WO1997009441A2 - Vecteurs aav ameliores pour la therapie genique - Google Patents

Vecteurs aav ameliores pour la therapie genique Download PDF

Info

Publication number
WO1997009441A2
WO1997009441A2 PCT/US1996/014423 US9614423W WO9709441A2 WO 1997009441 A2 WO1997009441 A2 WO 1997009441A2 US 9614423 W US9614423 W US 9614423W WO 9709441 A2 WO9709441 A2 WO 9709441A2
Authority
WO
WIPO (PCT)
Prior art keywords
aav
rep
vector
plasmid
cells
Prior art date
Application number
PCT/US1996/014423
Other languages
English (en)
Inventor
Samuel C. Wadsworth
Karen Vincent
Susan Piraino
Sirkka Kyostio
Original Assignee
Genzyme Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genzyme Corporation filed Critical Genzyme Corporation
Priority to US09/029,705 priority Critical patent/US6632670B1/en
Priority to EP96929952A priority patent/EP0850313B8/fr
Priority to AU69173/96A priority patent/AU715543B2/en
Priority to DE69637745T priority patent/DE69637745D1/de
Priority to JP9511437A priority patent/JPH11514853A/ja
Publication of WO1997009441A2 publication Critical patent/WO1997009441A2/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14151Methods of production or purification of viral material
    • C12N2750/14152Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles

Definitions

  • Adeno-associated virus is a parvovirus having a single-stranded DNA genome of about 4.6 kb. Unlike other viruses, AAV is naturally defective, requiring coinfection with a helper virus (e. g. adenovirus or herpes virus) to establish a productive infection. No human disease has been found to be associated with AAV infection (Blacklow et al . , 1968) . The host range of AAV is broad; unlike retroviruses, AAV can infect both quiescent and dividing cells in vi tro and in vivo (Flotte et al . , 1993; Kaplitt et al . , 199 ; Podsakoff et al .
  • helper virus e. g. adenovirus or herpes virus
  • the AAV genome is relatively simple, containing two open reading frames (ORFs) flanked by short inverted terminal repeats (ITRs) .
  • the ITRs contain, inter alia, cis-acting sequences required for virus replication, rescue, packaging and integration.
  • the integration function of the ITR permits the AAV genome to integrate into a cellular chromosome after infection.
  • the nonstructural or replication (Rep) and the capsid (Cap) proteins are encoded by the 5' and 3' ORFs, respectively.
  • Four related proteins are expressed from the rep gene; Rep78 and Rep68 are transcribed from the p5 promoter while a downstream promoter, pl9, directs the expression of Rep52 and Rep40.
  • the larger Rep proteins (Rep78/68) are directly involved in AAV replication as well as regulation of viral gene expression (for review, see Muzyczka, 1992) .
  • the cap gene is transcribed from a third viral promoter, p40.
  • the capsid is composed of three proteins of overlapping sequence; the smallest (VP-3) is the most abundant.
  • inverted terminal repeats are the only AAV sequences required in cis for replication, packaging, and integration (Sa ulski et al . , 1989), most AAV vectors dispense with the viral genes encoding the Rep and Cap proteins and contain only the foreign gene inserted between the terminal repeats.
  • AAV AAV-derived gene therapy vectors
  • Stable genetic transformation ideal for many of the goals of gene therapy, may be achieved by use of such AAV vectors.
  • site of integration for AAV is well-established as being on chromosome 19 of humans. This predictability removes the danger of random insertional events into the cellular genome that may activate or inactivate host genes or interrupt coding sequences, consequences that limit the use of vectors whose integration is random, e.g., retroviruses. Because the rep protein mediates the integration of .AAV, it is believed that removal of this protein in the construction of AAV vectors result in altered integration patterns.
  • AAV has not been associated with human disease, obviating many of the concerns that have been raised with virus-derived gene therapy vectors.
  • rAAV recombinant AAV
  • the conventional method for production of recombinant AAV (rAAV) vectors is cotransfection of one plasmid containing the vector and a second helper plasmid encoding the AAV Rep and Cap proteins into 293 cells infected with adenovirus (e.g. Lebkowski et al . , 1988; Samulski et al . , 1989, Muzyczka, N. , 1992, Kaplitt et al . , 1994; Einerhand et al . , 1995) .
  • adenovirus e.g. Lebkowski et al . , 1988; Samulski et al . , 1989, Muzyczka, N. , 1992, Kaplitt et al . , 1994; Einerhand et al . , 1995
  • Cis-based strategies to increase vector production are those that provide DNA sequences required in cis (in tandem) with the recombinant DNA to be packaged into the AAV vector particle.
  • the trans and cis functions are related.
  • Trans-required proteins are necessary to effectuate vector production, but they require cis-acting sequences in the recombinant AAV genome in order to be functionally active. Therefore, high yield AAV vector production requires a coordinated strategy of trans-based and cis-based improvements so that progress in the development of AAV as a standard gene therapy vehicle may be realized.
  • the present invention provides methods and genetic constructs for producing AAV recombinant vectors conveniently and in large quantities.
  • the present invention further provides methods for the delivery of all essential viral proteins required in trans for high yields of recombinant AAV.
  • the present invention provides recombinant AAV vectors for use in gene therapy, using trans- and cis- based strategies.
  • the present invention also provides novel packaging cell lines which obviate the need for cotransfection of vector and helper plasmids.
  • the invention is also directed to helper plasmids and vector plasmid backbone constructs that are used in these methods.
  • the present invention provides a reporter assay for determining AAV vector yield.
  • AAV vectors in a pharmaceutically acceptable carrier.
  • the present invention also provides methods of delivering a transgene of interest to a cell.
  • compositions and methods for delivering a DNA sequence encoding a desired protein to a cell are provided by the present invention.
  • transgenic non-human mammals that express a human chromosome 19 AAV integration locus.
  • FIGURE 1 shows a diagram of a replicating helper plasmid containing adenovirus genes required for AAV vector production.
  • FIGURE 2 shows a diagram of a replicating helper plasmid containing the AAV rep and cap genes required for AAV vector production.
  • FIGURE 3 shows a diagram of a nonreplicating helper plasmid containing the AAV rep and cap genes required for AAV vector production.
  • FIGURE 4 shows a diagram of a replicating helper plasmid containing the adenovirus genes and AAV rep and cap genes required for AAV vector production.
  • FIGURE 5 shows a diagram of AAV subgenomic fragments to be used in vector plasmid constructs for AAV vector production. Reference is to restriction sites in pIM45 that define the borders of the fragments.
  • FIGURE 6 shows a diagram of pTRCAT reporter plasmid.
  • FIGURE 7 shows a diagram of helper plasmids containing the AAV rep and cap genes used in AAV vector production.
  • FIGURE 8 shows a diagram of pTRlacZ reporter plasmid.
  • FIGURE 9 shows a Western blot analysis of rep protein expression from AAV nonreplicating helper plasmids.
  • the rep proteins (in kd) are indicated at right.
  • FIGURE 10 shows a Western blot analysis of cap protein expression from AAV nonreplicating helper plasmids.
  • the cap proteins (VP, in kd) are indicated at right.
  • Figure 11 shows AAV helper plasmids represented in linear form with the thin line (only a portion of which is shown) depicting the backbone plasmid DNA, the thick bars represent the Rep and Cap coding regions and their associated control regions, the arrows above the bars depict the positions of the endogenous AAV promoters, p5, pl9 and p40, and the "X" indicates that the p40 promoter has been inactivated by mutation.
  • Cap proteins is identified to the right.
  • Figure 14 is an analysis of total RNA derived from transfections described in Figure 13.
  • Panel A shows the Northern
  • RNA size standards in kilobases are shown at the left in panel A, at the right in panel B; AAV mRNAs are identified at the right of panel A.
  • Figure 15 is an analysis of vector replication and levels of wt AAV contamination.
  • Adenovirus (Ad5tsl49) - infected 293 cells were transfected with 1.5 ⁇ g of vector (pTRlacZ) and 15 ⁇ g of the indicated helper DNA.
  • the replicated viral DNA was then analyzed by Southern blot; duplicate filters were probed with the lacZ probe.
  • Panels C and D show primary and secondary Hirt DNAs, respectively, probed with the AAV fragment.
  • lanes correspond to the following samples: lane 1 (mock transfection) , lane 2 (pIM45) , lane 3 (pIMRSV) , lane 4 (p5rep ⁇ -CMVcap) , lane 5 (RSVrep ⁇ -CMVcap) , lane 6 (p5rep ⁇ - p40cap) , lane 7 (RSVrep ⁇ -p40cap) , lane 8 (pIMRSV-am) .
  • the positions of DNA size standards in (kilobase pairs) are depicted at the left of each panel; hybridizing bands corresponding to the dimer replicative form (dRF) and monomer replicative form (mRF) are identified at the right.
  • 293 cells human embryonic kidney cell line harboring and expressing parts of the adenovirus genome including the adenoviral El region.
  • 293-MT-DBP cells human embryonic kidney cell line modified to express parts of the adenovirus genome which complement recombinant adenovirus vectors that are deleted for El and E2A. Deposited August 28, 1996 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, and assigned ATCC CRL -12181.
  • 2C4 cells human embryonic kidney cell line modified to express parts of the adenovirus genome which complement recombinant adenovirus vectors that are deleted for El and E4. Deposited August 28, 1996 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, and assigned ATCC CRL -12182.
  • 3B1 cells - human embryonic kidney cell line modified to express parts of the adenovirus genome which complement recombinant adenovirus vectors that are deleted for El and E2A. Deposited August 28, 1996 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, and assigned ATCC CRL -12183.
  • Cfu - colony forming units For retroviral and adeno-associated virus vectors carrying antibiotic resistance genes, the number of antibiotic-resistant cell colonies after infection. It is assumed that one colony arises from a single infected cell.
  • Expression plasmid extrachromosomal genetic elements that can propagate autonomously in cells, constructed in such a way that the genes carried in the plasmid can be expressed in the cells.
  • Insertional mutagenesis the introduction of a mutation into a target gene by the insertion of foreign DNA, such as viral DNA, into the host-cell genome.
  • foreign DNA such as viral DNA
  • ITR - inverted terminal repeat a DNA sequence that is repeated at either end of the virus in an inverted form.
  • Promoter-transgene cassette a combination of DNA sequences containing elements necessary for directing production of a gene product and the DNA sequence of the gene itself.
  • Transfection the introduction of foreign DNA into cells in culture ( in vitro) . Genetic modification of eukaryotic cells by introduction of foreign DNA using chemical means. In transient transfection, expression occurs from unintegrated foreign DNA and can be detected for a few days after transfection.
  • Transgene - a gene that has been stably incorporated into another organism.
  • Titer the number of virus particles produced per ml.
  • the assay system to determine the number of virus particles produced varies considerably depending on the virus in question.
  • High titers are generally essential for successful gene therapy since they allow introduction of the therapeutic gene carried by the virus into the maximum number of cells.
  • Vector - a vehicle usually a biological entity, such as a virus, used for the delivery of genes into an organism.
  • LacZ gene - bacterial gene used as a cellular gene marker. Its expression is detected by a blue coloration in the presence of the substrate X-gal.
  • adenovirus proteins are required to generate a productive AAV infection.
  • AAV integrates into the cellular genome, remaining latent until the cell is infected with adenovirus.
  • Adenovirus genes required for helper function include, inter alia, EIA, E1B, E2A, E4 ORF6, and VA RNA (Muzycka, N. , Curr. Top. Micro . Iitmunol . 158: 97-129, 1992) .
  • Standard methods of generating recombinant AAV vectors have relied on adenovirus infection of the target cell in order to provide adequate levels of necessary helper proteins.
  • an adenovirus containing a deletion is used in a cell line that provides an essential adenovirus protein in trans .
  • a temperature-sensitive adenovirus replication mutant may be used at a nonpermissive temperature.
  • helper plasmid which contains the essential adenovirus helper genes bounded by AAV ITR sequences that allow the plasmid to replicate.
  • the helper plasmid may contain EIA, ElB, E2A, E4 ORF6, and VA RNA genes. Each of these genes may also have its own promoter, through which transcription can occur.
  • Alternative promoters that may be used in the helper plasmid include, but are not limited to, CMV, RSV, MMTV, ElA, EFla, actin, cytokeratin 14, cytokeratin 18, PGK as well as others known to those skilled in the art.
  • the helper plasmid of the present invention provides the adenovirus proteins required for AAV vector production, while eliminating the possibility of adenovirus production.
  • a further advantage is that the levels of the adenovirus proteins are not limited by the amount of input plasmid DNA, since replication of the plasmid will increase gene copy number above input levels.
  • the origin of replication may include, but is not limited to, the SV40 origin of replication, the Epstein-Barr (EBV) origin of replication, as well as others known to those skilled in the art.
  • an origin of replication requires an activating protein - e.g., SV40 origin requiring T antigen, EBV origin requiring EBNA protein - the activating protein may be provided by stable transfection so as to create a cell line source, or by transient transfection with a plasmid containing the appropriate gene.
  • helper plasmids of the present invention see, e.g., Current Protocols in Molecular Biology, Ausubel., F. et al. , eds, Wiley and Sons, New York 1995.
  • Such methods include the utilization of compatible restriction sites at the borders of the adenovirus genes and the ITR sequences or DNA linker sequences which contain restriction sites, as well as other methods known to those skilled in the art.
  • Reference for adenovirus DNA sequence information is given in Roberts, R.J., in Adenovirus DNA: The Viral Genome and Its Expression, Oberfler, W. , ed. , Matinus Nihoff Publishing, Boston, 1986) .
  • Plasmids routinely employed in molecular biology - e.g., pBR322 (New England Biolabs, Beverly, MA) , pRep9 (Invitrogen, San
  • helper plasmid into which adenovirus genes and the AAV ITR may be inserted.
  • the adenovirus genes may be placed into the helper plasmid in any positional order.
  • FIGURE 1 A particular embodiment of such a replicating helper plasmid according to the invention is shown in FIGURE 1.
  • the helper plasmid may be used in the generation of recombinant AAV when combined with a source of the AAV rep and cap proteins, as well as the recombinant AAV genome. Transfection of cells by the plasmid using techniques well known in the art will provide the adenovirus gene products necessary for initiation of AAV rep gene expression.
  • AAV rep and cap genes are provided on a replicating helper plasmid that contains the AAV ITR sequences.
  • the rep proteins activate ITR as an origin of replication, leading to replication of the plasmid, that result in increased copy number.
  • the advantage of this method is that rep protein level is not simply dependent on the efficiency of transfection with the plasmid, but is also a function of the replication of the plasmid following transfection.
  • An example of a replicating helper plasmid containing the AAV rep and cap genes is provided in FIGURE 2.
  • the origin of replication may include, but is not limited to, the SV40 origin of replication, the Epstein-Barr (EBV) origin of replication, as well as others known to those skilled in the art.
  • an origin of replication requires an activating protein - e.g., SV40 origin requiring T antigen, EBV origin requiring EBNA protein - the activating protein may be provided by stable transfection so as to create a cell line source, or by transient transfection with a plasmid containing the appropriate gene.
  • AAV rep and cap genes may be provided on a non-replicating plasmid, which does not contain an origin of replication.
  • Such non-replicating plasmid further insures that the replication apparatus of the cell is directed to replicating recombinant AAV genomes, in order to optimize production of virus.
  • high levels of rep protein may be toxic to the cell (Muzyczka, N. , Curr. Top. Micro. Immunol . 158: 97- 129, 1992) , providing the rep gene on a non-replicating plasmid may decrease this possibility.
  • the levels of the AAV proteins encoding by such non-replicating plasmids may be modulated by use of particular promoters to drive the expression of these genes.
  • promoters include, inter alia, AAV promoters, as well as promoters from exogenous sources, e.g., CMV, RSV, MMTV, EIA, EFla, actin, cytokeratin 14, cytokeratin 18, PGK, as well as others known to those skilled in the art.
  • An example of a non ⁇ replicating AAV helper plasmid is provided in FIGURE 3.
  • Levels of rep and cap proteins produced by these helper plasmids may be individually regulated by the choice of a promoter for each gene that is optimally suited to the level of protein desired. Specific modulation of a particular gene - e.g., the rep gene - may also be achieved with the use of an inducible promoter.
  • inducible promoters include, but are not limited to, MMTV, metallothionein, as well as others known to those skilled in the art.
  • a plasmid containing the rep and cap DNA fragment may be modified by the inclusion of a "stuffer" fragment into the AAV genome which causes the DNA to exceed the length for optimal packaging.
  • the helper fragment is not packaged into AAV virions. This is a safety feature, ensuring that only a recombinant AAV vector genome that does not exceed optimal packaging size is packaged into virions.
  • An AAV helper fragment that incorporates a stuffer sequence exceeds the wild-type genome length of 4.6 kb, and lengths above 105% of the wild-type will not be packaged.
  • the stuffer fragment may be derived from, for example, such non-viral sources as the ⁇ -galactosidase gene.
  • helper plasmids of the present invention See e.g., Current Protocols in Molecular
  • Plasmids routinely employed in molecular biology may be used as a backbone - e.g., pBR322 (New England Biolabs, Beverly, MA), pRep9 (Invitrogen, San Diego, CA) , pBS (Stratagene, La Jolla, CA) - for the insertion of the AAV genes and, in the case of a replicating plasmid, the AAV ITR.
  • pBR322 New England Biolabs, Beverly, MA
  • pRep9 Invitrogen, San Diego, CA
  • pBS Stratagene, La Jolla, CA
  • AAV vector stock requires both AAV and adenovirus proteins, provided in trans, in order to facilitate transcriptional activation, replication and packaging of the recombinant AAV genome.
  • Standard approaches have utilized plasmid-based delivery of AAV genes into the target cell. Infection of the target cell with adenovirus is used to provide adenovirus genes. This multi-step protocol requires coordination of transfection and infection. Furthermore, infection of the cell with adenovirus allows for adenovirus production, which is not desirable when attempting to produce a pure AAV vector stock.
  • the introduction of many viral genes which are not needed in vector generation causes diversion of transcriptional and replication machinery that could be directed to more efficient production of the essential proteins for AAV production. While AAV vectors have been produced using adenovirus genes introduced by infection, high yield vector production remains problematic. Therefore, a more efficient delivery of the genes coding for the proteins required in trans should improve AAV vector production.
  • the present invention provides a simple method for the delivery of all essential viral proteins required in trans for high yields of AAV.
  • a hybrid plasmid is constructed to carry AAV and adenovirus genes encoding the essential proteins.
  • the advantages of such a plasmid include, inter alia, a single entry event into the cell delivering all genes coding for trans-acting proteins, coordinate provision of all such genes and avoidance of adenovirus production resulting from the elimination of unnecessary adenovirus genes.
  • Such a plasmid is shown in FIGURE 4.
  • the plasmid contains essential adenovirus genes - EIA, E1B, E2A, E4 ORF6, and VA RNA.
  • the plasmid also contains the AAV rep and cap genes, as well as the AAV ITR sequences which are required to replicate the plasmid.
  • the genes may be transcribed using their own promoters.
  • promoters may include, but are not limited to, CMV, RSV, MMTV, EIA, EFla, actin, cytokeratin 14, cytokeratin 18, PGK, as well as others known to those skilled in the art.
  • the adenovirus genes may be inserted into the plasmid in the order shown in FIGURE 4, or they may be inserted in any number of different positional arrangements that are within the ability of the skilled artisan to devise.
  • All essential genes required in trans may also be provided on two plasmids for ease of cloning.
  • the AAV and adenovirus genes on the hybrid helper plasmid may be carried by two plasmids, in any optimal arrangement for cloning. In other words, the AAV and adenovirus genes do not have to be on separate plasmids.
  • helper plasmids of the present invention See, e.g., Current Protocols in Molecular Biology, Ausubel., F. et al. , eds, Wiley and Sons, New York 1995) , including the utilization of compatible restriction sites at the borders of the genes and the ITR sequences or DNA linker sequences which contain restriction sites, as well as other methods known to those skilled in the art. Reference for adenovirus and AAV DNA sequence information is cited above.
  • Routinely used plasmids e.g., pBR322 (New England Biolabs, Beverly, MA), pRep9 (Invitrogen, San Diego, CA) , pBS (Stratagene, La Jolla, CA) - may be used for the insertion of the adenovirus and AAV genes and the AAV ITR.
  • the adenovirus genes may be placed into the helper plasmid in any positional order. 4. Production of Recombinant AAV Vectors
  • Helper plasmids that provide essential proteins required in trans are used to generate recombinant AAV vector stock. These plasmids are introduced into the target cell using any number of transfection methods, including, inter alia, calcium-phosphate transfection, lipofection or other techniques known to those skilled in the art.
  • the ratio of helper plasmids to the quantity of vector plasmid containing the gene of interest range from 1:1-1:10. This procedure produces recombinant AAV vectors; the vector plasmid contains the recombinant AAV genome flanked by the AAV ITRs.
  • Recombinant AAV vectors are produced using 293 cells in 8 roller bottles (lxlO 9 cells/ml) .
  • Cells are transfected with both the helper plasmid and the AAV vector plasmid at a vector:helper ratio of 1:10.
  • the plasmids may be introduced into the target cell using any number of transfection methods, including, but not limited to, calcium-phosphate, lipofection, or other techniques known to those skilled in the art (see e.g., Current Protocols in Molecular Biology, Ausubel, F. et al. , eds., Wiley and Sons, New York, 1995) .
  • lipofection is used for transfection.
  • Adenovirus infection is initiated at a multiplicity of infection (MOI) of 20.
  • the adenovirus strain may be a deletion virus, in which case, complementing genes are integrated into the cell line, or a temperature-sensitive mutant (e.g., tsl49) which cannot replicate at a nonpermissive temperature (39°C) .
  • the transfected/infected cells are then incubated for 2 days at the appropriate temperature. After incubation, the cells are harvested and then lysed by three (3) freezing and thawing cycles in the presence of benzonase (American International Chemical, Natick, MA) . 1% deoxycholate and 0.25% trypsin is then added to the lysate, followed by incubation for 30 minutes at 37°C.
  • the cell lysate (2 roller bottles/gradient) may then be applied to a CsCl step gradient (1.5g/ml-1.36g/ml) in a SW28 rotor and centrifuged at 26K for 6 hours at 4°C. Fractions are obtained and then further purified on two equilibrium gradients, using a NVT65 rotor, and centrifuged at 60K for 20 hours at 4°C. Fractions from the equilibrium gradients are screened on a refractometer and pooled. Pooled fractions are dialyzed in PBS with 1% sucrose 3 times for 2 hours at 4°C.
  • helper plasmid as a source of proteins required in trans is determined from the yield of AAV vector stock.
  • virus yield an AAV infectious center assay is used to assay for production of infectious progeny.
  • the recombinant AAV vectors are recovered after production using the purification protocol described above. The assay shows whether infectious AAV progeny are produced in the production protocol.
  • the assay is performed with 293 cells that are plated on day one at a density of lxlO 5 cells per well in 0.1 ml/well in DME medium supplemented with 10% FBS, penicillin/streptomycin, and glutamine. After about 24 hours, the cells are infected with adenovirus at an MOI of 20 and with wild-type AAV at an MOI of 2. The viruses are suspended in the same medium, and 0.1 ml is added to each well to initiate infection.
  • the AAV vector samples are added to the well (25-100 microliters of lysate or dilutions) and the plates are incubated for 24-30 hours at the appropriate temperature (37°C for wild-type adenovirus; 39°C for an adenovirus temperature-sensitive mutant) .
  • the medium is carefully removed from the cells.
  • Cold 0.2 ml PBS containing 5mM EDTA is added to each well, and the plate is put on ice.
  • a filtration apparatus is then prepared for use by placing a nitrocellulose filter prewetted with PBS in position, and adding 5 ml of PBS to the top of the filtration unit. The cells in the plate are resuspended by pipetting.
  • 0.05 ml of the cell suspension is added into the PBS buffer in the filtration unit and mixed by rotation. Suction is applied to the apparatus to deposit the cells onto the filters.
  • the filters are air dried for 10 minutes.
  • the cells are lysed on directly on the filters using denaturing solution followed by neutralizing solution.
  • the filters are dried on paper for 5 minutes following each solution and then air dried for 10 minutes.
  • the filters are washed in 2X SSC, air dried for 10 minutes, and baked in a vacuum oven for 2 hours. Hybridization to a probe that detects the gene of interest is performed using the filters prepared as above, wetted in 2X SSC.
  • Filters can be prehybridized using 30-40 ml of Quick-Hyb® (Stratagene, La Jolla, CA) by incubating at 68°C for 2-4 hours in a rotating water bath. The labelled probe is then added to the Quick-Hyb® solution, and incubated overnight at 68°C. Filters are washed the next day (5 minutes in 2X SSC, 0.5% SDS at room temperature, 15 minutes in 2X SSC 0.1% SDS at room temperature, followed by 2 hours in 0.IX SSC, 0.5% SDS at 65°C) . The filter is exposed to film overnight at -80°C to produce an autoradiograph.
  • Quick-Hyb® Stratagene, La Jolla, CA
  • the number of infectious centers on the filter are counted on the autoradiograph.
  • the titer of the starting material is determined by multiplying the number of infectious centers by any dilution used in the preparation of test samples.
  • the AAV vector in production contains a reporter gene
  • alternative methods for determining the AAV vector titer can be used. For example, if the lacZ gene is used, the infected cells can be stained for the expression of the gene product, ⁇ -galactosidase, using X-gal. Titer is determined, for example, by counting the blue-stained cells in a plate well.
  • the present invention also provides a means to increase the production of recombinant AAV vectors via AAV vector plasmid designs that utilize cis-acting sequences in the AAV genome required for efficient replication and packaging.
  • the invention also provides vector plasmids designed to provide such cis-acting sequences.
  • AAV ITR sequences have cis-acting functions that facilitate replication and packaging of the recombinant genome during vector production, as well as integration of the vector DNA into a cell following its introduction by the AAV vector.
  • ITR sequences are retained in recombinant AAV vector designs.
  • the difficulty in achieving high titer production of AAV vectors indicates that the ITRs per se are not sufficient to provide all cis-acting functions necessary to the production of high titer vector stock. Therefore, other cis-acting AAV sequences in addition to the ITRs are required within the vector construct in order to increase the efficiency of replication and/or packaging of the recombinant AAV genome.
  • Cis-acting elements in the AAV genome are believed to facilitate rescue and replication of the genome through interactions with the AAV rep proteins. It is known that rep proteins bind to sites in the AAV ITR as well as to sites in the AAV p5 and pl9 promoters (McCarty, D.M. et al., J. Virol . 65: 2936-2945, 1991; McCarty, D.M. et al., J. Virol . 68:4988-4997, 1995) . Cis-acting packaging elements also appear to be required in the recombinant AAV vector genome for maximal particle production.
  • the present invention provides a method to improve AAV vector production using vector backbone constructs that contain AAV sequences in addition to the ITR sequences.
  • the AAV vector backbone may include AAV genomic fragments that contain rep-binding sites or critical packaging sequences. Because the precise number and location of all cis-acting AAV sequences has not yet been defined, construction of vector plasmids containing significant portions of the AAV genome is important to include all cis-acting sequences, including those that are still undefined. While these vector plasmid constructs improve the production of recombinant AAV vector stock, a further utility of the invention is that essential cis- acting sequences can be functionally identified through improved vector production.
  • the vector constructs containing such cis-acting sequences may be prepared using known techniques. (see e.g. Current Protocols in Molecular Biology, Ausubel., F. et al., eds, Wiley and Sons, New York 1995) .
  • the presence of known restriction sites in the AAV genome may be used to derive subgenomic fragments for insertion into a recombinant AAV vector. Fragment length is chosen so that the recombinant genome does not exceed the packaging capacity of the AAV particle. If necessary, a "stuffer"
  • DNA sequence is added to the construct to maintain standard AAV genome size for comparative purposes.
  • a fragment may be derived from such non-viral sources, e.g., lacZ , or other genes which are known and available to those skilled in the art.
  • the present invention provides a series of vector plasmid constructs which add AAV subgenomic fragments into a vector plasmid containing a gene of interest flanked by the AAV ITRs. See FIGURE 5. These fragments range in size from 1.7 - 2.1 kb. Because these fragments contain coding as well as noncoding regions of the AAV genome, effects on packaging may be due to elements acting in trans as well as in cis.
  • AAV cis-acting fragments - e.g., rep- responsive elements - are specifically cloned into the vector plasmids.
  • the present invention provides an efficient reporter assay for determining AAV vector yield for use in gene therapy. In this manner, the most efficient construct designs are identified by production of high titer stock.
  • a plasmid containing a reporter gene and the AAV ITR sequences is used to determine improvement in production efficiency when AAV sequences are added.
  • This plasmid may be modified with the insertion of AAV subgenomic fragments to create additional constructs, such as plasmid pTR-CAT, shown in FIGURE 6.
  • This plasmid contains an expression cassette comprising the chloramphenicol acetyltransferase (CAT) gene under the control of CMV promoter, a hybrid intron and the BGH polyA site.
  • the expression cassette was cloned into pUC-TR, a high copy number plasmid derived by cloning the AAV ITR region into pUC19.
  • AAV rep and cap genes e.g., using pIM45, described in EXAMPLE 1
  • a plasmid containing the AAV genes is cotransfected with the novel construct.
  • An adenovirus infection or an adenovirus helper plasmid of the present invention provides the other necessary genes.
  • An infectious center assay utilizing an appropriate probe is used for determining the amount of infectious progeny (see Section 5, supra) .
  • a reporter gene product in the AAV vector can be assayed directly - e.g., a CAT enzyme assay is used where this reporter gene is present, for example, pTR-CAT ( Current Protocols in Molecular Biology, Ausubel, F. et al., eds., Wiley and Sons, New York, 1995) .
  • reporter genes may be used in assaying the vector plasmid constructs provided that the final plasmid construct containing the reporter gene and the AAV cis-acting fragments do not exceed the packaging length for an AAV particle.
  • Other reporter gene products may be detected in the infectious AAV particles using appropriate biochemical assay.
  • the invention provides transgenic non-human mammals capable of expressing the AAV integration locus on human chromosome 19.
  • non-human transgenic mammals are transgenic cows, sheep, goats, pigs, rabbits, rats and mice.
  • Animal model systems which elucidate the physiological and behavioral roles of invention polypeptides are produced by creating transgenic animals in which the expression of a polypeptide of interest is altered or modified using a variety of techniques.
  • Examples of such techniques include the insertion of normal or mutant versions of nucleic acids encoding a polypeptide of interest, by microinjection, retroviral infection or other means well known to those skilled in the art, into appropriate fertilized embryos to produce a transgenic animal. See, for example, Carver, et al., Bio /Technology 11:1263-1270, 1993; Carver et al., C o echnology 9:77-84, 1992; Clark et al, Bio /Technology 7:487-492, 1989; Simons et al., Bio /Technology 6:179-183, 1988; Swanson et al., Bio/Technology 10:557-559, 1992; Velander et al., Proc.
  • homologous recombination of mutant or normal versions of these genes with the native gene locus in transgenic animals may be used to alter the regulation of expression or the structure of the polypeptide of interest (see, Capecchi et al., Science 244:1288 ,1989; Zimmer et al. , Nature 338:150, 1989) .
  • Homologous recombination techniques are well known in the art. Homologous recombination replaces the native
  • endogenous gene with a recombinant or mutated gene to produce an animal that cannot express native (endogenous) protein but can express, for example, a recombinant protein which results in expression, for example, of the human AAV integration locus.
  • microinjection adds genes to the host genome, without removing host genes.
  • Microinjection can produce a transgenic animal that is capable of expressing both endogenous and exogenous polypeptides.
  • Inducible promoters can be linked to the coding region of the nucleic acids to provide a means to regulate expression of the transgene.
  • Tissue-specific regulatory elements can be linked to the coding region to permit tissue-specific expression of the transgene.
  • Transgenic animal model systems are useful for in vivo screening of vector compositions for identification and confirmation of integration and long-term transgene expression.
  • a series of helper plasmids was constructed to determine if rAAV packaging is limited by expression levels of the rep and/or cap genes ( Figure 11) . Expression of Rep and Cap proteins was increased by replacing the endogenous AAV promoters, p5 and p40, with the RSV LTR and the CMV IE promoter, respectively.
  • the starting helper plasmid, pIM45 (McCarty et al . , 1991), contains a sequence encompassing the wild-type AAV genome but excluding the terminal repeats (nucleotides 145-4493).
  • pIMRSV is a modification of pIM45 in which the RSV LTR replaces p5.
  • the rep and cap genes were separated to allow replacement of p40 with the CMV IE promoter (as in p5rep ⁇ -CMVcap) .
  • This strategy generated a vector with a direct repeat of 431 bp of seguence downstream from the p40 and CMV promoter.
  • the p40 promoter lying within the rep ORF of this construct was inactivated by site-directed mutagenesis.
  • p5rep ⁇ -p40cap was constructed to express the rep and cap genes from endogenous AAV promoters as in pIM45, but so as to be more directly comparable to p5rep ⁇ -CMVcap, the Rep and Cap coding regions were separated.
  • RSVrep ⁇ -CMVcap and RSVrep ⁇ -p40cap are derivatives of p5rep ⁇ -CMVcap and p5rep ⁇ -p40cap, respectively in which p5 is replaced by the RSV LTR.
  • Rep and Cap proteins expressed from each of the AAV helper plasmids were estimated by Western blot analysis ( Figure 12) .
  • the four Rep proteins produced following transfection into 293 cells in the presence of an Adtsl49 infection (MOI 20) comigrate with the corresponding proteins detected after coinfection of
  • Rep78 and Rep52 are the major proteins produced.
  • Rep68 and Rep40 which are translated from spliced messages, were observed at a lower level. These were also detected as minor proteins in the wtAAV infection.
  • the three capsid proteins VPI, VP2, and VP3 were produced from all helper plasmids in the 1:1:10 ratio observed in a wt AAV infection ( Figure 12) . Synthesis of all three capsid proteins was enhanced when p40 was replaced by the CMV IE promoter ( Figure 12 lane 2 vs. lane 4) . However, expression of the rep gene from the RSV LTR appeared to have a down-regulatory effect on cap expression from p40. Thus, the level of capsid protein was reduced for pIMRSV relative to the parental plasmid containing p5 as the promoter regulating expression of rep (pIM45; compare lanes 3 and 2) .
  • capsid protein expression from the CMV IE promoter (lane 5 vs lane 4) was similar, but less dramatic effect. In the latter case, a corresponding reduction was also seen in cap mRNA by Northern analysis, suggesting that overexpression of Rep78 results in transcriptional down-regulation of the CMV promoter.
  • Cap protein synthesis was also reduced relative to pIM45 when the rep and cap genes were expressed from separate transcription units as in p5rep ⁇ -p40cap where the AAVpA signal separates the rep and cap ORFs.
  • the total level of AAV proteins produced in the transient transfections was comparable to that observed in a wt AAV infection at an MOI of 10. While Rep78, Rep52 and the capsid proteins appeared at levels similar to that observed in the wt AAV infection when expressed from the AAV promoters (p5, pl9 and p40, respectively), expression from the heterologous promoters, RSV LTR and the CMV IE, increased the amount above that observed in the viral infection. This is especially significant when it is considered that transfection efficiency ranges from 20-50% while infection at an MOI of 10 should occur with greater efficiency. This suggests that the concentration of each viral gene product per transfected cell is higher in the transient transfections than in the wt AAV infection.
  • Transient transfections in 293 cells were performed using pIMRSV-am as a helper in the presence and absence of adenovirus (Ad) infection.
  • Nuclear proteins were isolated and analyzed by Western blot ( Figure 13) .
  • Capsid protein expression was analyzed in parallel ( Figure 13) . Synthesis of the capsid proteins is significantly enhanced following Ad infection of cells transfected with pIM45. This increase is not observed with pIMRSV (lanes 5 and 6) but does occur with the pIMRSV-am mutant. The pIMRSV phenotype is restored when pIMRSV-am is cotransfected with the suppressor tRNA or when Rep protein is supplied in trans by cotransfection with pRSVrep.
  • the ratios of the two p40 mRNAs are shifted in favor of the spliced 2.3 kb transcript with Ad infection.
  • no increase in the levels of either the pl9 or p40 transcripts is observed with the pIMRSV construct upon Ad infection.
  • the increase in capsid protein synthesis observed with Ad infection in the Western analysis ( Figure 13, lane 4) is not reflected by an increase in the level of cap mRNA.
  • the level of capsid mRNA observed with pIMRSV-am is similar to that of the parental plasmid, pIMRSV.
  • helper plasmids were compared with respect to their ability to produce rAAV. Each was transfected into Ad-infected 293 cells in conjunction with the pTRlacZ vector plasmid and the yield of rAAV in the crude lysate (Table 1) was determined by the titer assay. Increasing capsid protein expression by placing the cap gene under the control of the CMV promoter (p5rep ⁇ -CMVcap) increased rAAV yield by approximately 9-fold. In contrast, replacing p5 with the RSV LTR in order to enhance rep gene expression resulted in a lower rAAV yield.
  • Table 1 Shows a comparison of rAAV yield from the conventional production scheme (293 standard conditions) in the presence of adenovirus with that obtained in the absence of adenovirus. In the 'absence of adenovirus' cases, several different cell lines were used. Each cell line is a derivative of the 293 cell line (which contains the adenovirus El gene) that has been engineered to also contain the adenovirus E4 gene. The VK2-20 cell line was obtained from Frank Graham, while the other ORF 6 lines (2C4 and 3B1) were generated in-house.
  • E2A and VA genes must be supplied by transfection with the E2A plasmid.
  • E2VA 5'— > 3 ' and E2VA 3 ' — ⁇ > 5' are two clones of this plasmid
  • Table 2 is a summary of the results of large-scale rAAV production using pIM45 and p5rep ⁇ -CMVcap as helper DNAs. Notably, the yield of rAAV IU/cell increases almost 10-fold when the modified helper is used. This result is also reflected in higher titers (both in IU/ml and particles/ml) of the purified material. Shown in the table are IU/ml determined both in the presence and absence of adenovirus (Adtsl49) . As has been reported by others (Ferrari et al . , 1996, Fisher et al . , 1996), rAAV titers are approximately 1000-fold higher in the presence of an Ad infection.
  • the particle:IU ratio of these preparations is 20-120 (IU +Ad) or 4 - 7 x IO 4 (IU -Ad) .
  • the former value is within the range previously reported (Samulski et al . , 1989) .
  • Adtsl49 contamination from ⁇ 10 3 IU/ml to IO 7 IU/ml;
  • the stocks are free of contaminating wt AAV (see below) .
  • PLASMID TITER (lU/ml+Ad) lU/cell TITER (lU/ml+Ad) TITER(IU/m!-Ad) PARTICLES/ML
  • Hirt analysis was performed on samples from small-scale transient transfections such as those described above to assay replication of the vectors and to assess levels of wtAAV contamination. All of the helper DNAs supported replication of the TRlacZ vector ( Figure 15, panel A) ; however, in each transfection using a helper plasmid containing an RSV LTR- rep cassette, the vector appeared to replicate at a diminished level (the ethidium-bromide stained gel indicated equal amounts of DNA were loaded in each lane) . This result might also help to explain the reduced viral yields obtained with the helpers containing RSV -rep.
  • AAV promoters in a standard helper plasmid were substituted with stronger heterologous promoters in order to enhance separately the expression of the Rep and Cap proteins required for rAAV packaging.
  • transfection efficiency Another, related factor restricting AAV vector production by the standard protocol is transfection efficiency as the overall level of Rep and Cap protein synthesis is limited both by the number of cells taking up DNA as well as the number of DNA molecules present within each cell.
  • plasmid DNA has been complexed to replication-competent adenovirus modified with polylysine, resulting in an increase in rAAV packaging of 40-240 fold over the standard calcium phosphate method (Mamounas et al . , 1995) .
  • a number of modifications to the standard rAAV production procedure were made by Chiorini et al .
  • Cap protein expression resulting from replacement of p5 with the RSV LTR confirmed the work of others with respect to AAV gene regulation.
  • AAV Rep proteins primarily Rep78/68; Kyostio et al . , 1994; Horer et al . , 1995
  • Rep proteins repress transcription from AAV promoters (Tratschin et al . , 1986, Trempe and Carter, 1988, Beaton et al . , 1989, Kyostio et al .
  • Cap protein synthesis was observed to increase. This effect may be attributed to the translational inhibitory activity of Rep.
  • Trempe and Carter (1988) observed that the level of p40 mRNA was reduced while CAT protein expression increased in the absence of Rep compared to a rep gene-containing vector.
  • synthesis of the capsid proteins is significantly enhanced with adenovirus infection. This increase, however, occurs without any alteration in the steady-state level of p40 mRNA, indicating that it is a translational effect.
  • capsid protein production also increases in cells transfected with pIM45, but in this case, there is a concomitant increase in the level of both the 2.6 kb and 2.3 kb p40 mRNAs.
  • the apparent induction in the synthesis of the capsid proteins with pIMRSVam is a trans effect of the mutation of the rep gene, as it does not occur in any case where the Rep proteins are expressed.
  • Rep78 is the major Rep protein produced by pIMRSV, it is presumably the primary mediator of the inhibitory effect, however, a role for Rep68 cannot be ruled out.
  • EXAMPLE 1 RECOMBINANT AAV PRODUCTION USING A NON- REPLICATING HELPER PLASMID CONTAINING AAV HELPER GENES
  • helper plasmid providing the AAV rep and cap genes on a nonreplicating plasmid and using heterologous promoters for gene expression would increase AAV vector titer above that derived from controls in which the rep and cap genes are expressed from their own promoters.
  • the helper plasmids tested are shown in FIGURE 7.
  • pRSVrep-p40cap and pRSVrep-CMVcap were constructed by deleting the cap region from pIM45 using PCR to delete nucleotides 2287-4049 in the AAV genome, resulting in the generation of pRep*30.
  • pIM-CMVcap was constructed by introducing 3 point mutations at positions 1823 (T:C) , 1826 (A:C) and 1832 (G:A) within the AAV genome to inactivate the p40 promoter.
  • pCMVcapB was generated by inserting a PCR fragment containing nucleotides 1850-4460 from the AAV genome and BamHl ends into the BamHl site of pCMVB (Clontech, Palo Alto, CA) .
  • An SphI fragment containing the CMV promoter was isolated from pCMVcapB and was inserted into the SphI site at position 930 within pIM45 to make pIM-CMVcap.
  • helper plasmids were transfected into 293 cells at a ratio of 10:1 helper/vector (16.5 ⁇ g/total DNA) .
  • the AAV vector plasmid used was pTR-lacZ, which was developed by Dr. Nicholas Muzyczka, University of Florida. The plasmid is shown in FIGURE 8. Isolation and purification of the AAV vector was performed as described in Section 4, supra .
  • the AAV yield was titered by coinfecting 293 cells with helper adenovirus and the AAV. This reduced the infection time, therefore increasing the sensitivity of the assay.
  • 293 cells were plated in 96-well plates, at 5xl0 5 cells/ml. (lOO ⁇ l/well) in DMEM/10% FBS (with penicillin/streptomycin and glutamine) and allowed to grow for one day at 37°C.
  • the cells were then coinfected with Adtsl49 virus using an MOI of 20, and with the AAV at dilutions of 1:100, 1:200 and 1:400 etc. of the viral preparatory stock. The different dilutions were used in order to ascertain the titer.
  • the medium was aspirated, the cells were incubated with 3.7% formaldehyde for 5 minutes and washed with Phosphate Buffer Saline (PBS) .
  • PBS Phosphate Buffer Saline
  • the cells were then stained with X-Gal (5-Bromo-4-Chloro-3-Indolyl- ⁇ -D- galactopyranoside) at 37°C for 1-24 hours and screened for the presence of blue coloration in cells in order to detect the expression of the lacZ gene contained in the AAV vector.
  • a conversion using the Titer Analysis program which is based on determining the endpoint dilution, was used for determination of the titer in IU/ml.
  • FIGURE 9 shows a Western blot analysis of rep protein expression
  • FIGURE 10 shows a Western blot analysis of cap protein expression.
  • Standard techniques were used in the Western blot analysis ( Current Protocols in Molecular Biology, Ausubel, F. et al., eds., Wiley and Sons, New York, 1995) .
  • the titer data is shown in TABLE 3.
  • the titer of vector stock is given in IU/ml.
  • the experiment demonstrates that increased levels of cap expression in particular, as evidenced by the Western blot, leads to increased production of the AAV vector, pTRlacZ, as evidenced by the titers shown.
  • EXAMPLE 2 CELL LINES, VIRUSES AND PLASMID DNA.
  • the 293 cell line an adenovirus 5-transformed human embryonic kidney cell line (Graham et al . , 1977) was propagated in Dulbecco's modified Eagle's medium-high glucose (DME; Irvine Scientific) supplemented with 10% fetal bovine serum (FBS; Irvine Scientific, Santa Ana, CA) , 20 mM glutamine, 100 units/ml penicillin and 100 ⁇ g/ml streptomycin (Gibco-BRL, Gaithersburg, MD) at 37°C and 5% C0 2 .
  • DME Dulbecco's modified Eagle's medium-high glucose
  • FBS fetal bovine serum
  • streptomycin Gaithersburg, MD
  • Ensinger and Ginsberg, 1972) used as a helper virus in these studies has reduced ability to replicate viral DNA at the nonpermissive temperature (39°C) due to a temperature-sensitive mutation in the DNA polymerase encoded by adenovirus early region 2 (Stillman et al . , 1982) .
  • Ad5tsl49 was grown in 293 cells at the permissive temperature (33°C) and purified by CsCl gradient centrifugation.
  • pTRlacZ consists of the E. coli LacZ gene (cytoplasmic) under the transcriptional control of the CMV IE promoter, inserted between the terminal repeats of AAV.
  • the plasmid encoding the amber suppressor tRNA, pSVtsSu + (amber) Capone et al . , 1985
  • pNTC3 an AAV genomic clone containing an amber mutation within the rep coding region (Chejanovsky and Carter, 1989) was kindly provided by R. Owens (NIH) .
  • pIM45 Rous Sarcoma Virus long terminal repeat (RSV LTR) and CMV IE promoter, respectively. All manipulations were carried out following standard cloning procedures (Sambrook et al . , 1989) . All restriction and DNA-modifying enzymes were obtained from New England Biolabs (Beverly, MA) and used according to the manufacturer's specifications. Plasmid DNAs were purified using kits obtained from Qiagen (Chatsworth, CA) .
  • the CMV IE-cap cassette was constructed by first amplifying a DNA fragment consisting of AAV genomic sequences between bp 1852 and 4440 (encoding the capsid proteins and including the AAV mRNA polyadenylation site) via PCR (Saiki et al, 1988) using Vent polymerase (New England Biolabs, Beverly, MA) . This fragment was inserted between the BamHl sites of pCMV ⁇ (Clontech, Palo Alto, CA) to generate the plasmid pCMVcap.
  • rep gene sequences between the BamHl site (bp 1045) and Apal site (bp 2283) were PCR-amplified and inserted within the pIM45 plasmid digested with BamHl and ApaJ. The result was a deletion between bp 2283 (just downstream of the Rep termination codon) and the ApaJ site at bp 4049.
  • This plasmid, pIMrep ⁇ was used to generate a construct in which Rep78/68 are expressed from the RSV LTR.
  • a 2.4 kb rep gene fragment extending from bp 276 (just upstream of the Rep78/68 mRNA initiation codon) to bp 4459 was PCR-amplified from pIMrep ⁇ and inserted between the Nhel and NotI sites of the pRep9 expression vector (Invitrogen, San Diego, CA) to create pRSVrep.
  • Rep and Cap protein coding sequences overlap in the region of the AAV intron, there is 431 bp in common between the rep and cap gene cassettes (between bp 1852 and 2283) of pIMrep ⁇ and pCMVcap.
  • p40 sequences within pIMrep ⁇ were mutated to inactivate the promoter. This was done to prevent the generation of wild-type AAV as a consequence of recombination between the shared sequences. Mutagenesis was carried out by overlap extension PCR (Higuchi et al . , 1988) .
  • flanking primer-1 (5' -GGATTACCTCGGAGAAGCAGTGGATCC-3 ' ; bp 1024-1050 of the AAV genome) and mutagenic primer-1 (5'-GTTTGGGTTCACTGATGTCTGCGTCACTG-3' ; AAV bp 1821-1841; mutated nucleotides are underlined) .
  • flanking primer-1 5' -GGATTACCTCGGAGAAGCAGTGGATCC-3 ' ; bp 1024-1050 of the AAV genome
  • mutagenic primer-1 (5'-GTTTGGGTTCACTGATGTCTGCGTCACTG-3' ; AAV bp 1821-1841; mutated nucleotides are underlined) .
  • the result is the introduction of three base pair mutations in the region of the p40 TATA box : from TATAAGTGAG to CATCAGTGAA.
  • the G to A change ablates a BanJJ site to enable screening by restriction analysis.
  • the resulting plasmid was pIMrep ⁇ /p40 ⁇ .
  • the helper plasmid p5rep ⁇ -CMVcap was constructed by inserting a SphI fragment from pCMVcap containing the CMV IE promoter and cap gene cassette into the unique SphI site of pIMrep ⁇ /p40 ⁇ .
  • p5rep ⁇ -p40cap a PCR fragment with SphI ends extending from AAV bp 1715 to 4461 was generated from pIM45 and cloned into the SphI site of pIMrep ⁇ /p40 ⁇ .
  • the p5 promoter regions in the plasmids pIM45, p5rep ⁇ -CMVcap and p5rep ⁇ -p40cap were replaced with the RSV LTR promoter by first cleaving pRSVrep with Xbal.
  • the Xbal site was made blunt with DNA Polymerasel-Klenow fragment and the DNA was restricted with Sfil to release a fragment containing the RSV promoter and the 5' end of the rep gene. This fragment was then cloned between the Smal and Sfil sites of the parental plasmid.
  • a Sfil-BamHI fragment containing the mutation (at bp 1033 of the AAV genome) was isolated from the plasmid pNTC3 (Chejanovsky and Carter, 1989) and cloned into the corresponding sites of pIMRSV.
  • EXAMPLE 3 TRANSIENT TRANSFECTIONS AND ANALYSIS OF rAAV REPLICATION AND PACKAGING.
  • helper DNA 15 ⁇ g of helper DNA. Following incubation at 37°C for 5 hours, the infection/transfection was terminated by replacing the media with fresh DME-10% FBS; the dishes were then transferred to 39°C (the non-permissive temperature for Ad5tsl49) .
  • PBS phosphate-buffered saline
  • the primary antibodies used for Rep and Cap Westerns were both mouse monoclonals (American Research Products, Belmont, MA) : anti-AAV Rep protein, 303.9 (used at a dilution of 1:10 in TBST) and anti-VPl, VP-2 and VP-3 of AAV, Bl (used at a dilution of 1:5 in TBST), respectively. These were incubated on the filter for 2 hours at room temperature with vigorous shaking. Following a wash step in TBST (3 x 15 minutes) , the filter was incubated in the secondary antibody, goat anti-mouse IgG (Fab-specific) peroxidase conjugate (Sigma, St. Louis, MO), for 1 hour at room temperature. The filter was then washed as before and developed using the ECL kit (Amersham) .
  • anti-AAV Rep protein 303.9 (used at a dilution of 1:10 in TBST) and anti-VPl, VP-2 and VP-3 of AAV, Bl (used at a d
  • RNAzol B Tel-Test, Inc., Friendswood, TX
  • denaturation cocktail 50% DMSO, 10% formaldehyde, 20 mM
  • MOPS morpholinepropanesulfonic acid
  • pH 7.0 pH 7.0
  • 10 mM sodium acetate 1 mM EDTA
  • loading dyes 5% glycerol, 0.1 mM EDTA, 0.04% bromophenol blue, 0.04% xylene cyano1
  • Electrophoresis was through a 1% agarose/ 0.65% formaldehyde gel assembled and run in MOPS running buffer (20 mM MOPS, pH 7.0, 10 mM sodium acetate, 1 mM EDTA) .
  • Transfer to GeneScreen nylon membrane was carried out by capillary action overnight in 10 x SSC (1.5 M NaCl, 0.15 M sodium citrate; Sambrook et al . , 1989).
  • the filters were prehybridized for 4-5 hours at
  • probe was a 1.6 kb Hindi fragment of pIM45 (AAV bp 2397 to 3987) labelled with [ ⁇ - 32 P]dATP
  • Trypsin (Gibco-BRL Life Technologies) was added to a final concentration of 0.25% and the suspension was incubated again with shaking for 1 hour at room temperature. The cell debris was collected by centrifugation (3000 rpm, 15 minutes, 4°C in Sorvall RC-3B) and the lysate was filtered through a 0.45 ⁇ M filter.
  • the lysate was then subjected to centrifugation through a CsCl step gradient (4 hours, 26K rpm, 4°C, SW28 rotor) in which the top and bottom layers were 1.37 g/ml and 1.5 g/ml CsCl, respectively.
  • the top layer was collected (between the CsCl interface and the Ad5tsl49 band), adjusted to 1.41 g/ml CsCl, and centrifuged through a 1.41g/ml CsCl equilibrium gradient (16-20 hours, 4°C, 35,000 rpm, NVT.65 rotor) .
  • Fractions were collected and assayed on a refractometer; fractions with a density of 1.36-1.41 were pooled and dialyzed against PBS/1% sucrose for 6 hours at 4°C. Sucrose was added to a final concentration of 5% and the purified virus was stored in aliquots at -80°C.
  • the titer of contaminating Ad5tsl49 was determined in a similar manner except staining was for hexon using anti-adenovirus (hexon) /FITC conjugate (Chemicon, Temecula, CA) .
  • the level of contaminating wild- type AAV was assayed using the infectious center assay as described (Einerhand et al . , 1995).
  • AAV particle titer was quantitated using a procedure modified from Samulski et al . (1989) .
  • the purified rAAV sample was first treated with proteinase K in 0.1% SDS at 37°C for 3 hours. Appropriate dilutions as well as standard curve DNAs (for TRiacZ virus, pTRlacZ DNA was used as a standard) were treated with denaturation solution (0.5 M NaOH, 1.5 M NaCl) for 10 minutes at room temperature and a 1 ml volume was applied to a GeneScreen Plus (Amersham) membrane using a slot blot apparatus (Schleicher and Schuell, Keene, NH) . After loading, the slot was washed with 300 ⁇ l of 0.5 M ammonium acetate, pH 5.2. The filter was dried and hybridized as described above.
  • the probe (a Pvull fragment of pTRlacZ) was labelled using the Prime-It Fluor labelling kit (Stratagene, La Jolla, CA) . Following a series of washes as described above (except the final wash at 65°C was for 10 minutes) , the filter was developed with the Illuminator detection kit (Stratagene) . Particle concentrations were estimated by comparing the sample signal with that of the standard curve.
  • 293-MT-DBP Plasmid Construction.
  • the parental plasmid pREP-7 (Invitrogen, San Diego, CA) , contains the EBV origin of replication and the EBNA-gene for plasmid extrachromosomal maintenance and the hygromycin resistance gene for DNA selection.
  • pREP/MT/DBP the RSV promoter of pREP-7 was replaced with the metallothionein (MT) promoter, which is induced by heavy metals.
  • MT metallothionein
  • the E2A gene encoding DNA binding protein (DBP) was cloned downstream of the MT promoter.
  • the parental plasmid contains an expression cassette for adenovirus E4 6 and 6/7 open reading frames (ORFs) .
  • the promoter used to drive expression is a mutant human metallothionein promoter which has a low level basal activity. (Makarov et al., Nuc . Acids Res. 22(8) :1504-1505 (1994)) .
  • Both 3B1 and 2C4 cell lines were derived from 293 cells which are human embryonic kidney cells that have been transformed with the El region of Adenovirus Type 2. Both 3B1 and 2C4 have the ability to complement recombinant adenovirus vectors that are deleted for El and E4.
  • the cell lines contain a mutant human metallothionein promoter and SV40 splice and polyadenylation signals to drive expression of adenovirus type 2 E4 open reading frames 6 and 6/7 (adenovirus nucleotides 34082-32913) .
  • the expression of ORFs 6 and 6/7 can be induced by the addition of lOO ⁇ M Zn 2+ , 2 ⁇ M Cd 2+ . Briefly, 293 cells were transfected with the parental plasmid. The cells were cotransfected with pSV2Neo so that individual clones could be selected with G418.
  • EXAMPLE 5 TRANSGENIC MICE WITH AAVS1 INTEGRATION LOCUS.
  • mice 19 mice were implanted with injected eggs and 148 pups were born. Chromosomal DNA was isolated from mouse tails and was screened by Southern analysis. Six positive mice were found (#66, 73, 85, 93, 123, 147) (Table 4) .
  • Adeno-associated virus p5 promoter contains an adenovirus E1A inducible element and a binding site for the major late transcription factor. J. Virol. 63:3479-3488.
  • Second-Strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated vrus vectors. J. Virol. 70:3227-3234.
  • Adeno-associated vectors transduce primary cells much less efficiently than immortalized cells. J. Virol. 69:1473-1479.
  • Negative regulation of the adeno-associated virus (AAV) p5 promoter involves both the p5 Rep binding site and the consensus ATP-binding motif of the AAV Rep68 protein. J. Virol. 69:6787-6796.
  • AAV adeno-associated virus
  • Adeno-associated virus a vector system for efficient introduction and integration of DNA into a variety of mammalian cell types. Mol. Cell. Biol. 8: 3988-3996.
  • rAAV recombinant adeno-associated virus
  • NAME DUGAN, DEBORAH A

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

L'invention concerne des procédés pour générer des vecteurs AAV de recombinaison, exempts de contaminants, et de titre élevé. L'invention traite aussi de procédés et de produits de recombinaison génétiques pour produire des vecteurs de recombinaison AAV de manière aisée et en grandes quantités, des procédés pour l'administration de toutes les protéines virales essentielles requises en trans pour de fortes productions de AAV de recombinaison et de vecteurs AAV de recombinaison pouvant être utilisés en thérapie génique. L'invention a aussi pour objet de nouvelles lignées cellulaires de conditionnement qui suppriment la nécessité de cotransfection de plasmides auxiliaires et de vecteurs, de plasmides auxiliaires et de produits de recombinaison à squelette de plasmide de vecteur, et un dosage reporter pour déterminer la production de vecteurs AAV. En outre, l'invention concerne des vecteurs AAV de recombinaison dans un support pharmaceutiquement acceptable, des procédés pour administrer un transgène intéressant à une cellule, des compositions et des procédés pour administrer une séquence d'ADN codant un polypeptide requis sur une cellule, et des mammifères non humains transgéniques exprimant un foyer d'intégration de AAV de chromosomes humains 19.
PCT/US1996/014423 1995-09-08 1996-09-06 Vecteurs aav ameliores pour la therapie genique WO1997009441A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/029,705 US6632670B1 (en) 1995-09-08 1996-09-06 AAV vectors for gene therapy
EP96929952A EP0850313B8 (fr) 1995-09-08 1996-09-06 Vecteurs aav ameliores pour la therapie genique
AU69173/96A AU715543B2 (en) 1995-09-08 1996-09-06 Improved AAV vectors for gene therapy
DE69637745T DE69637745D1 (de) 1995-09-08 1996-09-06 Verbesserte aav vektoren für die gentherapie
JP9511437A JPH11514853A (ja) 1995-09-08 1996-09-06 遺伝子治療のための改良されたaavベクター

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US347095P 1995-09-08 1995-09-08
US60/003,470 1995-09-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/029,705 A-371-Of-International US6632670B1 (en) 1995-09-08 1996-09-06 AAV vectors for gene therapy
US10/656,474 Continuation US20040105845A1 (en) 1995-09-08 2003-09-04 AAV vectors for gene therapy

Publications (1)

Publication Number Publication Date
WO1997009441A2 true WO1997009441A2 (fr) 1997-03-13

Family

ID=21706022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/014423 WO1997009441A2 (fr) 1995-09-08 1996-09-06 Vecteurs aav ameliores pour la therapie genique

Country Status (7)

Country Link
US (2) US6632670B1 (fr)
EP (2) EP1983057A3 (fr)
JP (1) JPH11514853A (fr)
AU (1) AU715543B2 (fr)
CA (1) CA2230758A1 (fr)
ES (1) ES2317646T3 (fr)
WO (1) WO1997009441A2 (fr)

Cited By (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045550A2 (fr) * 1996-05-31 1997-12-04 Baxter International Inc. Vecteur mini-adenoviral
WO1998051807A1 (fr) * 1997-05-14 1998-11-19 Hsc Research And Development Limited Partnership Cassettes d'expression episomique pour therapie genique
WO1998054345A1 (fr) * 1997-05-30 1998-12-03 Baxter International Inc. Vecteur mini-adenoviral
WO1999020779A1 (fr) * 1997-10-21 1999-04-29 Targeted Genetics Corporation Cassettes d'encapsidation de virus adeno-associe (aav) amplifiable pour la production de vecteurs de aav recombines
WO1999011764A3 (fr) * 1997-09-05 1999-06-10 Targeted Genetics Corp Procedes de generation de preparations de vecteurs de aav recombinants dont le titre est eleve et qui sont exemptes de virus assistant
WO1999041399A1 (fr) * 1998-02-17 1999-08-19 Genzyme Corporation Procedes de fabrication de vecteurs purifies des virus associees aux adenovirus
WO1999061640A2 (fr) * 1998-05-22 1999-12-02 University College London Vecteur derive par aav
WO2000011149A1 (fr) * 1998-08-24 2000-03-02 Uab Research Foundation Procedes de production de virus associes aux adenovirus recombinants a titre eleve
WO2000022152A1 (fr) * 1998-10-13 2000-04-20 Avigen, Inc. Compositions et methodes de production de virus associe aux adenovirus recombine
WO2000024916A1 (fr) * 1998-10-27 2000-05-04 Crucell Holland B.V. Production amelioree de vecteurs de virus associes aux adenovirus
EP1007637A1 (fr) * 1997-04-14 2000-06-14 Cell Genesys, Inc. Procede d'amelioration de l'efficacite d'un produit d'aav recombine
WO2000047757A1 (fr) * 1999-02-10 2000-08-17 Medigene Ag Procede de fabrication d'un virus adeno-associe recombine, moyens adaptes a cette fabrication et utilisation dudit virus pour la fabrication d'un medicament
WO2001018224A1 (fr) * 1999-09-08 2001-03-15 Genzyme Corporation Vecteurs adenoviraux modifies produisant une expression augmentee et constante du gene regulateur de la permeabilite transmembranaire de la mucoviscidose dans l'epithelium des voies respiratoires humaines
EP1105470A1 (fr) * 1998-08-20 2001-06-13 Cell Genesys, Inc. Utilisations d'arn de transfert pour reguler la cytotoxicite durant la production de produits geniques de recombinaison
WO2001083797A2 (fr) * 2000-04-28 2001-11-08 Avigen, Inc. Polynucleotides utilises dans la production de virions de virus recombinants associes aux adenovirus
WO2002038782A2 (fr) * 2000-11-13 2002-05-16 Arimedes Biotechnology Gmbh Systeme d'expression viral
US6403370B1 (en) 1997-02-10 2002-06-11 Genstar Therapeutics Corporation Oncolytic/immunogenic complementary-adenoviral vector system
US6566118B1 (en) 1997-09-05 2003-05-20 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
US6642051B1 (en) 1997-10-21 2003-11-04 Targeted Genetics Corporation Amplifiable adeno-associated virus(AAV) packaging cassettes for the production of recombinant AAV vectors
US6893865B1 (en) 1999-04-28 2005-05-17 Targeted Genetics Corporation Methods, compositions, and cells for encapsidating recombinant vectors in AAV particles
US6989264B2 (en) 1997-09-05 2006-01-24 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
US6989261B2 (en) 2001-12-20 2006-01-24 Eli Lilly And Company Butyrylcholinesterase variant polypeptides with increased catalytic efficiency and methods of use
US7049121B2 (en) 2001-12-20 2006-05-23 Applied Molecular Evolution Butyrylcholinesterase variant polypeptides with increased catalytic efficiency and methods of use
WO2008067480A2 (fr) 2006-11-29 2008-06-05 Nationwide Children's Hospital Inhibition de la myostatine destinée à améliorer le muscle et/ou à améliorer la fonction musculaire
EP1930418A1 (fr) 1998-09-04 2008-06-11 Targeted Genetics Corporation Procédés pour produire des préparations de vecteurs AAV recombinants de forte teneur dépourvues de virus assistants
EP1983057A2 (fr) 1995-09-08 2008-10-22 Genzyme Corporation Vecteurs AAV améliorés pour la thérapie génique
EP2147681A1 (fr) 1997-10-29 2010-01-27 Genzyme Corporation Compositions et méthodes pour le traitement de maladies lysosomales
US7910545B2 (en) 2000-06-19 2011-03-22 Genzyme Corporation Combination enzyme replacement and small molecule therapy for treatment of lysosomal storage diseases
EP2767298A2 (fr) 2010-11-23 2014-08-20 Presage Biosciences, Inc. Procédés thérapeutiques et compositions pour administration solide
EP2771455A1 (fr) * 2011-10-28 2014-09-03 The University Of North Carolina At Chapel Hill Lignée cellulaire pour la production d'un virus adéno-associé
US8835614B2 (en) 2008-12-16 2014-09-16 Genzyme Corporation Oligosaccharide-protein conjugates
WO2014172669A1 (fr) 2013-04-20 2014-10-23 Research Institute At Nationwide Children's Hospital Administration de virus adéno-associé recombinant de constructions polynucléotidiques u7snarn ciblant l'exon 2
EP2862935A1 (fr) * 2013-10-15 2015-04-22 PlasmidFactory GmbH & Co. KG Mini-cercles dotés de cassettes d'expression virales et leur utilisation pour la transformation de cellules en vue de la production de virus recombinants ou de vecteurs génétiques viraux
US9133482B2 (en) 2011-04-21 2015-09-15 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of myotilin
EP2932982A1 (fr) 2005-05-17 2015-10-21 Amicus Therapeutics, Inc. Procédé pour le traitement de la maladie de Pompe au moyen de 1-désoxynojirimycine et de ses dérivés
WO2016057975A2 (fr) 2014-10-10 2016-04-14 Research Institute At Nationwide Children's Hospital Injections guidées pour transfert de gène par vaa au muscle
WO2016126993A1 (fr) 2015-02-04 2016-08-11 Washington University Constructions anti-tau
US9415121B2 (en) 2008-12-19 2016-08-16 Nationwide Children's Hospital Delivery of MECP2 polynucleotide using recombinant AAV9
WO2016135558A2 (fr) 2015-02-23 2016-09-01 Crispr Therapeutics Ag Matériels et méthodes pour le traitement des hémoglobinopathies
US9434928B2 (en) 2011-11-23 2016-09-06 Nationwide Children's Hospital, Inc. Recombinant adeno-associated virus delivery of alpha-sarcoglycan polynucleotides
US9469851B2 (en) 2011-07-25 2016-10-18 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of DUX4
US9539307B2 (en) 2012-09-17 2017-01-10 The Research Institute At Nationwide Children's Hospital Compositions and methods for treating amyotrophic lateral sclerosis
WO2017064546A1 (fr) 2015-09-24 2017-04-20 Crispr Therapeutics Ag Nouvelle famille d'endonucléases arn-programmables et leurs utilisations dans l'édition de génome et d'autres applications
WO2017072590A1 (fr) 2015-10-28 2017-05-04 Crispr Therapeutics Ag Matériaux et méthodes pour traiter la dystrophie musculaire de duchenne
WO2017077386A1 (fr) 2015-11-06 2017-05-11 Crispr Therapeutics Ag Substances et procédés de traitement de glycogénose de de type 1a
WO2017093804A2 (fr) 2015-12-01 2017-06-08 Crispr Therapeutics Ag Matériaux et méthodes de traitement d'une déficience en antitrypsine alpha-1
WO2017109757A1 (fr) 2015-12-23 2017-06-29 Crispr Therapeutics Ag Matériaux et procédés de traitement de la sclérose latérale amyotrophique et/ou de la dégénérescence lobaire frontotemporale
US9725719B2 (en) 2013-11-05 2017-08-08 The Research Institute At Nationwide Children's Hospital Compositions and methods for inhibiting NF-κB and SOD-1 to treat amyotrophic lateral sclerosis
WO2017134529A1 (fr) 2016-02-02 2017-08-10 Crispr Therapeutics Ag Substances et méthodes pour le traitement d'une immunodéficience combinée sévère (idcs) ou syndrome d'omenn
WO2017141109A1 (fr) 2016-02-18 2017-08-24 Crispr Therapeutics Ag Matériels et méthodes pour le traitement du syndrome d'immunodéficience combinée sévère (scid) ou du syndrome d'omenn
WO2017147467A1 (fr) 2016-02-26 2017-08-31 Research Institute At Nationwide Children's Hospital Produits viraux recombinants et procédés d'induction d'un saut d'exon dux4
WO2017158422A1 (fr) 2016-03-16 2017-09-21 Crispr Therapeutics Ag Matières et méthodes pour le traitement d'hémochromatoses héréditaires
WO2017173411A1 (fr) 2016-04-02 2017-10-05 Research Institute At Nation Wide Children's Hospital Système promoteur u6 modifié pour l'expression spécifique d'un tissu
WO2017181015A1 (fr) 2016-04-15 2017-10-19 Research Institute At Nationwide Children's Hospital Délivrance de vecteur de virus adéno-associé pour traiter la dystrophie musculaire
WO2017180976A1 (fr) 2016-04-15 2017-10-19 Research Institute At Nationwide Children's Hospital Administration de b-sarcoglycane et de microarn-29 à l'aide d'un vecteur de virus adéno-associé, et traitement de la dystrophie musculaire
WO2017182881A2 (fr) 2016-04-18 2017-10-26 Crispr Therapeutics Ag Substances et méthodes pour le traitement d'hémoglobinopathies
WO2017182981A1 (fr) 2016-04-20 2017-10-26 Washington University Agoniste de ppar ou agoniste de lxr à utiliser pour traiter le lupus érythémateux systémique par modulation de l'activité lap
WO2017191503A1 (fr) 2016-05-05 2017-11-09 Crispr Therapeutics Ag Substances et méthodes pour le traitement d'hémoglobinopathies
WO2018002783A1 (fr) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Matériels et méthodes de traitement de l'ataxie de friedreich et d'autres troubles associés
WO2018002812A1 (fr) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Matériels et méthodes de traitement de la dystrophie myotonique de type 1 (dm1) et d'autres troubles associés
WO2018002762A1 (fr) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Matériaux et méthodes pour traiter la sclérose latérale amyotrophique (als) et d'autres troubles associés
WO2018007871A1 (fr) 2016-07-08 2018-01-11 Crispr Therapeutics Ag Matériels et méthodes pour le traitement de l'amyloïdose de la transthyrétine
WO2018007976A1 (fr) 2016-07-06 2018-01-11 Crispr Therapeutics Ag Matériaux et procédés de traitement de troubles liés à la douleur
WO2018007980A1 (fr) 2016-07-06 2018-01-11 Crispr Therapeutics Ag Matériaux et méthodes de traitement de troubles liés à la douleur
WO2018020323A2 (fr) 2016-07-25 2018-02-01 Crispr Therapeutics Ag Matériels et méthodes pour le traitement de troubles liés aux acides gras
WO2018094251A1 (fr) 2016-11-17 2018-05-24 Kaspar Brian K Administration intrathécale de virus adéno-associé recombinant codant pour la protéine 2 de liaison méthyl-cpg
US10017832B2 (en) 2015-08-25 2018-07-10 Washington University Compositions and methods for site specific recombination at asymmetric sites
US10047130B2 (en) 2014-03-18 2018-08-14 Washington University Methods and compositions for red-shifted chromophore substitution for optogenetic applications
WO2018154387A1 (fr) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Compositions et méthodes pour l'édition génétique
WO2018154462A2 (fr) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Matériaux et procédés pour le traitement de l'ataxie spinocérébelleuse de type 2 (sca2) et d'autres affections ou troubles liés au gène de l'ataxie spinocérébelleuse de type 2 (atxn2)
WO2018154418A1 (fr) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Matériaux et procédés pour le traitement de la maladie de parkinson à début précoce (park1) et d'autres états pathologiques ou troubles associés au gène alpha (snca)
WO2018170408A1 (fr) 2017-03-17 2018-09-20 Research Institute At Nationwide Children's Hospital, Inc. Administration par vecteur à virus adéno-associé de micro-dystrophine spécifique du muscle pour traiter la dystrophie musculaire
EP3415167A1 (fr) 2012-08-01 2018-12-19 Nationwide Children's Hospital Administration par voie intrathécale du virus adéno-associé recombinant 9
WO2019012336A2 (fr) 2017-03-17 2019-01-17 Newcastle University Délivrance par vecteur viral adéno-associé d'un fragment de micro-dystrophine pour traiter la dystrophie musculaire
WO2019011817A1 (fr) 2017-07-08 2019-01-17 Genethon Traitement de l'amyotrophie spinale
US10196636B2 (en) 2011-04-21 2019-02-05 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of myotilin
WO2019079527A1 (fr) 2017-10-17 2019-04-25 Casebia Therapeutics Limited Liability Partnership Compositions et méthodes pour l'édition génique pour l'hémophilie a
WO2019081982A1 (fr) 2017-10-26 2019-05-02 Crispr Therapeutics Ag Substances et procédés pour le traitement d'hémoglobinopathies
WO2019092505A1 (fr) 2017-11-09 2019-05-16 Casebia Therapeutics Llp Systèmes crispr/cas ou crispr/cpf1 à auto-inactivation (sin) et leurs utilisations
WO2019094253A1 (fr) 2017-11-08 2019-05-16 Avexis Inc. Moyens et procédé de préparation de vecteurs viraux et leurs utilisations
WO2019097305A2 (fr) 2017-05-12 2019-05-23 Crispr Therapeutics Ag Matériaux et procédés de génie cellulaire et leurs utilisations en immuno-oncologie
WO2019102381A1 (fr) 2017-11-21 2019-05-31 Casebia Therapeutics Llp Matériaux et méthodes pour le traitement de la rétinite pigmentaire autosomique dominante
WO2019118935A1 (fr) 2017-12-14 2019-06-20 Casebia Therapeutics Limited Liability Partnership Nouveaux systèmes d'endonucléases arn-programmables et leurs utilisations dans l'édition de génome et d'autres applications
WO2019123430A1 (fr) 2017-12-21 2019-06-27 Casebia Therapeutics Llp Substances et méthodes pour le traitement du syndrome d'usher de type 2a et/ou de la rétinite pigmentaire autosomique récessive (arrp) non syndromique
WO2019123429A1 (fr) 2017-12-21 2019-06-27 Casebia Therapeutics Llp Matériaux et méthodes de traitement du syndrome d'usher de type 2a
WO2019140330A1 (fr) 2018-01-12 2019-07-18 Casebia Therapeutics Limited Liability Partnership Compositions et méthodes pour l'édition génique par ciblage de la transferrine
WO2019150203A1 (fr) 2018-02-05 2019-08-08 Crispr Therapeutics Ag Substances et méthodes pour traiter des hémoglobinopathies
WO2019150196A1 (fr) 2018-02-05 2019-08-08 Crispr Therapeutics Ag Substances et méthodes de traitement d'hémoglobinopathies
WO2019161310A1 (fr) 2018-02-16 2019-08-22 Casebia Therapeutics Limited Liability Partnership Compositions et méthodes pour l'édition génique par ciblage du fibrinogène-alpha
WO2019183150A1 (fr) 2018-03-19 2019-09-26 Casebia Therapeutics Limited Liability Partnership Nouveaux systèmes d'endonucléase à arn programmable et leurs utilisations
WO2019204668A1 (fr) 2018-04-18 2019-10-24 Casebia Therapeutics Limited Liability Partnership Compositions et procédés d'inactivation de l'apo (a) par édition génique pour le traitement d'une maladie cardiovasculaire
EP3572516A1 (fr) 2014-08-09 2019-11-27 The Research Institute at Nationwide Children's Hospital Procédés et matériaux permettant d'activer un site d'entrée de ribosome interne dans l'exon 5 du gène dmd
WO2019236949A1 (fr) 2018-06-08 2019-12-12 Avexis Inc. Dosage basé sur des cellules permettant de mesurer la puissance d'un produit médicamenteux
WO2019238692A1 (fr) 2018-06-12 2019-12-19 The University Of Bristol Matériaux et procédés de modulation de pression intraoculaire et intracrânienne
WO2019245973A1 (fr) 2018-06-18 2019-12-26 Research Institute At Nationwide Children's Hospital Administration par vecteur de virus adéno-associé de micro-dystrophine spécifique des muscles pour traiter la dystrophie musculaire
WO2019246125A1 (fr) 2018-06-18 2019-12-26 Research Institute At Nationwide Children's Hospital Produits de virus adéno-associés de recombinaison et méthodes de traitement de dystroglycanopathies et de dystrophies musculaires déficientes en laminine
WO2020006458A1 (fr) 2018-06-29 2020-01-02 Research Institute At Nationwide Children's Hospital Produits de virus adéno-associés recombinants et méthodes de traitement de la dystrophie des ceintures 2a
WO2020047268A1 (fr) 2018-08-29 2020-03-05 Research Institute At Nationwide Children's Hospital Compositions et procédés pour l'inhibition de l'expression de la protéine gars mutante
WO2020081843A1 (fr) 2018-10-17 2020-04-23 Casebia Therapeutics Limited Liability Partnership Compositions et méthodes d'administration de transgène
WO2020113034A1 (fr) 2018-11-30 2020-06-04 Avexis, Inc. Vecteurs viraux aav et leurs utilisations
WO2020127813A1 (fr) 2018-12-21 2020-06-25 Genethon Cassettes d'expression pour vecteurs de thérapie génique
WO2020142479A1 (fr) 2018-12-31 2020-07-09 Research Institute At Nationwide Children's Hospital Extinction d'arn dux4 à l'aide d'arn ciblant crispr-cas13b
US10729790B2 (en) 2015-05-26 2020-08-04 Salk Institute For Biological Studies Motor neuron-specific expression vectors
EP3690024A1 (fr) 2014-11-05 2020-08-05 The Research Institute at Nationwide Children's Hospital Procédés et matériaux de production de virus recombinants dans des microalgues eucaryotes
WO2020163299A1 (fr) 2019-02-04 2020-08-13 Research Institute At Nationwide Children's Hospital Administration de virus adéno-associé de polynucléotide cln6
WO2020163300A1 (fr) 2019-02-04 2020-08-13 Research Institute At Nationwide Children's Hospital Administration de virus adéno-associé de polynucléotide cln3
WO2020168362A1 (fr) 2019-02-15 2020-08-20 Crispr Therapeutics Ag Édition de gène pour l'hémophilie a avec une expression de facteur viii améliorée
EP3702466A1 (fr) 2013-08-27 2020-09-02 Research Institute at Nationwide Children's Hospital Produits et procédés pour le traitement de la sclérose latérale amyotrophique
WO2020172720A1 (fr) 2019-02-28 2020-09-03 Benitec Biopharma Limited Compositions et méthodes de traitement de la dystrophie musculaire oculopharyngée (opmd)
WO2020176614A1 (fr) 2019-02-26 2020-09-03 Research Institute At Nationwide Children's Hospital ADMINISTRATION DE VECTEUR DE VIRUS ADÉNO-ASSOCIÉ DE β-SARCOGLYCANE ET TRAITEMENT DE DYSTROPHIE MUSCULAIRE
WO2020186059A2 (fr) 2019-03-12 2020-09-17 Crispr Therapeutics Ag Nouveaux systèmes d'endonucléase à arn programmable haute fidélité et leurs utilisations
WO2020214737A1 (fr) 2019-04-15 2020-10-22 Sanford Research Thérapie génique pour le traitement ou la prévention d'effets visuels dans une maladie de batten
WO2020225606A1 (fr) 2019-05-08 2020-11-12 Crispr Therapeutics Ag Systèmes de vecteurs crispr/cas en deux parties pour le traitement de dmd
WO2020236352A1 (fr) 2019-05-17 2020-11-26 Research Institute At Nationwide Children's Hospital Thérapie génique optimisée ciblant des cellules rétiniennes
WO2020264254A1 (fr) 2019-06-28 2020-12-30 Crispr Therapeutics Ag Matériels et méthodes de régulation de l'édition de gènes
WO2021014428A1 (fr) 2019-07-25 2021-01-28 Novartis Ag Systèmes d'expression régulables
WO2021035120A1 (fr) 2019-08-21 2021-02-25 Research Institute At Nationwide Children's Hospital Administration de vecteur de virus adéno-associé d'alpha-sarcoglycane et traitement de dystrophie musculaire
US10980897B2 (en) 2015-09-17 2021-04-20 Research Institute At Nationwide Children's Hospital Methods and materials for GALGT2 gene therapy
WO2021077101A1 (fr) 2019-10-18 2021-04-22 Research Institute At Nationwide Children's Hospital Matériaux et procédés pour le traitement de troubles associés au gène irf2bpl
WO2021077115A1 (fr) 2019-10-18 2021-04-22 Research Institute At Nationwide Children's Hospital Thérapie génique ciblant des cellules cochléaires
WO2021102435A1 (fr) 2019-11-22 2021-05-27 Research Institute At Nationwide Children's Hospital Matériaux et méthodes pour le traitement de troubles associés au gène cargo
WO2021127655A1 (fr) 2019-12-20 2021-06-24 Research Institute At Nationwide Children's Hospital Thérapie génique optimisée pour cibler un muscle dans des maladies musculaires
US11066456B2 (en) 2016-02-25 2021-07-20 Washington University Compositions comprising TREM2 and methods of use thereof
WO2021168124A1 (fr) 2020-02-18 2021-08-26 Research Institute At Nationwide Children's Hospital Ciblage d'arnmi médié par aav dans le traitement de troubles liés à l'x
WO2021209521A1 (fr) 2020-04-14 2021-10-21 Genethon Vecteurs pour le traitement d'une déficience en ceramidase acide
WO2021257595A1 (fr) 2020-06-15 2021-12-23 Research Institute At Nationwide Children's Hospital Administration de vecteur de virus adéno-associé contre les dystrophies musculaires
US11219696B2 (en) 2008-12-19 2022-01-11 Nationwide Children's Hospital Delivery of polynucleotides using recombinant AAV9
WO2022018638A1 (fr) 2020-07-21 2022-01-27 Crispr Therapeutics Ag Méthodes et compositions d'édition génomique pour moduler la faah pour le traitement de troubles neurologiques
WO2022055791A1 (fr) 2020-09-08 2022-03-17 Sarepta Therapeutics, Inc. Administration systémique de vecteur de virus adéno-associé exprimant le g-sarcoglycane et le traitement de la dystrophie musculaire
WO2022060841A2 (fr) 2020-09-15 2022-03-24 Research Institute At Nationwide Children's Hospital Édition de gène d'intégration ciblée indépendante de l'homologie médiée par vaa pour la correction de diverses mutations dmd chez des patients atteints d'une dystrophie musculaire
WO2022067257A1 (fr) 2020-09-28 2022-03-31 Research Institute At Nationwide Children's Hospital Produits et méthodes de traitement de la dystrophie musculaire
WO2022070107A1 (fr) 2020-09-30 2022-04-07 Crispr Therapeutics Ag Matériaux et méthodes de traitement de la sclérose latérale amyotrophique
WO2022079083A1 (fr) 2020-10-15 2022-04-21 F. Hoffmann-La Roche Ag Constructions d'acide nucléique pour transcription de va-arn
WO2022079082A1 (fr) 2020-10-15 2022-04-21 F. Hoffmann-La Roche Ag Constructions d'acides nucléiques améliorées pour activation de gènes simultanée
WO2022115745A1 (fr) 2020-11-30 2022-06-02 Research Institute At Nationwide Children's Hospital Compositions et méthodes de traitement de la dystrophie musculaire facio-scapulo-humérale (fshd)
WO2022133246A1 (fr) 2020-12-17 2022-06-23 Vertex Pharmaceuticals Incorporated Compositions et procédés pour l'édition de bêta-globine pour le traitement d'hémoglobinopathies
WO2022164860A1 (fr) 2021-01-27 2022-08-04 Research Institute At Nationwide Children's Hospital Matériels et méthodes pour le traitement d'un déficit en lipase acide lysosomale (dlal)
US11407997B2 (en) 2017-02-22 2022-08-09 Crispr Therapeutics Ag Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders
WO2022170038A1 (fr) 2021-02-05 2022-08-11 Amicus Therapeutics, Inc. Administration de virus adéno-associé de polynucléotide cln3
WO2022169922A1 (fr) 2021-02-03 2022-08-11 Research Institute At Nationwide Children's Hospital Compositions et méthodes pour traiter une maladie associée à la surexpression de la dux4
WO2022187571A1 (fr) 2021-03-04 2022-09-09 Research Institute At Nationwide Children's Hospital Produits et procédés de traitement de myopathies à base de dystrophine utilisant crispr-cas9 pour corriger les duplications d'exon dmd
WO2022188797A1 (fr) 2021-03-09 2022-09-15 Huigene Therapeutics Co., Ltd. Système crispr/cas13 ingéniérisé et ses utilisations
WO2022221424A1 (fr) 2021-04-13 2022-10-20 Research Institute At Nationwide Children's Hospital Virus adéno-associé recombinant codant pour la protéine 2 de liaison à la méthyl-cpg pour traiter le syndrome de pitt hopkins par administration intrathécale
WO2022226334A1 (fr) 2021-04-23 2022-10-27 Research Institute At Nationwide Children's Hospital Produits et méthodes de traitement de la dystrophie musculaire
WO2022234295A1 (fr) 2021-05-07 2022-11-10 Ucl Business Ltd Édition du génome abca4
WO2022245675A1 (fr) 2021-05-17 2022-11-24 Sarepta Therapeutics, Inc. Production de vecteurs aav recombinants pour le traitement de la dystrophie musculaire
EP4101928A1 (fr) 2021-06-11 2022-12-14 Bayer AG Systèmes d'endonucléase programmables à arn de type v
WO2022258753A1 (fr) 2021-06-11 2022-12-15 Bayer Aktiengesellschaft Systèmes d'endonucléase programmables par l'arn de type v
US11534501B2 (en) 2017-10-18 2022-12-27 Research Institute At Nationwide Children's Hospital Adeno-associated virus vector delivery of muscle specific micro-dystrophin to treat muscular dystrophy
EP4108263A2 (fr) 2021-06-02 2022-12-28 Research Institute at Nationwide Children's Hospital Produits de virus adéno-associés recombinants et méthodes de traitement de la dystrophie musculaire des ceintures 2a
WO2023283962A1 (fr) 2021-07-16 2023-01-19 Huigene Therapeutics Co., Ltd. Capside aav modifiée pour thérapie génique et méthodes associées
US11559588B2 (en) 2017-02-22 2023-01-24 Crispr Therapeutics Ag Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders
WO2023018854A2 (fr) 2021-08-11 2023-02-16 Solid Biosciences Inc. Traitement de la dystrophie musculaire
US11590210B2 (en) 2011-06-08 2023-02-28 Nationwide Children's Hospital, Inc. Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders
EP4144841A1 (fr) 2021-09-07 2023-03-08 Bayer AG Nouveaux systèmes d'endonucléase programmables à petit arn à spécificité pam améliorée et leurs utilisations
WO2023042104A1 (fr) 2021-09-16 2023-03-23 Novartis Ag Nouveaux facteurs de transcription
US11617783B2 (en) 2015-11-16 2023-04-04 Research Institute At Nationwide Children's Hospital Repairing a mutant human titin gene using CRISPR technology
WO2023060215A1 (fr) 2021-10-07 2023-04-13 Research Institute At Nationwide Children's Hospital Produits et procédés pour la désactivation de la protéine zéro de la myéline et le traitement de la maladie cmt1b
WO2023060233A1 (fr) 2021-10-08 2023-04-13 Amicus Therapeutics, Inc. Biomarqueurs de maladies du surcharge lysosomale
EP4186919A1 (fr) 2021-11-30 2023-05-31 Research Institute at Nationwide Children's Hospital Vecteur de virus adéno-associé auto-complémentaire et son utilisation dans le traitement de la dystrophie musculaire
EP4198134A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation de transfert de gène de gamma-sarcoglycane utilisant des séquences itr modifiées
EP4198047A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation du transfert de gènes de la protéine apparentée à la fukutine à l'aide de séquences itr modifiées
EP4198048A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation du transfert du gène calpaïne-3 à l'aide de séquences itr modifiées
EP4198046A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation de transfert de gène d'alpha-sarcoglycane utilisant des séquences itr modifiées
WO2023118068A1 (fr) 2021-12-23 2023-06-29 Bayer Aktiengesellschaft Nouveaux petits systèmes programmables d'endonucléases à arn de type v
WO2023122669A1 (fr) 2021-12-21 2023-06-29 Research Institute At Nationwide Children's Hospital Matériaux et méthodes pour le traitement de la dystrophie musculaire des ceintures
EP4219726A1 (fr) 2021-10-15 2023-08-02 Research Institute at Nationwide Children's Hospital Vecteur de virus adéno-associé auto-complémentaire et son utilisation dans le traitement de la dystrophie musculaire
EP3999625A4 (fr) * 2019-07-15 2023-08-30 Charles River Laboratories, Inc. Vecteurs auxiliaires de virus adéno-associé modifié par recombinaison et leur utilisation pour améliorer l'efficacité d'encapsulation d'un virus adéno-associé modifié par recombinaison
WO2023168400A2 (fr) 2022-03-03 2023-09-07 Research Institute At Nationwide Children's Hospital Matériaux et procédés pour le traitement de mutations dans eif2b5 et de maladies résultant de celles-ci
US11753460B2 (en) 2016-12-13 2023-09-12 Seattle Children's Hospital Methods of exogenous drug activation of chemical-induced signaling complexes expressed in engineered cells in vitro and in vivo
WO2023196818A1 (fr) 2022-04-04 2023-10-12 The Regents Of The University Of California Compositions et procédés de complémentation génétique
WO2023214346A1 (fr) 2022-05-06 2023-11-09 Novartis Ag Nouveaux polypeptides de fusion vp2 d'aav recombinants
WO2023237587A1 (fr) 2022-06-10 2023-12-14 Bayer Aktiengesellschaft Nouveaux petits systèmes programmables d'endonucléases à arn de type v
WO2023240177A1 (fr) 2022-06-08 2023-12-14 Research Instiitute At Nationwide Children's Hospital Produits et méthodes pour le traitement de maladies ou de pathologies associées à l'expression mutante ou pathogène de kcnq3
WO2024011115A1 (fr) 2022-07-06 2024-01-11 Research Institute At Nationwide Children's Hospital Administration de polynucléotide cln1 par un virus adéno-associé
WO2024035782A1 (fr) 2022-08-10 2024-02-15 Aav Gene Therapeutics, Inc. Administration intramusculaire d'insuline médiée par vaa
US11926653B2 (en) 2017-10-20 2024-03-12 Research Institute At Nationwide Children's Hospital Methods and materials for NT-3 gene therapy
US11938193B2 (en) 2016-01-08 2024-03-26 Washington University Compositions comprising chemerin and methods of use thereof
WO2024081706A1 (fr) 2022-10-11 2024-04-18 Research Institute At Nationwide Children's Hospital Administration de virus adéno-associé pour traiter l'atrophie musculaire spinale avec détresse respiratoire de type 1 (smard1) et charcot-marie-tooth de type 2s (cmt2s)
WO2024092126A1 (fr) 2022-10-27 2024-05-02 Cargo Therapeutics, Inc. Compositions et méthodes pour immunothérapies améliorées
US11987804B2 (en) 2018-04-27 2024-05-21 Seattle Children's Hospital Rapamycin resistant cells

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004797A (en) * 1995-11-09 1999-12-21 Avigen, Inc. Adenovirus helper-free recombinant AAV Virion production
US6346415B1 (en) * 1997-10-21 2002-02-12 Targeted Genetics Corporation Transcriptionally-activated AAV inverted terminal repeats (ITRS) for use with recombinant AAV vectors
DK1310571T3 (da) * 2001-11-13 2006-06-19 Univ Pennsylvania Fremgangsmåde til identifikation af ukendte adeno-associerede virussekvenser (AAV-sekvenser) og et kit til fremgangsmåden
US20030170706A1 (en) * 2002-02-01 2003-09-11 Roland Green Use of a volatile hybridization wash buffer
AU2004308494B2 (en) 2003-12-23 2010-03-18 Genentech, Inc. Novel anti-IL 13 antibodies and uses thereof
EP1755400A2 (fr) * 2004-06-18 2007-02-28 The University Of Montana Diffusion de genes a destination de cellules cochleaires a mediation par aav
US7598071B2 (en) * 2004-07-09 2009-10-06 The United States Of America As Represented By The Department Of Health And Human Services Infectious clone of human parvovirus B19 and methods
NZ567483A (en) 2005-11-04 2012-04-27 Genentech Inc Use of complement pathway inhibitors to treat ocular diseases
WO2008076960A2 (fr) 2006-12-18 2008-06-26 Genentech, Inc. Anticorps anti-notch3 antagonistes et utilisations de ces derniers dans la prophylaxie et le traitement de maladies liées à notch3
PT2195023T (pt) 2007-08-29 2018-06-08 Sanofi Sa Anticorpos anti-cxcr5 humanizados, seus derivados e suas utilizações
BRPI0823049A2 (pt) 2008-09-07 2015-06-16 Glyconex Inc Anticorpos para glicoesfingolipídeos tipo 1 anti-estendidos, derivados dos mesmos e uso.
WO2013052915A2 (fr) 2011-10-05 2013-04-11 Genelux Corporation Procédé de détection de la réplication ou colonisation d'un produit thérapeutique biologique
WO2013138522A2 (fr) 2012-03-16 2013-09-19 Genelux Corporation Méthodes d'évaluation de l'efficacité et de la surveillance d'un traitement viral oncolytique
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
WO2013158265A1 (fr) 2012-04-20 2013-10-24 Genelux Corporation Méthodes d'imagerie pour virothérapie oncolytique
WO2014055960A1 (fr) 2012-10-05 2014-04-10 Genelux Corporation Procédés diagnostiques et thérapeutiques basés sur l'absorption d'énergie utilisant des molécules d'acide nucléique codant pour des enzymes productrices de chromophore
US10238700B2 (en) 2014-01-02 2019-03-26 Genelux Corporation Oncolytic virus adjunct therapy with agents that increase virus infectivity
US20160333071A1 (en) * 2014-01-14 2016-11-17 The Trustees Of Columbia University In The City Of New York Biological Pacemakers Incorporating HCN2 and SkM1 Genes
EA201700181A1 (ru) 2014-10-14 2017-09-29 Галозим, Инк. Композиции аденозиндеаминазы-2 (ада-2), их варианты и способы использования
CN109715657A (zh) 2016-04-15 2019-05-03 高山免疫科学股份有限公司 Cd80变体免疫调节蛋白及其用途
KR20230051602A (ko) 2016-04-15 2023-04-18 알파인 이뮨 사이언시즈, 인코포레이티드 Icos 리간드 변이체 면역조절 단백질 및 그의 용도
GB201608046D0 (en) * 2016-05-09 2016-06-22 Cambridge Entpr Ltd And Syndey Children S Hospitals Network Randwick And Westmead Incorporating The Treatment of complement-mediated disorders
WO2018022945A1 (fr) 2016-07-28 2018-02-01 Alpine Immune Sciences, Inc. Protéines immunomodulatrices à variants de cd112 et utilisations associées
CA3032120A1 (fr) 2016-07-28 2018-02-01 Alpine Immune Sciences, Inc. Proteines immunomodulatrices a variants de cd155 et leurs utilisations
US11471488B2 (en) 2016-07-28 2022-10-18 Alpine Immune Sciences, Inc. CD155 variant immunomodulatory proteins and uses thereof
CN110352245A (zh) 2016-10-20 2019-10-18 高山免疫科学股份有限公司 可分泌变体免疫调节蛋白和工程化细胞疗法
JP2020507349A (ja) 2017-02-09 2020-03-12 インダプタ セラピューティクス インコーポレイテッド 操作されたナチュラルキラー(nk)細胞ならびにその組成物および方法
JP2020509776A (ja) 2017-03-16 2020-04-02 アルパイン イミューン サイエンシズ インコーポレイテッド Pd−l1バリアント免疫調節タンパク質及びその使用
WO2018170026A2 (fr) 2017-03-16 2018-09-20 Alpine Immune Sciences, Inc. Protéines immunomodulatrices à variants de cd80 et leurs utilisations
CN110809581A (zh) 2017-03-16 2020-02-18 高山免疫科学股份有限公司 Pd-l2变体免疫调节蛋白及其用途
TW201925223A (zh) 2017-10-18 2019-07-01 美商艾爾潘免疫科學有限公司 變異型icos 配位體免疫調節蛋白及相關組合物及方法
US11505782B2 (en) 2018-06-04 2022-11-22 Calidi Biotherapeutics, Inc. Cell-based vehicles for potentiation of viral therapy
ES2966045T3 (es) 2018-06-04 2024-04-18 Calidi Biotherapeutics Inc Vehículos basados en células para la potenciación de la terapia viral
US20210363219A1 (en) 2018-06-15 2021-11-25 Alpine Immune Sciences, Inc. Pd-1 variant immunomodulatory proteins and uses thereof
WO2020047161A2 (fr) 2018-08-28 2020-03-05 Actym Therapeutics, Inc. Souches bactériennes immunostimulatrices modifiées et utilisations associées
CA3116192A1 (fr) 2018-11-06 2020-05-14 Calidi Biotherapeutics, Inc. Systemes ameliores pour therapie virale oncolytique a mediation cellulaire
EP3884041A2 (fr) 2018-11-21 2021-09-29 Indapta Therapeutics, Inc. Procédés d'amplification d'un sous-ensemble de cellules tueuses naturelles (nk) et compositions et procédés associés
WO2020113141A2 (fr) 2018-11-30 2020-06-04 Alpine Immune Sciences, Inc. Protéines immunomodulatrices à variants cd86 et leurs utilisations
JP2022524951A (ja) 2019-02-27 2022-05-11 アクティム・セラピューティクス・インコーポレイテッド 腫瘍、腫瘍常在免疫細胞および腫瘍微小環境にコロニー形成するよう操作した免疫刺激性細菌
US20230072226A1 (en) * 2020-02-20 2023-03-09 Neutrolis, Inc. Basic domain-deleted dnase1-like 3 and uses thereof
CA3180658A1 (fr) 2020-04-22 2021-10-28 Indapta Therapeutics, Inc. Compositions de cellules tueuses naturelles (nk) et leurs methodes de generation
GB202013940D0 (en) 2020-09-04 2020-10-21 Synpromics Ltd Regulatory nucleic acid sequences
US20230374542A1 (en) 2020-10-07 2023-11-23 Asklepios Biopharmaceutical, Inc. Therapeutic adeno-associated virus delivery of fukutin related protein (fkrp) for treating dystroglycanopathy. disorders including limb girdle 21 (lgmd21)
WO2022147481A1 (fr) 2020-12-30 2022-07-07 Ansun Biopharma Inc. Polythérapie d'un virus oncolytique délivrant un antigène étranger et cellule immunitaire modifiée exprimant un récepteur chimérique ciblant l'antigène étranger
WO2023111348A1 (fr) 2021-12-17 2023-06-22 Centre National De La Recherche Scientifique Peptides et procédés destinés à être utilisés dans le traitement de la douleur
WO2023156530A1 (fr) 2022-02-17 2023-08-24 Lysogene Thérapie génique pour maladies neurodégénératives
WO2023166026A1 (fr) * 2022-03-02 2023-09-07 Cevec Pharmaceuticals Gmbh Lignées cellulaires et procédés améliorés pour la production de vecteurs adéno-associés
EP4239063A1 (fr) * 2022-03-02 2023-09-06 CEVEC Pharmaceuticals GmbH Lignées cellulaires et procédés améliorés pour la production de vecteurs adéno-associés
CN114574523A (zh) * 2022-03-14 2022-06-03 济南宜明医疗科技有限公司 用于aav病毒包装用的辅助质粒载体、其构建方法和应用
CN114410684A (zh) * 2022-03-14 2022-04-29 济南宜明医疗科技有限公司 用于aav病毒包装的包装质粒载体、其构建方法和应用
WO2023227731A1 (fr) 2022-05-25 2023-11-30 Tafalgie Therapeutics Peptides et procédés destinés à être utilisés dans le traitement de la douleur

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168062A (en) * 1985-01-30 1992-12-01 University Of Iowa Research Foundation Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence
US5436146A (en) * 1989-09-07 1995-07-25 The Trustees Of Princeton University Helper-free stocks of recombinant adeno-associated virus vectors
CA2106260A1 (fr) * 1992-09-17 1994-03-18 Robert M. Kotin Adn du site d'integration du virus humain associe a l'adenovirus et ses utilisations
US5693531A (en) * 1993-11-24 1997-12-02 The United States Of America As Represented By The Department Of Health And Human Services Vector systems for the generation of adeno-associated virus particles
US5872005A (en) * 1994-11-03 1999-02-16 Cell Genesys Inc. Packaging cell lines for adeno-associated viral vectors
US6342390B1 (en) * 1994-11-23 2002-01-29 The United States Of America As Represented By The Secretary Of Health And Human Services Lipid vesicles containing adeno-associated virus rep protein for transgene integration and gene therapy
US5843742A (en) * 1994-12-16 1998-12-01 Avigen Incorporated Adeno-associated derived vector systems for gene delivery and integration into target cells
US6040183A (en) * 1995-06-07 2000-03-21 University Of North Carloina At Chapel Hill Helper virus-free AAV production
EP0871483B1 (fr) * 1995-06-07 2003-04-16 The University Of North Carolina At Chapel Hill Production de virus adeno-associes (vaa) sans virus auxiliaire
EP1983057A3 (fr) 1995-09-08 2009-01-07 Genzyme Corporation Vecteurs AAV améliorés pour la thérapie génique
US6004797A (en) 1995-11-09 1999-12-21 Avigen, Inc. Adenovirus helper-free recombinant AAV Virion production

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
BRINSTER ET AL., PROC. NATL. ACAD. SCI, vol. 85, 1988, pages 836 - 840
BRINSTER ET AL., PROC. NATL. ACAD. SCI, vol. 88, 1991, pages 478 - 482
BRINSTER ET AL., PROC. NATL. ACAD. SCI., vol. 82, pages 4438 - 4442
CARVER ET AL., BIO/TECHNOLOGY, vol. 11, 1993, pages 1263 - 1270
CARVER ET AL., CYTOTECHNOLOGY, vol. 9, 1992, pages 77 - 84
CLARK ET AL., BIO/TECHNOLOGY, vol. 7, 1989, pages 487 - 492
EBERT ET AL., BIO/TECHNOLOGY, vol. 9, 1991, pages 835 - 838
GORDON ET AL., BIO/TECHNOLOGY, vol. 5, 1987, pages 1183 - 1187
GREENBERG ET AL., PROC. NATL. ACAD. SCI, vol. 88, 1991, pages 8327 - 8331
GROSVELD ET AL., CELL, vol. 51, 1987, pages 975 - 985
HAMMER ET AL., NATURE, vol. 315, 1985, pages 680 - 683
KRIMPENFORT ET AL., BIO/TECHNOLOGY, vol. 9, 1991, pages 844 - 847
PITTIUS ET AL., PROC. NATL. ACAD. SCI, vol. 85, 1988, pages 5874 - 5878
SIMONS ET AL., BIO/TECHNOLOGY, vol. 6, 1988, pages 179 - 183
SIMONS ET AL., NATURE, vol. 328, 1987, pages 530 - 532
SWANSON ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 557 - 559
VELANDER ET AL., PROC. NATL. ACAD. SCI, vol. 89, 1992, pages 12003 - 12007
WHITELAW ET AL., TRANSG. RES, vol. 1, 1991, pages 3 - 13

Cited By (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983057A2 (fr) 1995-09-08 2008-10-22 Genzyme Corporation Vecteurs AAV améliorés pour la thérapie génique
WO1997045550A3 (fr) * 1996-05-31 1998-04-09 Baxter Int Vecteur mini-adenoviral
WO1997045550A2 (fr) * 1996-05-31 1997-12-04 Baxter International Inc. Vecteur mini-adenoviral
US6403370B1 (en) 1997-02-10 2002-06-11 Genstar Therapeutics Corporation Oncolytic/immunogenic complementary-adenoviral vector system
EP1007637A1 (fr) * 1997-04-14 2000-06-14 Cell Genesys, Inc. Procede d'amelioration de l'efficacite d'un produit d'aav recombine
US6548286B1 (en) 1997-04-14 2003-04-15 Cell Genesys, Inc. Methods for increasing the efficiency of recombinant AAV product
EP1007637A4 (fr) * 1997-04-14 2002-04-03 Cell Genesys Inc Procede d'amelioration de l'efficacite d'un produit d'aav recombine
US7229823B2 (en) 1997-04-14 2007-06-12 Richard Jude Samulski Methods for increasing the efficiency of recombinant AAV product
WO1998051807A1 (fr) * 1997-05-14 1998-11-19 Hsc Research And Development Limited Partnership Cassettes d'expression episomique pour therapie genique
US6372500B1 (en) 1997-05-14 2002-04-16 Hsc Research And Development Limited Partnership Episomal expression cassettes for gene therapy
WO1998054345A1 (fr) * 1997-05-30 1998-12-03 Baxter International Inc. Vecteur mini-adenoviral
EP2325299A3 (fr) * 1997-09-05 2011-10-05 Targeted Genetics Corporation Procédés de génération de préparations de vecteurs AAV recombinants dont le titre est élevé et qui sont exemptes de virus assistant
JP2010213696A (ja) * 1997-09-05 2010-09-30 Targeted Genetics Corp 組換えaavベクターの高力価ヘルパーなし調製物を生成するための方法
JP2016025852A (ja) * 1997-09-05 2016-02-12 ジェンザイム・コーポレーション 組換えaavベクターの高力価ヘルパーなし調製物を生成するための方法
JP2013143940A (ja) * 1997-09-05 2013-07-25 Ampliphi Biosciences Inc 組換えaavベクターの高力価ヘルパーなし調製物を生成するための方法
US6995006B2 (en) 1997-09-05 2006-02-07 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
JP2001514845A (ja) * 1997-09-05 2001-09-18 ターゲティッド ジェネティクス コーポレイション 組換えaavベクターの高力価ヘルパーなし調製物を生成するための方法
WO1999011764A3 (fr) * 1997-09-05 1999-06-10 Targeted Genetics Corp Procedes de generation de preparations de vecteurs de aav recombinants dont le titre est eleve et qui sont exemptes de virus assistant
US6566118B1 (en) 1997-09-05 2003-05-20 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
US6989264B2 (en) 1997-09-05 2006-01-24 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
EP1944362A3 (fr) * 1997-09-05 2008-09-17 Targeted Genetics Corporation Procédés de génération de préparations de vecteurs AAV recombinants dont le titre est élevé et qui sont exemptes de virus assistant
US6642051B1 (en) 1997-10-21 2003-11-04 Targeted Genetics Corporation Amplifiable adeno-associated virus(AAV) packaging cassettes for the production of recombinant AAV vectors
WO1999020779A1 (fr) * 1997-10-21 1999-04-29 Targeted Genetics Corporation Cassettes d'encapsidation de virus adeno-associe (aav) amplifiable pour la production de vecteurs de aav recombines
EP2147681A1 (fr) 1997-10-29 2010-01-27 Genzyme Corporation Compositions et méthodes pour le traitement de maladies lysosomales
AU750972B2 (en) * 1998-02-17 2002-08-01 Genzyme Corporation Methods for purified AAV vector production
WO1999041399A1 (fr) * 1998-02-17 1999-08-19 Genzyme Corporation Procedes de fabrication de vecteurs purifies des virus associees aux adenovirus
US6303371B1 (en) 1998-02-17 2001-10-16 Genzyme Corporation Method of purified rAAV vector production in non-human cell line transfected with cocksackie and adenovirus receptor
WO1999061640A2 (fr) * 1998-05-22 1999-12-02 University College London Vecteur derive par aav
WO1999061640A3 (fr) * 1998-05-22 2000-01-27 Univ London Vecteur derive par aav
EP1105470A4 (fr) * 1998-08-20 2002-07-17 Cell Genesys Inc Utilisations d'arn de transfert pour reguler la cytotoxicite durant la production de produits geniques de recombinaison
EP1105470A1 (fr) * 1998-08-20 2001-06-13 Cell Genesys, Inc. Utilisations d'arn de transfert pour reguler la cytotoxicite durant la production de produits geniques de recombinaison
WO2000011149A1 (fr) * 1998-08-24 2000-03-02 Uab Research Foundation Procedes de production de virus associes aux adenovirus recombinants a titre eleve
EP2942393A1 (fr) 1998-09-04 2015-11-11 Genzyme Corporation Procédés pour produire des préparations de vecteurs aav recombinants de forte teneur dépourvues de virus assistants
EP1930418A1 (fr) 1998-09-04 2008-06-11 Targeted Genetics Corporation Procédés pour produire des préparations de vecteurs AAV recombinants de forte teneur dépourvues de virus assistants
US6416992B1 (en) 1998-10-13 2002-07-09 Avigen, Inc. Compositions and methods for producing recombinant adeno-associated virus
WO2000022152A1 (fr) * 1998-10-13 2000-04-20 Avigen, Inc. Compositions et methodes de production de virus associe aux adenovirus recombine
WO2000024916A1 (fr) * 1998-10-27 2000-05-04 Crucell Holland B.V. Production amelioree de vecteurs de virus associes aux adenovirus
US6846665B1 (en) 1999-02-10 2005-01-25 Medigene Aktiengesellschaft Method of producing a recombinant adeno-associated virus, suitable means for producing the same and use thereof for producing a medicament
WO2000047757A1 (fr) * 1999-02-10 2000-08-17 Medigene Ag Procede de fabrication d'un virus adeno-associe recombine, moyens adaptes a cette fabrication et utilisation dudit virus pour la fabrication d'un medicament
US6893865B1 (en) 1999-04-28 2005-05-17 Targeted Genetics Corporation Methods, compositions, and cells for encapsidating recombinant vectors in AAV particles
WO2001018224A1 (fr) * 1999-09-08 2001-03-15 Genzyme Corporation Vecteurs adenoviraux modifies produisant une expression augmentee et constante du gene regulateur de la permeabilite transmembranaire de la mucoviscidose dans l'epithelium des voies respiratoires humaines
WO2001083797A2 (fr) * 2000-04-28 2001-11-08 Avigen, Inc. Polynucleotides utilises dans la production de virions de virus recombinants associes aux adenovirus
WO2001083797A3 (fr) * 2000-04-28 2003-03-13 Avigen Inc Polynucleotides utilises dans la production de virions de virus recombinants associes aux adenovirus
US7125705B2 (en) 2000-04-28 2006-10-24 Genzyme Corporation Polynucleotides for use in recombinant adeno-associated virus virion production
US7910545B2 (en) 2000-06-19 2011-03-22 Genzyme Corporation Combination enzyme replacement and small molecule therapy for treatment of lysosomal storage diseases
US8168587B2 (en) 2000-06-19 2012-05-01 Genezyme Corporation Combination enzyme replacement and small molecule therapy for treatment of lysosomal storage diseases
WO2002038782A3 (fr) * 2000-11-13 2002-11-28 Arimedes Biotechnology Gmbh Systeme d'expression viral
WO2002038782A2 (fr) * 2000-11-13 2002-05-16 Arimedes Biotechnology Gmbh Systeme d'expression viral
US6989261B2 (en) 2001-12-20 2006-01-24 Eli Lilly And Company Butyrylcholinesterase variant polypeptides with increased catalytic efficiency and methods of use
US7049121B2 (en) 2001-12-20 2006-05-23 Applied Molecular Evolution Butyrylcholinesterase variant polypeptides with increased catalytic efficiency and methods of use
EP2932982A1 (fr) 2005-05-17 2015-10-21 Amicus Therapeutics, Inc. Procédé pour le traitement de la maladie de Pompe au moyen de 1-désoxynojirimycine et de ses dérivés
EP3782655A1 (fr) 2005-05-17 2021-02-24 Amicus Therapeutics, Inc. Procédé pour le traitement de la maladie de pompe au moyen de 1-désoxynojirimycine et de ses dérivés
EP3441090A1 (fr) 2005-05-17 2019-02-13 Amicus Therapeutics, Inc. Procédé pour le traitement de la maladie de pompe au moyen de 1-désoxynojirimycine et de ses dérivés
EP2679237A1 (fr) 2006-11-29 2014-01-01 Nationwide Children's Hospital Inhibition de la myostatine destinée à améliorer le muscle et/ou la fonction musculaire
US8895309B2 (en) 2006-11-29 2014-11-25 Nationwide Children's Hospital Myostatin inhibition for enhancing muscle and/or improving muscle function
WO2008067480A2 (fr) 2006-11-29 2008-06-05 Nationwide Children's Hospital Inhibition de la myostatine destinée à améliorer le muscle et/ou à améliorer la fonction musculaire
US10464962B2 (en) 2008-12-16 2019-11-05 Genzyme Corporation Oligosaccharide-protein conjugates
US9493498B2 (en) 2008-12-16 2016-11-15 Genzyme Corporation Oligosaccharide-protein conjugates
US11279725B2 (en) 2008-12-16 2022-03-22 Genzyme Corporation Oligosaccharide-protein conjugates
US8835614B2 (en) 2008-12-16 2014-09-16 Genzyme Corporation Oligosaccharide-protein conjugates
US9415121B2 (en) 2008-12-19 2016-08-16 Nationwide Children's Hospital Delivery of MECP2 polynucleotide using recombinant AAV9
US11219696B2 (en) 2008-12-19 2022-01-11 Nationwide Children's Hospital Delivery of polynucleotides using recombinant AAV9
EP2767298A2 (fr) 2010-11-23 2014-08-20 Presage Biosciences, Inc. Procédés thérapeutiques et compositions pour administration solide
EP3495472A1 (fr) 2011-04-21 2019-06-12 Nationwide Children's Hospital, Inc. Produits de virus recombinant et procédés pour l'inhibition de l'expression de myotiline
US9133482B2 (en) 2011-04-21 2015-09-15 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of myotilin
US11091760B2 (en) 2011-04-21 2021-08-17 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of myotilin
US10196636B2 (en) 2011-04-21 2019-02-05 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of myotilin
US11590210B2 (en) 2011-06-08 2023-02-28 Nationwide Children's Hospital, Inc. Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders
US11802291B2 (en) 2011-07-25 2023-10-31 Research Institute At Nationwide Children's Hospital Recombinant virus products and methods for inhibition of expression of DUX4
US9469851B2 (en) 2011-07-25 2016-10-18 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of DUX4
EP3290055A2 (fr) 2011-07-25 2018-03-07 Nationwide Children's Hospital, Inc. Virus recombinants et procédés pour l'inhibition de l'expression de dux4
US10301649B2 (en) 2011-07-25 2019-05-28 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of DUX4
EP2771455A1 (fr) * 2011-10-28 2014-09-03 The University Of North Carolina At Chapel Hill Lignée cellulaire pour la production d'un virus adéno-associé
US9441206B2 (en) 2011-10-28 2016-09-13 The University Of North Carolina At Chapel Hill Cell line for production of adeno-associated virus
EP2771455A4 (fr) * 2011-10-28 2015-04-15 Univ North Carolina Lignée cellulaire pour la production d'un virus adéno-associé
US10105453B2 (en) 2011-11-23 2018-10-23 Nationwide Children's Hospital, Inc. Recombinant adeno-associated virus delivery of alpha-sarcoglycan polynucleotides
US9434928B2 (en) 2011-11-23 2016-09-06 Nationwide Children's Hospital, Inc. Recombinant adeno-associated virus delivery of alpha-sarcoglycan polynucleotides
US11730829B2 (en) 2012-08-01 2023-08-22 Nationwide Children's Hospital Intrathecal delivery of recombinant adeno-associated virus 9
US11738094B2 (en) 2012-08-01 2023-08-29 Nationwide Children's Hospital Intrathecal delivery of recombinant adeno-associated virus 9
US11413357B2 (en) 2012-08-01 2022-08-16 Nationwide Children's Hospital Intrathecal delivery of recombinant adeno-associated virus 9
US11311634B2 (en) 2012-08-01 2022-04-26 Nationwide Children's Hospital Intrathecal delivery of recombinant Adeno-associated virus 9
EP3769789A1 (fr) 2012-08-01 2021-01-27 Nationwide Children's Hospital Administration par voie intrathécale du virus adéno-associé recombinant 9
EP3415167A1 (fr) 2012-08-01 2018-12-19 Nationwide Children's Hospital Administration par voie intrathécale du virus adéno-associé recombinant 9
US11040116B2 (en) 2012-08-01 2021-06-22 Nationwide Children's Hospital Intrathecal delivery of recombinant adeno-associated virus 9
US9539307B2 (en) 2012-09-17 2017-01-10 The Research Institute At Nationwide Children's Hospital Compositions and methods for treating amyotrophic lateral sclerosis
EP3461838A1 (fr) 2013-04-20 2019-04-03 Research Institute at Nationwide Children's Hospital Administration de virus adéno-associés de recombinaison de constructions polynucléotidiques u7snrna ciblées exon 2
WO2014172669A1 (fr) 2013-04-20 2014-10-23 Research Institute At Nationwide Children's Hospital Administration de virus adéno-associé recombinant de constructions polynucléotidiques u7snarn ciblant l'exon 2
US9862945B2 (en) 2013-04-20 2018-01-09 Research Institute At Nationwide Children's Hospital Recombinant adeno-associated virus delivery of exon 2-targeted U7SNRNA polynucleotide constructs
US11230707B2 (en) 2013-04-20 2022-01-25 Research Institute At Nationwide Children's Hospital Recombinant adeno-associated virus delivery of exon 2-targeted U7SNRNA polynucleotide constructs
EP3702466A1 (fr) 2013-08-27 2020-09-02 Research Institute at Nationwide Children's Hospital Produits et procédés pour le traitement de la sclérose latérale amyotrophique
EP4219727A2 (fr) 2013-08-27 2023-08-02 Research Institute at Nationwide Children's Hospital Produits et procédés pour le traitement de la sclérose latérale amyotrophique
US10793861B2 (en) 2013-08-27 2020-10-06 Research Institute At Nationwide Children's Hospital Products and methods for treatment of familial amyotrophic lateral sclerosis
DE102013220859B4 (de) * 2013-10-15 2016-09-08 Plasmidfactory Gmbh & Co. Kg Minicircles mit viralen Expressionskassetten und ihre Verwendung zur Transformation von Zellen zur Erzeugung rekombinanter Viren oder viraler Genvektoren
EP3480315A1 (fr) * 2013-10-15 2019-05-08 PlasmidFactory GmbH & Co. KG Mini-cercles dotés de cassettes d'expression virales et leur utilisation pour la transformation de cellules destinée à la production de virus recombinants ou de vecteurs génétiques viraux
EP2862935A1 (fr) * 2013-10-15 2015-04-22 PlasmidFactory GmbH & Co. KG Mini-cercles dotés de cassettes d'expression virales et leur utilisation pour la transformation de cellules en vue de la production de virus recombinants ou de vecteurs génétiques viraux
US9725719B2 (en) 2013-11-05 2017-08-08 The Research Institute At Nationwide Children's Hospital Compositions and methods for inhibiting NF-κB and SOD-1 to treat amyotrophic lateral sclerosis
US10047130B2 (en) 2014-03-18 2018-08-14 Washington University Methods and compositions for red-shifted chromophore substitution for optogenetic applications
US11344630B2 (en) 2014-03-18 2022-05-31 Washington University Methods and compositions for red-shifted chromophore substitution for optogenetic applications
US11053494B2 (en) 2014-08-09 2021-07-06 Research Institute At Nationwide Children's Hospital Methods and materials for activating an internal ribosome entry site in exon 5 of the DMD gene
EP3572516A1 (fr) 2014-08-09 2019-11-27 The Research Institute at Nationwide Children's Hospital Procédés et matériaux permettant d'activer un site d'entrée de ribosome interne dans l'exon 5 du gène dmd
WO2016057975A2 (fr) 2014-10-10 2016-04-14 Research Institute At Nationwide Children's Hospital Injections guidées pour transfert de gène par vaa au muscle
US10842886B2 (en) 2014-10-10 2020-11-24 Research Institute At Nationwide Children's Hospital Guided injections for AAV gene transfer to muscle
US10907130B2 (en) 2014-11-05 2021-02-02 Research Institute At Nationwide Children's Hospital Methods and materials for producing recombinant viruses in eukaryotic microalgae
EP3690024A1 (fr) 2014-11-05 2020-08-05 The Research Institute at Nationwide Children's Hospital Procédés et matériaux de production de virus recombinants dans des microalgues eucaryotes
WO2016126993A1 (fr) 2015-02-04 2016-08-11 Washington University Constructions anti-tau
EP4059961A2 (fr) 2015-02-04 2022-09-21 Washington University Constructions anti-tau
WO2016135558A2 (fr) 2015-02-23 2016-09-01 Crispr Therapeutics Ag Matériels et méthodes pour le traitement des hémoglobinopathies
US10729790B2 (en) 2015-05-26 2020-08-04 Salk Institute For Biological Studies Motor neuron-specific expression vectors
US11642423B2 (en) 2015-05-26 2023-05-09 Salk Institute For Biological Studies Motor neuron-specific expression vectors
US10017832B2 (en) 2015-08-25 2018-07-10 Washington University Compositions and methods for site specific recombination at asymmetric sites
US10980897B2 (en) 2015-09-17 2021-04-20 Research Institute At Nationwide Children's Hospital Methods and materials for GALGT2 gene therapy
WO2017064546A1 (fr) 2015-09-24 2017-04-20 Crispr Therapeutics Ag Nouvelle famille d'endonucléases arn-programmables et leurs utilisations dans l'édition de génome et d'autres applications
WO2017072590A1 (fr) 2015-10-28 2017-05-04 Crispr Therapeutics Ag Matériaux et méthodes pour traiter la dystrophie musculaire de duchenne
EP4279084A1 (fr) 2015-10-28 2023-11-22 Vertex Pharmaceuticals Inc. Matériaux et méthodes pour traiter la dystrophie musculaire de duchenne
WO2017077386A1 (fr) 2015-11-06 2017-05-11 Crispr Therapeutics Ag Substances et procédés de traitement de glycogénose de de type 1a
US11866727B2 (en) 2015-11-06 2024-01-09 Crispr Therapeutics Ag Materials and methods for treatment of glycogen storage disease type 1A
US11617783B2 (en) 2015-11-16 2023-04-04 Research Institute At Nationwide Children's Hospital Repairing a mutant human titin gene using CRISPR technology
US11851653B2 (en) 2015-12-01 2023-12-26 Crispr Therapeutics Ag Materials and methods for treatment of alpha-1 antitrypsin deficiency
EP3967758A1 (fr) 2015-12-01 2022-03-16 CRISPR Therapeutics AG Matériaux et méthodes de traitement d'une déficience en antitrypsine alpha-1
WO2017093804A2 (fr) 2015-12-01 2017-06-08 Crispr Therapeutics Ag Matériaux et méthodes de traitement d'une déficience en antitrypsine alpha-1
WO2017109757A1 (fr) 2015-12-23 2017-06-29 Crispr Therapeutics Ag Matériaux et procédés de traitement de la sclérose latérale amyotrophique et/ou de la dégénérescence lobaire frontotemporale
US11938193B2 (en) 2016-01-08 2024-03-26 Washington University Compositions comprising chemerin and methods of use thereof
WO2017134529A1 (fr) 2016-02-02 2017-08-10 Crispr Therapeutics Ag Substances et méthodes pour le traitement d'une immunodéficience combinée sévère (idcs) ou syndrome d'omenn
WO2017141109A1 (fr) 2016-02-18 2017-08-24 Crispr Therapeutics Ag Matériels et méthodes pour le traitement du syndrome d'immunodéficience combinée sévère (scid) ou du syndrome d'omenn
US11066456B2 (en) 2016-02-25 2021-07-20 Washington University Compositions comprising TREM2 and methods of use thereof
US11180755B2 (en) 2016-02-26 2021-11-23 Research Institute At Nationwide Children's Hospital Recombinant virus products and methods for inducing DUX4 exon skipping
WO2017147467A1 (fr) 2016-02-26 2017-08-31 Research Institute At Nationwide Children's Hospital Produits viraux recombinants et procédés d'induction d'un saut d'exon dux4
US11083799B2 (en) 2016-03-16 2021-08-10 Crispr Therapeutics Ag Materials and methods for treatment of hereditary haemochromatosis
WO2017158422A1 (fr) 2016-03-16 2017-09-21 Crispr Therapeutics Ag Matières et méthodes pour le traitement d'hémochromatoses héréditaires
US11939579B2 (en) 2016-04-02 2024-03-26 Research Institute At Nationwide Children's Hospital Modified U6 promoter system for tissue specific expression
EP4335502A2 (fr) 2016-04-02 2024-03-13 Research Institute at Nationwide Children's Hospital Système promoteur u6 modifié pour expression spécifique de tissu
US11345913B2 (en) 2016-04-02 2022-05-31 Research Institute At Nationwide Children's Hospital Modified U6 promoter system for tissue specific expression
WO2017173411A1 (fr) 2016-04-02 2017-10-05 Research Institute At Nation Wide Children's Hospital Système promoteur u6 modifié pour l'expression spécifique d'un tissu
US11406717B2 (en) 2016-04-15 2022-08-09 Research Institute At Nationwide Children's Hospital Adeno-associated virus vector delivery of microRNA-29 and micro-dystrophin to treat muscular dystrophy
WO2017181011A1 (fr) 2016-04-15 2017-10-19 Research Institute At Nationwide Children's Hospital Administration de vecteur de virus adéno-associé de micro-arn-29 pour traiter une dystrophie musculaire
WO2017181015A1 (fr) 2016-04-15 2017-10-19 Research Institute At Nationwide Children's Hospital Délivrance de vecteur de virus adéno-associé pour traiter la dystrophie musculaire
US11723986B2 (en) 2016-04-15 2023-08-15 Research Institute At Nationwide Children's Hospital Adeno-associated virus vector delivery of micro-dystrophin to treat muscular dystrophy
US11358993B2 (en) 2016-04-15 2022-06-14 Research Institute At Nationwide Children's Hospital Adeno-associated virus vector delivery of B-sarcoglycan and microrna-29 and the treatment of muscular dystrophy
US11298429B2 (en) 2016-04-15 2022-04-12 Research Institute At Nationwide Children's Hospital Adeno-associated virus vector delivery of microrna-29 to treat muscular dystrophy
WO2017181014A1 (fr) 2016-04-15 2017-10-19 Research Institute At Nationwide Children's Hospital Administration à vecteurs de virus adéno-associé de microarn-29 et micro-dystrophine pour traiter la dystrophie musculaire
WO2017180976A1 (fr) 2016-04-15 2017-10-19 Research Institute At Nationwide Children's Hospital Administration de b-sarcoglycane et de microarn-29 à l'aide d'un vecteur de virus adéno-associé, et traitement de la dystrophie musculaire
WO2017182881A2 (fr) 2016-04-18 2017-10-26 Crispr Therapeutics Ag Substances et méthodes pour le traitement d'hémoglobinopathies
WO2017182981A1 (fr) 2016-04-20 2017-10-26 Washington University Agoniste de ppar ou agoniste de lxr à utiliser pour traiter le lupus érythémateux systémique par modulation de l'activité lap
WO2017191503A1 (fr) 2016-05-05 2017-11-09 Crispr Therapeutics Ag Substances et méthodes pour le traitement d'hémoglobinopathies
US11564997B2 (en) 2016-06-29 2023-01-31 Crispr Therapeutics Ag Materials and methods for treatment of friedreich ataxia and other related disorders
US11174469B2 (en) 2016-06-29 2021-11-16 Crispr Therapeutics Ag Materials and methods for treatment of Amyotrophic Lateral Sclerosis (ALS) and other related disorders
WO2018002783A1 (fr) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Matériels et méthodes de traitement de l'ataxie de friedreich et d'autres troubles associés
WO2018002812A1 (fr) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Matériels et méthodes de traitement de la dystrophie myotonique de type 1 (dm1) et d'autres troubles associés
WO2018002762A1 (fr) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Matériaux et méthodes pour traiter la sclérose latérale amyotrophique (als) et d'autres troubles associés
WO2018007976A1 (fr) 2016-07-06 2018-01-11 Crispr Therapeutics Ag Matériaux et procédés de traitement de troubles liés à la douleur
US11801313B2 (en) 2016-07-06 2023-10-31 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of pain related disorders
WO2018007980A1 (fr) 2016-07-06 2018-01-11 Crispr Therapeutics Ag Matériaux et méthodes de traitement de troubles liés à la douleur
US11459587B2 (en) 2016-07-06 2022-10-04 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of pain related disorders
WO2018007871A1 (fr) 2016-07-08 2018-01-11 Crispr Therapeutics Ag Matériels et méthodes pour le traitement de l'amyloïdose de la transthyrétine
WO2018020323A2 (fr) 2016-07-25 2018-02-01 Crispr Therapeutics Ag Matériels et méthodes pour le traitement de troubles liés aux acides gras
WO2018094251A1 (fr) 2016-11-17 2018-05-24 Kaspar Brian K Administration intrathécale de virus adéno-associé recombinant codant pour la protéine 2 de liaison méthyl-cpg
US11583564B2 (en) 2016-11-17 2023-02-21 Nationwide Children's Hospital, Inc. Intrathecal delivery of recombinant adeno-associated virus encoding Methyl-CpG binding protein 2
US11753460B2 (en) 2016-12-13 2023-09-12 Seattle Children's Hospital Methods of exogenous drug activation of chemical-induced signaling complexes expressed in engineered cells in vitro and in vivo
WO2018154418A1 (fr) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Matériaux et procédés pour le traitement de la maladie de parkinson à début précoce (park1) et d'autres états pathologiques ou troubles associés au gène alpha (snca)
US11920148B2 (en) 2017-02-22 2024-03-05 Crispr Therapeutics Ag Compositions and methods for gene editing
US11407997B2 (en) 2017-02-22 2022-08-09 Crispr Therapeutics Ag Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders
US11559588B2 (en) 2017-02-22 2023-01-24 Crispr Therapeutics Ag Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders
WO2018154462A2 (fr) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Matériaux et procédés pour le traitement de l'ataxie spinocérébelleuse de type 2 (sca2) et d'autres affections ou troubles liés au gène de l'ataxie spinocérébelleuse de type 2 (atxn2)
WO2018154387A1 (fr) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Compositions et méthodes pour l'édition génétique
WO2019012336A2 (fr) 2017-03-17 2019-01-17 Newcastle University Délivrance par vecteur viral adéno-associé d'un fragment de micro-dystrophine pour traiter la dystrophie musculaire
WO2018170408A1 (fr) 2017-03-17 2018-09-20 Research Institute At Nationwide Children's Hospital, Inc. Administration par vecteur à virus adéno-associé de micro-dystrophine spécifique du muscle pour traiter la dystrophie musculaire
EP4245852A2 (fr) 2017-03-17 2023-09-20 Research Institute at Nationwide Children's Hospital Administration par vecteur à virus adéno-associé de micro-dystrophine spécifique du muscle pour traiter la dystrophie musculaire
US11338045B2 (en) 2017-03-17 2022-05-24 Newcastle University Adeno-associated virus vector delivery of a fragment of micro-dystrophin to treat muscular dystrophy
WO2019097305A2 (fr) 2017-05-12 2019-05-23 Crispr Therapeutics Ag Matériaux et procédés de génie cellulaire et leurs utilisations en immuno-oncologie
WO2019011817A1 (fr) 2017-07-08 2019-01-17 Genethon Traitement de l'amyotrophie spinale
WO2019079527A1 (fr) 2017-10-17 2019-04-25 Casebia Therapeutics Limited Liability Partnership Compositions et méthodes pour l'édition génique pour l'hémophilie a
US11534501B2 (en) 2017-10-18 2022-12-27 Research Institute At Nationwide Children's Hospital Adeno-associated virus vector delivery of muscle specific micro-dystrophin to treat muscular dystrophy
US11926653B2 (en) 2017-10-20 2024-03-12 Research Institute At Nationwide Children's Hospital Methods and materials for NT-3 gene therapy
WO2019081982A1 (fr) 2017-10-26 2019-05-02 Crispr Therapeutics Ag Substances et procédés pour le traitement d'hémoglobinopathies
WO2019094253A1 (fr) 2017-11-08 2019-05-16 Avexis Inc. Moyens et procédé de préparation de vecteurs viraux et leurs utilisations
WO2019092505A1 (fr) 2017-11-09 2019-05-16 Casebia Therapeutics Llp Systèmes crispr/cas ou crispr/cpf1 à auto-inactivation (sin) et leurs utilisations
WO2019092507A2 (fr) 2017-11-09 2019-05-16 Crispr Therapeutics Ag Systèmes crispr/cas pour le traitement de dmd
WO2019102381A1 (fr) 2017-11-21 2019-05-31 Casebia Therapeutics Llp Matériaux et méthodes pour le traitement de la rétinite pigmentaire autosomique dominante
WO2019118935A1 (fr) 2017-12-14 2019-06-20 Casebia Therapeutics Limited Liability Partnership Nouveaux systèmes d'endonucléases arn-programmables et leurs utilisations dans l'édition de génome et d'autres applications
WO2019123430A1 (fr) 2017-12-21 2019-06-27 Casebia Therapeutics Llp Substances et méthodes pour le traitement du syndrome d'usher de type 2a et/ou de la rétinite pigmentaire autosomique récessive (arrp) non syndromique
WO2019123429A1 (fr) 2017-12-21 2019-06-27 Casebia Therapeutics Llp Matériaux et méthodes de traitement du syndrome d'usher de type 2a
WO2019140330A1 (fr) 2018-01-12 2019-07-18 Casebia Therapeutics Limited Liability Partnership Compositions et méthodes pour l'édition génique par ciblage de la transferrine
WO2019150203A1 (fr) 2018-02-05 2019-08-08 Crispr Therapeutics Ag Substances et méthodes pour traiter des hémoglobinopathies
WO2019150196A1 (fr) 2018-02-05 2019-08-08 Crispr Therapeutics Ag Substances et méthodes de traitement d'hémoglobinopathies
WO2019161310A1 (fr) 2018-02-16 2019-08-22 Casebia Therapeutics Limited Liability Partnership Compositions et méthodes pour l'édition génique par ciblage du fibrinogène-alpha
WO2019183150A1 (fr) 2018-03-19 2019-09-26 Casebia Therapeutics Limited Liability Partnership Nouveaux systèmes d'endonucléase à arn programmable et leurs utilisations
WO2019204668A1 (fr) 2018-04-18 2019-10-24 Casebia Therapeutics Limited Liability Partnership Compositions et procédés d'inactivation de l'apo (a) par édition génique pour le traitement d'une maladie cardiovasculaire
US11987804B2 (en) 2018-04-27 2024-05-21 Seattle Children's Hospital Rapamycin resistant cells
WO2019236949A1 (fr) 2018-06-08 2019-12-12 Avexis Inc. Dosage basé sur des cellules permettant de mesurer la puissance d'un produit médicamenteux
WO2019238692A1 (fr) 2018-06-12 2019-12-19 The University Of Bristol Matériaux et procédés de modulation de pression intraoculaire et intracrânienne
WO2019245973A1 (fr) 2018-06-18 2019-12-26 Research Institute At Nationwide Children's Hospital Administration par vecteur de virus adéno-associé de micro-dystrophine spécifique des muscles pour traiter la dystrophie musculaire
WO2019246125A1 (fr) 2018-06-18 2019-12-26 Research Institute At Nationwide Children's Hospital Produits de virus adéno-associés de recombinaison et méthodes de traitement de dystroglycanopathies et de dystrophies musculaires déficientes en laminine
WO2020006458A1 (fr) 2018-06-29 2020-01-02 Research Institute At Nationwide Children's Hospital Produits de virus adéno-associés recombinants et méthodes de traitement de la dystrophie des ceintures 2a
WO2020047268A1 (fr) 2018-08-29 2020-03-05 Research Institute At Nationwide Children's Hospital Compositions et procédés pour l'inhibition de l'expression de la protéine gars mutante
WO2020081843A1 (fr) 2018-10-17 2020-04-23 Casebia Therapeutics Limited Liability Partnership Compositions et méthodes d'administration de transgène
WO2020113034A1 (fr) 2018-11-30 2020-06-04 Avexis, Inc. Vecteurs viraux aav et leurs utilisations
WO2020127813A1 (fr) 2018-12-21 2020-06-25 Genethon Cassettes d'expression pour vecteurs de thérapie génique
WO2020142479A1 (fr) 2018-12-31 2020-07-09 Research Institute At Nationwide Children's Hospital Extinction d'arn dux4 à l'aide d'arn ciblant crispr-cas13b
WO2020163299A1 (fr) 2019-02-04 2020-08-13 Research Institute At Nationwide Children's Hospital Administration de virus adéno-associé de polynucléotide cln6
WO2020163300A1 (fr) 2019-02-04 2020-08-13 Research Institute At Nationwide Children's Hospital Administration de virus adéno-associé de polynucléotide cln3
WO2020168362A1 (fr) 2019-02-15 2020-08-20 Crispr Therapeutics Ag Édition de gène pour l'hémophilie a avec une expression de facteur viii améliorée
WO2020176614A1 (fr) 2019-02-26 2020-09-03 Research Institute At Nationwide Children's Hospital ADMINISTRATION DE VECTEUR DE VIRUS ADÉNO-ASSOCIÉ DE β-SARCOGLYCANE ET TRAITEMENT DE DYSTROPHIE MUSCULAIRE
WO2020172720A1 (fr) 2019-02-28 2020-09-03 Benitec Biopharma Limited Compositions et méthodes de traitement de la dystrophie musculaire oculopharyngée (opmd)
WO2020186059A2 (fr) 2019-03-12 2020-09-17 Crispr Therapeutics Ag Nouveaux systèmes d'endonucléase à arn programmable haute fidélité et leurs utilisations
WO2020214737A1 (fr) 2019-04-15 2020-10-22 Sanford Research Thérapie génique pour le traitement ou la prévention d'effets visuels dans une maladie de batten
WO2020225606A1 (fr) 2019-05-08 2020-11-12 Crispr Therapeutics Ag Systèmes de vecteurs crispr/cas en deux parties pour le traitement de dmd
WO2020236351A1 (fr) 2019-05-17 2020-11-26 Research Institute At Nationwide Children's Hospital Administration améliorée de vecteurs de thérapie génique à des cellules rétiniennes à l'aide d'une enzyme glycoside hydrolase
WO2020236352A1 (fr) 2019-05-17 2020-11-26 Research Institute At Nationwide Children's Hospital Thérapie génique optimisée ciblant des cellules rétiniennes
WO2020264254A1 (fr) 2019-06-28 2020-12-30 Crispr Therapeutics Ag Matériels et méthodes de régulation de l'édition de gènes
EP3999625A4 (fr) * 2019-07-15 2023-08-30 Charles River Laboratories, Inc. Vecteurs auxiliaires de virus adéno-associé modifié par recombinaison et leur utilisation pour améliorer l'efficacité d'encapsulation d'un virus adéno-associé modifié par recombinaison
WO2021014428A1 (fr) 2019-07-25 2021-01-28 Novartis Ag Systèmes d'expression régulables
EP4374880A2 (fr) 2019-08-21 2024-05-29 Research Institute at Nationwide Children's Hospital Administration de vecteurs de virus adéno-associés d'alpha-sarcoglycane et traitement de dystrophie musculaire
WO2021035120A1 (fr) 2019-08-21 2021-02-25 Research Institute At Nationwide Children's Hospital Administration de vecteur de virus adéno-associé d'alpha-sarcoglycane et traitement de dystrophie musculaire
WO2021077115A1 (fr) 2019-10-18 2021-04-22 Research Institute At Nationwide Children's Hospital Thérapie génique ciblant des cellules cochléaires
WO2021077101A1 (fr) 2019-10-18 2021-04-22 Research Institute At Nationwide Children's Hospital Matériaux et procédés pour le traitement de troubles associés au gène irf2bpl
WO2021102435A1 (fr) 2019-11-22 2021-05-27 Research Institute At Nationwide Children's Hospital Matériaux et méthodes pour le traitement de troubles associés au gène cargo
WO2021127655A1 (fr) 2019-12-20 2021-06-24 Research Institute At Nationwide Children's Hospital Thérapie génique optimisée pour cibler un muscle dans des maladies musculaires
WO2021168124A1 (fr) 2020-02-18 2021-08-26 Research Institute At Nationwide Children's Hospital Ciblage d'arnmi médié par aav dans le traitement de troubles liés à l'x
WO2021209521A1 (fr) 2020-04-14 2021-10-21 Genethon Vecteurs pour le traitement d'une déficience en ceramidase acide
WO2021257595A1 (fr) 2020-06-15 2021-12-23 Research Institute At Nationwide Children's Hospital Administration de vecteur de virus adéno-associé contre les dystrophies musculaires
WO2022018638A1 (fr) 2020-07-21 2022-01-27 Crispr Therapeutics Ag Méthodes et compositions d'édition génomique pour moduler la faah pour le traitement de troubles neurologiques
WO2022055791A1 (fr) 2020-09-08 2022-03-17 Sarepta Therapeutics, Inc. Administration systémique de vecteur de virus adéno-associé exprimant le g-sarcoglycane et le traitement de la dystrophie musculaire
US11925675B2 (en) 2020-09-08 2024-03-12 Sarepta Therapeutics, Inc. Systemic delivery of adeno-associated virus vector expressing gamma-sarcoglycan and the treatment of muscular dystrophy
WO2022060841A2 (fr) 2020-09-15 2022-03-24 Research Institute At Nationwide Children's Hospital Édition de gène d'intégration ciblée indépendante de l'homologie médiée par vaa pour la correction de diverses mutations dmd chez des patients atteints d'une dystrophie musculaire
WO2022067257A1 (fr) 2020-09-28 2022-03-31 Research Institute At Nationwide Children's Hospital Produits et méthodes de traitement de la dystrophie musculaire
WO2022070107A1 (fr) 2020-09-30 2022-04-07 Crispr Therapeutics Ag Matériaux et méthodes de traitement de la sclérose latérale amyotrophique
WO2022079083A1 (fr) 2020-10-15 2022-04-21 F. Hoffmann-La Roche Ag Constructions d'acide nucléique pour transcription de va-arn
WO2022079082A1 (fr) 2020-10-15 2022-04-21 F. Hoffmann-La Roche Ag Constructions d'acides nucléiques améliorées pour activation de gènes simultanée
WO2022115745A1 (fr) 2020-11-30 2022-06-02 Research Institute At Nationwide Children's Hospital Compositions et méthodes de traitement de la dystrophie musculaire facio-scapulo-humérale (fshd)
WO2022133246A1 (fr) 2020-12-17 2022-06-23 Vertex Pharmaceuticals Incorporated Compositions et procédés pour l'édition de bêta-globine pour le traitement d'hémoglobinopathies
WO2022164860A1 (fr) 2021-01-27 2022-08-04 Research Institute At Nationwide Children's Hospital Matériels et méthodes pour le traitement d'un déficit en lipase acide lysosomale (dlal)
WO2022169922A1 (fr) 2021-02-03 2022-08-11 Research Institute At Nationwide Children's Hospital Compositions et méthodes pour traiter une maladie associée à la surexpression de la dux4
WO2022170038A1 (fr) 2021-02-05 2022-08-11 Amicus Therapeutics, Inc. Administration de virus adéno-associé de polynucléotide cln3
WO2022187571A1 (fr) 2021-03-04 2022-09-09 Research Institute At Nationwide Children's Hospital Produits et procédés de traitement de myopathies à base de dystrophine utilisant crispr-cas9 pour corriger les duplications d'exon dmd
WO2022188797A1 (fr) 2021-03-09 2022-09-15 Huigene Therapeutics Co., Ltd. Système crispr/cas13 ingéniérisé et ses utilisations
WO2022221424A1 (fr) 2021-04-13 2022-10-20 Research Institute At Nationwide Children's Hospital Virus adéno-associé recombinant codant pour la protéine 2 de liaison à la méthyl-cpg pour traiter le syndrome de pitt hopkins par administration intrathécale
WO2022226334A1 (fr) 2021-04-23 2022-10-27 Research Institute At Nationwide Children's Hospital Produits et méthodes de traitement de la dystrophie musculaire
WO2022234295A1 (fr) 2021-05-07 2022-11-10 Ucl Business Ltd Édition du génome abca4
WO2022245675A1 (fr) 2021-05-17 2022-11-24 Sarepta Therapeutics, Inc. Production de vecteurs aav recombinants pour le traitement de la dystrophie musculaire
EP4108263A2 (fr) 2021-06-02 2022-12-28 Research Institute at Nationwide Children's Hospital Produits de virus adéno-associés recombinants et méthodes de traitement de la dystrophie musculaire des ceintures 2a
EP4101928A1 (fr) 2021-06-11 2022-12-14 Bayer AG Systèmes d'endonucléase programmables à arn de type v
WO2022258753A1 (fr) 2021-06-11 2022-12-15 Bayer Aktiengesellschaft Systèmes d'endonucléase programmables par l'arn de type v
WO2023283962A1 (fr) 2021-07-16 2023-01-19 Huigene Therapeutics Co., Ltd. Capside aav modifiée pour thérapie génique et méthodes associées
WO2023018854A2 (fr) 2021-08-11 2023-02-16 Solid Biosciences Inc. Traitement de la dystrophie musculaire
EP4144841A1 (fr) 2021-09-07 2023-03-08 Bayer AG Nouveaux systèmes d'endonucléase programmables à petit arn à spécificité pam améliorée et leurs utilisations
WO2023036669A1 (fr) 2021-09-07 2023-03-16 Bayer Aktiengesellschaft Nouveaux systèmes d'endonucléases programmables à petits arn à spécificité pam améliorée et leurs utilisations
WO2023042104A1 (fr) 2021-09-16 2023-03-23 Novartis Ag Nouveaux facteurs de transcription
WO2023060215A1 (fr) 2021-10-07 2023-04-13 Research Institute At Nationwide Children's Hospital Produits et procédés pour la désactivation de la protéine zéro de la myéline et le traitement de la maladie cmt1b
WO2023060233A1 (fr) 2021-10-08 2023-04-13 Amicus Therapeutics, Inc. Biomarqueurs de maladies du surcharge lysosomale
EP4219726A1 (fr) 2021-10-15 2023-08-02 Research Institute at Nationwide Children's Hospital Vecteur de virus adéno-associé auto-complémentaire et son utilisation dans le traitement de la dystrophie musculaire
EP4186919A1 (fr) 2021-11-30 2023-05-31 Research Institute at Nationwide Children's Hospital Vecteur de virus adéno-associé auto-complémentaire et son utilisation dans le traitement de la dystrophie musculaire
WO2023111102A1 (fr) 2021-12-16 2023-06-22 Genethon Augmentation du transfert du gène de l'alpha-sarcoglycane à l'aide de séquences itr modifiées
EP4198134A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation de transfert de gène de gamma-sarcoglycane utilisant des séquences itr modifiées
EP4198047A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation du transfert de gènes de la protéine apparentée à la fukutine à l'aide de séquences itr modifiées
EP4198048A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation du transfert du gène calpaïne-3 à l'aide de séquences itr modifiées
EP4198046A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation de transfert de gène d'alpha-sarcoglycane utilisant des séquences itr modifiées
WO2023111104A1 (fr) 2021-12-16 2023-06-22 Genethon Augmentation du transfert du gène de la gamma-sarcoglycane à l'aide de séquences itr modifiées
WO2023111107A1 (fr) 2021-12-16 2023-06-22 Genethon Augmentation du transfert du gène de la calpaïne-3 à l'aide de séquences itr modifiées
WO2023111106A1 (fr) 2021-12-16 2023-06-22 Genethon Augmentation du transfert du gène de la protéine liée à la fukutine au moyen de séquences itr modifiées
WO2023122669A1 (fr) 2021-12-21 2023-06-29 Research Institute At Nationwide Children's Hospital Matériaux et méthodes pour le traitement de la dystrophie musculaire des ceintures
WO2023118068A1 (fr) 2021-12-23 2023-06-29 Bayer Aktiengesellschaft Nouveaux petits systèmes programmables d'endonucléases à arn de type v
WO2023168400A2 (fr) 2022-03-03 2023-09-07 Research Institute At Nationwide Children's Hospital Matériaux et procédés pour le traitement de mutations dans eif2b5 et de maladies résultant de celles-ci
WO2023196818A1 (fr) 2022-04-04 2023-10-12 The Regents Of The University Of California Compositions et procédés de complémentation génétique
WO2023214346A1 (fr) 2022-05-06 2023-11-09 Novartis Ag Nouveaux polypeptides de fusion vp2 d'aav recombinants
WO2023240177A1 (fr) 2022-06-08 2023-12-14 Research Instiitute At Nationwide Children's Hospital Produits et méthodes pour le traitement de maladies ou de pathologies associées à l'expression mutante ou pathogène de kcnq3
WO2023237587A1 (fr) 2022-06-10 2023-12-14 Bayer Aktiengesellschaft Nouveaux petits systèmes programmables d'endonucléases à arn de type v
WO2024011115A1 (fr) 2022-07-06 2024-01-11 Research Institute At Nationwide Children's Hospital Administration de polynucléotide cln1 par un virus adéno-associé
WO2024035782A1 (fr) 2022-08-10 2024-02-15 Aav Gene Therapeutics, Inc. Administration intramusculaire d'insuline médiée par vaa
WO2024081706A1 (fr) 2022-10-11 2024-04-18 Research Institute At Nationwide Children's Hospital Administration de virus adéno-associé pour traiter l'atrophie musculaire spinale avec détresse respiratoire de type 1 (smard1) et charcot-marie-tooth de type 2s (cmt2s)
WO2024092126A1 (fr) 2022-10-27 2024-05-02 Cargo Therapeutics, Inc. Compositions et méthodes pour immunothérapies améliorées

Also Published As

Publication number Publication date
EP0850313B1 (fr) 2008-11-12
EP0850313A2 (fr) 1998-07-01
US6632670B1 (en) 2003-10-14
AU6917396A (en) 1997-03-27
AU715543B2 (en) 2000-02-03
JPH11514853A (ja) 1999-12-21
CA2230758A1 (fr) 1997-03-13
US20040105845A1 (en) 2004-06-03
ES2317646T3 (es) 2009-04-16
EP0850313B8 (fr) 2009-07-29
EP1983057A2 (fr) 2008-10-22
EP1983057A3 (fr) 2009-01-07

Similar Documents

Publication Publication Date Title
EP0850313B1 (fr) Vecteurs aav ameliores pour la therapie genique
Vincent et al. Analysis of recombinant adeno-associated virus packaging and requirements for rep and cap gene products
JP3943594B2 (ja) Aavベクター産生のための高効率ヘルパー系
Chiorini et al. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles
US7485458B2 (en) Accessory functions for use in recombinant AAV virion production
US6893865B1 (en) Methods, compositions, and cells for encapsidating recombinant vectors in AAV particles
AU759573B2 (en) Adeno-associated virus and adenovirus chimeric recombinant viruses useful for the integration of foreign genetic information into the chromosomal DNA of target cells
AU4645697A (en) Aav4 vector and uses thereof
EP0842287B1 (fr) Systeme d'auxiliaires d'efficacite elevee pour la production de vecteurs d'aav
JP2001506132A (ja) Aavベクターの産生における使用のためのリコンビナーゼ活性化可能aavパッケージングカセット
Xiao et al. Adeno-associated virus (AAV) vectors for gene transfer
Tenenbaum et al. Gene delivery using adeno-associated virus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2230758

Country of ref document: CA

Ref country code: CA

Ref document number: 2230758

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 511437

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996929952

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996929952

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09029705

Country of ref document: US