WO1996034231A1 - Appareil de traitement thermique des dechets - Google Patents

Appareil de traitement thermique des dechets Download PDF

Info

Publication number
WO1996034231A1
WO1996034231A1 PCT/JP1996/001173 JP9601173W WO9634231A1 WO 1996034231 A1 WO1996034231 A1 WO 1996034231A1 JP 9601173 W JP9601173 W JP 9601173W WO 9634231 A1 WO9634231 A1 WO 9634231A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
passage
furnace
heat treatment
waste heat
Prior art date
Application number
PCT/JP1996/001173
Other languages
English (en)
French (fr)
Inventor
Kanichi Kadotani
Toshinobu Tanimura
Hisaakira Imaizumi
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1019970700237A priority Critical patent/KR970705158A/ko
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to EP96912275A priority patent/EP0825382A4/en
Publication of WO1996034231A1 publication Critical patent/WO1996034231A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0273Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using indirect heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/303Burning pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/304Burning pyrosolids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Definitions

  • the pyrolysis gas is pyrolyzed into a carbonization gas and a pyrolysis residue, and the pyrolysis gas is used as a heat source for the pyrolysis.
  • the present invention relates to a waste heat treatment apparatus that can be made to have a large volume and that can effectively use waste heat. Background art
  • This conventional waste heat treatment system for reusing the carbonized gas is configured as shown in Fig. 1.
  • an inner cylinder 3 that supplies waste 2 from above and heats it indirectly from the outside while forming a moving bed penetrates.
  • a discharge valve 5 for discharging the pyrolysis residue 4 to the outside of the furnace and a conduit 8 for guiding the generated pyrolysis gas 6 to the heating chamber 7 of the pyrolysis furnace 1 are attached below the inner cylinder 3. It is.
  • An air inlet pipe 10 for supplying air from the air preheater 9 is connected to a lower portion of the heating chamber 7.
  • Partial combustion air is sent from the air fan 13 to the air preheater 9 through the pipe 14.
  • the air fan 13 sends combustion air to the lower part of the heating chamber 7 through the pipe 15.
  • a burner 16 is attached to a lower portion of the heating chamber 7, and a purified gas for combustion is sent to the parner 16 through a gas pipe 17.
  • An exhaust gas fan 18 is attached to the upper part of the heating chamber 7, and the exhaust gas fan 18 discharges an exhaust gas 19.
  • the partially combusted pyrolysis gas that has passed through the air preheater 9 is guided to the lower part of the gas cleaning tower 21 by the gas pipe 20.
  • a pyrolysis gas fan 22 is attached to the upper part of the gas washing tower 21, whereby the purified gas is sent to the gas pipe 17.
  • the gas cleaning tower 21 is provided with a circulation pump 23.
  • the heating chamber 7 of the combustion furnace 1 for heating the inner cylinder 3 from the surroundings is constituted by a single space having a donut-shaped cross section.
  • the burner 16 is provided at one end (lower end) of the combustion chamber 7, so that the combustion by the burner 16 is performed in one side of the combustion chamber 7 in a squeezed state.
  • the combustion load was locally unbalanced. There was a problem in durability near the part where the parner 16 was provided.
  • the present invention has been made in view of the above problems, and recycles carbonized gas generated in a pyrolysis furnace for heating waste in the pyrolysis furnace.
  • the combustion load of the entire combustion furnace surrounding the pyrolysis furnace can be averaged, and the durability of the combustion furnace where the required combustion temperature is high is improved. It is an object of the present invention to provide a waste heat treatment apparatus capable of performing combustion with extremely high combustion efficiency.
  • Waste heat treatment equipment that can efficiently use the heat generated in the above-mentioned carbonization process and the power generated by thermoelectric power generation using exhaust gas to efficiently perform heating in the melting furnace. It is intended to do so.
  • a first aspect of the waste heat treatment apparatus includes:
  • a pyrolysis furnace equipped with a waste inlet having a gas outlet and a door and an openable hearth;
  • a combustion furnace which is formed in a shape surrounding the pyrolysis furnace and has a combustion device using at least one of fuel from a fuel supply device and carbonization gas from the gas outlet as fuel,
  • the combustion furnace has a double structure, and a combustion passage is formed by a peripheral wall and an intermediate wall of the pyrolysis furnace, and a dilution air passage is formed by the intermediate wall and the outer wall.
  • An upstream side of the combustion passage is connected to a combustion air supply pipe, and a downstream side is connected to an exhaust passage,
  • An upstream side of the dilution air passage was connected to a dilution air supply pipe, and the dilution air passage was connected to the combustion passage.
  • a predetermined amount of waste is put into the pyrolysis furnace. Then, fuel is supplied to the combustion device to perform combustion in a state where the thermal decomposition furnace is sealed. The combustion gas generated at this time is discharged to the exhaust passage through the combustion passage of the combustion device, and during this time, the thermal decomposition furnace constituting the inner wall of the combustion passage is heated from the outside.
  • the diluted air is supplied from the diluted air passage to the entire combustion passage, so that good combustion is performed in the entire combustion passage.
  • the waste contained therein gradually releases carbonized gas, and the carbonized gas is discharged from the gas outlet. Since this carbonized gas is flammable, it is immediately burned in the combustion device and becomes part of the heat generated in the combustion furnace. At this time, the amount of fuel supplied to the combustion device is reduced by the amount of the carbonization gas.
  • the combustion load can be averaged, the durability of a combustion furnace requiring a high combustion temperature can be improved, and combustion can be performed with extremely high combustion efficiency.
  • a gas outlet may be connected to the combustion passage downstream of the combustion device, or a gas outlet may be connected to the combustion passage upstream of the combustion device.
  • a communicating portion between the dilution air passage and the combustion passage is formed of a large number of air holes.
  • An openable and closable hearth provided below the pyrolysis furnace and surrounded by the combustion passage; a heating device provided to face the hearth; and a heating device surrounding the heating device. It is also desirable to have a melting furnace constituted by a side wall made of a high-temperature heat storage material or the like facing the combustion passage.
  • Waste residues carbonized in the pyrolysis furnace are heated and melted in the melting furnace.
  • the melting furnace absorbs the amount of heat in the combustion passage of the combustion device by the high-temperature heat storage material constituting the side wall, and is heated by the combustion heat of the wrench or the heat of electric heating.
  • the waste that has been heated in the combustion furnace and carbonized in the pyrolysis furnace can be further melted, and the waste residue after the heat treatment can be reduced to an extremely small volume.
  • heating in a melting furnace for melting the waste can be efficiently performed by utilizing the heat in the carbonization step.
  • a combustion furnace which is formed in a shape surrounding the pyrolysis furnace, and has a combustion device using at least one of the fuel from the fuel supply device and the carbonization gas from the pyrolysis furnace as a fuel,
  • the combustion furnace has a double structure, and the peripheral wall and the intermediate wall of the pyrolysis furnace constitute a space portion and a combustion passage continuous with the space portion, and the intermediate wall and the outer wall constitute a dilution air passage, respectively.
  • An upstream side of the dilution air passage is connected to a dilution air supply blower, and the dilution air passage is communicated with the space and the combustion passage;
  • the communicating portion between the dilution air passage and the combustion passage be a large number of ventilation holes.
  • thermoelectric generator may be provided in the exhaust passage so as to obtain electric power and hot water using a temperature difference between the exhaust gas passing through the exhaust passage and the coolant. Further, a power source device that uses the power obtained by the thermoelectric generator as a power source is connected to an electric drive unit and an electric heat source unit of each component device of the waste heat treatment apparatus, and the electric power is supplied from the power source device. It is desirable to supply them.
  • the combustion gas in the combustion passage of the combustion device is exhausted from the exhaust passage. During this time, the heat is absorbed by the thermoelectric generator provided in the exhaust passage and used for electric power and hot water.
  • thermoelectric generator the electric power generated by the thermoelectric generator at this time is used as a power supply for the waste heat treatment apparatus.
  • waste heat from the combustion furnace and the melting furnace can be effectively used as hot water and electricity.
  • the power supply device using this electric power as the electric power source is used as the electric power source for each device of the waste heat treatment apparatus, thereby achieving this.
  • the required power of the waste heat treatment equipment can be supplied by itself, and the energy saving rate can be improved.
  • the exhaust passage surrounds the combustion device.
  • FIG. 1 is an explanatory diagram showing a conventional waste heat treatment apparatus in which a dry distillation gas is reused.
  • FIG. 2 is a configuration explanatory view schematically showing an embodiment of the waste heat treatment apparatus according to the present invention.
  • FIG. 3 is a schematic structural explanatory view showing another example of the combustion device of the above embodiment in an enlarged manner.
  • FIG. 4 is an explanatory diagram showing a use state of electric power of the thermoelectric generator in the above embodiment.
  • FIG. 5 is a configuration explanatory view showing another embodiment of the waste heat treatment apparatus according to the present invention.
  • reference numeral 30 denotes a pyrolysis furnace composed of a conical upper portion having a small diameter on the upper side and a cylindrical main body, and a gas outlet 31 is provided at the top thereof.
  • the gas outlet 31 is provided with a pressure control valve 32 which is opened when the pressure in the pyrolysis furnace 30 exceeds a predetermined pressure.
  • the pyrolysis furnace 30 is provided with a hearth 33 that can be opened downward at the bottom thereof, and a waste input port 35 having an opening / closing door 34 at the side flanks.
  • a hearth 33 that can be opened downward at the bottom thereof
  • a waste input port 35 having an opening / closing door 34 at the side flanks.
  • Each of the hearth 3 3 and the opening / closing door 3 4 can be closed in an airtight manner.
  • a melting furnace 36 is provided below the hearth 33 of the pyrolysis furnace 30.
  • the melting furnace 36 includes a surrounding heating wall 37, a hearth 38 that can be opened and closed downward, and a heating source 39 such as a wrench provided above the hearth 38.
  • a melt outlet 40 is provided below the melting furnace 36.
  • the hearths 33, 38 can be opened and closed from the outside.
  • This pyrolysis furnace is surrounded by the outside of the pyrolysis furnace 30.
  • a combustion furnace 41 concentric with and substantially similar to 30 is provided.
  • the combustion furnace 41 has a double structure, and includes a combustion passage 43 composed of a peripheral wall 30a of the pyrolysis furnace 30 and an intermediate wall 42, an intermediate wall 42 and an outer wall.
  • the intermediate wall 42 is provided with a large number of ventilation holes 46 for supplying air from the dilution air passage 45 to the combustion passage 43 over the entire peripheral surface.
  • the gas outlet 31 of the pyrolysis furnace 30 is disposed to face the upper part of the combustion furnace 41.
  • a combustion device 47 is provided downward at the most upstream portion of the combustion passage 43 at the upper end of the combustion furnace 41. Further, a combustion air supply pipe 48a is connected to an upstream portion of the combustion device 47. Further, a dilution air supply pipe 48 b is connected to the upstream side of the dilution air passage 45. An air supply controller 49 for controlling the air supply is connected to the two air supply pipes 48a and 48b.
  • the end of the dilution air passage 45 of the combustion furnace 41 is a dead end, and the entire amount of the dilution air supplied to the dilution air passage 45 passes through the ventilation hole 46 and the combustion passage 43. Being supplied within I have.
  • the downstream end of the combustion passage 43 is bent upward from a portion that has passed around the melting furnace 36 so as to surround the outside of the dilution air passage 45 of the combustion furnace 41. It communicates with the provided exhaust passage 50.
  • the exhaust passage 50 is provided with a thermoelectric generator 51 that generates electric power by using exhaust heat in the exhaust gas in the exhaust passage 50.
  • This thermoelectric generator 51 utilizes the Pelchu effect of a large number of thermoelectric elements 52.
  • One end of the thermoelectric element 52 is cooled by a cooling passage 53, and the other end is cooled.
  • the exhaust gas is exposed to an exhaust passage 50, and power is generated by the temperature difference between both ends, that is, the temperature difference between the coolant and the exhaust gas.
  • a cooling water circulating device 54 is connected to the cooling passage 53, and the coolant (cooling water) that has absorbed the heat and has been heated is supplied to a hot water supply unit such as a hot water supply device or a heating device. It is supplied to
  • the combustion device 47 provided in the upper part of the combustion furnace 41 has a structure in which a parner 56 is provided downstream in the upstream part of the combustion passage 43.
  • the upstream side of the parner 56 is connected to a combustion air supply pipe 48a via a swirler 57.
  • a fuel supply device 59 controlled by a supply amount control device 58 is connected to the parner 56.
  • the downstream side of the pressure control valve 32 of the gas outlet 31 of the pyrolysis furnace 30 is connected to the upstream side of the combustion device 47 via a downward communication hole 31 a. You may connect them. in this case The air passing through the air supply pipe 48b forms an air layer on the inner wall surface of the air supply pipe 48b, and the air layer causes the inner wall of the air supply pipe 48b to be overheated by the burner 56. The effect of protecting is obtained.
  • the heating wall 37 and the hearth 38 around the melting furnace 36 are made of a heat-resistant material such as ceramic and a porous, air-permeable high-temperature heat storage material. Downstream heat enters the melting furnace 36.
  • a control valve 63 is provided at the downstream end of the combustion furnace 41, whereby the amount of heat exhausted from the exhaust passage 50 of the combustion furnace 41 is controlled.
  • a predetermined amount of waste 60 is put into the pyrolysis furnace 30, and then the opening / closing door 34 of the inlet is closed and sealed. At this time, the pressure control valve 32 provided at the top of the pyrolysis furnace 30 is closed.
  • combustion device 47 is operated.
  • the combustion device 47 may be operated before the introduction of the waste 60 for preheating.
  • combustion in the combustion device 47 is performed by supplying fuel (gas fuel or liquid combustion) from the fuel supply device 59 to the burner 56.
  • fuel gas fuel or liquid combustion
  • air is supplied from both combustion and dilution air supply pipes 48a and 48b.
  • the combustion air is spirally wound by a slurry 57 and supplied to the combustion device 47.
  • the combustion gas from the combustion in the combustion device 47 passes through the combustion passage 43 of the combustion furnace 41, passes through the periphery of the melting furnace 36, passes through the exhaust passage 50, and then goes to the outlet 50a. It is discharged. At this time, the air (oxygen) for the primary combustion by the combustion device 47 is supplied to the combustion air supply. Supplied from supply pipe 48a. Then, air for secondary combustion in the combustion passage 43 of the combustion furnace 41 is supplied through the dilution air passage 45 connected to the dilution air supply pipe 48b. Supplied through 6.
  • the combustion of the fuel in the combustion furnace 41 heats the inside of the pyrolysis furnace 30 through the side wall of the pyrolysis ⁇ 30, and the waste 60 in it is heated and carbonized in the closed space. You. When the temperature in the pyrolysis furnace 30 becomes more than 300, flammable carbonized gas is generated from the waste 60. Then, when the pressure in the pyrolysis furnace 30 becomes higher than a predetermined pressure by the carbonization gas, the pressure control valve 32 is opened, and the carbonization gas in the pyrolysis furnace 30 is removed by the pyrolysis furnace.
  • the gas is supplied from a gas outlet 31 at the top of 30 to a combustion device 47.
  • the carbonized gas is supplied to the burner 47
  • the air is supplied directly from the communication holes 31 a to the upstream side of the combustion device 47.
  • the fuel is mixed and burned in a parner 56 together with the fuel supplied thereto.
  • the amount of fuel supplied to the parner 56 is reduced according to the amount of the carbonized gas.
  • the amount of carbonization gas increases, the amount of fuel supplied to the parner 56 becomes zero, and only the carbonization gas may be burned.
  • the combustion gas resulting from the combustion of the fuel and the carbonization gas in the combustion device 47 is subjected to secondary combustion in the combustion passage 43.
  • the dilution gas passage 45 is formed around substantially the entire periphery of the combustion passage 43.
  • the fuel supply to the burner 47 of the combustion device 47 is controlled according to the amount of carbonized gas generated from the pyrolysis furnace 30.
  • the amount of carbonized gas generated can be known by detecting the pressure in the pyrolysis furnace 30. As described above, the waste 60 in the pyrolysis furnace 30 is carbonized and the carbonized gas is discharged. Then, when the carbonization of the waste proceeds and the amount of generated carbonization gas decreases, the pressure in the pyrolysis furnace 30 decreases, the pressure control valve 32 is closed, and the carbonization step is completed.
  • the pyrolysis residue 60 a of the carbonized waste 60 after the completion of the carbonization is dropped and stored in the melting furnace 36 by opening the hearth 33. Then, the carbonized pyrolysis residue 60a is further heated and melted at 1200 ° C. or higher.
  • the thermal decomposition residue 60 a is heated by the additional heat from the heating source 39 such as a burner and the heat storage by the heat absorption from the combustion furnace 41 in the carbonization step.
  • the heating source 39 such as a burner and the heat storage by the heat absorption from the combustion furnace 41 in the carbonization step.
  • the heating wall 37 and the hearth 38 of the melting furnace 36 are formed of a high-temperature heat storage material, the temperature is sufficiently raised by the heating means.
  • the heating source 39 is installed at a position where it does not hinder the fall of the thermal decomposition residue 60a, or can be moved laterally with respect to the falling path.
  • the melt 60 b generated by melting the pyrolysis residue 60 a in the melting furnace 36 is discharged to the melt outlet 40 by opening the hearth 38, where it is discharged. From the outside.
  • Exhaust gas generated by each combustion action in the carbonization step and the melting step is discharged through an exhaust passage 50.
  • the exhaust heat in the exhaust passage 50 is converted into electric power and hot water in the thermoelectric generator 51. Each is used.
  • thermoelectric generator 51 is connected to the dilution air passage.
  • thermoelectric generator 51 It is installed along the outer wall of 5, but the thermoelectric generator 51
  • FIG. 4 shows an example of a use state of the electric power generated by the thermoelectric generator 51.
  • the thermoelectric element 52 of the thermoelectric generator 51 is connected to the power supply 61, and the thermoelectric element 52
  • the power generated by the power supply device 61 is converted to power that can be used by the power supply device 61 (the power from the power supply device 61 is supplied to the air supply amount control device 49,
  • the cooling water circulation device 54, the fuel supply amount control device 58, and the fuel supply device 59 are supplied via a power supply line.
  • reference numeral 62 denotes an optional external device separate from the device of the present invention, and the power generated by the power supply device 61 may be supplied to the optional device. .
  • FIG. 5 shows another embodiment of the present invention.
  • This embodiment is of a horizontal axis type and does not have a melting furnace portion.
  • members and configurations having the same functions as those shown in FIGS. 2 and 4 are denoted by the same reference numerals, and description thereof will be omitted.
  • the pyrolysis furnace 30 is arranged laterally together with the combustion furnace 41, and one end of the pyrolysis furnace 30 is closed by a lid 65 so as to be hermetically sealed. Then, the lid 65 is attached to the lid 65 via a support member 66. A basket-like waste case 67 made of mesh material is attached, and the waste case 67 can be inserted into and removed from the pyrolysis furnace 30 by attaching and detaching the lid 65. I have.
  • the waste case 67 is openable and can be opened and removed from the pyrolysis furnace 30.Waste 60 can be put into the waste case 67, or the pyrolysis residue can be removed from the waste case 67. Can be taken out.
  • the combustion furnace 41 surrounding the pyrolysis furnace 30 is provided with a large space at the tip side of the pyrolysis furnace 30, and a backer 56 of a combustion device 47 and a pyrolysis furnace There is provided a carbonization gas jetting section 69 for supplying the carbonization gas from 30 via a pressure valve 68.
  • the fuel supply pipe 70 and a profiler 71 for supplying combustion air are connected to the parner 56. Further, a blower 73 is also connected to a carbonized gas passage 72 connected to the carbonized gas jetting section 69.
  • thermoelectric element 52 of the thermoelectric generator 51 is interposed in the exhaust passage 50 that extends from the combustion passage 43 to the discharge port 50a, and cooling water circulates outside the thermoelectric generator 51. Are surrounded by a passage 53.
  • the waste 60 is sealed in the pyrolysis furnace 30 in a state of being placed in the waste case 67.
  • the combustion device 47 is operated in this state. At the beginning of operation, the combustion in the combustion device 47 is supplied to the parner 56 through the fuel supply pipe 70 through the fuel (gas Fuel or liquid combustion). At this time, the air for combustion and dilution flows into combustion passage 4 within 3 c the dilution air supplied Ri good blower 7 4 through the vent hole 4 6 Ri good dilution air passage 4 5 Combustion is promoted. Further, the outer wall and the intermediate wall 42 of the combustion furnace 41 are protected from being heated to a temperature higher than a predetermined value by the cooling action of the dilution air.
  • the combustion in the combustion furnace 41 is not localized, and substantially uniform combustion in the combustion passage 43. This prevents local overheating and prevents the combustion furnace 41 from being damaged by overheating.
  • the combustion gas resulting from the combustion of the fuel in the combustion device 47 passes through the combustion passage 43 of the combustion furnace 41 and is discharged to the outlet 50a through the exhaust passage 50.
  • the combustion of the fuel in the combustion furnace 41 heats the inside of the pyrolysis furnace 30 through the side wall of the pyrolysis furnace 30, and the waste 60 therein is heated and carbonized in the closed space.
  • the temperature in the furnace reaches 300 ° C. or higher, flammable carbonized gas is generated from the waste 60, and the pressure in the pyrolysis furnace 30 is equal to or higher than a predetermined pressure by the carbonized gas.
  • the pressure valve 68 opens, and the carbonization gas in the pyrolysis furnace 30 is supplied to the combustion device 47 from the gas ejection part 69 provided at the back of the combustion furnace 41 of the pyrolysis furnace 30. Burned.
  • Fuel supply to the burner 47 of the combustion device 47 is controlled in accordance with the amount of carbonized gas generated from the pyrolysis furnace 30.
  • the amount of the carbonization gas increases, the amount of fuel supplied to the parner 56 becomes zero, and only the carbonization gas may be burned.
  • the amount of carbonized gas generated can be known by detecting the pressure in the thermal decomposition furnace 30. Waste carbonized after carbonization is removed, and the deer waste case 67 is removed from the pyrolysis furnace 30 for disposal.
  • Exhaust heat in the exhaust gas passing through the exhaust passage 50 is converted into electric power and hot water by the thermoelectric generator 51 and used respectively.
  • the pyrolysis furnace is surrounded. Even in a combustion furnace with such a configuration, the combustion load of the entire combustion furnace can be averaged, the durability of the combustion furnace requiring a high combustion temperature can be improved, and combustion can be performed with extremely high combustion efficiency It can be performed.
  • the waste heated in the combustion furnace and carbonized in the pyrolysis furnace is further melted to reduce the amount of the waste residue after the heat treatment to an extremely small volume.
  • the heating in the melting furnace for melting the waste can be efficiently performed by making good use of the heat in the carbonization step.
  • waste heat from the combustion furnace and the melting furnace can be effectively used as hot water and electricity.
  • a power supply device using the electric power as a power source is used as an electric power source for each device of the waste heat treatment device, so that this waste heat treatment is performed.
  • the required power of the equipment can be supplied by itself, and the energy saving rate can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Incineration Of Waste (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

明細書 廃棄物熱処理装置
技術分野
この発明は、 廃棄物を乾留ガスと熱分解残留物とに熱分解して 上記乾留ガスを上記熱分解のための熱源に利用する と共に、 上記 熱分解残留物を溶融して廃棄物を極めて小さな容積のものにする こ とができるようにし、 さ らに排熱を有効に利用できるよ う に し た廃棄物熱処理装置に関するものである。 背景技術
廃棄物を熱分解して乾留ガス (熱分解ガス) を抽出 し、 これを 上記廃棄物加熱用の燃料と して利用するよう に した乾留ガス再利 用型の廃棄物熱処理装置と しては、 特開昭 5 6 — 1 6 5 8 1 7号 公報に示されたものが知られている。
この従来の乾留ガス再利用型の廃棄物熱処理装置は、 図 1 に示 すように構成されている。 熱分解炉 1 の中央には、 廃棄物 2 を上 部から供給して移動層を形成させながら外部よ り間接的に加熱す る内筒 3が貫通している。 そ して、 この内筒 3 の下部には、 熱分 解残渣 4 を炉外に排出する排出弁 5 と、 発生した熱分解ガス 6 を 熱分解炉 1 の加熱室 7へ導く 導管 8が取付けてある。 加熱室 7の 下部には、 空気予熱器 9から空気を供給する空気送入管 1 0が接 続されている。
また、 加熱室 7の上部には部分燃焼分解ガス 1 1 を空気予熱器 9に送るガス管 1 2が取付けられている。
この空気予熱器 9には、 空気フ ァ ン 1 3 から配管 1 4 を通して 部分燃焼用空気が送られている。 また、 空気フ ァ ン 1 3 は配管 1 5を通して加熱室 7の下部に燃焼用空気を送っている。 こ の加 熱室 7の下部にはバーナ 1 6が取付けられ、 該パーナ 1 6 にガス 管 1 7を通して燃焼用の精製ガスが送られている。 また、 加熱室 7の上部には排ガスフ ァ ン 1 8が取付けてあり、 該排ガスフ ァ ン 1 8により排ガス 1 9が排出される。
空気予熱器 9を通った部分燃焼熱分解ガスは、 ガス管 2 0 によ りガス洗浄塔 2 1 の下部に導かれる。 こ のガス洗浄塔 2 1 の上部 には熱分解ガスフ ァ ン 2 2が取付けてあり、 これによ り精製ガス がガス管 1 7に送られる。 なお、 ガス洗浄塔 2 1 には循環ポンプ 2 3が取付けてある。
ところで、 上記従来の乾留ガス再利用型の廃棄物熱処理装置で は、 内筒 3を周囲から加熱する燃焼炉 1 の加熱室 7 は、 断面形状 が ドーナツ状の 1 つの空間にて構成され、 これの一側端 (下端) 部にバーナ 1 6 が設けられている構成となっているため、 こ の パーナ 1 6 による燃焼は、 燃焼室 7の一側部でかたよ つた状態で 行われ、 燃焼室 7では局部的に燃焼負荷がア ンバラ ンスとな り . パーナ 1 6を設けた部分付近の耐久性に問題があった。
また、 上記従来のものでは、 多く の熱エネルギーを含む排ガス はそのまま大気へ排出 していたので、 熱効率が良く ないという問 題もあった。
本発明は、 上問題点を鑑みなされたものであって、 熱分解炉に て発生した乾留ガスをこの熱分解炉内の廃棄物加熱用に再利用す るよう に した廃棄物熱処理装置において、 熱分解炉を囲繞する構 成の燃焼炉でもそれ全体での燃焼負荷を平均化できて、 必要な燃 焼温度が高温である燃焼炉の耐久性を向上させる こ とができ、 し かも極めて高い燃焼効率にて燃焼を行う こ とができるよ うに した 廃棄物熱処理装置を提供することを目的とするものである。
また、 上記燃焼炉にて加熱されて熱分解炉にて炭化状に乾留さ れた廃棄物をさ らに溶融できて熱処理後の廃棄物残渣を極めて少 なく でき、 しかもこの廃棄物を溶融するための溶融炉での加熱を 上記乾留工程で発生した熱や、 排ガスを利用 した熱電発電による 電力等をう ま く 利用 して効率よ く 行なう こ とができるよう に した 廃棄物熱処理装置を提供することを目的とするものである。
さ らに、 上記燃焼炉及び溶融炉からの排熱を有効に利用できる ように した廃棄物熱処理装置を提供する こ とを目的とする もので ある。 発明の開示
上記目的を達成するために、 本発明に係る廃棄物熱処理装置の 第 1 の態様は、
ガス出口と開閉扉を有する廃棄物投入口と開閉可能な炉床とを 備えた熱分解炉と、
該熱分解炉を囲繞する形状に形成されていて、 燃料供給装置か らの燃料と前記ガス出口からの乾留ガスの少な く と も一方を燃料 とする燃焼装置を有する燃焼炉とからなり、
前記燃焼炉を 2重構造に して、 前記熱分解炉の周壁と中間壁と で燃焼通路を、 該中間壁と外壁とで希釈用空気通路をそれぞれ構 成し、
前記燃焼通路内に前記燃焼装置を配設し、
前記燃焼通路の上流側を燃焼用空気供給管に接続し、 且つ下流 側を排気通路に接続し、
前記希釈用空気通路の上流側を希釈用空気供給管に接続し、 且 つ前記希釈用空気通路を前記燃焼通路に連通させた、
廃棄物熱処理装置である。
そ して、 この態様において、 乾留ガスの発生量に応じて前記燃 焼装置への燃料供給量を減少せしめる燃料供給量制御装置を設け るのが望ま しい。
これらの構成によれば、
熱分解炉へは所定量の廃棄物が投入される。 そ して、 この熱分 解炉が密封された状態で燃焼装置に燃料が供給されて燃焼が行わ れる。 このとき発生する燃焼ガスは、 燃焼装置の燃焼通路を経て 排気通路へ排出され、 こ の間に、 燃焼通路の内壁を構成する熱分 解炉が外側から加熱される。
このとき燃焼通路へは、 その全体において、 稀釈空気通路から 稀釈空気が供給されるので、 燃焼通路全体で良好な燃焼が行われ る。
さ らに、 熱分解炉が高温になる と、 この中の廃棄物は徐々 に乾 留ガスを出 し、 該乾留ガスがガス出口よ り噴出する。 こ の乾留ガ スは可燃性であるので、 直ちに燃焼装置にて燃焼されて燃焼炉で 発生される熱の一部となる。 なお、 この時、 燃焼装置への燃料の 供給量は上記乾留ガスの量だけ減少させられる。
かく して、 熱分解炉を囲繞する構成の燃焼炉でもそれ全体での 燃焼負荷を平均化できて、 必要な燃焼温度が高温である燃焼炉の 耐久性を向上させるこ とができ、 しかも極めて高い燃焼効率にて 燃焼を行う ことができる。
上記構成において、 ガス出口を前記燃焼通路の前記燃焼装置よ り下流側に接続してもよいし、 ガス出口を前記燃焼通路の前記燃 焼装置の上流側に接続してもよい。
また、 前記希釈用空気通路と前記燃焼通路との連通部分が多数 の通気孔であることが好ま しい。
また、 上記構成において、
前記熱分解炉の下方に位置し且つ前記燃焼通路に囲繞される位 置に設けた開閉可能な炉床と、 該炉床に対向するよう に設けた加 熱装置と、 前記加熱装置を囲繞し且つ前記燃焼通路に面する高温 蓄熱材等からなる側壁とから構成した溶融炉を有するこ とが望ま しい。
この構成によれば、
熱分解炉にて乾留された廃棄物の残渣は溶融炉において加熱溶 融される。 このとき、 溶融炉は側壁を構成する高温蓄熱材にて上 記燃焼装置の燃焼通路での熱量を吸収すると共にパーナの燃焼熱 や電気加熱の熱等によ り加熱される。
かく して、 上記燃焼炉にて加熱されて熱分解炉にて炭化状に乾 留された廃棄物をさ らに溶融して熱処理後の廃棄物残渣を極めて 少ない容積にするこ とができ、 しかもこの廃棄物を溶融するため の溶融炉での加熱を、 上記乾留工程での熱をう ま く 利用 して効率 良く行なう ことができる。
上記目的を達成するために、 本発明に係る廃棄物熱処理装置の 第 2の態様は、
廃棄物ケースが揷脱可能な熱分解炉と、
該熱分解炉を囲繞する形状に形成されていて、 燃料供給装置か らの燃料と前記熱分解炉からの乾留ガスの少な く と も一方を燃料 とする燃焼装置を有する燃焼炉とからなり、
前記燃焼炉を 2重構造に して、 前記熱分解炉の周壁と中間壁と で空間部と該空間部に連続する燃焼通路を、 該中間壁と外壁とで 希釈用空気通路をそれぞれ構成し、
前記空間部内に前記燃焼装置を配設し、
前記燃焼装置に燃焼用空気供給ブロアを接続し、
前記燃焼通路の下流側を排気通路に接続し、
前記希釈用空気通路の上流側を希釈用空気供給ブロアに接続し 且つ前記希釈用空気通路を前記空間部及び前記燃焼通路に連通さ せた、
廃棄物熱処理装置である。
そ して、 この態様においても、 乾留ガスの発生量に応じて前記 燃焼装置への燃料供給量を減少せしめる燃料供給量制御装置を設 けるのが望ま しい。
また、 上記構成においても、
前記希釈用空気通路と前記燃焼通路との連通部分が多数の通気 孔であることが望ま しい。
また、 上記いずれの態様においても、
前記排気通路に、 該排気通路を通る排気ガスとクーラ ン ト との 間の温度差を利用 して電力と温水を得るよう に した熱電発電装置 を介装しても良い。 さ らに、 前記熱電発電装置にて得られた電力を電力源とする電 源装置を、 廃棄物熱処理装置の各構成装置の電気駆動部及び電気 熱源部に接続して、 前記電源装置から電力を供給するよう にする のが望ま しい。
これらの構成によれば、
燃焼装置の燃焼通路の燃焼ガスは排気通路よ り排出されるが この間に、 この排気通路に設けた熱電発電装置にて熱が吸収され て電力と温水に利用される。
そ して、 このときの熱電発電装置にて発電された電力は廃棄物 熱処理装置の電源と して用いられる。
かく して、 上記燃焼炉及び溶融炉からの排熱を温水及び電気と して有効に利用できる。 そ して、 特に、 この排熱を電力に変換し た場合において、 この電力を電力源とする電源装置を廃棄物熱処 理装置の各装置への電力源とする こ とによ り、 この廃棄物熱処理 装置の必要電力を自前でまかなう こ とができ、 省エネルギ率を向 上させることができる。
さ らに、 上記いずれの構成においても、
前記排気通路が前記燃焼装置を囲繞していることが望ま しい。 図面の簡単な説明
本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図 面によ り、 よ り良く理解される ものとなろう。 なお、 添付図面に 示す実施例は、 発明を特定する こ とを意図する ものではな く 、 単 に説明及び理解を容易とするものである。
図中、 図 1 は、 乾留ガスを再利用するように した従来の廃棄物熱処理 装置を示す説明図である。
図 2 は、 本発明による破棄物熱処理装置の一実施例を概略的に 示す構成説明図である。
図 3 は、 上記実施例の燃焼装置部の他の例を拡大して示す概略 的な構成説明図である。
図 4 は、 上記実施例での熱電発電装置の電力の利用状態を示す 説明図である。
図 5 は、 本発明による廃棄物熱処理装置の他の実施例を示す構 成説明図である。 発明を実施するための好適な態様
以下に、 本発明の好適実施例による廃棄物熱処理装置を添付図 面を参照しながら説明する。
本発明の一実施例を図 2乃至図 4 に基づいて説明する。
図 2 において、 3 0は上側が小径となる錐状の上部と筒状の本 体部とから構成された熱分解炉であ り、 これの頂部にガス出口 3 1 が設けてある。 そ して、 このガス出口 3 1 には、 熱分解炉 3 0 内の圧力が所定圧以上にな っ たと き に開となる圧力制御弁 3 2が設けてある。
また、 この熱分解炉 3 0 は、 その底部には下方へ開動可能な炉 床 3 3が設けてあり、 側腹部には開閉扉 3 4 を有する廃棄物投入 口 3 5が設けてある。 この炉床 3 3 および開閉扉 3 4 のそれぞれ は、 気密状に閉じることができるようになつている。
上記熱分解炉 3 0の炉床 3 3 の下方に溶融炉 3 6が設けてある この溶融炉 3 6 は、 周囲の加熱壁 3 7 と、 _下方へ開閉動可能な炉 床 3 8 と、 炉床 3 8の上方に設けたパーナ等の加熱源 3 9 とから なっている。 溶融炉 3 6の下方には溶融物取出 し口 4 0が設けて のる。
なお、 上記両炉床 3 3 , 3 8 は外部から開閉できるよ う になつ ている。
上記熱分解炉 3 0の外側を囲繞するよう にして、 この熱分解炉
3 0 と同心状で且つ略相似形の燃焼炉 4 1 が設けてある。 この燃 焼炉 4 1 は、 2重構造になっていて、 熱分解炉 3 0 の周壁 3 0 a と中間壁 4 2 とで構成される燃焼通路 4 3 と、 中間壁 4 2 と外壁
4 4 とで構成される希釈用空気通路 4 5 とからなっている。 そ し て、 中間壁 4 2 には希釈用空気通路 4 5 から燃焼通路 4 3 に空気 を供給するための、 通気孔 4 6が全周面にわたって多数設けてあ る。 上記熱分解炉 3 0のガス出口 3 1 は、 上記燃焼炉 4 1 の上部 に対向して配設されている。
上記燃焼炉 4 1 の上端部である ところの燃焼通路 4 3 の最上流 部には、 燃焼装置 4 7が下に向けて設けてある。 また、 燃焼装置 4 7の上流部には燃焼用空気供給管 4 8 aが接続されている。 ま た、 上記希釈用空気通路 4 5 の上流側には希釈用空気供給管 4 8 b が接続さ れている。 そ して、 こ の両空気供給管 4 8 a 4 8 b には空気供給量を制御する空気供給量制御装置 4 9が接続 されている。
上記燃焼炉 4 1 の希釈用空気通路 4 5 の先端は行き止ま り に なっていて、 希釈用空気通路 4 5 に供給された希釈用空気の全量 が通気孔 4 6を通って燃焼通路 4 3 内に供給されるよ う になって いる。
一方、 燃焼通路 4 3の下流側端部は、 溶融炉 3 6 の周囲を通過 した部分より上方へ折れ曲がり、 上記燃焼炉 4 1 の希釈用空気通 路 4 5 の外側にこれを囲繞するよう に設けられた排気通路 5 0 に 連通されている。
そ して、 この排気通路 5 0 には、 該排気通路 5 0 内の排気中の 排熱を利用 して発電する熱電発電装置 5 1 が設けてある。 この熱 電発電装置 5 1 は、 多数個の熱電素子 5 2 によるペルチュ効果を 利用 したものであって、 熱電素子 5 2 の一端部がクーラ ン 卜通路 5 3 にて冷却され、 且つ他端部が排気通路 5 0 にさ らされており この両端部の温度差即ちクーラ ン 卜 と排気ガスとの温度差によ り 発電するようになつている。
上記クーラ ン ト通路 5 3 には冷却水循環装置 5 4が接続されて いて、 吸熱して昇温されたクーラ ン ト (冷却水) は、 温水供給装 置または暖房装置等の温水利用部 5 5 に供給されるよう になって いる。
燃焼炉 4 1 の上部に設けた燃焼装置 4 7 は、 燃焼通路 4 3 の上 流部においてパーナ 5 6が下流側へ向けて設けられた構造となつ ている。 そ して、 このパーナ 5 6 の上流側はスワラ一 5 7を介し て燃焼用空気供給管 4 8 a に連通されている。 パーナ 5 6 には供 給量制御装置 5 8にて制御される燃料供給装置 5 9が接続されて いる。
なお、 図 3 に示すよう に、 この燃焼装置 4 7 の上流側に、 上記 熱分解炉 3 0のガス出口 3 1 の圧力制御弁 3 2 の下流側を下向き の連通孔 3 1 a を介して接続するよ う に して もよい。 この場合 空気供給管 4 8 b内を通る空気が、 この空気供給管 4 8 b の内壁 面に空気層を作り、 該空気層によ り この空気供給管 4 8 bの内壁 をバーナ 5 6による過熱から保護するという効果が得られる。 溶融炉 3 6の周囲の加熱壁 3 7及び炉床 3 8 はセラ ミ ッ クのよ うな耐熱材兼ポーラス状で通気性を有する高温蓄熱材にて構成さ れていて、 燃焼炉 4 1 の下流側の熱が溶融炉 3 6 内に入るよう に なっている。
燃焼炉 4 1 の下流端には制御弁 6 3が設けられていて、 これに よ り燃焼炉 4 1 の排気通路 5 0 からの排熱量が制御されるよ う に なっている。
上記実施例の作用を以下に説明する。
まず、 熱分解炉 3 0 内に所定量の廃棄物 6 0 を投入し、 その後 て投入口の開閉扉 3 4を閉じて密閉する。 尚、 このとき熱分解炉 3 0の頂部に設けられた圧力制御弁 3 2は閉じられている。
ついで、 燃焼装置 4 7 を作動させる。 あるいは、 予熱のために この廃棄物 6 0の投入以前から燃焼装置 4 7を作動させておいて も良い。 運転当初、 燃焼装置 4 7での燃焼は、 バーナ 5 6 に燃料 供給装置 5 9 より燃料 (ガス燃料あるいは液体燃焼) を供給する こ とによって行われる。 このとき、 燃焼用及び希釈用の両空気供 給管 4 8 a , 4 8 b よ り空気を供給する。 燃焼用空気は、 ス ヮ ラー 5 7でうず巻き状にされて燃焼装置 4 7へ供給される。
燃焼装置 4 7での燃焼による燃焼ガスは、 燃焼炉 4 1 の燃焼通 路 4 3を通るこ とによ り溶融炉 3 6 の周囲を通って排気通路 5 0 を経て排出口 5 0 a へと排出されてい く 。 こ のと き、 燃焼装置 4 7 による一次的な燃焼のための空気 (酸素) は、 燃焼用空気供 給管 4 8 a よ り供給される。 そ して、 燃焼炉 4 1 の燃焼通路 4 3 内での二次的な燃焼のための空気は、 希釈用空気供給管 4 8 b に 接続された希釈用空気通路 4 5 よ り通気孔 4 6 を通って供給され る。
燃焼炉 4 1 における燃料の燃焼によ り熱分解垆 3 0 の側壁を介 して熱分解炉 3 0 内が加熱されて、 こ の中の廃棄物 6 0が密閉空 間内で加熱乾留される。 そ して、 熱分解炉 3 0 内が 3 0 0 以上 になると、 廃棄物 6 0から可燃性の乾留ガスが発生する。 そ して この乾留ガスによ り熱分解炉 3 0 内の圧力が所定圧以上になる と 圧力制御弁 3 2 が開いて熱分解炉 3 0 内の乾留ガスは熱分解炉
3 0の頂部のガス出口 3 1 より燃焼装置 4 7へと供給される。
上記乾留ガスは、 図 2 に示す例では、 燃焼装置 4 7 のパーナ
5 6の下側へ直接供給され、 図 3 に示す例では、 燃焼装置 4 7の 上流側へ連通孔 3 1 a よ り供給され、 それぞれ燃焼用空気供給管 4 8 aからの燃焼用空気と混合されてパーナ 5 6 にて、 これに供 給されている燃料と共に燃焼される。 そ して、 この乾留ガスの量 に応じてパーナ 5 6への燃料の供給量が減少せしめられる。 また. 乾留ガスの量が増えると、 パーナ 5 6への燃料の供給量が零にな り、 乾留ガスのみが燃焼する状態となることもある。
上記燃焼装置 4 7 での燃料及び乾留ガスの燃焼による燃焼ガス は、 燃焼通路 4 3 にて二次燃焼されるが、 このとき燃焼通路 4 3 の略全周囲において、 希釈用空気通路 4 5 よ り の空気が通気孔
4 6から供給されるので、 燃焼ガスは燃焼通路 4 3 内で完全燃焼 される。 その結果、 燃焼通路 4 3 内全体で略一様に燃焼が生じる ため、 局所的に過熱する こ とによる燃焼炉 4 1 の破損が防止され る
燃焼装置 4 7 のパーナ 5 6 への燃料供給は、 熱分解炉 3 0 から の乾留ガスの発生量に応じて制御される。 乾留ガスの発生量は 熱分解炉 3 0内の圧力を検知することにより知ることができる。 上記の如く 、 熱分解炉 3 0 内の廃棄物 6 0 は乾留されて乾留ガ スが排出される。 そして、 廃棄物の炭化が進んで乾留ガスの発生 量が少なく なると、 熱分解炉 3 0 内の圧力が低下して圧力制御弁 3 2が閉じられ、 乾留化工程が終了される。
乾留が終了して炭化した廃棄物 6 0 の熱分解残渣 6 0 a は、 炉 床 3 3 を開 く こ とによ り溶融炉 3 6 に落下収納される。 そ して この炭化した熱分解残渣 6 0 a は、 こ こでさ らに 1 2 0 0 °C以上 に加熱されて溶融される。
こ の溶融炉 3 6 では、 バーナ等の加熱源 3 9 による付加熱と 上記乾留工程における燃焼炉 4 1 からの吸熱による蓄熱とによ り 熱分解残渣 6 0 a の加熱が行われる。 このとき、 溶融炉 3 6 の加 熱壁 3 7 と炉床 3 8 は高温用の蓄熱材にて構成されているので 上記加熱手段にて充分昇温される。 なお、 上記加熱源 3 9 は熱分 解残渣 6 0 aの落下の邪魔にならないような位置に設置し、 ある いは落下路に対して横方向に移動可能にしてある。
溶融炉 3 6 にて熱分解残渣 6 0 a の溶融によ り生 じた溶融物 6 0 bは、 炉床 3 8を開く こ とによ り溶融物取出 し口 4 0 へ排出 され、 ここから外部へ取出される。
上記乾留工程と溶融工程でのそれぞれの燃焼作用による排気ガ スは、 排気通路 5 0を通って排出される。 そ して、 こ の排気通路 5 0内の排気熱は熱電発電装置 5 1 にて電力と温水とに変換され それぞれが利用される。
なお、 上記実施例では熱電発電装置 5 1 は、 希釈用空気通路
4 5 の外壁に沿って設けているが、 熱電発電装置 5 1 を排出口
5 0 aの下流側に設けてもよい。
図 4 は上記熱電発電装置 5 1 にて発電された電力の利用状態の 一例を示すもので、 熱電発電装置 5 1 の熱電素子 5 2 は電源装置 6 1 に接続されていて、 熱電素子 5 2 にて発電された電力はこの 電源装置 6 1 にて使用可能な電力に変換されるよう になっている ( そ して、 この電源装置 6 1 からの電力は、 空気供給量制御装置 4 9 , 冷却水循環装置 5 4 , 燃料の供給量制御装置 5 8 , 燃料供 給装置 5 9に電力供給線を介してそれぞれ供給されるよう になつ ている。
また、 溶融炉 3 6の加熱源 3 9にハロゲンラ ンプのよ うな電気 加熱装置を用いた場合には、 これに電力供給線を介して上記電源 装置 6 1 から電力を供給する。
また、 この図 4 において、 6 2 は本発明装置とは別個の任意の 外部装置を示し、 こう した任意の装置に対して上記電源装置 6 1 よ りの発電電力を供給するようにしてもよい。
図 5 に本発明の他の実施例を示す。 この実施例は、 横軸型で- しかも溶融炉部分をもたない型式のものである。 この実施例の説 明において、 図 2 , 図 4 にて示した部材及び構成と同一の機能を する部材及び構成は同一の符号を付してその説明を省略する。
本実施例では、 熱分解炉 3 0 は燃焼炉 4 1 と共に横向きに配置 されており、 熱分解炉 3 0 の一端部は蓋体 6 5 にて密封可能に閉 じられている。 そ して、 この蓋体 6 5 には支持部材 6 6 を介して 網目材にて構成されたカゴ状の廃棄物ケース 6 7が取付けられて いて、 蓋体 6 5 の脱着によ り廃棄物ケース 6 7 を熱分解炉 3 0 内 に挿脱できるようになつている。
廃棄物ケース 6 7は開閉可能になっていて、 熱分解炉 3 0から 取り出 した状態で、 この廃棄物ケース 6 7 に廃棄物 6 0 を入れた り、 廃棄物ケース 6 7から熱分解残渣を取り 出すこ とができるよ うになつている。
熱分解炉 3 0を囲繞する燃焼炉 4 1 は熱分解炉 3 0 の先端側で 大きな空間が設けられており、 該空間の奥部に、 燃焼装置 4 7の パーナ 5 6 と、 熱分解炉 3 0からの乾留ガスを圧力弁 6 8を介し て供給する乾留ガス噴出部 6 9 とが設けてある。
パーナ 5 6 には、 燃料供給管 7 0 と燃焼用空気を供給するプロ ァ 7 1 が接続されている。 また、 上記乾留ガス噴出部 6 9 に接続 される乾留ガス通路 7 2 にもブロア 7 3が接続されている。
燃焼炉 4 1 の中間壁 4 2 には多数の通気孔 4 6 が設けてあ り - 燃焼炉 4 1 の外側の希釈用空気通路 4 5 に流入したブロア 7 4か らの空気が内側の燃焼通路 4 3へ旋回流となって流入するよう に なっている。 燃焼通路 4 3から排出口 5 0 a にまる排気通路 5 0 に熱電発電装置 5 1 の熱電素子 5 2が介装してあり、 熱電発電装 置 5 1 の外側は冷却水が循環する クーラ ン ト通路 5 3 にて囲繞さ れている。
上記構成において、 廃棄物 6 0 は廃棄物ケース 6 7 に入れた状 態で熱分解炉 3 0内に密封される。
こ の状態で燃焼装置 4 7 を作動させる。 運転当初の燃焼装置 4 7における燃焼は、 パーナ 5 6 に燃料供袷管 7 0 よ り燃料 (ガ ス燃料あるいは液体燃焼) を供給する こ とによって行われる。 こ のとき、 燃焼用及び希釈用の空気はブロア 7 4 よ り供給される c この希釈用空気が希釈用空気通路 4 5 よ り通気孔 4 6 を通って燃 焼通路 4 3 内に流入して燃焼が促進される。 また、 燃焼炉 4 1 の 外壁及び中間壁 4 2 は、 この希釈用空気の冷却作用によ り所定以 上に高温になることがないよう保護されている。
また、 上記希釈用空気が通気孔 4 6 よ り旋回流となって流入す るので、 燃焼炉 4 1 内での燃焼が局所的にならず、 燃焼通路 4 3 内で略一様な燃焼が行われ、 これによ り局所的な過熱が防止され て燃焼炉 4 1 の過熱による破損が防止される。
燃焼装置 4 7 での燃料の燃焼による燃焼ガスは、 燃焼炉 4 1 の 燃焼通路 4 3を通り排気通路 5 0を経て排出口 5 0 aへと排出さ れていく。
燃焼炉 4 1 における燃料の燃焼によ り熱分解炉 3 0 の側壁を介 して熱分解炉 3 0 内が加熱され、 この中の廃棄物 6 0 が密閉空間 内で加熱乾留される。 そ して、 炉内が 3 0 0 °C以上になる と廃棄 物物 6 0から可燃性の乾留ガスが発生し、 こ の乾留ガスによ り熱 分解炉 3 0 内の圧力が所定圧以上になる と圧力弁 6 8 が開いて、 熱分解炉 3 0 内の乾留ガスは熱分解炉 3 0 の燃焼炉 4 1 の奥部に 設けたガス噴出部 6 9 より燃焼装置 4 7へ供給されて燃焼される。 燃焼装置 4 7のパーナ 5 6 への燃料供給は、 熱分解炉 3 0から 乾留ガスの発生量に応じて制御される。 そ して、 乾留ガスの量が 増えると、 パーナ 5 6への燃料の供給量が零になり、 乾留ガスの みが燃焼する状態となる こ と もある。 乾留ガスの発生量は、 熱分 解炉 3 0内の圧力を検知することにより知ることができる。 乾留が終了して炭化した廃棄物 6 0 は、 鹿棄物ケース 6 7 を熱 分解炉 3 0 より取り出して処分する。
上記排気通路 5 0 通る排気ガス中の排気熱は、 熱電発電装置 5 1 にて電力と温水に変換されてそれぞれが利用される。
上述の如く 、 本発明によれば、 熱分解炉にて発生した乾留ガス を、 こ の熱分解炉内の廃棄物加熱用に再利用するよう に した廃棄 物熱処理装置において、 熱分解炉を囲繞する構成の燃焼炉でもそ れ全体での燃焼負荷を平均化できて、 必要な燃焼温度が高温であ る燃焼炉の耐久性を向上させるこ とができ、 しかも極めて高い燃 焼効率にて燃焼を行う ことができる。
また、 本発明によれば、 上記燃焼炉にて加熱されて熱分解炉に て炭化状に乾留された廃棄物をさ らに溶融して熱処理後の廃棄物 残渣を極めて少ない容積にする こ とができ、 しかもこの廃棄物を 溶融するための溶融炉での加熱を、 上記乾留工程での熱をう ま く 利用 して効率良く行なう ことができる。
さ らに、 上記燃焼炉及び溶融炉からの排熱を温水及び電気と し て有効に利用できる。 そ して、 特に、 この排熱を電力に変換した 場合において、 この電力を電力源とする電源装置を廃棄物熱処理 装置の各装置への電力源とするこ とによ り、 この廃棄物熱処理装 置の必要電力を自前でまかなう こ とができ、 省エネルギ率を向上 させるこ とができる。
なお、 本発明は例示的な実施例について説明 したが、 開示した 実施例に関 して、 本発明の要旨及び範囲を逸脱する こ と な く 、 種々の変更、 省略、 追加が可能である こ とは、 当業者において自 明である。 従って、 本発明は、 上記の実施例に限定される もので はなく 、 請求の範囲に記載された要素によって規定される範囲及 びその均等範囲を包含するものと して理解されなければならない。

Claims

請求の範囲
1 . ガス出口と開閉扉を有する廃棄物投入口と開閉可能な炉床と を備えた熱分解炉と、
該熱分解炉を囲繞する形状に形成されていて、 燃料供給装置か らの燃料と前記ガス出口からの乾留ガスの少な く と も一方を燃料 とする燃焼装置を有する燃焼炉とからなり、
前記燃焼炉を 2重構造に して、 前記熱分解炉の周壁と中間壁と で燃焼通路を、 該中間壁と外壁とで希釈用空気通路をそれぞれ構 成し、
前記燃焼通路内に前記燃焼装置を配設し、
前記燃焼通路の上流側を燃焼用空気供給管に接続し、 且つ下流 側を排気通路に接繞し、
前記希釈用空気通路の上流側を希釈用空気供給管に接続し、 且 つ前記希釈用空気通路を前記燃焼通路に連通させた、
廃棄物熱処理装置。
2 . ガス出口を前記燃焼通路の前記燃焼装置よ り下流側に接続し たことを特徴とする、 請求項 1 に記載の廃棄物熱処理装置。
3 . ガス出口を前記燃焼通路の前記燃焼装置の上流側に接続した ことを特徴とする、 請求項 1 に記載の廃棄物熱処理装置。
4 . 前記希釈用空気通路と前記燃焼通路との連通部分が多数の通 気孔であることを特徴とする、 請求項 1 に記載の廃棄物熱処理装置 <
5 . 前記熱分解炉の下方に位置し且つ前記燃焼通路に囲繞される 位置に設けた開閉可能な炉床と、 該炉床に対向するよう に設けた 加熱装置と、 前記加熱装置を囲繞し且つ前記燃焼通路に面する高 温蓄熱材等からなる側壁とから構成した溶融炉を有するこ とを特 徴とする請求項 1 に記載の廃棄物熱処理装置。
6 . 廃棄物ケースが挿脱可能な熱分解炉と、
該熱分解炉を囲繞する形状に形成されていて、 燃料供給装置か らの燃料と前記熱分解炉からの乾留ガスの少な く と も一方を燃料 とする燃焼装置を有する燃焼炉とからなり、
前記燃焼炉を 2重構造にして、 前記熱分解炉の周壁と中間壁と で空間部と該空間部に連続する燃焼通路を、 該中間壁と外壁とで 希釈用空気通路をそれぞれ構成し、
前記空間部内に前記燃焼装置を配設し、
前記燃焼装置に燃焼用空気供給ブロアを接続し、
前記燃焼通路の下流側を排気通路に接続し、
前記希釈用空気通路の上流側を希釈用空気供給ブロアに接続し 且つ前記希釈用空気通路を前記空間部及び前記燃焼通路に連通さ せた、
廃棄物熱処理装置。
7 . 前記希釈用空気通路と前記燃焼通路との連通部分が多数の通 気孔であるこ とを特徴とする、 請求項 6 に記載の廃棄物熱処理装
8 . 乾留ガスの発生量に応じて前記燃焼装—置への燃料供給量を減 少せしめる燃料供給量制御装置を設けたこ とを特徴とする請求項
1 または 6 に記載の廃棄物熱処理装置。
9 . 前記排気通路に、 該排気通路を通る排気ガスとクーラ ン 卜 と の間の温度差を利用 して電力と温水を得るよう に した熱電発電装 置を介装したことを特徴とする請求項 1 または 6 に記載の廃棄物 熱処理装置。
1 0 . 前記熱電発電装置にて得られた電力を電力源とする電源装 置を、 廃棄物熱処理装置の各構成装置の電気駆動部及び電気熱源 部に接続して、 前記電源装置から電力を供給するよう に したこ と を特徴とする請求項 9に記載の廃棄物熱処理装置。
1 1 . 前記排気通路が前記燃焼装置を囲繞している こ とを特徴と する請求項 1 または 6 に記載の廃棄物熱処理装置。
PCT/JP1996/001173 1995-04-28 1996-04-26 Appareil de traitement thermique des dechets WO1996034231A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019970700237A KR970705158A (ko) 1995-04-28 1994-07-18 자성박막 및 그 제조방법(magnetic thin film and production method therefor)
EP96912275A EP0825382A4 (en) 1995-04-28 1996-04-26 THERMAL WASTE TREATMENT APPARATUS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10519195 1995-04-28
JP7/105191 1995-04-28
JP7/239940 1995-09-19
JP7239940A JPH0914625A (ja) 1995-04-28 1995-09-19 廃棄物熱処理装置

Publications (1)

Publication Number Publication Date
WO1996034231A1 true WO1996034231A1 (fr) 1996-10-31

Family

ID=26445528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001173 WO1996034231A1 (fr) 1995-04-28 1996-04-26 Appareil de traitement thermique des dechets

Country Status (4)

Country Link
EP (1) EP0825382A4 (ja)
JP (1) JPH0914625A (ja)
KR (1) KR970705158A (ja)
WO (1) WO1996034231A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU225373B1 (en) * 1998-04-17 2006-10-28 Allan Dr Inovius Method and apparatus for the prevention of global warming, through elimination of hazardous exhaust gases of waste and/or fuel burners
WO1999058820A1 (fr) 1998-05-14 1999-11-18 Yyl Corporation Generateur d'energie
JP3525077B2 (ja) * 1999-07-06 2004-05-10 株式会社プランテック 直結型焼却灰溶融設備及びその運転制御方法
JP5819221B2 (ja) * 2012-02-29 2015-11-18 ヤンマー株式会社 船用燃料供給システム
KR102553286B1 (ko) * 2022-09-23 2023-07-07 (주)아크론에코 초음파열분해장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265983A (en) * 1975-11-29 1977-05-31 Akio Hashizume Incinerator of city garbage and such
JPS56165817A (en) 1980-05-26 1981-12-19 Hitachi Plant Eng & Constr Co Ltd Thermal decomposition apparatus for waste

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2119973A (en) * 1936-01-16 1938-06-07 Strelka Leo Combined distillator and carbonizer
FR2264078A1 (fr) * 1974-03-11 1975-10-10 Robert Jean Pierre Procede et appareillage pour le traitement de residus contenant des substances organiques
US4124353A (en) * 1975-06-27 1978-11-07 Rhone-Poulenc Industries Method and apparatus for carrying out a reaction between streams of fluid
US4172431A (en) * 1977-08-15 1979-10-30 Parkinson Cowan Gwb Limited Industrial boilers
AU1273883A (en) * 1982-04-28 1983-11-03 Airco Inc. Compact combustion apparatus
CH680656A5 (en) * 1990-07-13 1992-10-15 Niklaus Seiler Continuous melting of solid or viscous waste - by controlled preheating and fractionating, melting and cooling to form inert prod.
DE4106136C1 (en) * 1991-02-27 1992-08-27 Forschungszentrum Juelich Gmbh, 5170 Juelich, De Converting granular ion-exchange resins into combustible gas - where resin in reactor passes by gravity through drying zone and then through low-temp. carbonisation zone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265983A (en) * 1975-11-29 1977-05-31 Akio Hashizume Incinerator of city garbage and such
JPS56165817A (en) 1980-05-26 1981-12-19 Hitachi Plant Eng & Constr Co Ltd Thermal decomposition apparatus for waste

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0825382A4 *

Also Published As

Publication number Publication date
JPH0914625A (ja) 1997-01-17
KR970705158A (ko) 1997-09-06
EP0825382A4 (en) 1999-11-10
EP0825382A1 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
JP5631169B2 (ja) 有価金属回収装置
WO1996034231A1 (fr) Appareil de traitement thermique des dechets
JP2005320507A (ja) 廃棄物炭化処理機
KR102554872B1 (ko) 폐기물의 열분해 시스템
JP3173599B2 (ja) 放射性核種を含む黒鉛廃材の焼却処理方法
CN214747313U (zh) 一种高效保温岩棉生产用固化炉的尾气节能利用系统
KR100757781B1 (ko) 유기성 폐기물의 탄화처리장치
KR19990024090A (ko) 가스증폭플라즈마 고온열분해 소각방법 및 그 시스템
KR100868506B1 (ko) 전기로의 미반응 산소 연소장치
CN210215445U (zh) 具有热回收功能的罩式退火装置
JPS6294716A (ja) 厨芥処理機
JPH11277030A (ja) 廃棄物用乾留炉及び廃棄物乾留方法
CN213237547U (zh) 一种带有等离子处理烟气固体渣熔融结构的新型二燃室
JPH1176978A (ja) 廃ゴム金属複合材の処理方法
CN213542512U (zh) 一种催化燃烧炉温度自循环加热装置
JP2000346322A (ja) 廃棄物処理装置
JPS6137893A (ja) 乾式消火方法およびその装置
JP5588045B1 (ja) 流動焼却炉および該流動焼却炉を用いた処理物の焼却方法
JP2707210B2 (ja) 廃棄物処理装置
KR200184241Y1 (ko) 조립형 온수 보일러
KR200409444Y1 (ko) 건류 또는 반건류식 소각로의 수냉식 1차연소실
KR200210600Y1 (ko) 브라운가스 연소화염의 가열판 가열에 의한 가열매체가열방식.
CN115770782A (zh) 废弃物再生处理设备
KR20040009944A (ko) 폐기물 소각로
JP4002175B2 (ja) グラスウール廃材処理装置及びグラスウール廃材処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 875926

Date of ref document: 19970812

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996912275

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996912275

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996912275

Country of ref document: EP