WO1997009728A1 - Noyau magnetique en boitier - Google Patents

Noyau magnetique en boitier Download PDF

Info

Publication number
WO1997009728A1
WO1997009728A1 PCT/JP1996/002426 JP9602426W WO9709728A1 WO 1997009728 A1 WO1997009728 A1 WO 1997009728A1 JP 9602426 W JP9602426 W JP 9602426W WO 9709728 A1 WO9709728 A1 WO 9709728A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
case
powder
storage type
case storage
Prior art date
Application number
PCT/JP1996/002426
Other languages
English (en)
French (fr)
Inventor
Norio Matsumoto
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to EP96928693A priority Critical patent/EP0848392A4/en
Publication of WO1997009728A1 publication Critical patent/WO1997009728A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/16Toroidal transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/266Fastening or mounting the core on casing or support

Definitions

  • the present invention relates to a case storage type magnetic core, for example, to a case storage type magnetic core used for a magnetic component used in an electronic circuit.
  • a magnetic component that is formed by forming a coil around a magnetic core around a wire wound wire
  • a wire with an insulation coating as the coil to prevent short-circuiting of the coil during coil formation.
  • the wire wound around this core has a harder core than the insulation coating applied to the wire, so if the wire is wound directly around the core, the insulation coating on the wire may be damaged during the winding, resulting in a short circuit. .
  • the former method is adopted because the shape of the magnetic core is substantially annular.
  • the impact can propagate to other components, adversely affecting that component.
  • the impact of the collision may cause the soldered part of the coil to peel off.
  • the case When a coil is formed by winding a wire around such a case storage type magnetic core, the case may be wound around the wire and deformed, and stress may be applied to the magnetic core.
  • the magnetic flux in the gap between the core and the case must be considered.
  • the gap between the magnetic core and the case was filled or applied with an adhesive to prevent the movement of the magnetic core in the case ⁇ and the propagation of the vibration of the magnetic core to the case.
  • An object of the present invention is to provide a case storage type magnetic core that has high reliability as a magnetic component and generates little noise. Disclosure of the invention
  • a first feature of the present invention includes (a) a magnetic core, (: b) a case for accommodating the magnetic core, and (c) a powder at least partially filled in a gap between the magnetic core and the case. It is a case storage type magnetic core.
  • the case and the magnetic core are fixed by filling the gap between the case and the magnetic core with powder, while preventing the loss of the vibration absorbing force due to the use of the adhesive, and the vibration of the magnetic core is transmitted to the case. To prevent or suppress.
  • the filling rate of the powder filling the gap between the magnetic core and the case is, for example, in the range of 1% to 150%, preferably 10% to 150%, more preferably 10% to; %, Most preferably 10% to 100%.
  • the powder filling rate was calculated by the following equation.
  • the bulk density [g / cm 3 ] of the powder was measured according to ASTM D1895-69.
  • case storage type magnetic core according to the present invention can use either magnetic or non-magnetic powder.
  • a second feature of the present invention is that the case-containing magnetic core has a maximum value of the minor axis of the powder to be filled in a range of 5 m to 500 m.
  • the maximum value of the minor axis of the powder to be filled is preferably in the range of 100 m to 400;
  • the minor axis of the powder is the diameter of a pearl-shaped (circular cross-section) powder, and the shortest diameter of an irregular-shaped powder such as an elliptical cross-section. Refers to the diameter.
  • a third feature of the present invention is that the powder is a case storage type magnetic core having a sily force in which a nylon resin or silicone oil is adhered to the periphery thereof.
  • the powder used is, for example, polyolefin powder such as polyethylene, polypropylene and polymethyl ', alumina powder, silicon dioxide powder, etc. You can also.
  • a fourth feature of the present invention is that the case is a case storage type magnetic core having a closed structure.
  • noise caused by vibration of the magnetic core can be isolated by sealing the magnetic core with the case.
  • a fifth feature of the present invention is that a case storage type magnetic core is used in which the magnetic core is made of an amorphous magnetic alloy ribbon.
  • the case storage type magnetic core is applicable to magnetic cores made of various materials such as an amorphous alloy (for example, Fe-based amorphous alloy), gay steel, ferrite, and dust.
  • FIG. 1 is an explanatory diagram showing the configuration of the case storage type magnetic core of the present invention.
  • FIG. 2 is an explanatory diagram showing an outline of a noise measurement test of a case storage type magnetic core.
  • FIG. 3 is a waveform diagram of the excitation signal supplied to the coil during the noise measurement test.
  • FIG. 4 is a diagram showing the test results for each case storage type magnetic core.
  • FIG. 5 is a graph in which the noise level of each case-storing magnetic core is plotted against the powder filling rate.
  • FIG. 1 is an explanatory diagram showing the configuration of the case storage type magnetic core of the present invention.
  • the case storage type magnetic core 10 according to the present embodiment includes a magnetic core 11, cases 12, 12 2 , and powder 13 as shown in FIG.
  • the magnetic core 11 is accommodated in the case 12 and the powder 13 is filled in the gap between the magnetic core and the case.
  • FIG. 2 is an explanatory diagram showing an outline of a noise measurement test of the case-stowed core
  • FIG. 3 is a waveform diagram of an excitation signal supplied to the coil during the noise measurement test
  • the magnetic core 11 used in this case-storing type magnetic core is an amorphous magnetic alloy ribbon that is a Fe-based amorphous alloy including Si and B (manufactured by Allied Signal Inc., product name: Metg 1 as 26 05 S—2, [Circular wound body with outer diameter 27. Omm, inner diameter 15.0 mm, height 10.0 mm formed by composition F e ⁇ ⁇ ,, 3 S i 9 (] Used at about 470 ° C.
  • the case 12 has an outer diameter of 27.7 mm, an inner diameter of 14.7 mm, and a height of 10.3 mm (both inner dimensions) (manufactured by Toray Industries, trade name: 1184 G— 3 0.) is used.
  • the powder 13 filled into the gap between the magnetic core 11 and the case 12 is made of nylon resin powder (manufactured by Sumitomo Seika Co., Ltd., product name: Floron) whose maximum diameter is 180, Two types of powders are used, such as a powder with silicone oil attached to the periphery of a sily force with a maximum value of 300 zm (Toray Dow Corning 'Silicone, product name: Trefil).
  • a coil was formed by winding 31 mm of a 1. Omm0 magnetic wire around each of the case storage type cores manufactured by the above-described process to form a sample for evaluation.
  • the fixing test was carried out by supporting the case-retained core by hand and shaking it strongly in a direction parallel to the laminated cross section of the core.
  • the case-mounted magnetic core 10 is generated.
  • the noise level was measured by measuring the noise level with a microphone 21 installed at a position 200 mm away from the center of the case storage type magnetic core 10.
  • the sound pressure level at which the center frequency of the 1/3 octave band measured via the microphone 21 is 10 kHz is defined as the noise level, and the sound level depends on whether or not the noise level is 45.0 dB or less.
  • the pass / fail of the noise measurement test was determined.
  • the target value of 45.0 dB is based on the noise level that is clearly lower than the noise level of 58.0 dB in case-mounted magnetic cores using adhesive. It is.
  • a current value and a 500-20000 Hz sweeping sine wave varying between 0 and 6 A are used as shown in FIG.
  • the evaluation of each sample was mainly performed at room temperature, and some samples were also evaluated at a high temperature of 110 ° C.
  • Fig 4 is a diagram showing the evaluation results of each sample in a tabular format
  • Fig 5 is a diagram plotting the relationship between the noise level and the filling factor of each sample by the powder used. is there.
  • Samples 1 to 3 used nylon resin powder among the 10 types of samples prepared, and Samples 4 to 10 used silicon powder with silicone oil adhered to the periphery. Using.
  • the fixed test passed and the noise level was 32.3 dB, meeting the target value.
  • the fixing test and the noise level were measured at a silica powder filling rate of 100.0%.
  • the powder filling rate is preferably in the range of 1% to 150%, particularly preferably 10% to; L50% is more preferable, and 10% to 120% is more preferable. Preferably, 10% to 100% is most preferred.
  • the maximum value of the minor axis of the powder used in the present invention is preferably in the range of 5 to 500, particularly preferably in the range of 100 to 400 m.
  • case storage type magnetic core of this invention can prevent or suppress both the movement of the magnetic core in a case, and the propagation of the vibration of a magnetic core to a case, the reliability as a magnetic component is high, and in addition, a case storage type magnetic core with low noise generated during use can be obtained.
  • the vibration absorbing force is not lost even when used at a high temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Casings For Electric Apparatus (AREA)

Description

明細書
ケース収納型磁心 技術分野
本発明は、 ケース収納型磁心に係り、 たとえば、 電子回路に使用される磁性部 品に用いられるケース収納型磁心に関するものである。 背景技術
ワイヤを巻回して作成するコイルを磁心の周囲に形成することによって構成す る磁性部品は、 コイルの形成途中でコイルが短絡することを防止するため、 絶縁 被覆を施したワイヤをコイルとして使用する。
この磁心に巻回するワイヤは、 ワイヤに施した絶縁被覆よりも磁心が硬いため、 ワイヤを磁心に直接巻回すると、 巻回の最中にワイヤの絶縁被覆が傷つき短絡し てしまうことがある。
このような絶縁被覆の傷つきの発生を防止するには、 磁心を樹脂製のケースに 収納してから、 そのケースにコイルを形成するといつたことや、 コイルを予め樹 脂製のボビンに巻回した後に、 そのボビンを磁心に取り付けるといったことが行 われている。
前記いずれの方法によって絶縁被覆の保護を図るかは、 対象とする磁心の形状 に応じて選択している。
たとえば、 磁性合金薄帯を用いた磁心の場合は、 磁心の形状がほぼ環状となつ ているので、 前者の方法が採用されている。
ところで、 ケースに磁心を収納する場合は、 磁心をケースに固定しないと、 輸 送などの際に磁心がケース内で移動してケース壁面に衝突してしまう。
このように磁心がケース壁面に衝突する場合は、 磁心に応力が働いて磁心が破 壊してしまったり、 磁心の磁気特性が劣化してしまうことがある。
また、 その衝撃が他の部品に伝播し、 その部品に悪影響を与えてしまうことも ある。
さらに、 衝突の衝撃によってコイルのはんだ付け部が剥離してしまうことがあ な
したがって、 ケース収納型磁心を形成するには、 磁性部品としての信頼性を確 保するため、 ケ一ス内での磁心の移動を防止することが必要となる。
ここで、 ケース内での磁心の移動を防止するには、 ケースの内壁の寸法を磁心 の外形寸法と同一にする方法が考えられる。
し力、し、 このようなケース収納型磁心の回りにワイヤを巻回しコイルを形成す る場合は、 ケースがワイヤに巻き締められて変形し磁心に応力が加わってしまう ことがある。
また、 磁心がケースと直接接触しているため、 磁心の振動がケースに伝播しや すくなり、 磁心を励磁したときに大きな騒音が発生してしまう。
このため、 騒音の発生を防止する手段としては、 従来から磁心の外形より大き な内径を有するケースを用意して、 そのケースと磁心との隙間に接着剤を充填あ るいは塗布するといつたことが行われている。
一方、 ケースを磁心に比べて著しく大きく した場合は、 磁心とケース間の隙間 部分での磁束を考慮しなければならなくなる。
したがって、 このようなケース収納型磁心の作製の際には、 磁心より僅かに大 きいケースを使用している。
上述のように、 従来は、 磁心,ケース間の隙間に接着剤を充填あるいは塗布す ることによって、 磁心のケース內での移動と磁心の振動がケースに伝播すること を防止していた。
しかし、 接着剤を使用した場合は、 ケースの内部が室温よりも高い温度になる とケースと磁心とを固定している接着剤が膨張する。
したがって、 接着剤の充填量あるいは塗布量によっては、 接着剤の膨張に伴う 体積増加に起因する歪みにより接着剤の振動吸収力が失われてしまうという問題 があった。
本発明の目的は、 磁性部品としての高い信頼性を有し、 かつ、 発生する騒音が 小さいケース収納型磁心を提供することにある。 発明の開示
本発明の第 1の特徴は、 (a ) 磁心と、 (:b ) この磁心を収納するケースと、 ( c) 前記磁心と前記ケースとの隙間に少なくとも部分的に充填された粉末とか らなるケース収納型磁心としたことである。
すなわち、 ケースと磁心との固定は、 ケース,磁心間の隙間に粉末を充填する ことによって行うとともに、 接着剤を用いることによる振動吸収力の喪失を防止 し、 磁心の振動がケースに伝播することを防止または抑制する。
ここで、 磁心とケースとの隙間に充填する粉末の充填率は、 たとえば 1 %〜 1 5 0 %の範囲、 好ましくは 1 0 %〜 1 50 %、 より好ましくは 1 0 %〜; L 2 0 %、 最も好ましくは 1 0%〜 1 0 0 %として充填することができる。
なお、 粉末の充填率は、 以下の式によって算出したものである。
粉末の質量 (:g
充填率 (% ) - 1 0 0 隙間容積 [ cm:'〕 X粉末のかさ密度 [g / cm3]
ここで粉末のかさ密度 [ g / c m3] は、 A S TM D 1 8 9 5— 6 9に準じて 測定した。
また、 本発明に係るケース収納型磁心は、 磁性、 非磁性のいずれの粉末も使用 することができる。
次に、 本発明の第 2の特徴は、 充填する粉末の短径の最大値が、 5 mないし 5 0 0〃mの範囲とするケース収納型磁心としたことである。
なお、 充填する粉末の短径の最大値は、 特に 1 0 0 mないし 4 0 0; の範 囲にあることが好ましい。
ここで、 粉末の短径とは、 真珠状 (断面が円) の粉末の場合はその直径のこと をいい、 断面が楕円状の粉末のように不定形の粉末の場合はその粉末の最も短い 径をいう。
次に、 本発明の第 3の特徴は、 前記粉末が、 ナイロン樹脂、 あるいはシリコ一 ンオイルをその周囲に付着させたシリ力であるケース収納型磁心としたことであ る。
なお、 粉末としては、 たとえばポリエチレンやポリプロピレン及びポリメチル '等のポリオレフィ ンの粉末、 アルミナ粉末、 二酸化ケイ素粉末等を使用 することもできる。
次に、 本発明の第 4の特徴は、 ケースが、 密閉構造であるケース収納型磁心と したことである。
したがって、 本発明に係るケース収納型磁心は、 ケースによって磁心を密閉す ることで、 磁心の振動による騒音を遮音することができる。
次に、 本発明の第 5の特徴は、 磁心が非晶質磁性合金薄帯からなるものである ケース収納型磁心としたことである。
なお、 このケース収納型磁心は、 非晶質合金 (たとえば F e基非晶質合金) 、 ゲイ素鋼、 フェライ ト、 ダスト等さまざまな材料からなる磁心に適用可能である。 図面の簡単な説明
F i g . 1は、 本発明のケース収納型磁心の構成を示した説明図である。
F i g . 2は、 ケース収納型磁心の騒音測定試験の概要を示した説明図である。
F i g . 3は、 騒音測定試験時にコイルに供給した励磁信号の波形図である。
F i g . 4は、 各ケース収納型磁心に対する試験結果を表した図である。
F i g . 5は、 各ケース収納型磁心の騒音レベルを粉末の充填率に対してプロッ トしたグラフである。 発明を実施するための最良の形態
以下、 本発明の好適具体例を図面に基づいて説明する。
〔実施例 1〕
まず、 本実施の形態に係るケース収納型磁心の概略を F i g . 1に基づいて説明 する。
ここで F i g . 1は、 本発明のケース収納型磁心の構成を示した説明図である。 そして、 本実施の形態に係るケース収納型磁心 1 0は、 F i g . 1が示すように 磁心 1 1と、 ケース 1 2 ,、 1 2 2と、 粉末 1 3とからなる。
次に、 磁心 1 1をケース 1 2の内部に収納し、 粉末 1 3を磁心 ·ケース間の隙 間に充填することによって構成される。
以下、 本実施の形態に係るケース収納型磁心の構成及び性能を F i g . 2〜F i g. 5に基づいて具体的に説明する。
ここで F i g. 2は、 ケース収納型磁心の騒音測定試験の概要を示した説明図で あり、 F i g. 3は、 騒音測定試験時にコイルに供給した励磁信号の波形図である ( このケース収納型磁心に使用する磁心 1 1は、 S i と Bを含む F e基非晶質合 金である非晶質磁性合金薄帯 (:米国ァライ ドシグナル社製、 商品名 : Me t g 1 a s 26 05 S— 2、 [組成 F e τδΒ ,3S i 9 ( ] によって形成した外径 2 7. Omm、 内径 1 5. 0 mm、 高さ 1 0. 0 m mの環状巻回体を、 約 4 70 °C で熱処理したものを用いている。
そして、 ケース 1 2は、 外径が 27. 7 mm、 内径 1 4. 7mm、 高さ 1 0. 3 mm (いずれも内寸法) のケース (東レ社製、 商品名 : 1 1 84 G— 3 0.) を 用いている。
また、 磁心 1 1とケース 1 2の隙間に充填する粉末 1 3は、 その短径の最大値 が 1 80 であるナイロン樹脂粉末 (住友精化社製、 製品名 : フローロン) 及 び短径の最大値が 300 zmであるシリ力の周囲にシリコーンオイルを付着させ た粉体 (東レダウコ一ニング ' シリコーン社製、 製品名 : トレフィル) といった 2種類の粉末を用いている。
そして、 これらを使用して粉末の充填率が異なる数種類のケース収納型磁心を 作製した。
次に、 このケース収納型磁心は、 前記行程により作製したそれぞれのケース収 納型磁心に、 1. Omm0のマグネチックワイヤを 3 1ターン巻回してコイルを 形成し評価用試料を作成した。
そして、 評価用試料は、 各試料に対して磁性部品としての信頼性を評価するた めの固定試験と、 動作時の騒音レベルを評価するための騒音測定試験を行つた。 以下、 各試験方法の詳細を説明する。
まず、 固定試験は、 ケース収納型磁心を手で支持し、 磁心の積層断面と平行な 方向に強く振ることによって行い、 磁心の動きを感じる場合に、 不合格であると した。
次に、 騒音測定試験は、 F i g. 2が示すようにケース収納型磁心 1 0に巻回さ れたコイル 1 5に励磁信号を供給したときに、 ケース収納型磁心 1 0が発生する 騒音レベルを、 ケース収納型磁心 10の中心から 200 mm離れた場所に設置し たマイクロフォン 21によって測定することにより行った。
そして、 マイクロフォン 21を介して測定された 1 / 3オクターブバン ドの中 心周波数が 1 0 kH zの音圧レベルを騒音レベルとし、 騒音レベルが、 45. 0 d B以下であるか否かによって騒音測定試験の合否を判定した。
この 45. 0 d Bという目標値は、 接着剤を用いたケース収納型磁心の騒音レべ ル 58. 0 d Bと比較して、 明らかに低い音と感じられる騒音レベルを規準に定め たものである。
なお、 コイル 15に供給する励磁信号としては、 F i g.3が示すように電流値 力、 0から 6 Aの間で変化する 500〜 20000 H z掃引正弦波を用いている。 また、 各試料に関する評価は、 主に室温で行い、 一部の試料については、 1 1 0 °Cにおける高温下での評価も行った。
以下、 各ケース収納型磁心の評価結果を F i g 4〜F i g 5に基づいて説明す る。
ここで F i g 4は、 各試料の評価結果を表形式で表した図であり、 F i g 5は、 各試料の騒音レベルと充填率との関係を、 使用した粉体別にプロッ 卜した図であ る。
F i g 4が示すように用意した 10種類の試料のうち試料 1〜試料 3は、 ナイ ロン樹脂粉末を用い、 試料 4〜試料 1 0は、 シリ コーンオイルをその周囲に付着 したシリ力粉末を用いた。
まず、 試料 1では、 前記充填率の計算式によって算出したナイロン樹脂粉末の 充填率を 1 0. 6%として、 固定試験及び騒音レベルを測定した。
その結果、 固定試験は合格、 騒音レベルは 34. 9 d Bとなって目標値をクリア した。
次に、 試料 2では、 ナイロン樹脂粉末の充填率を 24. 5%として、 室温及び 1 1 0ての高温での固定試験及び騒音レベルを測定した。
その結果、 室温、 1 1 0°Cの高温ともに固定試験は合格、 騒音レベルは 35. 9 d Bとなって目標値をクリアした。
また、 試料 3では、 ナイロン樹脂粉末の充填率を 49. 7%として、 固定試験及 び騒音レベルを測定した。
その結果、 固定試験は合格、 騒音レベルは 4 3. 5 d Bとなって目標値をクリァ した。
したがって、 ナイロン樹脂粉末を使用した試験では、 すべての試料が 4 5. 0 d B以下となって目標値をクリアした。
次に、 試料 4では、 シリカ粉末の充填率を 3 0. 0 %として、 室温及び 1 1 0°C の高温での固定試験及び騒音レベルを測定した。
その結果、 室温、 1 1 0°Cの高温ともに固定試験は合格、 騒音レベルは 3 5. 9 d Bとなって目標値をクリアした。
また、 試料 5では、 シリカ粉末の充填率を 5 0. 0 %として、 固定試験及び騒音 レベルを測定した。
その結果、 固定試験は合格、 騒音レベルは 3 2. 8 d Bとなって目標値をクリア した。
そして、 試料 6では、 シリカ粉末の充填率を 6 0. 0 %として、 固定試験及び騒 音レベルを測定した。
その結果、 固定試験は合格、 騒音レベルは 3 2. 9 d Bとなって目標値をクリア した。
次に、 試料 7では、 シリ力粉末の充填率を 70. 0 %として、 固定試験及び騒音 レベルを測定した。
その結果、 固定試験は合格、 騒音レベルは 3 2. 1 d Bとなって目標値をクリア した。
また、 試料 8では、 シリカ粉末の充填率を 80. 0 %として、 固定試験及び騒音 レベルを測定した。
その結果、 固定試験は合格、 騒音レベルは 3 6. 2 d Bとなって目標値をクリア した。
そして、 試料 9では、 シリ力粉末の充填率を 9 0. 0 %として、 固定試験及び騒 音レベルを測定した。
その結果、 固定試験は合格、 騒音レベルは 3 2. 3 d Bとなって目標値をクリア した。 尚、 試料 1 0では、 シリカ粉末の充填率を 1 0 0 . 0 %として、 固定試験及び騒 音レベルを測定した。
その結果、 固定試験は合格、 騒音レベルは 3 4 . 3 d Bとなって目標値をクリア した。
したがって、 シリカ粉末を使用した試験では、 すべての試料が 4 5 . 0 d B以下 となって目標値をクリアした。
すなわち、 磁心とケースとの隙間に粉末を充填することによって、 磁心から発 生する騒音及びケース内での磁心の移動を効果的に抑制できることが分かった。 このように、 ケース ·磁心間に粉末を充填すれば、 磁性部品としての高い信頼 性を有し、 かつ、 発生する騒音が小さいケース収納型磁心が得られることになる。 さらに、 試料 2及び試料 4に対して行った 1 1 0 °Cにおける試験結果から明ら かなように、 このケース収納型磁心は、 高温下でも安定して使用できるものとな る。
また、 各試料に対する評価結果から粉末の充填率は、 1 %〜 1 5 0 %の範囲が 好ましく、 特に 1 0 %〜; L 5 0 %がより好ましく、 1 0 ¾〜 1 2 0 %が更に好ま しく、 1 0 %〜 1 0 0 %が最も好ましい。
なお、 本発明で使用する粉末の短径の最大値は、 5〜 5 0 0 という範囲内 にあることが好ましく、 特に、 1 0 0〜 4 0 0 mという範囲にあることが好ま しい。 産業上の利用可能性
本発明のケース収納型磁心は、 ケース内での磁心の移動と、 磁心の振動のケ一 スへの伝播とを共に防止または抑制できることになるので、 磁性部品としての信 頼性が高く、 かつ、 使用時に発する騒音が小さいケース収納型磁心が得られるこ とになる。
また、 本発明のケース収納型磁心は、 接着剤を用いない構成となっているので、 高温下で使用しても振動吸収力が失われてしまうことがない。
このため、 本発明によれば、 従来のケース収納型磁心よりも使用可能な温度範囲 の広いケース収納型磁心が得られることになる。

Claims

請求の範囲 . ( a ) 磁心と、
( b ) この磁心を収納するケースと、
(: c 前記磁心と前記ケースとの隙間に少なくとも部分的に充填された 粉末とからなること
を特徴とするケース収納型磁心。
. 前記粉末の短径の最大値が、 5 / mないし 5 0 0〃mの範囲にあること を特徴とする請求項 1に記載のケース収納型磁心。
. 前記粉末が、 ナイロン樹脂からなるものであることを特徴とする請求項 1または請求項 2に記載のケース収納型磁心。
. 前記粉末が、 シリコーンオイルをその周囲に付着させたシリカであるこ とを特徴とする請求項 1または請求項 2に記載のケース収納型磁心。. 前記ケースが、 密閉構造であることを特徴とする請求項 1ないし請求項 4に記載のケース収納型磁心。
. 前記磁心が非晶質磁性合金薄帯からなるものであることを特徴とする請 求項 1ないし請求項 5に記載のケース収納型磁心。
PCT/JP1996/002426 1995-09-01 1996-08-29 Noyau magnetique en boitier WO1997009728A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96928693A EP0848392A4 (en) 1995-09-01 1996-08-29 MAGNETIC CORE IN CASE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/225627 1995-09-01
JP22562795 1995-09-01

Publications (1)

Publication Number Publication Date
WO1997009728A1 true WO1997009728A1 (fr) 1997-03-13

Family

ID=16832281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002426 WO1997009728A1 (fr) 1995-09-01 1996-08-29 Noyau magnetique en boitier

Country Status (4)

Country Link
EP (1) EP0848392A4 (ja)
CA (1) CA2230276A1 (ja)
TW (1) TW340946B (ja)
WO (1) WO1997009728A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592877B1 (en) 1995-09-01 2003-07-15 Corixa Corporation Compounds and methods for immunotherapy and diagnosis of tuberculosis
CN112992519A (zh) * 2019-12-02 2021-06-18 河南森源电气股份有限公司 电流互感器铁心缓冲处理生产方法及缓冲处理模具

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2994503B1 (fr) * 2012-08-09 2014-08-01 Schneider Electric Ind Sas Transformateur de distribution de type poteau a perte faible
CN102881414B (zh) * 2012-10-12 2016-04-20 张百良 一种带保护盒的应力敏感变压器铁芯及其无应力固定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133960U (ja) * 1976-04-02 1977-10-12
JPS5484524U (ja) * 1977-11-29 1979-06-15
JPS5637610A (en) * 1979-09-05 1981-04-11 Toshiba Corp Electromagnetic coil
JPS63302504A (ja) * 1987-06-02 1988-12-09 Hitachi Metals Ltd 磁心およびその製造方法
JPH0442906A (ja) * 1990-06-07 1992-02-13 Tohoku Steel Kk インダクタ
JPH0652722A (ja) * 1992-07-29 1994-02-25 Tokyo Electric Co Ltd 電子機器用被覆付き電線

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3290635A (en) * 1964-02-07 1966-12-06 Westinghouse Electric Corp Damped magnetic cores
GB1185665A (en) * 1966-04-04 1970-03-25 Matsushita Electric Works Ltd Ballast Composition for Electric Devices
DE3104270A1 (de) * 1981-02-07 1982-09-02 Vacuumschmelze Gmbh, 6450 Hanau Funkentstoeranordnung und verfahren zur herstellung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133960U (ja) * 1976-04-02 1977-10-12
JPS5484524U (ja) * 1977-11-29 1979-06-15
JPS5637610A (en) * 1979-09-05 1981-04-11 Toshiba Corp Electromagnetic coil
JPS63302504A (ja) * 1987-06-02 1988-12-09 Hitachi Metals Ltd 磁心およびその製造方法
JPH0442906A (ja) * 1990-06-07 1992-02-13 Tohoku Steel Kk インダクタ
JPH0652722A (ja) * 1992-07-29 1994-02-25 Tokyo Electric Co Ltd 電子機器用被覆付き電線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0848392A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592877B1 (en) 1995-09-01 2003-07-15 Corixa Corporation Compounds and methods for immunotherapy and diagnosis of tuberculosis
CN112992519A (zh) * 2019-12-02 2021-06-18 河南森源电气股份有限公司 电流互感器铁心缓冲处理生产方法及缓冲处理模具

Also Published As

Publication number Publication date
TW340946B (en) 1998-09-21
EP0848392A4 (en) 1999-08-18
CA2230276A1 (en) 1997-03-13
EP0848392A1 (en) 1998-06-17

Similar Documents

Publication Publication Date Title
JP3900559B2 (ja) 磁気遮蔽用シートとその製造方法及びこれを用いたケーブル
JP2905350B2 (ja) 電気音響変換器
JP5527218B2 (ja) 共振型受信アンテナ及び受信装置
WO1997009728A1 (fr) Noyau magnetique en boitier
JP7375469B2 (ja) 絶縁体被覆磁性合金粉末粒子、圧粉磁心、およびコイル部品
US4088847A (en) Speaker voice coil construction
JP2008098204A (ja) リアクトル装置
JP2012105092A (ja) アンテナコア及びそれを用いたアンテナ、並びにアンテナコアの製造方法
Wakiwaka et al. Impedance analysis of acoustic vibration element using giant magnetorestrictive material
JP2005159380A (ja) アモルファス鉄心変圧器とその製造方法
KR100866057B1 (ko) 인덕턴스 소자 및 케이스
JP4577759B2 (ja) 磁芯及びそれを用いた線輪部品
JPH1167522A (ja) 巻線型電子部品
JPH0969444A (ja) ケース収納型磁心
JPH0969443A (ja) ケース収納型磁心
JP2602204Y2 (ja) 電磁装置
JPH09148141A (ja) ケース収納型磁心
JPS5856305A (ja) ノイズフイルタ−
JP4632898B2 (ja) 電気音響変換器およびその振動子
JP4644961B2 (ja) インダクタンス素子
JPH0442906A (ja) インダクタ
WO2022176053A1 (ja) コイル部品
Hart Acoustic noise analysis of molybdenum Permalloy powder core transformers
JP4564152B2 (ja) 磁心
JP2557841B2 (ja) 磁心体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2230276

Country of ref document: CA

Ref country code: CA

Ref document number: 2230276

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996928693

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996928693

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996928693

Country of ref document: EP