WO1996036745A1 - Plateau oscillant pour compresseur a plateau oscillant et combinaison d'un plateau oscillant avec des sabots - Google Patents

Plateau oscillant pour compresseur a plateau oscillant et combinaison d'un plateau oscillant avec des sabots Download PDF

Info

Publication number
WO1996036745A1
WO1996036745A1 PCT/JP1996/001293 JP9601293W WO9636745A1 WO 1996036745 A1 WO1996036745 A1 WO 1996036745A1 JP 9601293 W JP9601293 W JP 9601293W WO 9636745 A1 WO9636745 A1 WO 9636745A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
lead
less
copper
sprayed
Prior art date
Application number
PCT/JP1996/001293
Other languages
English (en)
French (fr)
Inventor
Kimio Kawagoe
Makoto Sibata
Kenji Takenaka
Original Assignee
Taiho Kogyo Co., Ltd.
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co., Ltd., Kabushiki Kaisha Toyoda Jidoshokki Seisakusho filed Critical Taiho Kogyo Co., Ltd.
Priority to EP96915164A priority Critical patent/EP0776986B1/en
Priority to DE69614644T priority patent/DE69614644T2/de
Priority to KR1019970700311A priority patent/KR100255279B1/ko
Publication of WO1996036745A1 publication Critical patent/WO1996036745A1/ja
Priority to US08/776,004 priority patent/US5875702A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/40Heat treatment
    • F05B2230/41Hardening; Annealing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/025Boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel
    • F05C2201/0457Cemented steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0469Other heavy metals
    • F05C2201/0475Copper or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0469Other heavy metals
    • F05C2201/0493Tin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/906Phosphor-bronze alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/0856Sulfides
    • F05C2203/086Sulfides of molybdenum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/04PTFE [PolyTetraFluorEthylene]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating

Definitions

  • the present invention relates to a swash plate of a swash plate type compressor and a combination of a swash plate and a shower.
  • the present invention relates to a surface treatment technology for dramatically improving the sliding characteristics of a swash plate made of an aluminum-based material.
  • a swash plate fixed diagonally to the rotating shaft or a swash plate attached diagonally to the rotating shaft and whose tilt angle can be changed rotates according to the rotation of the rotating shaft.
  • the reciprocating piston compresses and expands by increasing or decreasing the volume of the space partitioned in the compressor.
  • Such a swash plate slides on a sliding member called a shoe and reciprocates the piston through the shoe to compress and expand the cooling medium in a predetermined space.
  • the characteristic of the sliding condition of the swash plate is that the refrigerant reaches the sliding part before the lubricating oil arrives at the beginning of the compressor operation, and this has the effect of cleaning the lubricating oil remaining in the sliding part. Therefore, the swash plate is slid under dry conditions without lubricating oil. in this way The sliding condition of the swash plate is very severe.
  • the swash plate used under these conditions requires sliding characteristics such as seizure resistance and wear resistance.
  • a proposal to improve wear resistance by adding a hard material to an aluminum-based material There have been proposals to improve the material of steel, proposals to increase the hardness by increasing the hardness of iron-based swash plates by heat treatment, and to propose surface treatment.
  • the applicant of the present invention has found that in sliding of an iron-based swash plate and an iron-based shoe, seizure easily occurs.
  • iron swashplates have been hardened before, but if the other material, Shu, is also an iron material, there is a problem that seizure easily occurs due to sliding of similar materials.
  • a sintered copper alloy was used as the mating material (show) of the iron-based swash plate.
  • the usual swash plate type compressor sucks and compresses the cooling medium in the cylinder bores on both sides of the piston.
  • compression and suction is performed only on one side, usually on the rear (R) side.
  • One-sided compression type swash plate type compressors are manufactured. This swash plate type compressor will be described with reference to an example of a variable capacity type compressor disclosed in Japanese Patent Application Laid-Open No. 6-288347 filed by the present applicant.
  • a front housing 2 is joined to one end of a cylinder block 1 and the other end
  • the rear housing 3 is joined to the motor through a valve plate 4.
  • a drive shaft 6 is accommodated in a crank chamber 5 formed by the cylinder block 1 and the front housing 2, and the drive shaft 6 is rotatable by bearings 7a and 7b. Supported.
  • a plurality of cylinder bores 9 are drilled at a position surrounding the drive shaft 6 in the cylinder block 1, and pistons 10 are respectively fitted in the cylinder bores 9. .
  • the drive shaft 6 supports the rotor 16 so as to be able to rotate synchronously with the drive vehicle 6, and the spherical sleeve 12 is slidably supported.
  • a pressing spring 13 is interposed between the rotor 16 and the spherical sleeve 12, and the pressing spring 13 urges the spherical sleeve 12 in the rear housing 3 direction.
  • a rotating swash plate 14 is rotatably supported on the outer peripheral surface of the spherical sleeve 12. In the most contracted state of the pressing spring 13 shown in FIG. In addition, further tilting in the direction of increasing the tilt angle is restricted. Although not shown, the rotary swash plate 14 may be restricted from further tilting in the tilt reducing direction.
  • Hemispherical showers 15a and 15b are in contact with the outer periphery of the rotating swash plate 14 and the outer peripheral surface of the showers 15a and 15b is a piston 10 With the ball bearing surface.
  • the plurality of pistons 10 moored to the rotating swash plate 14 via the showers 15 a and 15 b are housed in each of the cylinder bores 9 so as to be able to reciprocate.
  • the rear housing 3 is divided into a suction chamber 20 and a discharge chamber 21. Have been.
  • a suction port 22 and a discharge port 23 are formed in the valve plate 4 corresponding to each of the cylinder bores 9, and the compression port formed between the valve plate 4 and the piston 1.0 is formed.
  • the chamber communicates with the suction chamber 20 and the discharge chamber 21 via the suction port 22 and the discharge port 23. That is, compression is performed only on one side (R side) of the swash plate.
  • Each suction port 22 is provided with a suction valve that opens and closes the suction port 22 in accordance with the reciprocating movement of the piston 10, and each discharge port 23 is provided with a reciprocating movement of the piston 10.
  • a discharge valve is provided that opens and closes while restricting the discharge port 23 by the retainer 24 accordingly.
  • the rear housing 3 is equipped with a control valve (not shown) for adjusting the pressure in the crank chamber 5.
  • each piston 10 when the rotary swash plate 14 rotates with the driving of the drive shaft 6, each piston 10 is made to have a cylinder bore through the shafts 15a and 15b.
  • the refrigerant gas reciprocates in 9, whereby the refrigerant gas is compressed into the compression chamber from the suction chamber 20 and then discharged to the discharge chamber 21.
  • the discharge capacity of the refrigerant gas discharged to the discharge chamber 21 is controlled by adjusting the pressure in the crank chamber 5 by the control valve.
  • the compressor is provided with a mechanism K, 17-; 19, which makes the discharge amount variable.
  • the compression reaction force in the cylinder bore is transmitted to the rotary swash plate 14 via the one-sided piston 10 and the shower 15. It is. Since the shower 15a on the compression chamber side receives the compression reaction force, a large sliding resistance is generated between the shower 15a and the rotary swash plate 14. Such sliding resistance not only results in power loss, but also causes swash plate wear, and measures must be taken.
  • the present invention provides an iron-based or aluminum-based swash plate used in a one-sided compression type compressor by providing a surface layer having both excellent seizure resistance and wear resistance. Performance and reliability of the one-sided compression type swash plate type compressor.
  • the purpose is to aim at the above.
  • the present inventors have conducted extensive studies and conducted experiments on a surface treatment method that can solve the above-mentioned problems.
  • the present invention which has been completed based on this finding, is based on a swash plate made of an iron-based or aluminum-based material used for a one-sided compression type swash plate type compressor.
  • a sprayed layer of a copper-based alloy contained below is formed on the compression side swash plate on at least the sliding surface, preferably on the sliding surface with the iron-based shower, and at least on the anti-compression chamber side.
  • Electrolytic, electroless, lubricant coating, phosphate conversion or hardening It relates swash plate, characterized in the here amplifier LESSON Sur swash plate.
  • percentages refer to weight percentages unless otherwise specified.
  • part of lead exists as lead particles to impart conformability and low friction characteristics, and the rest forms a solid solution.
  • Lead is the most preferred element for improving the sliding characteristics under dry conditions. However, if the lead content exceeds 40%, the strength of the copper alloy decreases, so it is necessary to set the upper limit to 40%.
  • the preferred lead content is between 1 and 30%, more preferably between 2 and 15%.
  • Additive elements other than lead mainly dissolve in copper to enhance its wear resistance and seizure resistance.
  • silver remarkably enhances the sliding characteristics under the condition that the lubricating oil is small.
  • tin precipitates at ⁇ 0% or more, and silicon and manganese precipitate at 1% or more, and the precipitates enhance wear resistance.
  • Preferred contents are tin: 0.20% to 20%, phosphorus: 0.2% to 0.5% or less, aluminum: 0.5% to 10%, and silicon: 0.1% to 3%.
  • the total amount of the added elements should be in the range of 0.5 to 50%.
  • the shoe itself is publicly known, and is disclosed in, for example, Japanese Patent Application Laid-Open No. Sho 51-36611 of the present applicant. Although one having a sliding surface can be used, bearing steel is preferred. Further, the manufacturing method is not limited at all, and techniques such as rolling, forging, powder metallurgy, and surface hardening can be appropriately employed. However, it is preferable that the sliding surface of the anti-compression chamber side be subjected to boron immersion treatment or nitriding treatment.
  • the surface of the swash plate on the non-compression side should have at least the sliding surface with the shoe, electrolytic plating, electroless plating, lubricant coating, phosphating or hardening treatment It is necessary to improve the sliding characteristics of steel or aluminum by applying heat treatment. These treatments have inferior sliding characteristics to the sprayed copper-based material, but the wear conditions are relatively mild on the anti-compression chamber side, so the above surface treatment is sufficient.
  • the electroplating is preferably performed using a tin-based, lead-based or copper-based metal (alloy) with a thickness of 0.5 to 3 m.
  • the electroless plating is preferably performed using a tin-based metal (alloy) with a thickness of 0.5 to 3 ⁇ .
  • the lubricant may be coated with PTF ⁇ and molybdenum disulfide powder, such as Teflic (trade name), bonded with a resin binder at a thickness of 1 to 20 ⁇ m. I like it.
  • PTF ⁇ and molybdenum disulfide powder such as Teflic (trade name)
  • Teflic trade name
  • the hardening process is for carburizing, nitriding, nitrocarburizing, It is preferable to use anodizing treatment for the aluminum swash plate.
  • Fig. 1 is a microstructure photograph (magnification: 320 times) of the cross section of the Cu-A1 alloy sprayed layer.
  • Fig. 2 is a schematic diagram showing the structure and A1 content distribution of the cross section of the Cu-A1 alloy sprayed layer.
  • Figure 3 is a photograph of the metallographic structure of the atomized Cu-Pb alloy powder (magnification: 1000x).
  • Fig. 4 is a photograph of the metallographic structure of the atomized Cu-Pb alloy powder (magnification: 1000x).
  • Fig. 5 is a photograph of the metallographic structure of the sprayed layer having a mixed structure of the atomized structure and the forced sprayed structure.
  • Figure 6 is an electron micrograph (magnification 30000) depicting an EPMA analysis chart of the forced solid solution sprayed structure.
  • Fig. 7 is a metallographic micrograph (magnification: 320 times) of a sprayed structure having a lead-free dissolved structure.
  • FIG. 8 is a graph showing characteristics of the graphite-added sprayed layer.
  • Fig. 9 is a graph showing the effect of peening to prevent lateral cracking.
  • FIG. 10 is a graph showing an amount of deformation due to iron ball peung.
  • Fig. 11 is a graph showing the amount of deformation due to zinc ball peening.
  • FIG. 12 is a diagram illustrating an adhesion test.
  • Fig. 13 is a cross-sectional view of a one-sided compression swash plate type compressor.
  • FIG. 14 is a schematic diagram illustrating the sliding state of the swash plate and the shoe in the one-side compression swash plate type compressor.
  • the feature of the metal structure of the sprayed layer is that the atomized copper powder is melted.
  • the droplets generated in the sprayed flame collide with the surface of the swash plate and are deformed. Discs, scales, etc. are stacked.
  • the entire sprayed layer may have such a structure.
  • the sprayed structure has the following features in addition to the features described above. That is, when the atomized powder is pumped into the frame by the gas, the atomized powder maintains the form of isolated particles in which each atom is dispersed, and some of the particles coalesce, but almost all It is considered that the particles melt in their original form. The molten droplet collides with the swash plate and solidifies.However, if the sprayed layer is thinned and the cooling is accelerated, one or several droplets will be fused with many other droplets. Instead of coalescing, it solidifies as isolated particles. In this way, relatively small droplets are crushed, and a large number of fine layered pieces are stacked as a whole to form a sprayed layer.
  • Figure 1 shows a micrograph of the Cu-8% A1 alloy as an example of such a sprayed layer.
  • the sprayed structure is schematically shown in Fig. 2.
  • the distribution of components in the entire layer shows that solidification and deflection in the fine layered piece are repeated as many times as the number of pieces, and the component distribution becomes uniform when viewed macroscopically. .
  • Such component uniformity stabilizes the sliding characteristics and is considered to be particularly desirable in terms of stabilizing the frictional force.
  • the sprayed layer is heat-treated at an appropriate temperature below the melting point to reduce the above-mentioned solidification segregation and to make the components even within the fine layered piece (Fig. (C))
  • the sliding characteristics will be further improved. became.
  • the material was significantly softened by the heat treatment, the sliding characteristics tended to deteriorate.
  • part of the atomized powder remain in the sprayed layer without being dissolved during spraying.
  • the characteristics of the mixed structure of the dissolved structure and the undissolved structure of the atomized powder are described below for the Cu-Pb alloy.
  • the undissolved structure of the lead bronze atomized powder that constitutes this structure (hereinafter referred to as “atomized tissue”) is sprayed without quenching the rapidly cooled structure of the lead bronze atomized powder even during the spraying flame. What remains in the layer.
  • the structure of this atomized powder is typically composed of fine particles of secondary phase mainly composed of lead in copper powder, as shown in the microstructure of Cu-24% Pb alloy in Fig. 3. It is dispersed in a shape or distributed in a layer around copper powder.
  • This structure is a kind of structure, but (a) the main cooling direction is from the periphery of the particles to the inside, and (b) the quenching structure is more than the usual ingot rust or continuous structure.
  • lead is fine particles with a particle size of 10 micron or less, or (c) the lead is distributed in a network form at the copper grain boundaries. It has features. Note that the structure shown in Fig. 3 shows a case where the cooling is uniform, but the structure shown in Fig. 4 As described above, when a part of the periphery of the particle is strongly cooled, the lead particle becomes fine in that part, and the lead particle becomes coarse in the part where the cooling is weak.
  • the mixed structure of one embodiment of the present invention has a layered structure in which lead is forcibly solid-dissolved in a copper alloy (hereinafter, referred to as “forced solid solution sprayed structure”).
  • forced solid solution sprayed structure a layered structure in which lead is forcibly solid-dissolved in a copper alloy
  • droplets dissolved in the spray flame collide with the swash plate base material, and lead is forcibly dissolved in the layered structure compressed flat.
  • non-equilibrium structures called an atomized structure, an equilibrium structure (a white lead phase is recognized), and a forced solid sprayed structure (a white lead phase is not recognized). are mixed.
  • FIG. 5 shows an embodiment of a sprayed structure (white particles or patterns correspond to lead) according to the present invention, and the following points are clear.
  • the atomized structure corresponds to about 13 area%, and there is a remaining 87% by area of a layered portion in which no lead phase is observed, in which lead is forcibly dissolved.
  • the outer shape of the remaining atomized structure is very different from that of the powder, because the atomized powder crushes when it hits the backing metal or because the outside may have melted.
  • the lead morphology is maintained after thermal spraying.
  • FIG. 6 is an EPMA photograph of the forced solid solution sprayed structure obtained by observing the cross section of the Cu—10% Pb-10% Sn sprayed layer. The presence of particles was not identified, but Pb, This indicates that Sn exists. Since Pb has a low solid solubility in Cu, it is forced to form a solid solution, and Sn is a solid solution even under ordinary manufacturing conditions. Not a solid solution. Next, the sliding performance of each component of the sprayed structure will be described.
  • the atomized structure is excellent in conformability, low friction, and lubricity due to the large number and fineness of lead particles.
  • atomized powder the particle size is usually 100 m or less, and the individual particles have almost the same structure, so that the structure is uniform among the particles.
  • the forced solid solution sprayed structure has excellent wear resistance because its hardness is as high as about HV200 or more due to forced solid solution of lead. Further, in this structure, since the powder is once melted on the back metal after thermal spraying, the adhesive strength with the back metal can be increased.
  • a striped pattern is observed, in which white portions contain large amounts of Pb and Sn in solid solution. From the striped pattern, it is inferred that the amount of material deposited by thermal spraying changes periodically or pulsatingly per unit time, and that the cooling rate also increases or decreases accordingly. Although such an interesting structure is generated, it is needless to say that the forced solid solution sprayed structure of the present invention is not limited to such a structure.
  • one of the atomized structure and the forced solid solution sprayed structure is excessively large, so that the atomized structure is 2 to 70% by area, more preferably 2%. It is desirable that the area be about 50% by area.
  • the sprayed layer is substantially composed of an entirely atomized structure and a forced solid solution sprayed structure.
  • microstructures may be mixed without forcibly forming a solid solution.
  • the upper limit is 10 area%.
  • the present inventors have conducted research on controlling the structure of the sprayed sliding layer from a different viewpoint from the above-described structure composed of the atomized structure and the forced solid solution sprayed structure. As described below, the sliding performance was improved. I was able to further improve.
  • bronze in the description of the present application, bronze means a copper alloy and tin is not an essential component
  • the role of lead is mainly in the lubricating action, but in sprayed bronze, the lead phase in the atomized structure Plays the role.
  • lead In a forced solid solution sprayed tissue generated by thermal spraying, lead is dissolved in the copper matrix, and even if a part of the lead phase exists in a layered form, copper, tin, etc. are also in the lead phase. Because of the solid solution, the lubrication of the lead phase cannot be expected.
  • the atomized powder particles that are melted at the time of thermal spraying solidify around the undissolved atomized powder and on the surface of the base material, and at the time of solidification, increase the adhesion of the sprayed layer and thereby strengthen the sprayed layer.
  • lead in the forced sprayed structure may precipitate at the interface due to heat generated during sliding, and the long layered segregated portion may have a bad effect on adhesion and strengthening of the sprayed layer due to its low strength.
  • lead-free dissolved structure this structure is referred to as “lead-free dissolved structure”.
  • Lead present in an amount exceeding 3% of the forced solid solution dissolution in the tissue not only does not exert a lubricating effect, but also impairs the properties of the sprayed layer except for the wear resistance. Therefore, it is preferable that lead is a raw material powder for thermal spraying and exists in a powder that does not dissolve during the process from the time of thermal spraying to the time when a layer is formed by thermal spraying, that is, is present in an undissolved structure.
  • the sprayed structure in which the lead-free dissolved structure and the undissolved atomized structure are combined is referred to as “lead segregated dissolved structure”.
  • the powder may be crushed powder, but it is desirable to use atomized powder suitable for thermal spraying.
  • atomized powder suitable for thermal spraying.
  • the lead-free dissolved structure which is a feature of the present invention, will be described using an atomized powder as an example.
  • FIG. 7 is an optical micrograph of the sprayed layer obtained in Example 4 described later.
  • the part that appears as a white block as a whole is the atomized structure of atomized bronze (copper tin-lead). What looks black as a whole is the tissue in which the bronze powder (copper tin) is dissolved. Many of the small white areas are either a massive atomized structure with a cut cross section, or the atomized powder is broken up during thermal spraying into fine fragments. The fine white dots in the white mass undissolved structure are the lead phases precipitated and crystallized in the atomized powder.
  • the atomized structure and the lead free Since it is not preferable that one of the dissolved tissues becomes excessively large, it is desirable that the undissolved atomized tissue is 2 to 70 area%, more preferably 2 to 50 area%.
  • the lead phase in the atomized structure may be in the form of a network, but is preferably in the form of particles. If the lead phase is granular, the crack does not propagate along the lead phase during sliding, so that the crack resistance is improved. In order to make the lead phase in the atomized structure granular, select the raw material powder in which the lead phase in the atomized powder is granular, and set the collision pressure on the material to an excessively high value to undissolve the powder. It is necessary that the undissolved powder not be crushed as the lead phase in the layer becomes layered.
  • the particle size of the granular lead phase is too large, the strength is reduced.On the other hand, if the particle size is too small, the lubricating property is reduced, so that the diameter is preferably within a range of 0.5 to 20 m in terms of a circle. Desirable.
  • the thickness of the sprayed layer having a lead segregation dissolution structure is preferably in the range of 5 to 500 m. If the thickness is too large, it is necessary to adopt a complicated construction method such as forced cooling of the back metal spraying the opposite side, otherwise the heat of the sprayed layer will remain and undissolved atomized powder will melt on the back metal. However, if the thickness is too small, the sliding performance is not excellent. Therefore, it is necessary to determine the thickness appropriately in consideration of these two surfaces.
  • aluminum has a small amount of solid solution in an atomized structure and is easy to precipitate uniformly and finely, and the amount of aluminum dissolved in a thermally sprayed structure is large.
  • the amount of aluminum added is much smaller than the amount of solid solution in the equilibrium state, aluminum is segregated in the spray-deformed structure as seen in the structural structure, but the aluminum distribution is not in the atomized structure. It is uniform.
  • the uniform distribution of solute elements in aluminum means that the mating material is always in microscopic contact with a surface having uniform sliding characteristics, which is considered desirable in terms of sliding characteristics.
  • the two aspects of sliding characteristics as described in detail for the copper-lead alloy are exhibited, although not as markedly different as the copper-lead alloy.
  • Elements such as nickel, antimony, iron, aluminum, phosphorus, zinc and manganese are preferably contained only in the dissolved or forced solid sprayed structures. Silver may be contained in any tissue.
  • Copper alloy having a variety of thermal spraying tissues described above is rather to preferred 1 0% or less 1 to 0% A 1 2 0 3, S i 0 2, S i C, Z r 0 2, S i 3 N 4, BN, a 1 N, T i N, T i C, B 4 C, iron one Li down compounds, iron one boron compound selected from the group consisting of iron one nitrogen compound one or more Compounds can be added as anti-wear components. Of these ingredients If the addition amount exceeds 10%, lubricity and conformability become poor, and as a result, seizure is liable to occur.
  • bronze can contain not more than 3% by weight of graphite.
  • Graphite is an additive that improves lubricity and prevents cracking of the swash plate sliding layer. If the graphite content exceeds 3%, the strength of the bronze decreases, which is not preferable.
  • the preferred graphite content is 0.15 to 1.5%.
  • Fig. 8 is a graph showing the relationship between the amount of graphite added to the sprayed sliding layer of Cu-6% Sn alloy (sprayed structure, lead segregated sprayed structure, thickness of 200 m), physical properties, and baking time. .
  • test conditions are as follows.
  • Testing machine Pin disk testing machine
  • Circumferential speed 20 m / s
  • Lubricating oil Refrigerator oil applied first
  • the preferred thickness of the intermediate layer is 5 to 100 ⁇ m.
  • Cu-Sn-P alloys can be used as the copper alloy. Since this alloy has a good melt flow and is hardly oxidized, excellent performance can be obtained when the intermediate layer is formed by thermal spraying.
  • the sliding layer of the present invention can be formed by a usual spraying method and conditions.
  • the spraying conditions are such that the atomized bronze powder in flight in the spray flame only partially melts;
  • the entire lead bronze alloy does not remelt after impact with the backing metal (some may remelt); the cooling rate of the molten alloy and solidified alloy must be dog.
  • the high-pressure flame spraying method in which the gas pressure is increased and the gas velocity is increased is adopted, the spraying distance is set to about 180 mm, and the conditions for limiting the thickness of the sprayed layer are set. It is preferable to adopt it. More specific conditions are shown below.
  • the proportion of the atomized structure When the proportion of the atomized structure is increased under the above conditions, the proportion of the powder may be increased, and the proportion of the structure can be arbitrarily adjusted by adjusting the spraying conditions.
  • the coarse-grained lead-containing powder does not completely melt during flight in a thermal spray flame and the fine-grained powder melts; spraying conditions such that the coarse-grained powder does not melt after colliding with the backing metal
  • the first powder is a fine powder containing substantially no lead and containing copper as a main component
  • the second powder is a coarse powder containing lead and containing copper as a main component. It turned out that it is effective to use a granular powder.
  • coarse and fine grains mean that there is a difference of more than 2 grades in average grain size in JIS Z8801 (revised in 1998, standard sieve opening). If the difference between the grades is 1, lead will easily dissolve. It is preferable that the difference between the grades is 8 grades or less from the viewpoint of the adhesive strength of the sprayed layer.
  • the hardness of the sprayed layer mainly depends on the amount of the added element. In the case of 0.5 to 40%, the range is 11 (.. 3 ) 110 to 280. The feature is that this hardness is higher than that of a sintered material-formed material.
  • the thickness of the sprayed layer is preferably 5 to 500 m. When the thickness exceeds 500 ⁇ m, the amount of heat stored in the sprayed layer increases.When the amount of heat exceeds a specified value, the copper alloy is re-melted and the hardness and density are reduced. Sliding characteristics deteriorate.
  • the preferred thickness of the sprayed layer is 5 to 300 ⁇ , more preferably 20 to 200 Atm.
  • the surface of the sprayed layer is polished or not polished, and the above thickness is used as the sliding layer.
  • the surface of the swash plate to be sprayed can be appropriately subjected to a roughening treatment such as a shot blasting, etching, or chemical conversion treatment, or a plating treatment for providing an adhesive layer.
  • a roughening treatment such as a shot blasting, etching, or chemical conversion treatment, or a plating treatment for providing an adhesive layer.
  • the heat treatment can be performed under the condition for making the components of the thermal spray layer uniform. That is, the copper alloy having the above composition is sprayed together with a hard material, if necessary, and then heat-treated for 30 to 240 minutes in a temperature range of 100 to 300 ° C. it can. If the temperature and time are below the lower limits, the effect of homogenizing the components will not be obtained. In addition, the sliding characteristics are degraded due to coarsening of the Pb particles and the flaky structure to destroy the specific form of the sprayed structure.
  • the preferred heat treatment is 150 to 300 minutes at 150 to 300 ° C., and more preferably 150 to 250.
  • the condition is 60 to 120 minutes for C.
  • the sprayed layer is subjected to a beaming treatment (sometimes referred to as a shot blast treatment) to prevent a lateral crack from occurring on the swash plate.
  • a beaming treatment sometimes referred to as a shot blast treatment
  • steel, zinc, and other particles with a particle size of about 0.05 to 1.0 mm are used.
  • a condition of projecting at a speed of 0 kg Zm 2 , 10 to 80 mZ seconds can be favorably adopted.
  • Fig. 9 is a graph showing the test results in which the cracking resistance with and without peening was evaluated by the method of measuring the number of cracks by the seizure test method.
  • the powder used was (a) 30% by weight and (mouth) 70% by weight.
  • the sprayed layer has a lead segregation structure and a thickness of 200 ⁇ m.
  • FIG. 11 shows the results of the same thermal spraying and peening as in FIG. 10 except that 0.5 mm zinc spheres were picked at 2 k / cm 2 . From this figure, the effect of Pee-Jung can be seen from about 1 minute for zinc spheres. It is considered that zinc ball peening time to swash plate is preferably 5 minutes or more.
  • FIG. 11 shows the results of thermal spraying and peening similar to FIG.
  • zinc ball peening time to swash plate is preferably 5 minutes or more.
  • a bronze water atomized powder having the following properties was sprayed onto a swash plate (FCD 70, thickness 10 mm), and the thickness indicated as “layer thickness” in Table 2 was 20 to 200 ⁇ m. Thermal spraying was formed.
  • Thermal spraying was performed under the following conditions using a diamond-jet type gun manufactured by 1st Meteco Co., Ltd.
  • the obtained sprayed structure was represented by the atomized structure area% (A) shown in Table 2 and the dissolved tissue area% (shown by M).
  • the unit of thickness in the table is m.
  • the intermediate layer applied to the firing plate before thermal spraying was formed by spraying a Ni-A1 alloy to a thickness of 50 ⁇ m on a disk substrate in advance.
  • the shots with the intermediate layer are marked with i in the test numbers in Table 2.
  • Table 2 Compression chamber side swash plate surface
  • Testing machine Pin disk testing machine
  • the load at the time of first seizure was measured on either the compression chamber side or the non-compression chamber side, but in this test, seizure occurred on the compression chamber side.
  • Epoxy adhesive (adhesive layer 102 is bonded to the bottom surface of the board)
  • Thermal sprayed layer thickness of 150 tm (shown as 101 in Fig. 12)
  • the rod 103 may be pulled out horizontally and the force required for pulling out may be calculated.
  • evaluation was performed by separating, and if it did not separate, it was judged as ⁇ and partially separated.
  • the abrasion resistance was qualitatively evaluated based on the amount of wear by a pin disk tester, and three levels of good, small and large were evaluated.
  • the present invention combines the characteristics of copper-based materials and thermal spraying. By combining them, the sliding characteristics far surpassed those of the conventional swash plate compressor swash plate.
  • the present invention improves the durability and reliability of the swash plate type compressor in which the load applied to the swash plate and the lubrication conditions are strict, and achieves a very useful result in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Reciprocating Pumps (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

明 斜板式ロ ンブレ ッ サーの斜板及び斜板とシユーとの組合わせ 技術分野
本発明は、 斜板式コ ンプレ ッ サーの斜板及び斜板とシユ ー との組合わせに関するもので田あり 、 さ らに詳し く 述べるなら ば、 片側圧縮式斜板式コ ンプレッサ一において鉄系も し く は アルミニウム系材料からなる斜板の摺動特性を飛躍的に改良 する表面処理技術に関するものである。 背景技術
斜板式コ ンプレッサーにおいては、 回転軸に斜めに固着さ れた斜板又は回転軸に斜めに取り付けられ、 傾斜角変更可能 な斜板が、 回転軸の回転に応じて回転し、 それに伴って往復 運動する ビス ト ンがコ ンプレッサー内にて仕切られた空間の 体積を増減するこ とによ り圧縮 , 膨張を行う ものである。 か かる斜板はシユーと称される摺動部材と摺動しかつシユーを 介してピス ト ンを往復運動するこ とによ り冷却媒体を所定の 空間にて圧縮 · 膨張させるものである。
斜板の摺動条件が特長的な点は、 コ ンプレッサー運転初期 に潤滑油が到達する前に冷媒が摺動部に到達し、 これが摺動 部に残存する潤滑油を洗浄する作用をもっために、 斜板は潤 滑油がない ドライ条件で摺動されるこ とである。 このよ う に 斜板の摺動条件は非常に厳しい。
このよ う な条件で使用される斜板は耐焼付性、 耐摩耗性な どの摺動特性が必要となるので、 アルミニウム系材料に硬質 物を添加して耐摩耗性を向上する提案、 斜板の材質を改良す る提案、. 鉄系斜板に熱処理を施し硬度を上昇させ耐摩耗性を 向上させる提案や、 表面処理を施す提案な どがなされてい る。
本出願人は、 鉄系斜板と鉄系シユーの摺動では焼付が起り 易いので、 特開昭 5 1 - 3 6 6 1 1 号公報において鉄系斜板 と摺動するシユーに C u系焼結材料を接着するこ とを提案し た。 すなわち以前は鉄系斜板に硬化処理を施して来たが、 相 手材であるシユーも鉄系材料であると、 同種材料の摺動によ り焼付が発生し易いという問題があつたので、 これを避ける ために、 上記の提案では鉄系斜板の相手材 (シユー) に焼結 銅合金を使用したのである。
また、 鉄系シユーとの同種材料の摺動を避けるために鉄系 斜板にスズめっ きを施し、 耐焼付性を向上させるこ と も提案 された。
通常の斜板式コ ンプレ ッサーはビス ト ンの両側のシリ ンダ ボア内で冷却媒体の吸引 と圧縮を行う ものであるが、 最近片 側、 通常は リ ア ( R ) 側のみで圧縮 · 吸引を行う片側圧縮式 斜板式コ ンプレ ッ サーが製造されている。 この斜板式コ ンプ レ ッサーを本出願人の出願に係る特開平 6 — 2 8 8 3 4 7号 公報の容量可変型コ ンプレッサーを例にと って説明する。
この圧縮機では、 第 1 3図に示すよ うに、 シリ ンダブロ ッ ク 1 の一端側にはフ ロ ン トハウジング 2が接合され、 他端側 には リ アハウジング 3 が弁板 4 を介して接合されている。 シ リ ンダブロ ッ ク 1 と フロ ン トハウジング 2 とによ って形成さ れるクラ ンク室 5 には駆動軸 6が収容され、 駆動軸 6は軸受 7 a 、 7 b によ って回転可能に支持されている。 シ リ ンダブ ロ ッ ク.1 には駆動軸 6 を取り囲む位置に複数個のシリ ンダボ ァ 9 が穿設されており 、 各シ リ ンダボア 9 にはピス ト ン 1 0 がそれぞれ嵌挿されている。
クラ ンク室 5 内において駆動軸 6 には、 ロータ 1 6が駆動 車由 6 と同期回転可能に支持される と共に球面ス リーブ 1 2が 摺動可能に支持されている。 ローター 1 6 と球面ス リーブ 1 2 との間には押圧ばね 1 3が介在されており 、 押圧ばね 1 3 は球面ス リ ーブ 1 2 を リ アハウ ジング 3方向へ付勢してい る。 球面ス リ ーブ 1 2 の外周面には、 回転斜板 1 4が回動可 能に支持されている。 この回転斜板 1 4 は、 第 1 3図に示す 押圧ばね 1 3の最収縮状態では、 下部背面に斜状に形成され た当接面 1 4 aがローター 1 6に当接するこ とによ り 、 傾角 増大方向への更なる傾動を規制されている。 また、 こ の回転 斜板 1 4 は、 図示はされていないが、 傾角縮小方向への更な る傾動を規制されるこ と もある。
回転斜板 1 4 の外周部に は半球状の シ ユ ー 1 5 a 、 1 5 bが当接されてお り 、 これらシユー 1 5 a 、 1 5 bの外 周面は ピス ト ン 1 0 の球支承面と係合されている。 こ う し て、 回転斜板 1 4 にシユー 1 5 a 、 1 5 bを介して係留され る複数のピ ス ト ン 1 0 は各シ リ ンダボア 9内を往復動可能に 収納されている。
リ アハウ ジング 3 内は、 吸入室 2 0及び吐出室 2 1 に区画 されている。 弁板 4 には各シ リ ンダボア 9 に対応して吸入 ポー ト 2 2 及び吐出ポー ト 2 3 が開口形成されており 、 弁板 4 と ビス ト ン 1. 0 と の間に形成される圧縮室が吸入ポー 卜 2 2 及び吐出ポー ト 2 3 を介 し て吸入室 2 0 及び吐出室 2 1 に連通される。 すなわち、 斜板の片側 ( R側) だけで圧 縮が行われる。
各吸入ポー 卜 2 2 にはピス ト ン 1 0の往復動に応じて吸入 ポー ト 2 2 を開閉する吸入弁が設けられ、 各吐出ポー ト 2 3 にはピス ト ン 1 0の往復動に応じて吐出ポー ト 2 3 を リ テー ナ 2 4 に規制されつつ開閉する吐出弁が設けられている。 ま た、 リ アハウ ジング 3 には、 クラ ンク室 5の圧力を調整する 図示しない制御弁が装備されている。
以上のよ う に構成された圧縮機において、 駆動軸 6の駆動 に伴って回転斜板 1 4が回転する と、 シユー 1 5 a 、 1 5 b を介して各ピス ト ン 1 0がシリ ンダボア 9内で往復動し、 こ れに よ り 吸入室 2 0 から圧縮室内に冷媒ガスは圧縮された 後、 吐出室 2 1 へ吐出される。 このと き、 吐出室 2 1 へ吐出 される冷媒ガスの吐出容量は、 制御弁によるクラ ンク室 5内 の圧力調整によ り制御される。
さ ら に 、 こ の圧縮機に は吐出量を可変に する機構 K , 1 7〜 ; 1 9が設けられている。
上記した片側圧縮式コ ンプレッサーの要部を示す第 1 4図 を参照して、 片側圧縮式コ ンプレッサーの摩耗の問題を説明 する。
圧縮工程においてシ リ ンダボア内の圧縮反力は、 片頭状ピ ス ト ン 1 0及びシユ ー 1 5 を介して、 回転斜板 1 4に伝えら れる。 圧縮室側のシユー 1 5 aは、 圧縮反力を受けるため、 シユー 1 5 a と回転斜板 1 4 との間で大きな摺動抵抗を生じ る。 このよ う な摺動抵抗は、 動力損失のみならず、 斜板の摩 耗をもたらすため、 その対策が必要となる。
これに対し、 圧縮室と反対側のシユー 1 5 b も回転斜板 1 4 と接触しているので、 両者間の相対移動による摺接抵抗が ある。 しかし、 圧縮反力がシ ユー 1 5 b を介して回転斜板 1 4 に作用するこ とはな く 、 片頭ピス ト ンが上死点から下死 点に向かう吸入行程時にのみシユー 1 5 b と回転斜板 1 4 と が摺接す る 。 吸入行程時 に は 、 回転斜板 1 4 は シ ユ ー 1 5 bを介して、 ピス ト ン 1 0 を引き連れるこ とになるが、 この引き連れに必要な力は、 圧縮行程時に比べて小さ く 、 そ れ故、 シユー 1 5 b と回転斜板 1 4 との間の摺動抵抗は僅か である。
片側圧縮式の斜板式コ ンプレ ッサーの圧縮室側にて鉄系斜 板にスズめっ きを施しても、 これは軟質であるために耐摩耗 性不足の問題が起こ っ た。
さ らに、 アルミ ニウム合金に添加された硬質元素は耐摩耗 性を向上させたが、 圧縮室側の斜板で耐焼付性不足の問題が 起きた。 発明の開示
したがって、 本発明は、 片側圧縮式コ ンプレッサーに使用 される鉄系も し く はアルミ ニウム系斜板の表面に優れた耐焼 付性及び耐摩耗性を兼備した表面層を設けるこ と によ り 、 片 側圧縮式斜板式コ ンプレ ッ サーの性能の向上及び信頼性の向 上を図るこ とを目的とするものである。
本発明者は上記問題点を解決できる表面処理方法につき鋭 意検討し実験を行い、 溶射銅合金は、 焼結合金と比較して
( a ) 組織が微細であるこ と、 ( b ) 同一組成では硬さが高 いこ と、. ( c ) 溶射条件を調節するこ とによ り完全溶解組織 から一部ア トマイズ粉の形状 · 組織が残つた組織まで調節で き、 これによ り摺動特性を使用条件に合わせて変えるこ とが でき るこ と、 などの特性をもっており 、 これらの特性を利用 する と、 圧縮側のシユーと斜板との摺動に関し優れた耐焼付 性及び耐摩耗性が得られるこ とを見出した。
かかる知見に基づいて完成した本発明は、 片側圧縮式斜板 式コ ンプレ ッサーに用いられる鉄系又はアルミニウム系材料 からなる斜板において、 重量百分率で、 4 0 %以下の鉛, 3 0 %以下のスズ, 0 . 5 %以下の リ ン, 1 5 %以下のアル ミニゥム, 1 0 %以下の銀, 5 %以下のケィ素, 5 %以下の マ ンガン, 5 %以下のク ロ ム, 2 0 %以下のニ ッ ケル及び 3 0 %以下の亜鉛からなる群から選択された 1 種又は 2種以 上を、 総量で 0 . 5 %以上、 好ま し く は 1 %以上でかつ 5 0 %以下含有する銅系合金の溶射層を、 圧縮側斜板におい て少な く と もシユー、 好ま し く は鉄系シユーとの摺動面に形 成し、 かつ反圧縮室側の少なく と もシユーとの摺動面に、 電 解めつ き、 無電解めつ き、 潤滑剤の被覆、 り ん酸塩化成処理 も し く は硬化処理を施した こ と を特徴と する斜板式コ ンプ レ ッ サーの斜板に関するものである。
本発明において、 百分率は特記しない限り重量百分率を指 す。 上記した圧縮側の斜板に溶射層と して施される銅系合金にお いて鉛は一部は鉛粒子と して存在してなじみ性や低摩擦特性 を付与し、 残り は固溶して銅マ ト リ ッ クスを強化して耐摩耗 性と耐焼付性を付与する。 鉛は ドライ条件における摺動特性 を向上する上で最も好ま しい元素である。 しかし鉛の含有量 が 4 0 %を越える と銅合金の強度が低下するので、 上限を 4 0 % とするこ とが必要である。 好ま しい鉛含有量は 1 〜 3 0 %、 よ り好ま し く は 2〜 1 5 %である。
鉛以外の添加元素は主と して銅に固溶してその耐摩耗性と 耐焼付性を高めるものである。 この中で銀は潤滑油が少ない 条件で顕著に摺動特性を高める。 添加量に関しては、 スズは Γ 0 %以上、 ケィ素, マ ンガンは 1 %以上で析出して析出物 が耐摩耗性を高める。 スズが 3 0 %を超え, リ ンが 0 . 5 % を超え、 アルミニウムが 1 5 %を超え, 銀が 1 0 %を超え、 ケィ素が 5 %を超え、 マンガンが 5 %を超え、 クロムが 5 % を超え、 ニ ッ ケル力 s 2 0 %を超え、 亜鉛が 3 0 %を超える と、 銅本来の熱伝導性、 鉄も し く はアルミニウム系相手材料 との良好な摺動特性、 耐摩耗性、 耐焼付性が失われる。 した がってこれらの元素は上記上限量を超えないよ う にする必要 がある。 好ま しい含有量はスズ : 0 . ;! 〜 2 0 %、 リ ン : 0 . 2〜 0 . 5 %以下、 アルミニウム : 0 . 5〜 ; 1 0 %、 ケ ィ 素 : 0 . 1 〜 3 %、 銀 : 0 . 1 〜 8 %、 マ ンガ ン : 0 . 5 〜 4 % 、 ク ロ ム : 0 . 5 〜 3 %、 ニ ッ ケル : 0 . 5 〜 1 5 %、 亜鉛 : 5〜 2 5 %であり 、 さ らに好ま し く はスズ : 0 . 1 〜 1 5 %、 アルミ ニウ ム : 1 〜 8 %、 ケィ素 : 0 . 5〜 ; L . 5 %、 銀 : 0 . 2〜 5 %、 マ ンガン 0 . 5〜 3 %、 ク ロ ム : 1 〜 2 %、 ニ ッ ケル : 1 〜 ; 1 0 %、 亜鉛 : 1 0 〜 2 0 %である。 ま た上記の理由よ り 添加元素の総量は 0 . 5〜 5 0 %の範囲とするべきである。
シユー自体は公知のものであり 、 例えば本出願人の特開昭 5 1 - 3 6 6 1 1 号などに示されており 、 鉄系材料と しては 鉄を主成分とするすべての材料で摺動面を構成したものを使 用するこ とができ るが、 軸受鋼が好ま しい。 また、 その製造 方法も一切限定されず、 圧延、 鍛造、 粉末冶金、 表面硬化な どの技術を適宜採用するこ とができる。 しかしながら、 反圧 縮室側のシユーは摺動面に浸ほう素処理又は窒化処理を施す こ とが好ま しい。
反圧縮側の斜板の表面には、 少なく と もシユーとの摺動面 に、 電解めつ き、 無電解めつ き、 潤滑剤の被覆、 り ん酸塩化 成処理も し く は硬化処理を施すこ とによ り鉄鋼も し く はアル ミニゥムの摺動特性を改善するこ とが必要である。 これらの 処理は溶射銅系材料よ り も摺動特性が劣るが反圧縮室側では 摩耗条件が比較的穏やかであるので上記表面処理で十分であ る。 こ こで、 電解めつ きはスズ系、 鉛系又は銅系の金属 (合 金) を厚み 0 . 5〜 3 mにて行う こ とが好ま しい。 次に、 無電解めつ きはスズ系の金属 (合金) を厚み 0 . 5〜 3 μ πι にて行う こ とが好ま しい。 続いて、 潤滑剤の被覆は P T F Ε 、 樹脂バィ ンダ一で結合された二硫化モ リ ブデン粉一例えば テフ リ ッ ク (商品名) 一を厚み 1 〜 2 0 μ mにて行う こ とが 好ま しい。 り ん酸塩化成処理は、 特に り ん酸マンガンを 1 〜 2 0 μ mの層厚みとなるよ う に施すこ とが好ま しい。 最後に 硬化処理は鉄鋼斜板に関しては、 浸炭、 窒化、 軟窒化、 ホウ 化などの処理によ り行い、 ァル 二ゥム斜板に関しては陽極 酸化処理によるこ とが好ま しい 図面の簡単な説明
第 1 図は C u - A 1 合金溶射層断面の金属組織写真 (倍率 3 2 0倍) である。
第 2 図は C u - A 1 合金溶射層断面の組織及び A 1 量分布 を模式図である。
第 3 図はァ ト マイ ズ C u - P b合金粉末の金属組織写真 (倍率 1 0 0 0倍) である。
第 4 図はア ト マイ ズ C u - P b合金粉末の金属組織写真 (倍率 1 0 0 0倍) である。
第 5図はァ トマイズ組織と強制固溶溶射組織が混合した組 織をもつ溶射層の金属組織写真である。
第 6図は強制固溶溶射組織の E P M A分析チャー ト を描い た電子顕微鏡写真 (倍率 3 0 0 0倍) である。
第 7図は鉛を含まない溶解組織をもつ溶射組織の金属顕微 鏡写真 (倍率 3 2 0倍) である。
第 8図は黒鉛添加溶射層の特性を示すグラフである。
第 9図はピーニングによる耐横割れ防止効果を示すグラフ である。
第 1 0図は鉄球ピーユングによる変形量を示すグラフであ る。
第 1 1 図は亜鉛球ピーニングによる変形量を示すグラフで ある。
第 1 2 図は接着力試験を説明する図である。 第 1 3 図は片側圧縮斜板式コ ンプ レ ッ サーの断面図であ る。
第 1 4図は片側圧縮斜板式コ ンプレッサーにおける斜板と シユーの摺動状況を説明する模式図である。
発明を実施するための最良の形態
以下、 圧縮室側斜板表面に施す銅系溶射につき よ り詳し く 説明する。
溶射層の金属組織が特長的な点は、 ア トマイズ銅粉末が溶 融した組織である。 すなわち、 溶射フ レーム中で溶融し生じ た液滴が斜板表面に衝突して変形され、 層断面で見る と、 層 状、 片状も し く は平板状部分が、 層平面で見る と小円盤、 鱗 状片などが積み重なつている。 本発明においては溶射層全体 がこのよ う な組織をもっていてもよい。
溶射組織は上述のよ う な特長の他に次のよ うな特長をもつ ている。 すなわち、 ア ト マイ ズ粉はガスによ り フ レーム内へ 圧送される と きは、 1 個 1 個がばらまかれた孤立粒子の形態 を保っており 、 一部の粒子は合体するが、 ほとんどの粒子は そのま まの形態で溶融すると考えられる。 溶融液滴は斜板に 衝突して凝固するが、 溶射層の厚みを薄く して冷却を速く す る と 1 個又は数個の液滴が、 他の多数の液滴と融合などによ り合体せずに、 孤立粒子と して凝固する。 このよ う に比較的 小さい液滴が押しつぶされ、 全体と して多数の微細層状片が 積み重なって、 溶射層が作られる。 このよ う な溶射層の例と して C u - 8 % A 1 合金の顕微鏡写真を第 1 図に示す。 この 図のよ う な溶射組織では、 第 2図に模式的に示すよ う に溶射 層全体の成分の分布 ( ( b ) 図) は、 微細層状片内での凝固 偏折が該片の数だけ繰り返されているこ と とな り 、 マクロ的 に見る と成分分布が均一になる。 このよ う な成分均一性は摺 動特性を安定させ、 特に摩擦力の安定化の面で望ま しいと考 えられる。 なお、 溶射層を融点以下の適当な温度で熱処理し 上記の凝固偏析を少な く し微細層状片内でも成分の均一化を 図る ( ( c ) 図) と、 さ らに摺動特性が良好になった。 ただ し、 熱処理によ り材質が著し く軟化する と、 摺動特性は劣化 する傾向が現れた。
また、 本発明においては、 ア トマイズ粉の一部が溶射中に 溶解しないで溶射層に残存するこ とが好ま しい。
以下、 溶解組織とア トマイズ粉の未溶解組織の混合組織の 特長を C u — P b系合金につき説明する。 この組織を構成す る鉛青銅ア ト マイ ズ粉の未溶解組織 (以下 「ア ト マイ ズ組 織」 と言う ) は、 鉛青銅ア トマイズ粉の急冷組織が溶射炎中 でも消失せずに溶射層に残っている ものである。 このァ トマ ィ ズ粉の組織は、 典型的には第 3図の C u — 2 4 % P b合金 の顕微鏡組織に示されるよ うに鉛を主成分とする二次相が銅 粉中に微粒状に分散するかあるいは銅粉の周囲に層状に分布 しているものである。 この組織は一種の铸造組織であるが、 ( a ) 主たる冷却方向が粒子の周囲から内側に向かう方向で あるこ と、 ( b ) 通常のイ ンゴッ ト銹造あるいは連続铸造よ り は急冷組織であ り 、 典型的には鉛は粒径が 1 0 ミ ク ロ ン以 下の微粒であるこ と、 も し く は、 ( c ) 鉛が銅の粒界にネッ ト ワーク状に分布しているこ とに特長があるものである。 な お、 第 3 図の組織は冷却が均一な場合であるが、 第 4図のよ う に粒子の周囲の一部が強く 冷却されるとその部分では鉛の 粒子は微細にな り 、 冷却が弱い部分では鉛の粒子は粗大と なっている。
本発明の一形態の混合組織では鉛が銅合金中に強制固溶し た層状 射組織 (以下 「強制固溶溶射組織」 と言う) となつ ている。 この混合組織では、 溶射炎中で溶解した液滴が斜板 基材に衝突して平坦に圧縮された層状組織内に鉛が強制的に 固溶されている。
これらの混合組織では第 5図に示すよ う にァ 卜マイズ組織 と いう平衡組織 (白色の鉛相が認められる) と強制固溶溶射 組織 (白色の鉛相が認められない) という非平衡組織が混合 している。
第 5図は本発明による溶射組織 (白い粒子又は模様が鉛に 相当する) の一実施例を示し、 以下の点が明らかである。 こ の組織ではァ トマイズ組織は約 1 3面積%に相当して、 鉛相 が認められない層状部位が残り の 8 7面積%存在し、 こ こで は鉛が強制固溶されている。 ア トマイズ粉が裏金に衝突した と きにつぶれるために、 あるいは外側が溶融した可能性もあ るために、 残存ア トマイズ組織の外形輪郭は粉末のものとは かな り異なっているが、 粉末中の鉛の形態は溶射後も維持さ れている。
第 6図は、 C u — 1 0 % P b - 1 0 % S n溶射層の断面観 察による強制固溶溶射組織の E P M A写真であり 、 粒子の存 在が同定されていないが P b 、 S nが存在しているこ とを示 している。 なお、 P bは C u中への固溶度は少ないので強制 固溶されており 、 S nは通常の铸造条件でも固溶するから強 制固溶ではない。 続いて、 溶射組織の各構成分の摺動性能を 説明する。
ァ トマイ ズ組織は鉛粒子が多数かつ微細に存在するために な じみ性、 低摩擦性、 潤滑性に優れている。 また、 ア トマイ ズ粉末(ま粒径が通常 1 0 0 m以下であり 、 個々の粒子がほ とんど同じ組織をもつので、 粒子間で組織が均一である。 し たがって、 かかるア トマイズ組織を摺動材料中に保持するこ と によ り 、 鉛粒子が均一に分散するこ とにな り摺動特性が安 定する。
次に、 強制固溶溶射組織は鉛の強制固溶によ り硬度が約 H V 2 0 0以上と高いために耐摩耗性が優れている。 また、 こ の組織は溶射後裏金上で粉末が一旦溶融しているので、 裏金 との接着強度を高めるこ とができる。
第 6図では縞状パターンが認められ、 その中で白い部位で は P b , S nの固溶量が多い。 縞状パターンから、 溶射によ る物質の単位時間当 り堆積量が周期的ないし脈動的に変化す る こ と、 及びこれに対応して冷却速度も増減しているこ とが 推定される。 このよ う に興味深い組織が生成されるが、 本発 明の強制固溶溶射組織がこのよ うなものに限定されないこ と は言う までもない。
上記の組織においては、 ア トマイズ組織及び強制固溶溶射 組織が何れか一方が過度に多く なる と好ま し く ないので、 ァ トマイ ズ組織が 2 〜 7 0面積%、 よ り好ま し く は 2〜 5 0面 積%であるこ とが望ま しい。 こ こで、 溶射層が、 実質的に全 部ア トマイ ズ組織及び強制固溶溶射組織から構成されるこ と が必要であ り 、 若干量であれば上記以外の組織、 例えば鉛粒 子が溶射された青銅合金中で強制固溶されずに析出した組織 が混在していても よい。 ただしその量は 1 0面積%が上限の 目処である。
本発明者らは溶射摺動層の組織を上記したァ トマイズ組織 と強制固溶溶射組織よ り構成する観点とは別の観点から制御 する研究を行い、 以下説明するよ うに、 摺動性能をさ らに向 上させるこ とができた。
青銅 (本願説明において、 青銅と は銅合金を意味してお り 、 スズは必須成分ではない) における鉛の役割は主と して 潤滑作用にあるが、 溶射青銅ではア トマイズ組織中の鉛相が その作用を担っている。 溶射によ り生成する強制固溶溶射組 織中では、 鉛は銅マ ト リ ッ ク中に固溶されており 、 また一部 鉛相が層状に存在しても銅、 スズなども鉛相に固溶している から鉛相の潤滑作用は期待できない。 一方、 溶射時に溶 解されるア トマイズ粉粒子は、 非溶解ア トマイズ粉の周囲で かつ基材表面で凝固し、 凝固の際溶射層の密着性を高めそし て溶射層を強化する。 しかしながら強制固溶溶射組織中の鉛 は摺動時の発熱で界面に析出したり、 また長い層状の偏析部 は低強度であるために溶射層の密着及び強化に悪影響を及ぼ すこ とがある。
ア トマイ ズ組織中にネ ッ 卜 ワーク状も し く は粒状などの形 態で存在する鉛相を含む溶射青銅層を被覆した摺動材料が面 内に平行な応力にさ らされる と、 鉛は銅よ り強度が低いため に、 層状鉛相に沿ってクラ ッ クが走り比較的低い応力でも割 れが発生する。 一方微細粒子状鉛相は割れに対する抵抗力が 高い。 ア トマイ ズ粉末が、 溶射飛行中にあるいは裏金上で溶解さ れ、 裏金上で層状、 片状、 溶射前の形状を留めないその他の 流動形状に凝固した領域、 即ち溶解組織内に鉛が最大で 3 % 含有されるかあるいは全 く 存在しないこ とが好ま しい。 以 下、 この組織を 「鉛フ リ ー溶解組織」 と言う。 強制固溶溶解 組織内に当該組織に対して 3 %を超える量で存在する鉛は潤 滑作用を発揮しないのみならず、 溶射層全体の耐摩耗性を除 く 特性を損なう原因となる。 したがって、 鉛は溶射原料粉末 であって、 溶射飛行中から溶射によ り層を形成するまでの過 程で溶解を経ない粉末、 すなわち未溶解組織内に存在してい る こ とが好ま しい。 以下、 このよ う に鉛フ リ ー溶解組織と未 溶解のァ 卜マイズ組織が複合した溶射組織を 「鉛偏析溶解組 織」 と言う。
粉体は破砕粉でもよいが、 溶射に適したア トマイズ粉を使 用するのが望ま しい。 以下、 ア トマイズ粉を例に と って本発 明が特徴とする鉛フ リー溶解組織を説明する。
第 7図は後述の実施例 4 において得られた溶射層の光学顕 微鏡写真である。 図中、 全体と して白色の塊状に数個見える 部分がア トマイ ズ青銅 (銅一スズー鉛) のア トマイズ組織で ある。 全体と して黒く 見えるのが青銅粉 (銅一スズ) が溶解 した組織である。 多数の小さい白色部分は断面が切断された 塊状ア トマイ ズ組織であるか、 あるいはア トマイズ粉が溶射 飛行中に分断されて微細な破片になったものである。 白色塊 状未溶解組織内の細かい白い点がァ トマィズ粉内に析出 · 晶 出した鉛相である。
鉛偏析溶解組織においては、 ア トマイ ズ組織及び鉛フ リー 溶解組織が何れか一方が過度に多く なる と好ま し く ないの で、 未溶解のア トマイズ組織が 2〜 7 0面積%、 よ り好ま し く は 2〜 5 0面積%であるこ とが望ま しい。
7 トマイズ組織中の鉛相はネ ッ ト ワーク状でもよいが、 粒 状である こ とが好ま しい。 鉛相が粒状である と摺動中にク ラ ッ クが鉛相に沿って伝搬しないので、 耐割れ性が高められ るからである。 ア トマイ ズ組織中の鉛相を粒状にするために は、 ア ト マイ ズ粉末中の鉛相が粒状である原料粉末を選択 し、 かつ素材への衝突圧力を過度に高く して未溶解粉末中の 鉛相が層状になる程、 未溶解粉末を押し潰さないこ とが必要 である。 粒状鉛相の粒径が大き過ぎる と強度が低下し、 逆に 小さ過ぎる と潤滑性が低下するために、 好ま し く は円換算で 0 . 5〜 2 0 mの直径範囲内であるこ とが望ま しい。
鉛偏析溶解組織をもつ溶射層の厚みは 5〜 5 0 0 mの範 囲であるこ とが好ま しい。 厚みが厚過ぎる と、 裏金の溶射反 対面を強制冷却するなどの手間がかかる施工法を採用しない と、 溶射層の熱がこ も り未溶解のア トマイズ粉が裏金上で溶 融して所望の組織が得られな く な り 、 一方厚みが薄すぎる と 摺動性能が優れないので、 これらの両面を考慮して適宜厚み を決定する必要がある。
続いて、 アルミニウムなどの固溶型元素を添加した青銅に ついて説明する。 この組織では、 ア トマイズ粉末の原形をほ ぼ留めた組織 (すなわち 「ア トマイズ組織」 ) と溶射によ り 層状などに形状が変形した組織 (以下 「溶射変形組織」 と言 う ) とが混合している。 この点では上述した銅一鉛合金の溶 射組織と同じである。 ア トマイズ組織と溶射変形組織を比較 して対照的な点を述べる と、 ア トマイズ組織は溶射中及び斜 板に衝突後に加熱されたために、 均熱 · 焼鈍組織であり 、 一 方溶射変形組織はァ トマィズ粉が再溶融し凝固した錶造組織 である と こ ろにある。
した-がって、 アルミニウムはア トマイズ組織では固溶量が 少な く な り均一かつ微細に析出し易く なり 、 溶射変形組織で はアルミニウムの固溶量が多く なる。 また、 アルミニウムの 添加量が平衡状態の固溶量よ り も非常に少ないと きは、 溶射 変形組織では铸造組織に見られるよ う なアルミニウムが偏析 しているが、 ア トマイズ組織ではアルミニウム分布が均一で ある。 アルミニウムの溶質元素の分布が均一であるこ とは、 相手材が常に均一な摺動特性の面と微視的に接触している こ と と な り 、 摺動特性上望ま しいと考えられる。 以上、 要約す る と、 銅 -鉛合金について詳述した通りの摺動特性の二つの 面が, 銅一鉛合金ほど顕著な差はないが、 発揮されるこ と に なる。
ニ ッ ケル、 ア ンチモ ン、 鉄、 アルミ ニウム、 リ ン、 亜鉛及 びマ ンガ ンなどの元素は溶解組織又は強制固溶溶射組織の何 れかにのみ含有されるこ とが好ま しい。 銀は何れの組織に含 有されても よい。
上記した種々の溶射組織をもつ銅合金に、 1 0 %以下好ま し く は 1 〜 1 0 % の A 1 2 0 3 , S i 0 2 , S i C , Z r 0 2 , S i 3 N 4 , B N 、 A 1 N , T i N , T i C , B 4 C , 鉄一 リ ン化合物、 鉄一ホウ素化合物、 鉄一窒素化合 物からなる群から選択された 1 種又は 2種以上の化合物を耐 摩性向上成分と して添加するこ とができる。 これらの成分の 添加量が 1 0 %を超える と 、 潤滑性、 な じみ性が不良と な り 、 その結果焼付が起こ り易く なる。
さ らにまた、 本発明においては、 青銅が重量百分率で 3 % 以下の黒鉛を含有するこ とができる。 黒鉛は潤滑性を向上さ せ、 斜板摺動層の割れを防止する添加剤である。 黒鉛の含有 量が 3 %を超える と、 青銅の強度が低下し好ま し く ない。 な お好ま しい黒鉛の含有量は 0 . 1 5〜 1 . 5 %である。
第 8図は C u - 6 % S n合金の溶射摺動層 (溶射組織一鉛 偏析溶射組織、 厚み 2 0 0 m ) に添加した黒鉛の量と物性 及び焼付時間の関係を示すグラフである。
試験条件は下記のとおり である
試験機 : ピンディ スク試験機
周速 : 2 0 mノ秒
荷重 : 5 0 0 N
潤滑油 : 冷凍機油を最初に塗布
相手材 : S U J - 2
第 8図よ り 、 硬さ (荷重 3 0 0 gのビッ カース硬さ) およ び剪断応力は黒鉛添加量と と もに低下し、 溶射層の基礎的物 性は悪化するが、 逆に摺動特性の一つである耐焼付性は向上 するこ とが分かる。 このよ う な優れた効果は黒鉛が摩擦係数 を低下させるこ とに起因し、 限り なく ドライに近い条件での 焼付には上記した基礎的物性は支配的ではない と考え られ る。
クラ ッ クを防止する効果がある黒鉛は溶射中に燃焼し易い ために、 銅をコーティ ングするなど酸化防止対策を講じる必 要がある。 本発明においては、 溶射層の密着性を高めるために、 溶射 層と斜板基材の間に、 銅、 ニッケル、 アルミニウム、 銅ニッ ケル系合金、 ニッ ケルアルミ系合金、 銅アルミ系合金、 銅ス ズ系合金、 ニッ ケル自溶合金及びコバル ト 自溶合金からなる 群よ り選択された 1 種又は 2種以上の材料からなる中間層を めっ き、 スパッ タ リ ング、 溶射等の方法によ り形成するこ と が好ま しい。 これらの材料は何れも、 それらの表面が粗なこ とが必要であるが、 青銅と合金化し易いために、 溶射の際に (未) 溶解層と強固に結合して溶射層と裏金との接合強度を 高める。 なお好ま しい中間層の厚みは 5〜 1 0 0 μ mであ る。 銅ースズ合金と しては C u — S n — P系合金を使用する こ とができ る。 この合金は湯流れが良く かつ酸化され難いの で、 溶射によ り 中間層とする と優れた性能が得られる。
本発明の摺動層は通常の溶射法及び条件で作るこ とができ る。
しかしながら、 ア トマイズ粉が溶解組織と未溶解のア トマ ィ ズ組織が混合した溶射組織を作る場合は、 溶射条件は、 溶 射炎中で飛行中のァ トマイズ青銅粉が一部だけ溶融する ; 裏 金に衝突後に鉛青銅合金全体が再溶融しない (一部は再溶融 してもよい) ; 溶融合金及び凝固合金の冷却速度が犬にする 必要がある。 具体的には、 ガス圧を高く しかつガスの速度を 大に した高速火炎溶射法を採用すると と もに、 溶射距離を 1 8 0 m m程度と し、 溶射層の厚さを制限する条件を採用する こ とが好ま しい。 よ り具体的条件を以下に示す。
ガス圧 : l O k g f Z c m 2
フ レーム速度 : 1 2 0 0 mZ s e c 2D
溶射厚さ : 1 5 0 m
上記の条件においてァ トマイズ組織の割合を多く する と き は粉末の割合を多く すればよ く 、 溶射条件の調節によ り任意 に組織の割合を調整するこ とができる。
続いて、 鉛偏析溶解組織を作る方法について説明する。 金属 (銅) /セラ ミ ッ クス ( A l 2 0 3 ) 系の溶射では、 後者を一旦溶融した後前者から分離して凝固させるこ とが示 されている (日本金属学会報 「まて り あ」 V o l . 3 3 ( 1 9 9 4 ) N o . 3 、 第 2 7 1 頁、 第 5図) が、 銅一鉛系粉末 では鉛が低融点であるためにこのよ う な分離凝固はほとんど 不可能であ り 、 むしろ鉛は銅よ り溶射中に溶解する可能性が 大である。
この点を避けて、 溶射炎中で飛行中に粗粒の鉛含有粉末は 完全には溶融せず、 微粒の粉末が溶融する ; 裏金に衝突後に 前記の粗粒粉末が溶融しないよ うな溶射条件につき検討した 結果、 第 1 の粉末は実質的に鉛を含有せず、 銅を主成分とす る細粒粉末であ り 、 第 2 の粉末は、 鉛を含有し銅を主成分と する粗粒の粉末とするこ とが有効であるこ とが分かった。
好ま しい溶射方法及び条件は上述のとおり である。
こ こで粗粒 · 細粒とは J I S Z 8 8 0 1 ( 1 9 8 1 年 改正、 標準ふるい目の開き) で平均粒径で 2等級以上の差が ある こ とである。 等級の差が 1 であると鉛の溶解が起り易く なる。 なお、 溶射層の接着強度の面から等級の差は 8等級以 下であるこ とが好ま しい。
続いて、 溶射層の物性を説明する。
溶射層の硬みは主と して添加元素の量に依存し、 添加量が 0 . 5〜 4 0 %の場合は 11 (。. 3) 1 1 0〜 2 8 0の範囲で ある。 この硬さは焼結材料ゃ铸造材料に比べて高いこ と に特 徴がある。
溶射層の厚さは 5〜 5 0 0 mが好ま しい。 厚さが 5 0 0 μ mを^える と溶射層内にこ もる熱量が多く なるために、 所 定以上の熱量となる と銅合金が再溶融され硬度や密度が低く な り 、 この結果摺動特性が劣化する。 好ま しい溶射層の厚み は 5 〜 3 0 0 μ ηι、 よ り 好ま し く は 2 0〜 2 0 0 At mであ る。
溶射層は溶射後表面を研磨しあるいは研磨しないで上記厚 みと して摺動層とする。
溶射を施す斜板表面にはシ ョ ッ トブラス ト、 エツチング、 化成処理などの粗面化処理や接着層を設けるめっ き処理など を適宜施すこ とができる。
また、 本発明においては溶射層の成分の均一化を図る条件 で熱処理をするこ とができ る。 すなわち、 上記組成の銅系合 金を必要によ り硬質物と と もに溶射した後に 1 0 0〜 3 0 0 °Cの温度範囲で 3 0〜 2 4 0分の熱処理を施すこ と ができ る。 この温度及び時間の下限未満では成分均一化の効果がな く 、 一方これらの温度及び時間の上限を超える と溶射層が軟 化し、 あるいは上記した組織の ア トマイズ組織、 溶射変形 組織などの結晶粒子、 P b粒子、 片状組織が粗大化して溶射 組織の特有の形態が破壊されるこ とによ り摺動特性が劣化す る。 好ま しい熱処理は 1 5 0〜 3 0 0 °Cで 1 0〜 1 2 0分で あ り 、 よ り好ま し く は 1 5 0〜 2 5 0。Cで 6 0〜 ; 1 2 0分の 条件である。 さ ら に 、 本 発 明 に お い て は 溶射層 に ビ ー 二 ン グ処理 (シ ョ ッ ト ブラス ト処理と言われる こ と も ある) を施し、 斜 板に発生する横割れを防止する こ と ができ る。 ピーニン グ は、 粒径が 0 . 0 5〜 1 . 0 m m程度の鋼、 亜鉛な どの粒を 5 0〜? 0 0 k g Zm 2 、 1 0〜 8 0 mZ秒の速度で投射す る条件を好ま し く 採用する こ とができ る。
第 9図は ピーニング有無によ る耐割れ性を焼付試験法によ り ク ラ ッ ク本数を測定する方法で評価した試験結果を示すグ ラ フである。 使用 した粉末は下記 (ィ ) 3 0重量%、 (口) 7 0重量%である。
(ィ ) C u — 1 0 % P b - 1 0 % S n : 平均粒径 6 3 /z m (口 ) C u - 6 % S n : 平均粒径 1 9 )u m
溶射層は組織が鉛偏析組織であ り 、 厚さが 2 0 0 μ mであ る。
第 9図よ り ピーニング処理は横割れ防止に非常に有効であ る こ とが分かる。
第 1 0図及び第 1 1 図によ り好ま しいピーニング条件を説 明する。 厚みが 1 . 5 m m, 幅が 4 0 m mである基材 ( S P C C ) に C u — 1 0 % P b — 1 0 % S n合金を厚み 3 0 0 μ mに溶射 し た (組織は第 5 図に示すもの) 。 基材は厚みが 1 . 5 m m , 幅が 4 0 m mである。 溶射後試料は基材側が凹 に沿っ たので反 り 量 ( d ) を測定した。 その後、 第 1 0図に 記した鉄球によ る ピーニングを行い、 変形量を反り量 ( d ) で測定した結果を同図のグラ フに示す。 これよ り約 1 0秒以 降でピ一ニングの効果が現れる こ とがわかる。 なお実際の斜 板と試料の寸法差を考慮する と 、 実際の斜板では約 5 0秒以 上の ピーユ ングが好ま しい と考え られる。 第 1 1 図は 0 . 5 m mの亜鉛球を 2 k / c m 2 でピ一ユングした以外は第 1 0図と同様の溶射及びピーユングを行った結果を示す。 こ の図から、 亜鉛球の場合は約 1 分からピーユングの効果が認 められる。 また斜板への亜鉛球ピーニング時間は 5分以上が 好ま しいと考えられる。
mに溶射した (組織は第 5図に示すもの) 。 基材は厚みが 1 . 5 m m , 幅が 4 0 m mである。 溶射後試料は基材側が凹 に沿ったので反り量 ( d ) を測定した。 その後、 第 1 0図に 記した鉄球による ピーニングを行い、 変形量を反り量 ( d ) で測定した結果を同図のグラフに示す。 これよ り約 1 0秒以 降でピーニングの効果が現れるこ とがわかる。 なお実際の斜 板と試料の寸法差を考慮する と、 実際の斜板では約 5 0秒以 上のピーニングが好ま しいと考えられる。 第 1 1 図は 0 . 5 m mの亜鉛球を 2 k g / c m 2 でピーユングした以外は第 1 0図と同様の溶射及びピーニングを行った結果を示す。 こ の図から、 亜鉛球の場合は約 1 分からピーニングの効果が認 められる。 また斜板への亜鉛球ピーニング時間は 5分以上が 好ま しいと考えられる。
アルミニウム基材の上に C u — 1 0 % P b — 1 0 % S n合 金を厚み 2 0 0 μ mに溶射し (組織一第 5図に示すもの) 、 その後熱処理またはピーニングを行った場合の溶射層の応力 変化を第 1 表に示す。
(以下余白) 第 1 表
状態 応力 ( M P a )
溶射後 + 3 0
熱処理
( 2 0 0 °C 1 h r ) + 3 0
( 2 0 0 °C x 3 h r ) + 3 0
ピーニ ング - 5 0
この表から溶射層にピーニングを施すと引張歪が緩和され 圧縮歪方向に転換されるこ とが分かり 、 これによ り割れが起 こ り難く なる と考えられる。 一方、 熱処理は内部応力を変化 させていない。
以下、 実施例によ り さ らに具体的に本発明を説明する。 以下の性状の青銅水ア トマイズ粉末を斜板 ( F C D 7 0 , 厚み 1 0 m m ) へ溶射し、 第 2表に 「層厚」 と して示す厚 みが 2 0〜 2 0 0 μ mの溶射曆を形成した。
( 1 ) 銅系ア トマイズ粉
A 1 含有量 : 1 0 %
粒径 : 7 5 μ mアンダー
( 2 ) 鉛青銅ア トマイズ粉
鉛含有量 : 1 0 %
スズ含有量 : 1 0 %
粒径 : 9 0 mアンダー
組織 : 第 3図に示すもの
( 3 ) 複合青銅ア トマイ ズ粉
鉛含有量 : 1 0 %
スズ含有量 : 1 0 % リ ン含有量 : 0 . 0 5 %
銀含有量 : 3 %
硬質物 (種類 A 1 N ) : 5 %
粒径 : 7 5 mア ンダー
. 組織 : 第 3 図に示すもの
( 4 ) 青銅ア トマイ ズ粉
スズ含有量 : 1 0 %
粒径 : 7 5 mア ンダー
組織 : 第 3図に示すもの
溶射は第 1 メ テコ社製のダイ ヤモン ドジヱ ッ ト型ガンを使 用 して下記条件で行った。 この結果、 得られた溶射組織は表 2 に示すア トマイズ組織面積% ( A ) で示す、 及び溶解組織 で面積% ( Mで示す) となった。 表中の厚さの単位は mで ある。
ガス種 : プロ ピ レ ン 1 0容量部と空気 9 0容量部の混合 ガス
ガス圧 : 7 k g f Z c m 2
フ レーム速度 : 1 2 0 0 m/ s e c
溶射距離 : 1 8 0 m m
粉末供給量 : 5 0 g Z分
溶射前に射板に施す中間層は円板基板上に予め N i - A 1 合金を厚み 5 0 μ mを溶射するこ とによ り形成した。 中間層 を施した射板は第 2表の試験番号に i を付した。 第 2表 圧縮室側 斜板表面
粉末 組織 層厚 斜 'J 板表 -i-面 シ *ユュ-表、 i (MPa) (kN) 耗や" C性I
1 (2) Α:70;Μ:30 100 ¾^|Snめっき : 2um SUJ2焼人 Λ 4.0 小
9 (1) A:70;M:3f) 100 ¾l?Pbめっき : 2 Aim SUJ2焼入 Δ 4.0 小
3 (3) Α:70;Μ:30 100 電解 Cuめっ : 2μπι SUJ2焼入 Δ 4.0
Figure imgf000028_0001
4 (2) Α:70;Μ:30 100 無電解 Cuめつ §:2μπι SUJ2焼入 Δ 4.0
0 (3) Α:70;Μ:30 100 钮ハ、、電解 Niめつき: 2 m SUJ2焼入 Λ 4.0 小
6 (1) Α:70;Μ:30 20 PTFE被 , ΙΟμπι SUJ2焼入 Δ 4.8 /
7 (3) Α-70-Μ-30 150 u" 1/乂 1 · 3um SUJ2焼人 Λ 52 小
( W3)ノ リン西 Mn¾5孺' ^nm SI 112†兀$ノ λゝ ο /|ヽ
Q (3) + 浴空仆. 1ΠJ//Ι iΤn1 SIuIu 12 i*ΐA$Cノλ、 o 2 n
0 ( W3ノ) 寿 4耐i±U/i聊J;土 , ! SU.I2 o 2 n
ホウノ仆 1し机理 1 (3) A-70- -30 200 表面々聊なし SUJ2窣仆 o 2.0 良好 処理 10 m
2i (2) A:70;M:30 100 表面処理なし SUJ2焼入 35 8.0 舰3i (2) A:70;M:30 100 表面処理なし SUJ2焼入 35 8.0 舰4 (2) A:70;M:30 100 表面処理なし SUJ2焼入 20 8.0 mi-5 (4) A:70;M:30 100 表面処理なし SUJ2焼入 20 7.2 舰6 溶射処理なし 表面処理なし SUJ2焼入 0.4 大 これらの耐焼付性を以下の条件で試験した。
焼付試験
試験機 : ピンディ スク試験機
摺動速度 : 1 5 s
潤滑条件 : 冷凍機油
荷重付加方法 : 4 0 0 Nノ 1 0分、 漸増
圧縮室側も し く は反圧縮室側のいずれかで先に焼付いた時 の荷重を測定したが、 本試験ではいずれも圧縮室側で焼付が 起こ った。
密着強度試験
接着剤による密着試験 (第 1 2図に示す)
接着剤 : エポキシ系接着剤 (接着層 1 0 2 を板の下面に接 着した)
溶射層 : 厚み 1 5 0 t m, (第 1 2図に 1 0 1 と して示す )
棒 1 0 3 を水平に引抜き、 引き抜きに要した力を求めるか ある。 又、 他の方法と して引き離しによ り評価し、 離れない ものでは〇、 一部離れたもの△と判定した。
耐摩耗性はピンデイ スク試験機による摩耗量によ り定性評 価し、 良好、 小、 大の 3段階判定を行った。
試験の結果を第 2表に示す。
この結果よ り本発明実施例は比較例 1 6 よ り も耐焼付性及 び耐摩耗性が優れているこ とが明らかである。 産業上の利用可能性
以上説明したよ う に、 本発明は銅系材料と溶射の特徴を組 み合わせる こ とによ り従来の斜板コ ンプレッサー斜板を著 し く 凌駕する摺動特性を実現した。
したがって、 本発明は斜板に加えられる負荷や潤滑条件な どが厳しい斜板式コ ンプレッサ一の耐久性及び信頼性を高め る ものであ り 、 産業上非常に有益な成果を達成する。

Claims

請 求 の 範 囲
1 . 片側圧縮式斜板式コ ンプレッサーに用いられる鉄系又 はアルミニウム系材料からなる斜板 ( 1 4 ) において、 重量 百分率で、 4 0 %以下の鉛, 3 0 %以下のスズ, 0 . 5 %以 下の リ ン, 1 5 %以下のアルミニウム, 1 0 %以下の銀, 5 %以下のケィ素, 5 %以下のマンガン, 5 %以下のクロム, 2 0 %以下のニ ッ ケル及び 3 0 %以下の亜鉛からなる群から 選択された 1 種又は 2種以上を、 0 . 5〜 5 0 %の範囲で含 有し、 残部が実質的に銅及び不純物からなる銅系合金の溶射 層 (第 1 、 5 、 7図) を、 圧縮室側の少なく と もシュ一 ( 1 5 b ) との摺動面に形成し、 かつ反圧縮室側の少なく と もシ ユー ( 1 5 a ) との摺動面に、 電解めつき、 無電解めつ き、 潤滑剤の被覆、 り ん酸塩化成処理も し く は硬化処理を施した こ と を特徴とする斜板式コ ンプレ ッサーの斜板。
2 . 重量百分率で 1 〜 3 0 %の鉛を含有する 銅系合金か らなる溶射層が銅合金ァ トマイズ粉の未溶解組織と、 鉛を銅 合金中に強制固溶した層状溶射組織との混合組織 (第 5図) から実質的になるこ とを特徴とする請求の範囲第 1 項記載の 斜板式コ ンプレ ッ サーの斜板。
3 . 重量百分率で 1 〜 3 0 %の鉛を含有する銅系合金から なる溶射層が 3〜 4 0 %の鉛を含有する粉体の未溶解組織と 、 3 %以下の鉛を含有するも し く は鉛を含有しない溶解組織 との混合組織 (第 7図) から実質的になるこ とを特徴とする 請求の範囲第 1 項記載の斜板式コ ンプレ ッ サーの斜板。
4 . 前記未溶解組織中の鉛相が粒状であるこ とを特徴とす る請求の範囲第 3項記載の斜板式コ ンプレッサーの斜板。
5 . 前記鉛を含有する粉体がア トマイズ粉であるこ とを特 徴とする請求の範囲第 4項記載の斜板式ユンプレ ッ サーの斜 板。
6 . 前記溶射層が、 A 1 2 0 3 、 S i 02 、 S i C、 Z r 0 2 、 S i a N 4 , B N、 A 1 N、 T i N、 T i C、 B 4 C、 ならびに鉄一 リ ン、 鉄一ホウ素、 鉄一窒素の鉄系化合 物からなる群から選択された 1 種又は 2種以上を、 重量百分 率で 1 0 %以下含有するこ とを特徴とする請求の範囲第 1 項 から 5項までの何れか 1 項記載の斜板式コ ンプレッサーの斜 板。
7 . 前記溶射層が重量百分率で 3 %以下の黒鉛を含有する こ とを特徴とする請求の範囲第 1 項から 6項までの何れか 1 項記載の斜板式コ ンプレ ッサーの斜板。
8 . 前記鉄系又はアルミニウム系材料と前記溶射層の間に C υ , N i , A 1 ,· N i - A l 系合金、 C u - N i 系合金、 N i — A l 系合金、 C u - A l 系合金、 C u - S n系合金、 N i 自溶合金及び C o 自溶合金からなる群から選択された 1 種又は 2種以上の材料からなる中間層を形成したこ とを特徴 とする請求の範囲第 1 項から 7項までの何れか 1 項記載の斜 板式コ ンプレ ッサーの斜板。
9 . 溶射層がピーユング処理されたこ とを特徴とする請求 の範囲第 1 項から 8項までの何れか 1 項記載の斜板式コ ンプ レ ッサ一の斜板。
1 0 . 請求の範囲第 1 項から 9項までの何れ か 1 項記載 の斜板と、 反圧縮室側に配置されかつ斜板との摺接面にホウ 化処理又は窒化処理された鉄系シユーとの組合わせ。
PCT/JP1996/001293 1995-05-17 1996-05-16 Plateau oscillant pour compresseur a plateau oscillant et combinaison d'un plateau oscillant avec des sabots WO1996036745A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP96915164A EP0776986B1 (en) 1995-05-17 1996-05-16 Swash plate of swash-plate compressor and combination of swash plate with shoes
DE69614644T DE69614644T2 (de) 1995-05-17 1996-05-16 Taumelscheibe eines taumelscheibenkompressors und taumelscheibe mit schuhen
KR1019970700311A KR100255279B1 (ko) 1995-05-17 1996-05-16 사판식 컴프레서의 사판 및 사판과 슈우와의 짜맞춤
US08/776,004 US5875702A (en) 1995-05-17 1997-05-16 Swash plate of swash plate compressor and combination of swash plate with shoes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/141403 1995-05-17
JP14140395A JP3568061B2 (ja) 1995-05-17 1995-05-17 斜板式コンプレッサーの斜板及び斜板とシューとの組合わせ

Publications (1)

Publication Number Publication Date
WO1996036745A1 true WO1996036745A1 (fr) 1996-11-21

Family

ID=15291197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001293 WO1996036745A1 (fr) 1995-05-17 1996-05-16 Plateau oscillant pour compresseur a plateau oscillant et combinaison d'un plateau oscillant avec des sabots

Country Status (6)

Country Link
US (1) US5875702A (ja)
EP (1) EP0776986B1 (ja)
JP (1) JP3568061B2 (ja)
KR (1) KR100255279B1 (ja)
DE (1) DE69614644T2 (ja)
WO (1) WO1996036745A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030032A1 (de) * 1997-12-10 1999-06-17 Peter Kleinedler Axialkolbenmaschine
US6192784B1 (en) 1997-02-14 2001-02-27 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate compressor
US6289785B1 (en) 1996-11-21 2001-09-18 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153169A (ja) * 1996-11-21 1998-06-09 Sanden Corp 斜板式可変容量圧縮機
EP0852298B1 (de) * 1996-12-14 2003-03-19 Federal-Mogul Deva GmbH Gleitlagerwerkstoff und Verfahren zu seiner Herstellung
JPH10246181A (ja) * 1997-02-28 1998-09-14 Toyota Autom Loom Works Ltd 可変容量型圧縮機
FR2763582B1 (fr) * 1997-05-23 1999-07-09 Saint Gobain Emballage Moule en alliage cupro-aluminium pour la fabrication de bouteilles
JP4023872B2 (ja) * 1997-06-26 2007-12-19 大豊工業株式会社 斜板式コンプレッサー用斜板
JP3285080B2 (ja) * 1997-08-07 2002-05-27 大豊工業株式会社 シューとその製造方法
US6694864B2 (en) 1997-10-09 2004-02-24 Kabushiki Kaisha Toyota Jidoshokki Swash plate type compressor
JPH11173263A (ja) * 1997-10-09 1999-06-29 Toyota Autom Loom Works Ltd 斜板式圧縮機
JP3936447B2 (ja) * 1997-10-30 2007-06-27 Ntn株式会社 斜板式コンプレッサ用シューの製造方法
JPH11193780A (ja) * 1997-12-26 1999-07-21 Toyota Autom Loom Works Ltd 片頭ピストン型斜板式圧縮機および斜板の製造方法
JPH11201032A (ja) 1998-01-13 1999-07-27 Toyota Autom Loom Works Ltd 可変容量型圧縮機
US6416877B1 (en) * 1998-03-14 2002-07-09 Dana Corporation Forming a plain bearing lining
US5911809A (en) * 1998-03-30 1999-06-15 Ford Motor Company Cobalt-tin alloy coating on aluminum by chemical conversion
JP2000257555A (ja) * 1999-03-08 2000-09-19 Toyota Autom Loom Works Ltd 圧縮機
JP3251562B2 (ja) 1999-07-09 2002-01-28 大豊工業株式会社 斜板式コンプレッサーの斜板
JP2001132628A (ja) * 1999-11-04 2001-05-18 Sanden Corp 斜板式圧縮機
JP3259777B2 (ja) * 1999-11-26 2002-02-25 大豊工業株式会社 半球状シュー
US6926779B1 (en) 1999-12-01 2005-08-09 Visteon Global Technologies, Inc. Lead-free copper-based coatings with bismuth for swashplate compressors
JP2001335812A (ja) * 2000-03-24 2001-12-04 Senju Metal Ind Co Ltd 鉛フリー平軸受およびその製造方法
JP2002005013A (ja) * 2000-06-27 2002-01-09 Toyota Industries Corp 斜板式圧縮機
KR100432948B1 (ko) * 2000-07-14 2004-05-28 가부시키가이샤 도요다 지도숏키 편측경사판식 압축기
US6706415B2 (en) * 2000-12-28 2004-03-16 Copeland Corporation Marine coating
JP4287064B2 (ja) 2001-02-13 2009-07-01 サンデン株式会社 時効硬化型アルミ材製滑り軸受けの熱処理方法
CN1215267C (zh) * 2001-03-16 2005-08-17 大丰工业株式会社 滑动件
JP2002295473A (ja) 2001-03-28 2002-10-09 Senju Metal Ind Co Ltd 鉛フリージャーナル軸受
JP2002317757A (ja) * 2001-04-20 2002-10-31 Toyota Industries Corp 容量可変型斜板式圧縮機における斜板
JP4496662B2 (ja) * 2001-04-20 2010-07-07 株式会社豊田自動織機 斜板式圧縮機における斜板
JP2002332960A (ja) * 2001-05-10 2002-11-22 Toyota Industries Corp シューの製造方法
JP2003042061A (ja) * 2001-05-21 2003-02-13 Toyota Industries Corp 斜板式圧縮機
JP3948259B2 (ja) * 2001-05-21 2007-07-25 株式会社豊田自動織機 斜板式圧縮機用シューおよびその製造方法
US6543333B2 (en) 2001-06-01 2003-04-08 Visteon Global Technologies, Inc. Enriched cobalt-tin swashplate coating alloy
DE10231212B4 (de) * 2001-07-21 2014-06-05 Volkswagen Ag Taumelscheibenkompressor
CN100420843C (zh) * 2002-01-18 2008-09-24 株式会社理研 热喷涂活塞环
JP2004251256A (ja) * 2003-02-21 2004-09-09 Sanden Corp 斜板式圧縮機
KR100539399B1 (ko) * 2004-01-20 2005-12-27 (유)해송피앤씨 스와시 플레이트의 표면처리 방법
DE102004044519A1 (de) * 2004-09-15 2006-03-30 Wieland-Werke Ag Gleitkörper und Verfahren zur Herstellung eines Gleitkörpers sowie dessen Verwendung
JP2006083429A (ja) * 2004-09-16 2006-03-30 Toto Ltd 複合構造物
CA2514491C (en) * 2004-09-17 2012-07-03 Sulzer Metco Ag A spray powder
KR100619592B1 (ko) * 2004-10-19 2006-09-13 재단법인 포항산업과학연구원 가변식 압축기 사판의 제조를 위한 용사코팅용 합금재 및 이를 이용한 가변식 압축기 사판의 제조방법
JP2007016288A (ja) * 2005-07-08 2007-01-25 Toyota Motor Corp 軸受材被覆摺動部材の製造方法及び軸受材被覆摺動部材
JP2007203125A (ja) * 2006-01-30 2007-08-16 Sanden Corp 摺動部材
US20070217903A1 (en) * 2006-03-14 2007-09-20 Thamboo Samuel V Enhanced bearing durability rotating member method and apparatus
US20090097990A1 (en) * 2007-09-27 2009-04-16 Hiroshi Kubo Swash plate type compressor
KR101261987B1 (ko) * 2009-12-03 2013-05-16 현대자동차주식회사 압축기 부품 표면처리방법
KR101327059B1 (ko) 2011-03-09 2013-11-07 현대자동차주식회사 스와시 플레이트 및 그 제조방법
CN103452804B (zh) * 2013-06-24 2015-12-09 江苏盈科汽车空调有限公司 一种汽车空调压缩机斜盘部件
CN113249610B (zh) * 2021-05-10 2021-12-24 南京微米电子产业研究院有限公司 一种铜基金属抗生物涂层及其制备方法
WO2023145424A1 (ja) * 2022-01-26 2023-08-03 日産自動車株式会社 摺動部材及び該摺動部材を備える内燃機関

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136611A (ja) * 1974-09-24 1976-03-27 Taiho Kogyo Co Ltd
JPS5424304A (en) * 1977-07-26 1979-02-23 Toyota Motor Corp Rotary air compressor
JPS5792171A (en) * 1980-10-31 1982-06-08 Oiles Ind Co Ltd Sliding material having sprayed coat
JPS60149787A (ja) * 1983-10-19 1985-08-07 サ−マテツク インタ−ナシヨナル,インコ−ポレイテイド 被膜中の球形アルミニウム粒子
JPS61201782A (ja) * 1985-03-02 1986-09-06 Taiho Kogyo Co Ltd 斜板式コンプレツサ
JPH0234763A (ja) * 1988-07-22 1990-02-05 Toyota Motor Corp 摺動部材
JPH04300073A (ja) * 1990-12-27 1992-10-23 Daido Metal Co Ltd 複合摺動材料とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285640A (en) * 1978-08-03 1981-08-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor
JPH0697033B2 (ja) * 1988-11-11 1994-11-30 株式会社豊田自動織機製作所 斜板式圧縮機
JPH0430073A (ja) * 1990-05-25 1992-02-03 Hitachi Ltd 免震床
US5630355A (en) * 1993-06-21 1997-05-20 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Reciprocating type compressor with improved cylinder block
US5864745A (en) * 1994-03-16 1999-01-26 Taiho Kogyo Co., Ltd. Swash plate of a swash-plate type compressor
US5655432A (en) * 1995-12-07 1997-08-12 Ford Motor Company Swash plate with polyfluoro elastomer coating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136611A (ja) * 1974-09-24 1976-03-27 Taiho Kogyo Co Ltd
JPS5424304A (en) * 1977-07-26 1979-02-23 Toyota Motor Corp Rotary air compressor
JPS5792171A (en) * 1980-10-31 1982-06-08 Oiles Ind Co Ltd Sliding material having sprayed coat
JPS60149787A (ja) * 1983-10-19 1985-08-07 サ−マテツク インタ−ナシヨナル,インコ−ポレイテイド 被膜中の球形アルミニウム粒子
JPS61201782A (ja) * 1985-03-02 1986-09-06 Taiho Kogyo Co Ltd 斜板式コンプレツサ
JPH0234763A (ja) * 1988-07-22 1990-02-05 Toyota Motor Corp 摺動部材
JPH04300073A (ja) * 1990-12-27 1992-10-23 Daido Metal Co Ltd 複合摺動材料とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0776986A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289785B1 (en) 1996-11-21 2001-09-18 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor
US6192784B1 (en) 1997-02-14 2001-02-27 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate compressor
WO1999030032A1 (de) * 1997-12-10 1999-06-17 Peter Kleinedler Axialkolbenmaschine

Also Published As

Publication number Publication date
DE69614644D1 (de) 2001-09-27
EP0776986A1 (en) 1997-06-04
EP0776986B1 (en) 2001-08-22
EP0776986A4 (en) 1998-05-06
JP3568061B2 (ja) 2004-09-22
DE69614644T2 (de) 2002-06-27
JPH08311634A (ja) 1996-11-26
US5875702A (en) 1999-03-02
KR970704903A (ko) 1997-09-06
KR100255279B1 (ko) 2000-05-01

Similar Documents

Publication Publication Date Title
JP3568061B2 (ja) 斜板式コンプレッサーの斜板及び斜板とシューとの組合わせ
US5864745A (en) Swash plate of a swash-plate type compressor
US20060134447A1 (en) Flame-sprayed copper-aluminum composite material and its production method
US6541127B1 (en) Swash plate of swash plate type compressor
CN1107802C (zh) 斜盘式压缩机的旋转斜盘
EP0992683B1 (en) Swash plate of swash plate compressor
EP1106704A1 (en) Lead-free copper-based coatings with bismuth for a swashplate compressor
EP1006210A1 (en) Aluminum alloy-based sliding material
JP2982876B2 (ja) 斜板式コンプレッサーの斜板
JP2002031045A (ja) 斜板式コンプレッサー
JP2965192B2 (ja) 青銅系軸受材料及びその製造方法
JP3556863B2 (ja) 銅−アルミニウム複合材料の製造方法
JP2002256371A (ja) 摺動部品用銅合金
JPS63147976A (ja) 斜板式運動変換装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019970700311

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996915164

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08776004

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996915164

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970700311

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970700311

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996915164

Country of ref document: EP