JP5819221B2 - 船用燃料供給システム - Google Patents

船用燃料供給システム Download PDF

Info

Publication number
JP5819221B2
JP5819221B2 JP2012044217A JP2012044217A JP5819221B2 JP 5819221 B2 JP5819221 B2 JP 5819221B2 JP 2012044217 A JP2012044217 A JP 2012044217A JP 2012044217 A JP2012044217 A JP 2012044217A JP 5819221 B2 JP5819221 B2 JP 5819221B2
Authority
JP
Japan
Prior art keywords
fuel
engine
cooler
heat
marine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012044217A
Other languages
English (en)
Other versions
JP2013181417A (ja
Inventor
勝美 清河
勝美 清河
亮輔 日向
亮輔 日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2012044217A priority Critical patent/JP5819221B2/ja
Publication of JP2013181417A publication Critical patent/JP2013181417A/ja
Application granted granted Critical
Publication of JP5819221B2 publication Critical patent/JP5819221B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Description

本発明は、船舶のエンジンに対して、複数種類の燃料を供給する船用燃料供給ステムに関する。
従来から、船用燃料は、A重油、C重油など不純物が多い燃料が使用されている。しかし近年は、船用ディーゼル機関による環境汚染への対策の一環で、海域によってはSOx(硫黄酸化物)排出量の規制が強化されている。このような規制を背景に、低硫黄燃料であるマリンガスオイル(MGO)を船用燃料として使用する動きがある。
ところで、エンジンに供給される燃料の粘度には許容範囲があり、この許容範囲から外れた粘度の燃料をエンジンに供給した場合には不具合が発生し得る。例えば、従来から使われているC重油は常温で粘度が高過ぎるため、エンジンに供給する前にヒーターで加熱して粘度を下げる必要があった。
一方、上記マリンガスオイルのように不純物が少ない燃料は、C重油などの従来の船用燃料と比べると粘度が低い。しかも、エンジン運転中は燃料の温度が徐々に上昇していくので、当該燃料の粘度は低下していく。仮に、エンジンに供給される燃料の粘度が低過ぎた場合、燃料噴射ポンプのプランジャとバレルの間に十分な油膜が発生せず、故障の原因となり得る。
この点、建設機械の分野ではあるが、特許文献1は、燃料タンクからエンジンに至る燃料供給経路中に、燃料の粘度を高めるべく作動する燃料用クーラーを設けた構成を開示している。特許文献1は、これにより、エンジンに供給される燃料の粘度を高くすることができ、粘度が低過ぎて燃料の潤滑機能が失われてしまうことを回避できるとしている。
特開平11−324831号公報
特許文献1において、燃料用クーラーは、空冷式のものとされている。建築機械であれば、車外の空気を冷却風として取り込むことができるので、燃料用クーラーを空冷式に構成することも自然な発想であるといえる。ところが、船舶において、エンジン等が配置される機関室は、常時換気したとしても比較的高温(45℃前後)である。従って、当該機関室内では、空冷式の燃料クーラーでは十分な冷却効果を発揮できないと考えられる。
そこで、船舶等においては、例えば、HFC等の冷媒ガスを用いた燃料クーラーを利用することが考えられる。ただし、冷媒にHFC等を用いる場合には、機械的駆動部(コンプレッサ、モータなど)が必要であるため、振動や騒音の原因になるとともに、定期的なメンテナンスが必要である。また、コンプレッサ等を有する燃料クーラーは構造が複雑であることから小型化が困難であり、小型のエンジンに対して採用することは難しい。更に、HFCのような温室効果ガスを用いることは、地球温暖化対策の面でも問題がある。
この点、船舶に搭載される燃料クーラーにおいては、海水を冷媒として利用するものが知られている。この種の燃料クーラーでは、海水を汲み上げて冷媒として利用し、利用した海水は再び海に放出すれば良い。この構成の燃料クーラーではコンプレッサ等が不要となり、温室効果ガスの利用による問題もない。しかし、この構成の燃料クーラーは、その冷却性能が海水温度に依存してしまうため、海水温が高い海域(熱帯の海など)では、十分な冷却性能を発揮することができない。また、海水を流す熱交換器をチタン等の耐食性材料によって構成しなくてはならず、製造コストが高くなってしまう。更に、熱交換器が故障したときには、燃料が海水に流出してしまうおそれがある。また、コンプレッサ等が不要になるとしても、海水を汲み上げるためのポンプや熱交換器が必要であり、燃料クーラーの小型化が困難であることに変わりはない。
特に近年は、特定の海域における硫黄酸化物の排出規制が厳しくなってきていることから、航行する海域に応じて使用燃料を切り換えることができる燃料供給システムが求められている。ところが、このように複数の燃料を切り換えるように構成された燃料供給システムは、それだけ大型化、複雑化する傾向がある。そして、複数の燃料を切り換えて供給する燃料供給システムでは、ある燃料をエンジンに供給している間、他の燃料を供給するための構成は利用されないことになる。例えば、粘度の高い燃料をエンジンに供給している間は、当該燃料を加熱して粘度を下げるために燃料ヒーターが利用され、燃料クーラーは利用されない。一方、粘度の低い燃料をエンジンに供給している間は、当該燃料を冷却して粘度を上げるために燃料クーラーが利用され、燃料ヒーターは利用されない。
このように、複数の燃料を切り換えてエンジンに供給する燃料供給システムは、大型化する傾向があり、しかも、実際の運用の際には一部が利用されない状態であるなど、効率の面で改善の余地がある。
本発明は以上の事情に鑑みてされたものであり、その目的は、船用エンジンに燃料を供給する燃料供給システムの小型かつ効率の良い構成を提供することにある。
課題を解決するための手段及び効果
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
本発明の観点によれば、以下の構成の船用燃料供給システムが提供される。即ち、この船用燃料供給システムは、第1燃料タンクと、第2燃料タンクと、燃料ヒーターと、燃料クーラーと、供給燃料切換部と、を備える。前記第1燃料タンクは、第1燃料を貯留する。前記第2燃料タンクは、常温における粘度が前記第1燃料よりも低い第2燃料を貯留する。前記燃料ヒーターは、前記第1燃料を加熱してエンジンに供給する。前記燃料クーラーは、前記第2燃料を冷却して前記エンジンに供給する。前記供給燃料切換部は、前記燃料ヒーターからの第1燃料と、前記燃料クーラーからの第2燃料と、の何れか一方を前記エンジンに供給するように切り換える。また、この船用燃料供給システムは、前記第1燃料を前記エンジンに供給している場合に、当該第1燃料を前記燃料クーラーに流す第1燃料通路を備える。そして、前記燃料クーラーは、ペルチエ素子を利用して前記第2燃料を冷却するように構成され、前記第1燃料が通過する際には、前記ペルチエ素子によって発電する。
このように、燃料クーラーにペルチエ素子を利用することにより、当該燃料クーラーの単純化、騒音の低減、装置の小型化等を図ることができる。また、燃料ヒーターで加熱された第1燃料は、機関室の室温に対して十分に高温な状態になっている。そこで、この高温の第1燃料を燃料クーラーに流すことにより、当該燃料クーラーのペルチエ素子において電力を得ることができる。
上記の船用燃料供給システムは、以下のように構成されることが好ましい。即ち、前記第1燃料通路は、前記第1燃料を前記エンジンに供給している場合に、前記エンジンで余った第1燃料を、前記燃料クーラーを介して前記第1燃料タンクに戻す。
このように、エンジンから戻される第1燃料を利用して燃料クーラーで発電することにより、余った熱を電力として有効に回収することができる。また、エンジンよりも後段で発電することにより、エンジンに供給される第1燃料の温度に影響を与えてしまうことを回避できる。
上記の船用燃料供給システムは、以下のように構成されることが好ましい。即ち、前記燃料ヒーターは、前記エンジンの排熱を利用して水蒸気を発生させる排熱回収装置で生成された水蒸気を利用して前記第1燃料を加熱するように構成されている。
一般的に、排熱回収装置で生成される水蒸気は船内にふんだんにある。そこで上記のように構成することで、余剰の水蒸気の熱源を活用し、ペルチエ素子で電気エネルギーとして回収することができる。このように、水蒸気では利用しにくかった熱エネルギーを、電気エネルギーへと容易に変換することができるので、エネルギーの有効活用が可能になる。
本発明の実施形態に係る船用燃料供給システムのブロック図。 燃料クーラーの正面断面図。 燃料クーラーの側面断面図。 変形例に係る燃料クーラーの正面断面図。 変形例に係る燃料クーラーの側面断面図。
次に、図面を参照して説明する。図1は、本発明の実施形態に係る船用燃料供給システム1における燃料の流れを示すブロック図である。
この船用燃料供給システム1は、船舶のディーゼルエンジン2に対して燃料を供給することができるように構成されている。当該船舶は、ディーゼルエンジン2を収容する機関室を備えている。船用燃料供給システム1は、ディーゼルエンジン2と同じ機関室内に配置されている。
ディーゼルエンジン2は、船舶のスクリュープロペラ33等を駆動するための駆動源である。また、ディーゼルエンジン2は、発電機34を駆動するように構成されている。この発電機34によって、船舶に搭載されている各種電気機器に電力を供給することができる。また、ディーゼルエンジン2から排出される高温の排気ガスは、排ガスエコノマイザ(排熱回収装置)35に供給されるように構成されている。この排ガスエコノマイザ35は、前記ディーゼルエンジン2の排熱を回収して有効利用するためのものである。具体的には、排ガスエコノマイザ35は、前記排気ガスの熱によって、船内で利用される温水と水蒸気(スチーム)を発生させるように構成されている。
ディーゼルエンジン2は、燃料噴出ポンプ3を備えている。船用燃料供給システム1は、燃料噴出ポンプ3に対して第1燃料を供給する第1燃料供給路4と、前記燃料噴出ポンプ3に対して第2燃料を供給する第2燃料供給路5を備えている。また、第1燃料供給路4及び第2燃料供給路5と、燃料噴出ポンプ3との間には、供給燃料切換部6が配置されている。供給燃料切換部6は、燃料噴出ポンプ3に対して、第1燃料供給路4又は第2燃料供給路5の何れか一方を接続するように構成されている。これにより、ディーゼルエンジン2の燃料噴出ポンプ3に対して、第1燃料又は第2燃料の何れかを選択して供給することができる。
第1燃料は、不純物が多く粘度が高い燃料(本実施形態ではC重油)としている。また、第2燃料は、不純物が少なく粘度が低い燃料(本実施形態ではマリンガスオイル)としている。航行する海域の排出規制に応じて供給燃料切換部6を切り換えることにより、排出規制に応じた燃料をディーゼルエンジン2に供給することができる。即ち、硫黄酸化物の排出規制が厳しい海域では、低硫黄燃料である第2燃料(マリンガスオイル)を利用し、それ以外の海域では第1燃料(C重油)を利用して、ディーゼルエンジン2を駆動することができる。なお、供給燃料切換部6の切り換えは、オペレータの適宜の操作により行うことができる。
第1燃料供給路4は、第1燃料タンク7と、燃料ヒーター8と、を備えている。第1燃料タンク7には、ディーゼルエンジン2に供給するための第1燃料(C重油)が貯蓄されている。燃料ヒーター8は、第1燃料タンク7と供給燃料切換部6との間に配置されており、ディーゼルエンジン2に供給される第1燃料を加熱するように構成されている。即ち、第1燃料(C重油)は、機関室の室内温度(約45℃)では粘度が高過ぎるので、そのままではディーゼルエンジン2の燃料噴出ポンプ3に供給することができない。そこで、燃料ヒーター8によって第1燃料を適切な温度(例えば130℃以上)まで加熱することにより、第1燃料の粘度が燃料噴出ポンプ3の許容範囲に収まるように調整したうえで、当該燃料噴出ポンプ3に供給するように構成されている。この燃料ヒーター8は、排ガスエコノマイザ35から供給される水蒸気の熱を利用して、第1燃料を加熱するように構成されている。もっとも、燃料ヒーター8の構成はこれに限らず、例えば電気ヒーターなど、公知の適宜の構成を採用することもできる。
第2燃料供給路5は、第2燃料タンク9と、燃料クーラー10を備えている。第2燃料タンク9には、ディーゼルエンジン2に供給するための第2燃料(マリンガスオイル)が貯蓄されている。燃料クーラー10は、第2燃料タンク9と供給燃料切換部6との間に配置されており、ディーゼルエンジン2に供給される第2燃料を冷却するように構成されている。即ち、ディーゼルエンジン2に供給される燃料は、一部が使われずに燃料タンクに戻る。このとき、燃料は、ディーゼルエンジン2の熱によって温度が上昇している。従って、第2燃料(マリンガスオイル)をこの環境で使用すると、温度の上昇により粘度が下がるため、当該第2燃料をそのままディーゼルエンジン2の燃料噴出ポンプ3に供給すると不具合の原因になり得る。そこで、燃料クーラー10によって第2燃料を適切な温度(例えば40℃以下)まで冷却することにより、第2燃料の粘度が燃料噴出ポンプ3の許容範囲に収まるように調整したうえで、当該燃料噴出ポンプ3に供給するように構成されている。なお、燃料クーラー10の構成については後述する。
燃料噴出ポンプ3への燃料の入口近傍には、当該燃料の温度を測定する温度センサ11が配置されている。本実施形態の船用燃料供給システム1は、温度センサ11が測定した燃料の温度に基づいて、当該燃料の加熱、又は冷却を行うように構成されている。このように、ディーゼルエンジン2へ供給される直前の燃料の温度に基づいて当該燃料の加熱又は冷却を行うので、ディーゼルエンジン2へ供給される燃料の粘度を、適切に制御することができる。
ディーゼルエンジン2で余った燃料は、第1燃料タンク7又は第2燃料タンク9に戻される。船用燃料供給システム1は、第1燃料タンク7と第2燃料タンク9の何れに燃料を戻すかを切り換える戻しタンク切換部12を備えている。即ち、ディーゼルエンジン2で第1燃料を利用している場合は、当該燃料を第1燃料タンク7に戻し、第2燃料を利用している場合は、当該燃料を第2燃料タンク9に戻す。なお、戻しタンク切換部12の切り換えは、オペレータの操作によって行っても良いし、供給燃料切換部6の切り換えと連動して自動的に行われても良い。
続いて、図2及び図3を参照して、本実施形態の燃料クーラー10について説明する。この燃料クーラー10は、燃料通路20と、伝熱部材21と、ペルチエ素子22と、空冷部23と、を備えている。
燃料通路20は、その内部に燃料を流すことができるように構成されている。燃料通路20は、第1開口部24と、第2開口部25を直線状に接続するように構成されている。第2燃料タンク9の第2燃料は、第1開口部24から燃料通路20に導入され、当該燃料通路20内を流れた後、第2開口部25から出て燃料噴出ポンプ3に供給される。
本実施形態において、燃料通路20は、扁平状に構成されている。具体的には図3に示すように、燃料通路20は、燃料が流れる方向に直交する平面で切断したときの流路形状が、略長方形状になるように構成されている。本実施形態の燃料クーラー10では、流路の四方を金属板によって囲むことにより、断面長方形状の燃料通路20を形成している。図3に示すように、長方形状の燃料通路20の長辺に該当する壁面を構成している金属板を、天井板26及び底板27とする。また、長方形状の燃料通路20の短辺に該当する壁面を構成する金属板を、側板28,29とする。天井板26、底板27、側板28,29はそれぞれ平板状の金属板とされており、当該金属板で囲まれた空間の内部を燃料が流れるように構成されている。なお、天井板、底板等というのは説明の便宜のための名称であり、燃料通路20の上下の向きを限定するものではない。
燃料通路20の内部には、複数の伝熱部材21が配置されている。本実施形態において、伝熱部材21は丸棒状の部材として構成されている。各伝熱部材21は、伝熱部材21同士の間を燃料が流れることができるように、互いに適宜の間隔を空けて配置されている。
各伝熱部材21は、その長手方向が、燃料通路20内を第2燃料が流れる方向(第1開口部24から第2開口部25へと向かう方向)に対して略直交するように配置されている。また本実施形態において、各伝熱部材21は、その長手方向が、天井板26及び底板27に対して略直交するように配置されている。そして、各伝熱部材21の一端は天井板26に接続され、他端は底板27に接続されている。この構成により、燃料通路20内を流れる燃料の熱を、伝熱部材21によって、燃料通路20の壁面(具体的には天井板26及び底板27)まで伝えることができる。また、本実施形態の燃料クーラー10では伝熱部材21の両端を燃料通路20の壁面に接続しているので、伝熱部材21の一端のみを燃料通路20の壁面に接続する場合と比べて、燃料通路20内を流れる燃料の熱を燃料通路20の壁面(天井板26及び底板27)まで効率的に伝えることができる。
伝熱部材21の素材は特に限定されないが、銅のように熱伝導率が高い素材で構成することが好適である。ただし、燃料通路20内を流れる第2燃料に腐食性がある場合など、伝熱部材21に銅を利用することができない場合がある。本実施形態の燃料クーラー10においては、伝熱部材21は、第2燃料に対して耐食性を有する鉄合金製としている。
なお、本実施形態の燃料クーラー10では、伝熱部材21を鉄合金製としているので、当該伝熱部材21によって熱を伝える効率が必ずしも良好であるとは言えない。そこで本実施形態の燃料クーラー10では、伝熱部材21によって熱を伝える距離が短くなるように構成している。具体的には以下のとおりである。即ち、前述のように本実施形態では、燃料通路20を扁平状に(流路断面を長方形状に)形成している。そして、各伝熱部材21の長手方向を、長方形状の流路断面の短辺に沿わせるように配置されている。これにより、伝熱部材21の長さを短くすることができるので、当該伝熱部材21の長手方向での温度勾配が急峻になる。この結果、鉄合金のように熱伝導率が低い素材で伝熱部材21を構成した場合であっても、燃料通路20内を流れる燃料の熱を、天井板26又は底板27まで効率良く伝えることができる。
前記ペルチエ素子22は、平板状に形成されている。なお、このように平板状に形成されたペルチエ素子は一般的なものなので、市販のペルチエ素子を利用することができる。このペルチエ素子22は、通電することにより、一側の面の熱を奪って冷却するとともに、当該奪った熱を他側の面に移動させる公知の構成である。図2等に示すように、ペルチエ素子22は、燃料通路20の壁面の外側に貼り付けられている。具体的には、ペルチエ素子22は、天井板26の外側の面と、底板27の外側の面と、にそれぞれ貼り付けられている。
天井板26と底板27は平板状に形成されているので、例えば燃料通路20の壁面が湾曲している場合に比べて、燃料通路20の壁面(天井板26及び底板27)とペルチエ素子22との接触面積を大きくとることができる。また、天井板26及び底板27は断面長方形状の燃料通路20の長辺を構成しているので、燃料通路20の短辺を構成している側板28,29に比べて面積が広い。従って、ペルチエ素子22を側板28,29に貼り付ける場合に比べて、燃料通路20の壁面(天井板26及び底板27)とペルチエ素子22との接触面積を大きくとることができる。
ペルチエ素子22は、燃料通路20側を向く面(内側の面)が冷却面、他側の面(外側の面)が放熱面となっており、当該ペルチエ素子22に通電することにより、燃料通路20の壁面(天井板26及び底板27)を冷却するように構成されている。前述のように、天井板26及び底板27には伝熱部材21の端部が接続されている。従って、ペルチエ素子22によって天井板26及び底板27を冷却することにより、伝熱部材21を冷却することができる。以上の構成により、燃料通路20内を流れる燃料を冷却することができる。
なお、本実施形態において、ペルチエ素子22を駆動するための電力は、ディーゼルエンジン2の発電機34から供給されている。従って、燃料クーラー10を駆動するための専用の電源などを設ける必要はない。
ペルチエ素子22の放熱面には、空冷部23が配置されている。空冷部23は、ヒートシンク30と送風ファン31とを備えている。ヒートシンク30は、ペルチエ素子22の放熱面に貼り付けられる。これにより、ペルチエ素子22の放熱面の熱を、ヒートシンク30によって周囲の空気に放出することができる。このとき、送風ファン31によってヒートシンク30に対して送風することにより、当該ヒートシンク30からの放熱を効率的に行うことができる。なお、空冷部23は、天井板26側のペルチエ素子22と、底板27側のペルチエ素子22にそれぞれ対応して設けられている。即ち、空冷部23は、断面長方形状の燃料通路20を、短辺方向から挟み込むように配置されている。これにより、燃料通路20の熱を効率的に放熱することができる。
以上の構成により、燃料通路20を流れる燃料の熱は、伝熱部材21を介して天井板26及び底板27に伝えられる。天井板26及び底板27の熱は、ペルチエ素子22によってヒートシンク30へと移動させられ、当該ヒートシンク30から周囲の空気へと放出される。このように構成された燃料クーラー10により、第2燃料を効率良く冷却して、ディーゼルエンジン2に供給することができる。
以上のように、本実施形態の船用燃料供給システム1においては、燃料クーラー10にペルチエ素子22を採用している。これにより、冷媒ガスや海水などの冷媒を用いることなく、燃料を冷却することができる。従って、コンプレッサ等の機械的駆動部が無いため、騒音や振動が発生しないとともにメンテナンスフリーである。また、海水のような機関室の外部の冷媒を取り込む必要がないため、機関室内で独立したシステムとすることが可能であり、万が一燃料クーラーが破損した場合であっても燃料が海水に漏れ出す心配はない。しかも、冷媒を循環させるための機構が不要になるので、燃料クーラー10をコンパクトかつシンプルに構成することができる。
なお、エンジンに供給する第2燃料(マリンガスオイル)の適正温度は、例えば40℃以下である。従って、この船用燃料供給システム1において、ディーゼルエンジン2に第2燃料を供給する場合は、例えば以下のような制御を行えばよい。即ち、ディーゼルエンジン2に第2燃料を供給しているときに、当該第2燃料の温度が40℃以上になったことが温度センサ11によって検出されると、図略の制御装置がペルチエ素子22への通電を開始して燃料クーラー10を駆動し、第2燃料の冷却を開始する。そして、第2燃料の温度が所定の設定温度(40℃未満)になったことが温度センサ11によって検出されると、図略の制御装置がペルチエ素子22への通電を遮断して、燃料クーラー10による第2燃料の冷却を停止する。このように、温度センサ11の検出結果に基づいてペルチエ素子22への電流を制御することにより、ディーゼルエンジン2に供給する第2燃料の温度を、簡単かつ正確に調整することができる。従って、ディーゼルエンジン2に供給される第2燃料の粘度を、適切に制御することができる。
ところで、本実施形態の燃料クーラー10は、空冷部23によって熱を逃がす構成であるから、当該空冷部23の周囲の空気の温度はなるべく低い方が望ましい。しかし、燃料クーラー10等が配置される機関室の室内温度(約45℃)は、マリンガスオイル(第2燃料)の適正温度(40℃以下)よりも高温である。空冷部23に対して、機関室の外の冷たい空気を当てるように構成することも考えられるが、この場合、機関室外に通じる送風ダクト等を配設する必要があり、装置が大掛りになってしまうという問題がある。以上の点を鑑みれば、船舶用の燃料クーラーの熱を空冷式で放熱することは難しいと考えるのが当業者の判断と言える。
しかし本願発明者は、機関室内のように比較的高温(45℃前後)の環境下であっても、本実施形態の構成の燃料クーラー10であればマリンガスオイル(第2燃料)を適正温度(40℃以下)まで十分に冷却可能であることを見出した。そこで本実施形態の燃料クーラー10は、機関室の室内の空気に対して放熱するように構成されている。即ち、本実施形態の燃料クーラー10は、第2燃料の熱を、伝熱部材21及びペルチエ素子22によって空冷部23へと効率よく移動させることができるので、前記空冷部23から効率よく放熱することができる。従って、本実施形態の燃料クーラー10は、比較的高温な機関室内においても、十分な冷却性能を発揮することができるのである。このように、燃料クーラー10が機関室内で完結している(機関室の外の空気を当てたりする必要がない)ので、船用燃料供給システム1全体をコンパクトかつ簡単に構成することができる。
次に、本実施形態の船用燃料供給システム1の特徴的な構成について説明する。
前述のように、第1燃料は、ディーゼルエンジン2に供給される際に、燃料ヒーター8によって所定の温度(例えば130℃前後)まで加熱されている。従って、エンジンから戻される第1燃料は、機関室の室温(45℃前後)に対して十分に高温である。
この点に着目し、第2実施形態の船用燃料供給システム1では、ディーゼルエンジン2で第1燃料を利用しているときには、高温の第1燃料を第1燃料タンク7に戻す際に、燃料クーラー10を通過させて発電するように構成している。
より具体的に説明すると、以下のとおりである。即ち、この船用燃料供給システム1は、ディーゼルエンジン2からの燃料を、燃料クーラー10(の燃料通路20)を介して第1燃料タンク7に戻す第1燃料戻し路(第1燃料通路)36と、燃料クーラー10を介さずに第2燃料タンク9に戻す第2燃料戻し路(第2燃料通路)37と、を備えている。前記戻しタンク切換部12は、ディーゼルエンジン2で余った燃料の供給先を、第1燃料戻し路36及び第2燃料戻し路37の何れか一方に切り換えることができるように構成されている。そして、戻しタンク切換部12は、ディーゼルエンジン2で第1燃料を利用している場合は、当該第1燃料を、第1燃料戻し路36を利用して第1燃料タンク7に戻す。また戻しタンク切換部12は、ディーゼルエンジン2で第2燃料を利用している場合は、当該第2燃料を、第2燃料戻し路37を利用して第2燃料タンク9に戻す。
以上の構成により、ディーゼルエンジン2で第1燃料を利用しているときには、ディーゼルエンジン2から戻される第1燃料を燃料クーラー10に流して発電することができる。即ち、室温に対して十分に高温の第1燃料を燃料クーラー10の燃料通路20に流すことにより、ペルチエ素子22の冷却面と放熱面の間に温度差を発生させる。このようにペルチエ素子22の両側に温度差を発生させることで、当該ペルチエ素子22で発電することができる。なお、ディーゼルエンジン2で第1燃料を利用しているときには、燃料クーラー10は第2燃料を冷却するためには利用されておらず、当該燃料クーラー10の燃料通路20には第2燃料が流れていない状態であるから、上記のように燃料クーラー10に第1燃料を流すことができる。
なお、一般的な船舶では、排ガスエコノマイザ35で生成される水蒸気は船内に豊富にあるので、当該水蒸気を利用して第1燃料を加熱する燃料ヒーター8においては熱エネルギーが余っている状態である。本実施形態は、一旦加熱した第1燃料の熱量をペルチエ素子22で奪って発電する構成であるため、第1燃料の加熱という観点では必ずしも効率の良いものではないが、上記のように燃料ヒーター8では熱エネルギーが余っているので、第1燃料の加熱効率が多少低下したとしても問題にはならない。むしろ、上記のような構成とすることにより、従来は利用しにくかった余剰の水蒸気の熱エネルギーを、ペルチエ素子22によって電気エネルギーとして回収できるので、船用燃料供給システム1の全体としてはエネルギー効率を向上させることができるのである。
以上で説明したように、本実施形態の船用燃料供給システム1は、第1燃料タンク7と、第2燃料タンク9と、燃料ヒーター8と、燃料クーラー10と、供給燃料切換部6と、を備える。第1燃料タンク7は、第1燃料を貯留する。第2燃料タンク9は、常温における粘度が第1燃料よりも低い第2燃料を貯留する。燃料ヒーター8は、第1燃料を加熱してディーゼルエンジン2に供給する。燃料クーラー10は、第2燃料を冷却してディーゼルエンジン2に供給する。供給燃料切換部6は、燃料ヒーター8からの第1燃料と、燃料クーラー10からの第2燃料と、の何れか一方をディーゼルエンジン2に供給するように切り換える。また、この船用燃料供給システム1は、第1燃料をディーゼルエンジン2に供給している場合に、当該第1燃料を燃料クーラー10に流す第1燃料戻し路36を備える。そして、燃料クーラー10は、ペルチエ素子22を利用して第2燃料を冷却するように構成され、第1燃料が通過する際には、ペルチエ素子22によって発電する。
このように、燃料クーラー10にペルチエ素子22を利用することにより、当該燃料クーラー10の単純化、騒音の低減、装置の小型化等を図ることができる。また、燃料ヒーター8で加熱された第1燃料は、機関室の室温に対して十分に高温な状態になっている。そこで、この高温の第1燃料を燃料クーラー10に流すことにより、当該燃料クーラー10のペルチエ素子22において電力を得ることができる。
また、本実施形態の船用燃料供給システム1は、以下のように構成されている。即ち、第1燃料戻し路36は、第1燃料をディーゼルエンジン2に供給している場合に、ディーゼルエンジン2で余った第1燃料を、燃料クーラー10を介して第1燃料タンク7に戻す。
このように、ディーゼルエンジン2から戻される第1燃料を利用して燃料クーラー10で発電することにより、余った熱を電力として有効に回収することができる。また、ディーゼルエンジン2よりも後段で発電することにより、ディーゼルエンジン2に供給される第1燃料の温度に影響を与えてしまうことを回避できる。
また、本実施形態の船用燃料供給システム1は、以下のように構成されている。即ち、燃料ヒーター8は、ディーゼルエンジン2の排熱を利用して水蒸気を発生させる排ガスエコノマイザ35で生成された水蒸気を利用して第1燃料を加熱するように構成されている。
一般的に、排ガスエコノマイザーで生成される水蒸気は船内にふんだんにある。そこで上記のように構成することで、余剰の水蒸気の熱源を活用し、ペルチエ素子22で電気エネルギーとして回収することができる。このように、水蒸気では利用しにくかった熱エネルギーを、電気エネルギーへと容易に変換することができるので、エネルギーの有効活用が可能になる。
次に、上記実施形態の変形例について、図4及び図5を参照して説明する。なお、上記実施形態と共通又は類似する構成については、上記実施形態と同一の符号を図面に付して説明を省略する。
この変形例の燃料クーラー110は、燃料通路20内に複数のフィン40を備えた構成である。各フィン40は薄板状の金属板として構成されており、燃料通路20内の燃料が流れる方向に沿って配置されている。従って、燃料通路20内の燃料の流れが、フィン40によって遮られることはない。また、各フィン40は、伝熱部材21の長手方向に直交するように配置され、かつ、伝熱部材21の長手方向で適宜の間隔を空けて積層して配置されている。各伝熱部材21は、各フィンを貫通するように配置されている。そして、伝熱部材21とフィンは、溶接などの適宜の方法により接続されている。
以上のように、燃料通路20内にフィン40を設けることで、燃料通路20内を流れる燃料(第1燃料又は第2燃料)の熱を、より効率的に伝熱部材21へと伝えることができる。
以上に本発明の好適な実施の形態及び変形例を説明したが、上記の構成は例えば以下のように変更することができる。
スクリュープロペラ33はディーゼルエンジン2によって駆動されるものとしたが、これに限らず、スクリュープロペラ33を電動モーターによって駆動するように構成してもよい。この場合、ディーゼルエンジン2は発電機34の駆動源としてのみ機能し、当該発電機34が発電した電力を前記電動モーターに供給して、スクリュープロペラ33を駆動する。
上記実施形態の船用燃料供給システム1は、ディーゼルエンジン2に対して2種類の燃料を選択的に供給できる構成としているが、3種類以上の燃料を選択的に供給できるように構成されていても良い。
上記実施形態では、伝熱部材21は棒状の部材であるとしたが、これに限らず適宜の形状とすることができる。
上記実施形態では、燃料通路20は断面長方形状としたが、これに限らず、燃料通路20の形状は適宜変更することができる。その他、燃料クーラー10の形状等は図示したものに限定されず、適宜変更することができる。
ヒートシンク30と送風ファン31は、燃料クーラー10の冷却能力に応じて設ければ良く、必須ではない。例えば、ヒートシンク30だけで十分な冷却効果が得られるならば、送風ファン31は省略しても良い。また、ヒートシンク30と送風ファン31の両方を省略しても良い。この場合は、ペルチエ素子22の放熱面から直接的に周囲の空気へ熱が放出されるので、ペルチエ素子22の放熱面自体を空冷部であるとみなすことができる。
天井板26及び底板27に貼り付けるペルチエ素子22の大きさや枚数は、図面に示したものに限定されない。また、天井板26及び底板27に加えて側板28,29の外側の面にペルチエ素子を貼り付けても良い。
1 船用燃料供給システム
2 ディーゼルエンジン
4 第1燃料供給路
5 第2燃料供給路
8 燃料ヒーター
9 燃料クーラー
20 燃料通路
21 伝熱部材
22 ペルチエ素子
23 空冷部
36 第1燃料戻し路(第1燃料通路)

Claims (2)

  1. 第1燃料を貯留する第1燃料タンクと、
    常温における粘度が前記第1燃料よりも低い第2燃料を貯留する第2燃料タンクと、
    前記第1燃料を加熱してエンジンに供給する燃料ヒーターと、
    前記第2燃料を冷却して前記エンジンに供給する燃料クーラーと、
    前記燃料ヒーターからの第1燃料と、前記燃料クーラーからの第2燃料と、の何れか一方を前記エンジンに供給するように切り換える供給燃料切換部と、
    を備えた船用燃料供給システムであって、
    前記第1燃料を前記エンジンに供給している場合に、前記エンジンで余った当該第1燃料を、前記燃料クーラーを介して前記第1燃料タンクに戻す第1燃料戻し路を備え、
    前記燃料クーラーは、ペルチエ素子を利用して、前記エンジンに供給される前記第2燃料を冷却するように構成され、
    記ペルチエ素子は、その冷却面と放熱面の間に温度差を発生させることで発電することができ、
    前記エンジンで余った前記第1燃料が前記第1燃料戻し路を流れることにより、前記ペルチエ素子において前記温度差を発生させ、
    前記ペルチエ素子が発電した電力を電気エネルギーとして回収するように構成されることを特徴とする船用燃料供給システム。
  2. 請求項1記載の船用燃料供給システムであって、
    前記燃料ヒーターは、前記エンジンの排熱を利用して水蒸気を発生させる排熱回収装置で生成された水蒸気を利用して前記第1燃料を加熱することを特徴とする船用燃料供給システム。
JP2012044217A 2012-02-29 2012-02-29 船用燃料供給システム Active JP5819221B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044217A JP5819221B2 (ja) 2012-02-29 2012-02-29 船用燃料供給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044217A JP5819221B2 (ja) 2012-02-29 2012-02-29 船用燃料供給システム

Publications (2)

Publication Number Publication Date
JP2013181417A JP2013181417A (ja) 2013-09-12
JP5819221B2 true JP5819221B2 (ja) 2015-11-18

Family

ID=49272271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044217A Active JP5819221B2 (ja) 2012-02-29 2012-02-29 船用燃料供給システム

Country Status (1)

Country Link
JP (1) JP5819221B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325436A (zh) * 2017-03-03 2019-10-11 三菱重工业株式会社 船舶用柴油发动机

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102220055B1 (ko) * 2014-02-24 2021-02-24 대우조선해양 주식회사 지티엘디젤과 디젤을 동시다발적으로 이용하는 잠수함 추진 시스템 및 방법
JP6002876B2 (ja) * 2014-07-31 2016-10-05 株式会社Kita Engineering 船舶の燃料油加熱システム
JP5828941B1 (ja) * 2014-09-18 2015-12-09 株式会社新来島どっく Fot温度制御装置
JP6509594B2 (ja) * 2015-03-13 2019-05-08 住友重機械マリンエンジニアリング株式会社 エアセパレーター及び燃料供給システム並びに船舶
JP6123031B1 (ja) * 2015-05-21 2017-04-26 日本郵船株式会社 燃料油を燃焼する燃焼装置に投入される燃料油の種別を特定するための装置、方法、プログラムおよび記録媒体
WO2017022874A1 (ko) * 2015-08-06 2017-02-09 삼성중공업 주식회사 열전발전장치와 연료저장탱크의 발열장치 및 폐열 회수시스템
KR102098433B1 (ko) * 2016-02-29 2020-04-07 현대중공업 주식회사 이중연료엔진 연료공급시스템
WO2017200110A1 (ja) * 2016-05-19 2017-11-23 株式会社日本プレミアム バイオ燃料を用いたディーゼル発電システム
KR102217835B1 (ko) * 2019-09-23 2021-02-19 공주대학교 산학협력단 소각용 3차원 연료 분무 인젝터
RU197855U1 (ru) * 2020-02-03 2020-06-03 Публичное акционерное общество "КАМАЗ" Узел теплового воздействия для топливной системы автомобиля

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797041A (en) * 1980-12-08 1982-06-16 Hitachi Ltd Fuel supply apparatus of diesel engine
JPS59135372U (ja) * 1983-03-02 1984-09-10 トヨタ自動車株式会社 デイ−ゼルエンジンの燃料粘度制御装置
JPH0137168Y2 (ja) * 1984-12-01 1989-11-09
US5174266A (en) * 1991-12-30 1992-12-29 Evdokimo Allen J Fuel temperature control device with thermoelectric modules
JP3411604B2 (ja) * 1992-12-11 2003-06-03 株式会社日立製作所 エンジンのhc低減装置
KR970705158A (ko) * 1995-04-28 1997-09-06 미가꾸 다까하시 자성박막 및 그 제조방법(magnetic thin film and production method therefor)
US6009859A (en) * 1997-12-08 2000-01-04 Walbro Corporation Liquid-cooled in-line fuel pump
JP2004340085A (ja) * 2003-05-19 2004-12-02 Yamaha Marine Co Ltd 船外機の燃料冷却構造
JP2006062620A (ja) * 2004-08-30 2006-03-09 Denso Corp 内燃機関の蒸発燃料回収装置
JP2009243387A (ja) * 2008-03-31 2009-10-22 Toyota Motor Corp エンジンの廃熱回収装置
JP2011226442A (ja) * 2010-04-22 2011-11-10 Denso Corp 燃料熱回収装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325436A (zh) * 2017-03-03 2019-10-11 三菱重工业株式会社 船舶用柴油发动机

Also Published As

Publication number Publication date
JP2013181417A (ja) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5819221B2 (ja) 船用燃料供給システム
EP2678548B1 (en) System for converting thermal energy to mechanical energy in a vehicle
US20090084112A1 (en) Thermoelectric vehicle engine air cooler
KR101324958B1 (ko) 선박의 열전달시스템
JPWO2007086418A1 (ja) 流体の冷却装置
JP2011021562A (ja) コージェネレーション装置
JP5540660B2 (ja) 回転機の熱回収システム
SE533436C2 (sv) Metod och system för överkylning av kylvätskan i ett fordons kylsystem.
EP2643176B1 (en) A thermal energy administration system
JP2005083251A (ja) 熱電発電装置
WO2017159138A1 (ja) コージェネレーション装置
US9698435B2 (en) System and method for cooling an aircraft fuel cell system
WO2016031089A1 (ja) 駆動システム
JP2011063166A (ja) 流体抵抗低減装置
JP2009057972A (ja) ターボ機械における換気及び与圧部品
JP5872329B2 (ja) 船用燃料供給システム
US20130276849A1 (en) Teg-powered cooling circuit for thermoelectric generator
JP6096562B2 (ja) 熱電発電装置及びこれを備えた船舶
KR102027905B1 (ko) 선박용 열전발전 시스템
JP6369120B2 (ja) ハイブリッド車両の冷却装置
JP2006258069A (ja) 冷却システム
JP2014195378A (ja) 熱電発電装置及びこれを備えた船舶
KR200456118Y1 (ko) 온도차를 이용한 발전장치를 장착한 에너지절약형 선박
JP2006250037A (ja) エンジンの冷却装置
KR20110037632A (ko) 선박 냉각 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150930

R150 Certificate of patent or registration of utility model

Ref document number: 5819221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350