte
CN110160308B (zh) 制冷控制方法、冰箱及计算机可读存储介质
TW305021B (ja)
JP2964928B2 (ja) コンテナ用冷凍装置
JP2993408B2 (ja) コンテナ装置の庫内温度記録装置
KR100244907B1 (ko) 냉장고 운전방법
JPH07190582A (ja) 低温オープンショーケースの運転方法
JPH10227555A (ja) 冷蔵庫制御装置
KR19990041830A (ko) 냉장고의 고장진단 장치 및 그 제어방법
JPH10307759A (ja) 運転制御装置
JP2002162147A (ja) 蓄冷型保冷庫の制御装置
JPH10300313A (ja) 蓄冷型保冷装置
JPH03164678A (ja) 冷蔵庫
JP3627646B2 (ja) 保冷庫
JP2812343B2 (ja) 冷凍自動販売機の除霜ヒータ制御方法
JPH0534050A (ja) 冷凍装置の除霜制御装置
JP3265004B2 (ja) 冷蔵庫
KR100260449B1 (ko) 수면기능 냉장고의 제어방법
KR19990052576A (ko) 수면기능을 갖는 냉장고의 제어방법
JPS61168771A (ja) 冷凍装置の除霜制御方式
JPH07146049A (ja) 冷蔵庫
JPH0642841A (ja) 冷凍装置
JPH05272853A (ja) 冷凍冷蔵ショーケースの運転制御方法
KR19990017756A (ko) 발효식품 저장고의 절전장치 및 방법
KR19990052593A (ko) 부저음제거 택트스위치를 갖는 냉장고의 제어방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09043310

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996932041

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996932041

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996932041

Country of ref document: EP