WO1996033830A1 - Verbundwerkstoff und verfahren zu seiner herstellung - Google Patents

Verbundwerkstoff und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO1996033830A1
WO1996033830A1 PCT/DE1995/000548 DE9500548W WO9633830A1 WO 1996033830 A1 WO1996033830 A1 WO 1996033830A1 DE 9500548 W DE9500548 W DE 9500548W WO 9633830 A1 WO9633830 A1 WO 9633830A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
phase
binder metal
material according
metal phase
Prior art date
Application number
PCT/DE1995/000548
Other languages
English (en)
French (fr)
Inventor
Hans Kolaska
Monika Willert-Porada
Klaus RÖDIGER
Thorsten Gerdes
Original Assignee
Widia Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE4340652A priority Critical patent/DE4340652C2/de
Application filed by Widia Gmbh filed Critical Widia Gmbh
Priority to JP8532068A priority patent/JPH11504074A/ja
Priority to US08/945,561 priority patent/US6124040A/en
Priority to EP95916564A priority patent/EP0827433A1/de
Publication of WO1996033830A1 publication Critical patent/WO1996033830A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F2003/1042Sintering only with support for articles to be sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to composite materials, consisting essentially of a cermet material with a binder metal phase of 5 to 30% by mass, the rest of at least one carbonitride phase or a hard metal with a hard material phase of 70 to 100%, the rest of the binder metal phase, with the exception of a WC-Co hard metal with 25% by mass of cobalt as binder metal or a powder-metallurgically produced steel.
  • the invention further relates to a method for producing this composite material.
  • Composite materials of the type mentioned are used in particular as cutting inserts for machining or as high-temperature materials.
  • materials from the aforementioned class of materials are produced by sintering compacts which are made from the corresponding mixtures of hard materials and metal powders or metal powders.
  • the sintering takes place in heatable furnaces which are equipped, for example, with graphite heating elements, the samples being heated indirectly by means of the radiation emitted by the heating elements and by convection or heat conduction.
  • the disadvantage of this process technology is that the choice of the furnace atmosphere is limited by the chemical properties of the heating elements.
  • the heating of hard metals, cermets or steels takes place from the outside in and is essentially controlled by the thermal conductivity and the emissivity of the samples.
  • the composite material according to claim 1 which is characterized according to the invention in that it has been produced by sintering in a microwave field.
  • microwave sintering represents direct heating in the volume of the composite materials of any geometry, only the requirement that the size of the sintered bodies be in the order of the wavelength of the used ones Microwave radiation must be observed.
  • the composite materials with good electrical conductivity reflect part of the microwave radiation, depending on the binder metal phase content, the special microstructure, in particular porous hard metal and cermet green compacts, enables a high penetration depth of the microwave radiation into the pre-pressed pressed body even at low temperatures.
  • Hot isostatic pressing preferably under a pressure of between 5 bar and 3000 bar, at temperatures of 1200 * C to 1750'C.
  • Hot isostatic pressing is generally known and is described, for example, in "Powder Metallurgy of Hard Metals” by H. Kolaska, Weinmannuer-to-Stretrachloride, 1992, page 6/11 f. described.
  • cermets have proven themselves, which have a carbonitride phase based on titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and / or tungsten and a binder metal phase composed of cobalt and / or nickel.
  • hard metals with a hard material phase consisting of oxicarbides, oxynitrides, oxicarbonitrides or borides have proven their worth.
  • the aforementioned hard metals can also have a hexagonal mixed carbide phase of the tungsten carbide with molybdenum carbide instead of the pure hexagonal tungsten carbide phase.
  • the binder metal phase usually consisting of iron, cobalt and / or nickel can have up to 15% by mass of molybdenum, tungsten, titanium, manganese and / or aluminum.
  • a nickel-aluminum alloy with a nickel / aluminum ratio of 90:10 to 70:30 can be used as the binder metal phase. Additions of up to 1% by mass of boron to the binder metal phases mentioned are possible.
  • the binder metal phase can also consist of the substances described in claim 10 or mixtures thereof. Additions of 0 to 16% by mass of cobalt, nickel, iron or rare earth metals can be included.
  • a heat-resistant binder metal phase can consist of powder-metallurgically produced high-speed steel and / or a superalloy.
  • Corrosion-resistant binder metal phases made of nickel and chromium, which may contain additions of molybdenum, manganese, aluminum, silicon and / or copper in manganese of from 0.01 to 5% by mass, have also proven successful.
  • the composite material can have one or more surface layers which have been applied by PVD, CVD or PCVD processes, preferably in a microwave field.
  • the pre-pressed molded body When the pre-pressed molded body is heated in a microwave field, a controlled increase in the temperature of the product body can be reached even at low temperatures. At low temperatures of the sintered body (up to approx. 1000 ° C.) and at low to medium microwave radiation powers, eddy currents play a major role.
  • the special properties of the microwaves also allow the induction of a plasma heating by simple control of the power and suitable choice of materials Depending on the surface temperature of the sintered body, the plasma heating can be dispensed with in order to prevent the danger of the sintered body surface overheating. This prevents the metal parts of the sintered body from evaporating.
  • the method according to the invention is based on the use of the so-called "skin effect".
  • skin effect In the case of substance mixtures of electrically conductive individual components, depending on the grain size and phase distribution in the mixture, each individual grain is heated by an eddy current, as a result of which the volume heated by microwaves is of the order of the sample volume.
  • the microwave radiation can penetrate the sample.
  • the microwave radiation can be converted directly into heat in the entire sintered body by relaxation processes, as a result of which any heating rates are possible.
  • the microwave sintering allows the properties to be optimized to a far greater extent than that of conventional heat treatments is known.
  • the hardness, the corrosion tendency, magnetic, electrical and thermomechanical parameters for known compositions could be considerably improved.
  • the pre-pressed shaped bodies can either with a heating rate kontinu ⁇ ous or in pulse mode applied Auf ⁇ heating rate are heated, wherein the heating rate from 0.1 to 10 * C. / min.
  • the sintering subsequent to the heating at constant temperature is preferably carried out over a period of 10 to 60 minutes.
  • plasticizers such as e.g. Waxes, which are expelled during the heating.
  • This process step can be carried out regardless of whether the waxes used themselves absorb the microwave radiation or are transparent to microwaves, as is the case with the waxes normally used.
  • the molded article or the molded articles can be made on a base made of microwave-transparent material, such as aluminum oxide, quartz, glass or boron nitride, or on a base microwave-absorbing material, such as carbon, silicon carbide, zirconium dioxide, tungsten carbide or tungsten carbide-cobalt.
  • the moldings can be heated indirectly by means of microwave heating of the bases and the furnace space.
  • the sintering can be carried out in a vacuum, inert gas or a reducing atmosphere, using as inert gases Argon in particular, and helium in special cases. Helium can possibly be used to suppress plasmas.
  • the inert gas atmospheres mentioned can preferably contain up to 5% hydrogen.
  • Hydrogen, carbon monoxide, methane or mixtures thereof are suitable as reducing atmospheres.
  • the sintering pressure should not exceed 200 bar.
  • the first consists in carrying out the PVD, CVD or PCVD coating without intermediate cooling after the sintering, preferably by changing the gas composition.
  • the sintering process and / or the HIP process and the coating process can be carried out in separate plants.
  • inert organic and / inorganic additives with low dielectric losses can be added to control the penetration depth of the microwave radiation used.
  • These can be plasticizers, for example, as in the production of hard metals and cermets, which have been added to the green bodies and which do not absorb the microwave radiation.
  • These additives control the penetration depth of the microwave radiation in such a way that, depending on the amount and the spatial distribution of these additives, the degree of percolation of the strongly absorbing constituents of the green body is reduced. The resulting reduction in the electrical conductivity of the green body leads to an increase in the depth of penetration.
  • the formation of structures similar to microstrip lines between these binders and additives and the electrically conductive components of the Green bodies are brought about.
  • the green body is penetrated by microwave radiation along the structures similar to the microstrip line, as a result of which a further increase in the penetration depth can be achieved.
  • the pressed bodies rest on supports made of porous Al 2 O 3 in a container which is also porous Al 2 O 3 and which also serves as a heat insulating jacket.
  • inert gas is argon and from 350 "C, an argon-hydrogen mixture, the heating rate used with 5% hydrogen content.
  • To 350 * C is from 0.1 to a maximum of 3 * C / min.
  • the plasticizer is completely extracted ⁇ burned, so the heating rate is gradually increased, näm ⁇ Lich at 15 * C / min to 1000 * C and at 50 ° C / min between 1000 * C and 1250 °. Thereafter, a holding time of 10 minutes was Patient ⁇ stop before the cutting inserts with a Rate of 20 * C / min have been cooled.
  • the sintered indexable inserts have a high hardness, good flexural strength and a Weibull distribution according to the following table. Results of the microwave sintering of WC-Co 25% weight
  • hard metals and cermets or steels can be coated with hard materials.
  • a chemical sample treatment can take place immediately in the cooling phase of the sintered body, in particular by means of a further microwave plasma atmosphere.
  • the relaxation of the microwave radiation in the volume of the hard metals and cermets is no longer an effective heat generation process. Heat is only generated in the edge region of the sintered body by eddy currents. This provides the prerequisites for using the irradiated microwave power to maintain a microwave plasma without causing an undesirable thermal load on the sintered body.
  • This procedure is possible with PVD coatings and can be carried out here as an integrated process immediately after sintering.
  • the percolation limit of the conductive components of the green body is reached at about 4% paraffin content. With this paraffin content, the penetration depth of the microwave radiation increases abruptly and reaches values that are typical for volume heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Erfindung betrifft Verbundwerkstoffe, im wesentlichen bestehend aus einem Cermetwerkstoff mit einer Bindemetallphase von 5 bis 30 Massen-%, Rest mindestens eine Carbonitridphase; oder einem Hartmetall mit einer Hartstoffphase von 70 bis 100 %, Rest Bindemetallphase, ausgenommen ein WC-Co-Hartmetall mit bis zu 25 Massen-% Cobalt als Bindemetall; oder einem pulvermetallurgisch hergestelltem Stahl sowie ein Verfahren zur Herstellung dieses Verbundwerkstoffes. Zur Verbesserung der Biegebruchfestigkeit und der Härte wird vorgeschlagen, die Sinterung in einem Mikrowellenfeld durchzuführen.

Description

Beschreibung
Verbundwerkstoff und Verfahren zu seiner Herstellung
Die Erfindung betrifft Verbundwerkstoffe, im wesentlichen bestehend aus einem Cermetwerkstoff mit einer Bindemetallphase von 5 bis 30 Massen-%, Rest mindestens eine Carbonitridphase oder einem Hartmetall mit einer Hartstoffphase von 70 bis 100 %, Rest Bindemetallphase, ausgenommen ein WC-Co-Hartmetall mit bis zu 25 Massen-% Cobalt als Binde¬ metall oder einem pulvermetallurgisch hergestelltem Stahl.
Die Erfindung betrifft ferner ein Verfahren zur Herstellung dieses Verbundwerkstoffes.
Verbundwerkstoffe der genannten Art werden insbesondere als Schneidplatten zur zerspanenden Bearbeitung oder als Hochtempe¬ ratur-Werkstoffe eingesetzt. Werkstoffe aus der vorgenannten Stoffklasse werden nach dem Stand der Technik durch Sintern von Preßkörpern, die aus den entsprechenden Gemischen von Hartstof¬ fen und Metallpulvern bzw. Metallpulvern hergestellt. Die Sin¬ terung erfolgt in beheizbaren Öfen, die beispielsweise mit Gra¬ phitheizelementen ausgerüstet sind, wobei die Erwärmung der Proben indirekt mittels der von den Heizelementen emittierten Strahlung sowie durch Konvektion bzw. Wärmeleitung erfolgt. Der Nachteil dieser Verfahrenstechnik liegt darin, daß die Wahl der Ofenatmosphäre durch die chemischen Eigenschaften der Heizele¬ mente eingeschränkt ist. Darüber hinaus erfolgt die Erwärmung der Hartmetalle, Cermets oder Stähle von außen nach innen und wird im wesentlichen durch die Wärmeleitfähigkeit und die Emissivität der Proben kontrolliert. Je nach Wärmeleitfähigkeit der Proben ist die Variationsbreite der Aufheiz- und Abkühlraten stark eingeschränkt, weshalb zum Teil aufwendige Maßnahmen, wie ein hoher apparativer und prozeßtechnischer Auf¬ wand erforderlich sind, um beispielsweise Ultrafein-Hartmetalle zufriedenstellend sintern zu können.
In der CN 1050908 ist zwar bereits vorgeschlagen worden, ein WC-Co-Hartmetall mit 6 Massen-% und einem kleinen Zusatz von 0,5 Massen-% TaC in einer WasserStoffatmosphäre bei 1250°C 10 bis 20 Minuten in einem Mikrowellenfeld zu sintern, jedoch schien dieses Verfahren auf solche Körper beschränkt, die nur einen geringen Metallanteil aufweisen. Bei massiven, metalli¬ schen Körpern ist nämlich festzustellen, daß sich diese in der Mikrowelle praktisch nicht aufheizen lassen, vielmehr reflek¬ tieren sie aufgrund ihrer hohen elektrischen Leitfähigkeit und der auftretenden Wirbelströme die eingestrahlte Leistung schon im Bereich der Oberfläche.
Es ist Aufgabe der vorliegenden Erfindung, einen Verbundkörper der eingangs genannten Art hinsichtlich seiner Biegebruchfe¬ stigkeit und seiner Härte zu verbessern und ein Verfahren zur Herstellung solcher Verbundwerkstoffe anzugeben.
Diese Aufgabe wird durch den Verbundwerkstoff nach Anspruch 1 gelöst, der erfindungsgemäß dadurch gekennzeichnet ist, daß er durch Sinterung in einem Mikrowellenfeld hergestellt worden ist. überraschenderweise hat sich nämlich herausgestellt, daß mit größer werdenden Bindemetallgehalten des vorgeformten Pre߬ körpers die Effektivität der Aufheizung durch Mikrowellen auch bei Hartmetallen gesteigert werden kann. Mikrowellengesinterte Cermetwerkstoffe sowie mikrowellengesinterte pulvermetallur¬ gisch hergestellte Stähle sind bisher in der Fachliteratur erst gar nicht erwähnt worden. Die Mikrowellensinterung stellt im Gegensatz zur bisherigen konventionellen Sinterung eine direkte Erwärmung im Volumen der Verbundwerkstoffe beliebiger Geometrie dar, einzig die Voraussetzung, daß die Größe der Sinterkörper in der Größenordnung der Wellenlänge der verwendeten Mikrowellenstrahlung liegt, ist zu beachten. Damit können im Gegensatz zur bisherigen Praxis auch große Bauteile drucklos gesintert werden, da die große Variabilität der Aufheizbedin- gungen eine gezielte Gefügeeinstellung im gesamten Bauteil erlaubt. Obwohl die Verbundwerkstoffe mit guter elektrischer Leitfähigkeit je nach Bindemetallphasengehalt einen Teil der Mikrowellenstrahlung reflektieren, ermöglicht die besondere Mikrostruktur, insbesondere poröser Hartmetall- und Cermet- grünlinge, bereits bei tiefen Temperaturen eine hohe Eindring¬ tiefe der Mikrowellenstrahlung in den vorgepreßten Preßkörper.
Weiterbildungen des erfindungsgemäßen Verbundkörpers sind in den Ansprüchen 2 bis 15 beschrieben.
So hat es sich insbesondere hinsichtlich einer höheren Dichte als vorteilhaft erwiesen, wenn die Verbundwerkstoffe zusätzlich einem abschließenden heißisostatischen Pressen (HIP) unterzogen worden sind, vorzugsweise unter einem Druck zwischen 5 bar und 3000 bar bei Temperaturen von 1200*C bis 1750'C. Das heißisostatische Pressen ist grundsätzlich bekannt und wird beispielsweise in "Pulvermetallurgie der Hartmetalle" H. Kolaska, Fachverband Pulvermetallurgie, 1992, Seite 6/11 f. beschrieben.
Hinsichtlich der Materialauswahl haben sich Cermets bewährt, die eine auf Titan, Zirkonium, Hafnium, Vanadin, Niob, Tantal, Chrom, Molybdän und/oder Wolfram basierende Carbonitridphase und eine Bindemetallphase aus Cobalt und/oder Nickel aufweisen.
Gleichermaßen haben sich Hartmetalle mit einer Hartstoffphase, bestehend aus Oxicarbiden, Oxinitriden, Oxicarbonitriden oder Boriden bewährt. Gleiches gilt für Hartmetalle mit einem hexagonalen Wolframcarbid als erster Phase und einem kubischen Mischcarbid des Wolframs, Titans, Tantals und/oder Niobs als zweiter Phase und einer Bindemetallphase aus Cobalt, Nickel, Eisen oder Mischungen hieraus. Die vorgenannten Hartmetalle können auch anstelle der reinen hexagonalen Wolframcarbid-Phase eine hexagonale Mischcarbid-Phase des Wolframcarbid mit Molyb- däncarbid aufweisen.
Variationen der Bindemetallphase beschreiben die Ansprüche 7 bis 14. So kann die üblicherweise aus Eisen, Cobalt und/oder Nickel bestehende Bindemetallphase bis zu 15 Massen-% Molybdän, Wolfram, Titan, Mangan und/oder Aluminium aufweisen. Insbeson¬ dere kann als Bindemetallphase eine Nickel-Aluminium-Legierung mit einem Nickel/Aluminium-Verhältnis von 90 : 10 bis 70 : 30 verwendet werden. Beimengungen bis zu 1 Massen-% Bor der genannten Bindemetallphasen sind möglich.
Alternativ dazu kann die Bindemetallphase auch aus den in Anspruch 10 beschriebenen Stoffen oder Mischungen daraus beste¬ hen. Hierbei können Zusätze von 0 bis 16 Massen-% aus Cobalt, Nickel, Eisen oder Seltenerd-Metalle enthalten sein.
Nach einer weiteren Ausgestaltung der Erfindung kann eine warm¬ feste Bindemetallphase aus pulvermetallurgisch hergestelltem Schnellarbeitsstahl und/oder einer Superlegierung bestehen. Auch haben sich korrosionsfeste Bindemetallphase aus Nickel und Chrom bewährt, die ggf. Zusätze von Molybdän, Mangan, Alumi¬ nium, Silicium und/oder Kupfer in Mangan von 0,01 bis zu 5 Massen-% enthalten.
Nach einer weiteren Ausgestaltung der Erfindung kann der Ver¬ bundwerkstoff eine oder mehrere Oberflächenschichten besitzen, die durch PVD-, CVD- oder PCVD-Verfahren aufgetragen worden sind, vorzugsweise in einem Mikrowellenfeld.
Verfahrenstechnisch wird die eingangs gestellte Aufgabe durch Maßnahmen nach den Ansprüchen 16 bis 28 gelöst.
Bei einer Erwärmung des vorgepreßten Formkörpers in einem Mikrowellenfeld kann eine geregelte Temperaturerhöhung des Pro- benkörpers selbst bei tiefen Temperaturen erreicht werden. Bei tiefen Temperaturen der Sinterkörper (bis ca. 1000"C) und bei niedrigen bis mittleren Mikrowellenstrahlungsleistungen spielen Wirbelströme eine große Rolle. Die besonderen Eigenschaften der Mikrowellen erlauben ferner durch einfache Regelung der Lei¬ stung und geeignete Materialauswahl zusätzlich die Induktion einer Plasmaheizung, die je nach Bedarf verstärkt oder unter¬ drückt werden kann. Je nach Oberflächentemperatur der Sinter¬ körper kann auf die Plasmaheizung verzichtet werden, um die Gefahr einer überhitzung der Sinterkörperoberfläche zu verhin¬ dern. Hierdurch kann ein Ausdampfen der Metallanteile des Sin¬ terkörpers vermieden werden.
Bei tiefen Temperaturen der Sinterkörper beruht das erfindungs¬ gemäße Verfahren auf der Nutzung des sogenannten "skin-Effek- tes". Bei Stoffgemischen aus elektrisch leitenden Einzelkompo¬ nenten wird, je nach Korngröße und Phaseverteilung im Gemisch, jedes einzelne Korn durch einen Wirbelstrom erwärmt, wodurch das durch Mikrowellen geheizte Volumen in der Größenordnung des Probenvolumens liegt. Damit wird aufgrund der MikroStruktur der Sinterkörper nicht nur eine dünne Randschicht des Sinterkörpers beheizt, sondern die Mikrowellenstrahlung kann die Probe durch¬ dringen. Bei höheren Temperaturen und insbesondere bei Ausbil¬ dung kleinster Mengen einer Schmelzphase kann die Mikrowellen¬ strahlung direkt im gesamten Sinterkörper durch Relaxationspro¬ zesse in Wärme umgewandelt werden, wodurch beliebige Aufheizra¬ ten möglich sind. Hierdurch ist es möglich, physikalische Pro¬ zesse, wie die Auflösung und Ausscheidung von Phasen in einem weit größeren Maße zu variieren als bei einer konventionellen Sinterung. Darüber hinaus ist eine vollständige Verdichtung der Sinterkörper bei geringeren Haltezeiten möglich. Desgleichen wird die Geschwindigkeit von chemischen Reaktionen durch die Mikrowelle positiv beeinflußt. Insgesamt erlaubt die Mikrowel¬ lensinterung eine Optimierung der Eigenschaften in einem weit größeren Ausmaß als dies von konventionellen Wärmebehandlungen bekannt ist. Insbesondere konnten die Härte, die Korrosionsnei¬ gung, magnetische, elektrische und thermomechanische Kenngrößen für bekannte Zusammensetzungen erheblich verbessert werden.
Die vorgepreßten Formkörper können entweder mit einer kontinu¬ ierlichen Aufheizrate oder im Pulsbetrieb aufgebrachten Auf¬ heizrate erhitzt werden, wobei die Aufheizrate 0,1 bis 10 *C/min beträgt.
Die sich an das Aufheizen anschließende Sinterung bei konstan¬ ter Temperatur wird vorzugsweise über eine Dauer von 10 bis 60 Minuten durchgeführt.
Zur Herstellung von Hartmetallen und Cermets werden bei den Grünkörpern Plastifizierer, wie z.B. Wachse, verwendet, die während der Aufheizung ausgetrieben werden. Dieser Proze߬ schritt kann durchgeführt werden unabhängig davon, ob die ver¬ wendeten Wachse selbst die Mikrowellenstrahlung absorbieren oder für Mikrowellen transparent sind, wie es bei den üblicher¬ weise verwendeten Wachsen der Fall ist. Je nach dem, ob gewünscht ist, daß die Mikrowellen den vorgepreßten Formkörper auf allen Oberflächenseiten erreichen, kann der Formkörper bzw. können die Formkörper auf einer Unterlage aus mikrowellen¬ transparentem Material, wie Aluminiumoxid, Quarz, Glas oder Bornitrid, oder auf einer Unterlagen aus mikrowellenabsorbie¬ rendem Material, wie Kohlenstoff, Siliciumcarbid, Zirkondioxid, Wolframcarbid oder Wolframcarbid-Cobalt gelagert sein. Ferner kann durch Auswahl des Materials für die Unterlage und den Ofenraum zusätzlich zur direkten Mikrowellenheizung eine indi¬ rekte Heizung der Formkörper durch Mikrowellenheizung der Unterlagen und des Ofenraumes erfolgen.
Die Sinterung kann in einer Vakuum-, Inertgas- oder einer redu¬ zierenden Atmosphäre durchgeführt werden, wobei als Inertgase insbesondere Argon, in Sonderfällen auch Helium, infrage kom¬ men. Helium kann ggf. als Unterdrückung von Plasmen eingesetzt werden. Die genannten Inertgasatmosphären können vorzugsweise bis zu 5 % Wasserstoff enthalten.
Als reduzierende Atmosphären bieten sich Wasserstoff, Kohlen- monoxid, Methan oder Mischungen hieraus an. Der Sinterdruck soll 200 bar nicht übersteigen.
Zur Aufbringung von Oberflächenbeschichtungen bieten sich zwei Möglichkeiten an: Die erste besteht darin, die PVD-, CVD- oder PCVD-Beschichtung ohne zwischenzeitige Abkühlung im Anschluß an das Sintern durchzuführen, vorzugsweise durch Wechsel der Gas¬ zusammensetzung. Alternativ hierzu können jedoch der Sinterpro¬ zeß und/oder der HIP-Prozeß und der Beschichtungsprozeß in getrennten Anlagen durchgeführt werden.
Dem Formkörper können nach einer weiteren Ausgestaltung der Erfindung zur Steuerung der Eindringtiefe der verwendeten Mikrowellenstrahlung inerte organische und/ anorganische Zusätze mit geringen dielektrischen Verlusten zugegeben werden. Dies können beispielsweise wie bei der Herstellung von Hartmetallen und Cermets Plastifizierer sein, die den Grünkör¬ pern beigegeben worden sind und die die Mikrowellenstrahlung nicht absorbieren. Diese Zusätze steuern die Eindringtiefe der Mikrowellenstrahlung derart, daß abhängig von der Menge und der räumlichen Verteilung dieser Zusätze der Perkolationsgrad der stark absorbierenden Bestandteile des Grünkörpers vermindert wird. Die sich daraus ergebende Verminderung der elektrischen Leitfähigkeit des Grünkörpers führt zur Erhöhung der Eindring¬ tiefe. Ferner kann durch eine besondere Verteilung der nicht absorbierenden Binder und Zusätze die Bildung von ikrostrei- fenleiterähnlichen Strukturen zwischen diesen Bindern und Zusätzen und den elektrisch leitenden Bestandteilen der Grünkörper herbeigeführt werden. Dadurch wird eine Penetration des Grünkörpers durch Mikrowellenstrahlung entlang der mikrostreifenleiterähnlichen Strukturen erreicht, wodurch eine weitere Erhöhung der Eindringtiefe erzielbar ist.
Im folgenden wird die Erfindung anhand von Ausführungsbeispie¬ len näher erläutert.
Aus einer 25 Gew.-% Cobalt mit einem Gehalt von 1,5 Gew.-% Wachse als Plastifizierer, Rest WC bestehende Wendeschneidplat¬ ten-Preßkörper werden gemäß der Ofengeometrie gleichmäßig ver¬ teilt angeordnet und bei einer Leistungsdichte von 0,3 W/cm3 mittels Mikrowellen aufgeheizt. Die Temperaturregelung erfolgt über die Einstellung der Mikrowellenleistung. Die Preßkörper ruhen auf Auflagen aus porösem AI2O3 in einem Behälter als ebenfalls porösem AI2O3, der gleichzeitig als Wärmeisolierman¬ tel dient. Als Inertgasatmosphäre wird Argon und ab 350"C ein Argon-Wasserstoffgemisch mit 5 % Wasserstoffgehalt verwendet. Die Aufheizrate bis 350*C beträgt 0,1 bis maximal 3*C/min. Bis zu dieser Aufheizung ist der Plastifizierer vollständig ausge¬ brannt, weshalb die Aufheizrate stufenweise erhöht wird, näm¬ lich auf 15*C/min bis 1000*C und auf 50°C/min zwischen 1000*C und 1250° . Hiernach wurde eine Haltezeit von 10 Minuten einge¬ halten, bevor die Wendeschneidplatten mit einer Rate von 20*C/min abgekühlt worden sind.
Die gesinterten Wendeschneidplatten weisen eine hohe Härte, eine gute Biegebruchfestigkeit und eine Weibull-Verteilung nach folgender Tabelle auf. Ergebnisse der Mikrowellensinterung von WC-Co 25 % Gewicht
Kennwerte Mikrowellen Konventionelle Sinterung Sinterung
Biegebruchfestigkeit σg 3017 2620
Weibull-Modulus 24,8 16
Härte HV3o 836 798
Zur Verbesserung der Verschleißfestigkeit können Hartmetalle und Cermets oder auch Stähle mit Hartstoffen beschichtet wer¬ den. So kann unmittelbar in der Abkühlphase der Sinterkörper eine chemische Probenbehandlung erfolgen, insbesondere durch weitere Mikrowellenplasma-Atmosphäre. Sobald die flüssige Phase erstarrt ist, ist die Relaxation der Mikrowellenstrahlung im Volumen der Hartmetalle und Cermets kein effektiver Wärmeerzeu¬ gungsprozeß mehr. Eine Wärmeerzeugung findet nur noch im Rand¬ bereich der gesinterten Körper durch Wirbelströme statt. Damit sind die Voraussetzungen gegeben, die eingestrahlte Mikrowel¬ lenleistung zur Aufrechterhaltung eines Mikrowellenplasmas zu nutzen, ohne eine unerwünschte Wärmebelastung der Sinterkörper zu verursachen. Diese Verfahrensweise ist bei PVD-Beschichtun- gen möglich und hier als integrierter Prozeß unmittelbar im Anschluß an die Sinterung durchführbar. Besondere Vorteile ergeben sich auch beim Einsatz von Mikrowellen zur Sinterung von Hartmetallen und Cermets bei einer abschließenden CVD- Beschichtung. Da die Sinterkörper nach einer Abkühlphase heißer sind als die Umgebung, findet die CVD-Reaktion bevorzugt an den Sinterkörpern statt. Ferner muß im Gegensatz zu konventionellen Sinterverfahren bei der Wahl der Ofenatmosphäre keine Rücksicht auf die chemischen Eigenschaften von Heizelementen genommen werden. Die Herstellung von Hartmetallen und Cermets durch Erwärmung mittels Mikrowellen führt zu einer erheblichen Vereinfachung des Herstellungsprozesses und damit zu einer erheblichen Ver¬ kürzung der gesamten Prozeßdauer. Die Aufheizraten können im Bereich von lO-1"C/min für die Entwachsung bis hin zu 5 • 103°C/min bei Temperaturen oberhalb 1000"C variiert werden, Die Abkühlung ist nicht primär von der thermischen Masse des Ofens abhängig, sondern von der thermischen Masse der Sintercharge. Vorteilhafterweise steht der Ofen nach einer Sinterung sofort für eine Neubelegung zur Verfügung.
Wie aus der in der einzigen Figur gezeigten Abhängigkeit der elektrischen Leitfähigkeit eines Hartmetall-Grünkörpers vom Gewichtsanteil des Binders ersichtlich, wird bei ca. 4% Paraffinanteil die Perkolationsgrenze der leitfähigen Bestand¬ teile des Grünkörpers erreicht. Bei diesem Paraffinanteil er¬ höht sich auch die Eindringtiefe der Mikrowellenstrahlung sprunghaft und erreicht Werte, die typisch für Volumenheizung sind.

Claims

Patentansprüche
1. Verbundwerkstoffe, im wesentlichen bestehend aus einem Cermetwerkstoff mit einer Bindemetallphase von 5 bis 30 Massen-%, Rest mindestens eine Carbonitrid¬ phase oder einem Hartmetall mit einer Hartstoffphase von 70 bis 100 %, Rest Bindemetallphase, ausgenommen ein Wolf- ramcarbid-Cobalt-Hartmetall mit bis zu 25 Massen-% Cobalt als Bindemetall oder einem pulvermetallurgisch hergestelltem Stahl, d a d u r c h g e k e n n z e i c h n e t, daß der Verbundwerkstoff durch Sinterung in einem Mikro¬ wellenfeld hergestellt worden ist.
2. Verbundwerkstoff nach Anspruch l, dadurch gekennzeichnet, daß der Verbundwerkstoff zusätzlich einem abschließenden heißisostatischen Pressen (HIP) zur Nachverdichtung unter¬ zogen worden ist, vorzugsweise unter einem Druck zwischen 5 bar und 3000 bar bei Temperaturen von 1200*C bis 1750"C.
3. Verbundwerkstoff nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Cermet eine auf Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und/oder W basierende Carbonitrid¬ phase und eine Bindemetallphase aus Co und/oder Ni auf¬ weist.
4. Verbundwerkstoff nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß die Hartstoffphase Oxicarbide, Oxinitride, Oxicarbonitride oder Boride aufweist.
5. Verbundwerkstoff nach Anspruch 1, 2 oder 4, dadurch gekennzeichnet, daß das Hartmetall hexagonales WC als 1. Phase und kubisches Carbid des Mischkristalles aus W, Ti, Ta und/oder Nb als 2. Phase und eine Bindemetallphase aus Co, Ni. Fe oder Mischungen hiervon aufweist.
6. Verbundwerkstoff nach einem der Ansprüche 1, 2, 4 oder 5, dadurch gekennzeichnet, daß das Hartmetall aus hexagona¬ len Mischcarbiden WC mit MoC und/oder kubischen Mischcar- biden der Elemente Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und/oder W mit einer Bindemetallphase aus Co, Fe und/oder Ni besteht.
7. Verbundwerkstoff nach einem der Ansprüche l bis 6, dadurch gekennzeichnet, daß die Bindemetallphase bis zu 15 Massen-% Mo, W, Ti, Mn und/oder AI - bezogen auf die Gesamtmasse der Bindemetallphase - aufweist.
8. Verbundwerkstoff nach Anspruch 7, dadurch gekennzeichnet, daß die Bindemetallphase aus einer Ni-AI-Legierung mit einem Ni-Al-Verhältnis von 90 : 10 bis 70 : 30 besteht.
9. Verbundwerkstoff nach Anspruch 8, dadurch gekennzeichnet, daß die Bindemetallphase bis zu 1 Massen-% Bor (bezogen auf die Gesamtmasse der Bindemetallphase) enthält.
10. Verbundwerkstoff nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Bindemetallphase aus Ni3Äl, TiSi3, Ti2Si3, Ti3Al, Ti5Si3, TiAl, Ni2TiAl, TiSi2, NiSi, MoSi2, MoSi02 oder Mischungen hieraus besteht.
11. Verbundwerkstoff nach Anspruch 10, gekennzeichnet durch Zusätze von 0 bis 16 Massen-% aus Co, Ni, Fe und/oder Sel- tenerd-Metallen.
12. Verbundwerkstoff nach einem der Ansprüche l, 2 oder 4, gekennzeichnet durch eine warmfeste Bindemetallphase, bestehend aus pulvermetallurgisch hergestelltem Schnell- arbeitsstahl und/oder einer Superlegierung.
13. Verbundwerkstoff nach einem der Ansprüche 1, 2 oder 4, gekennzeichnet durch eine Bindemetallphase aus Ni und Cr.
14. Verbundwerkstoff nach Anspruch 13, gekennzeichnet durch Zusätze von Mo, Mn, AI, Si und Cu in Mangan von 0,01 bis zu 5 Massen-%.
15. Verbundwerkstoff nach einem der Ansprüche 1 bis 14, gekennzeichnet durch eine oder mehrere mittels PVD, CVD und/oder PCVD, vorzugsweise in einem Mikrowellenfeld auf¬ getragene Schichten.
16. Verfahren zur Herstellung der Verbundwerkstoffe nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der vorgepreßte Formkörper in einem Mikrowellenfeld von 0,01 bis 10 W/cm3 Energiedichte erwärmt und gesintert wird.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß der Formkörper kontinuierlich oder gepulst mit Mikrowellen bestrahlt und mit Aufheizraten von 0.1 bis 104°C/min erhitzt wird.
18. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeich¬ net, daß der Formkörper nach dem Aufheizen mindestens 10 bis 60 Minuten bei konstanter Temperatur gesintert wird.
19. Verfahren nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß der vorgepreßte Formkörper Plastifi¬ zierer, wie Wachs, enthält, die vorzugsweise während der Aufheizung ausgetrieben werden.
20. Verfahren nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß der vorgepreßte Formkörper während des Aufheizens und Sinterns auf einer Unterlage aus mikrowel¬ lentransparentem Material, wie AI2O3, Quarz, Glas oder Bornitrid gelagert ist.
21. Verfahren nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß der vorgepreßte Formkörper auf einer Unterlage aus mikrowellenabsorbierendem Material wie Koh¬ lenstoff, Siliciumcarbid, Zirkoniumdioxid, Wolframcarbid, Wolframcarbid-Cobalt gelagert ist.
22. Verfahren nach einem der Ansprüche 16 bis 21, dadurch gekennzeichnet, daß die Sinterung in einer Vakuum-, einer Inertgas- oder einer reduzierenden Atmosphäre durchgeführt wird.
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die Inertgas-Atmosphäre bis zu 5 Volumen-% H2 enthält.
24. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die reduzierende Atmosphäre aus Wasserstoff, Kohlenmon- oxid, Methan oder Mischungen hieraus besteht.
25. Verfahren nach einem der Ansprüche 22 bis 24, dadurch gekennzeichnet, daß die Sinterung unter einem Druck von maximal 200 bar durchgeführt wird.
26. Verfahren nach einem der Ansprüche 16 bis 25, dadurch gekennzeichnet, daß die PVD-, CVD- oder PCVD-Beschichtung ohne zwischenzeitige Abkühlung im Anschluß an das Sintern aufgetragen wird.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß die PVD-, CVD- oder PCVD-Beschichtung durch Wechsel der Gaszusammensetzung aufgetragen wird.
28. Verfahren nach einem der Ansprüche 16 bis 27, dadurch gekennzeichnet, daß dem Formkörper zur Steuerung der Eindringtiefe der verwendeten Mikrowellenstrahlung inerte organische und/oder anorganische Zusätze mit geringen dielektrischen Verlusten zugegeben werden.
PCT/DE1995/000548 1993-11-30 1995-04-26 Verbundwerkstoff und verfahren zu seiner herstellung WO1996033830A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE4340652A DE4340652C2 (de) 1993-11-30 1993-11-30 Verbundwerkstoff und Verfahren zu seiner Herstellung
JP8532068A JPH11504074A (ja) 1993-11-30 1995-04-26 複合材料およびその製造法
US08/945,561 US6124040A (en) 1993-11-30 1995-04-26 Composite and process for the production thereof
EP95916564A EP0827433A1 (de) 1993-11-30 1995-04-26 Verbundwerkstoff und verfahren zu seiner herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4340652A DE4340652C2 (de) 1993-11-30 1993-11-30 Verbundwerkstoff und Verfahren zu seiner Herstellung

Publications (1)

Publication Number Publication Date
WO1996033830A1 true WO1996033830A1 (de) 1996-10-31

Family

ID=6503719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/000548 WO1996033830A1 (de) 1993-11-30 1995-04-26 Verbundwerkstoff und verfahren zu seiner herstellung

Country Status (5)

Country Link
US (1) US6124040A (de)
EP (1) EP0827433A1 (de)
JP (1) JPH11504074A (de)
DE (1) DE4340652C2 (de)
WO (1) WO1996033830A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028462A1 (de) * 1996-12-24 1998-07-02 Widia Gmbh Verbundkörper, bestehend aus einem hartmetall-, cermet- oder keramiksubstratkörper und verfahren zu seiner herstellung
WO1998040525A1 (de) * 1997-03-10 1998-09-17 Widia Gmbh Hartmetall- oder cermet-sinterkörper und verfahren zu dessen herstellung
DE19725914A1 (de) * 1997-03-10 1998-09-17 Widia Gmbh Hartmetall- oder Cermet-Sinterkörper und Verfahren zu dessen Herstellung
WO1999002289A1 (en) * 1997-07-08 1999-01-21 Sandvik Ab (Publ) Method for manufacturing inserts with holes for clamping
WO2000003049A1 (en) * 1998-07-13 2000-01-20 Sandvik Ab; (Publ) Method of making cemented carbide
DE10005146A1 (de) * 2000-02-04 2001-08-09 Widia Gmbh Vorrichtung zur Einstellung einer Mikrowellen-Energiedichteverteilung in einem Applikator und Verwendung dieser Vorrichtung
DE19924174B4 (de) * 1998-05-27 2008-12-18 Widia Gmbh Verbundwerkstoff

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19601234A1 (de) * 1996-01-15 1997-07-17 Widia Gmbh Verbundkörper und Verfahren zu seiner Herstellung
DE19711642C2 (de) * 1997-03-20 2000-09-21 Nwm De Kruithoorn Bv Verfahren zur Herstellung eines Stahl-Matrix-Verbundwerkstoffes sowie Verbundwerkstoff, hergestellt nach einem derartigen Verfahren
US6228484B1 (en) 1999-05-26 2001-05-08 Widia Gmbh Composite body, especially for a cutting tool
US20040141867A1 (en) * 2001-05-16 2004-07-22 Klaus Dreyer Composite material and method for production thereof
SE524583C2 (sv) * 2002-12-12 2004-08-31 Erasteel Kloster Ab Sammansatt metallprodukt och förfarande för framställning av en sådan
US7413591B2 (en) * 2002-12-24 2008-08-19 Kyocera Corporation Throw-away tip and cutting tool
US7645315B2 (en) * 2003-01-13 2010-01-12 Worldwide Strategy Holdings Limited High-performance hardmetal materials
US6911063B2 (en) * 2003-01-13 2005-06-28 Genius Metal, Inc. Compositions and fabrication methods for hardmetals
US20070034048A1 (en) * 2003-01-13 2007-02-15 Liu Shaiw-Rong S Hardmetal materials for high-temperature applications
CN100415919C (zh) * 2003-05-20 2008-09-03 埃克森美孚研究工程公司 高级抗侵蚀碳氮化物金属陶瓷
US7247186B1 (en) * 2003-05-20 2007-07-24 Exxonmobil Research And Engineering Company Advanced erosion resistant carbonitride cermets
US7857188B2 (en) * 2005-03-15 2010-12-28 Worldwide Strategy Holding Limited High-performance friction stir welding tools
US20060251536A1 (en) * 2005-05-05 2006-11-09 General Electric Company Microwave processing of mim preforms
DE102006018947A1 (de) * 2006-04-24 2007-10-25 Tutec Gmbh Verfahren zur Herstellung eines Hartmetallkörpers, Pulver zur Herstellung eines Hartmetalls und Hartmetallkörper
DE102006023390A1 (de) * 2006-05-17 2007-11-29 Ims Gear Gmbh Planetenrad mit pulvermetallurgisch hergestellten Hartmetallbolzen
US8454274B2 (en) 2007-01-18 2013-06-04 Kennametal Inc. Cutting inserts
US9101985B2 (en) 2007-01-18 2015-08-11 Kennametal Inc. Cutting insert assembly and components thereof
US8727673B2 (en) 2007-01-18 2014-05-20 Kennametal Inc. Cutting insert with internal coolant delivery and surface feature for enhanced coolant flow
US20080175679A1 (en) 2007-01-18 2008-07-24 Paul Dehnhardt Prichard Milling cutter and milling insert with core and coolant delivery
US7883299B2 (en) * 2007-01-18 2011-02-08 Kennametal Inc. Metal cutting system for effective coolant delivery
US7963729B2 (en) * 2007-01-18 2011-06-21 Kennametal Inc. Milling cutter and milling insert with coolant delivery
US8328471B2 (en) 2007-01-18 2012-12-11 Kennametal Inc. Cutting insert with internal coolant delivery and cutting assembly using the same
US8439608B2 (en) * 2007-01-18 2013-05-14 Kennametal Inc. Shim for a cutting insert and cutting insert-shim assembly with internal coolant delivery
US7625157B2 (en) * 2007-01-18 2009-12-01 Kennametal Inc. Milling cutter and milling insert with coolant delivery
EP2334455B1 (de) 2008-09-26 2014-11-26 Wendt GmbH Mikrowellenplasmasintern
US7955032B2 (en) 2009-01-06 2011-06-07 Kennametal Inc. Cutting insert with coolant delivery and method of making the cutting insert
KR101186456B1 (ko) * 2009-05-21 2012-09-27 서울대학교산학협력단 금속 복합분말, 소결체 및 이의 제조 방법
US8827599B2 (en) 2010-09-02 2014-09-09 Kennametal Inc. Cutting insert assembly and components thereof
US8734062B2 (en) 2010-09-02 2014-05-27 Kennametal Inc. Cutting insert assembly and components thereof
EP2524971A1 (de) 2011-05-20 2012-11-21 Siemens VAI Metals Technologies GmbH Verfahren und Vorrichtung zum Aufbereiten von Walzgut aus Stahl vor dem Warmwalzen
EP2527480B1 (de) * 2011-05-27 2017-05-03 H.C. Starck GmbH NiFe-Binder mit universeller Einsetzbarkeit
CN102978499B (zh) * 2012-12-24 2015-08-12 株洲硬质合金集团有限公司 一种抗高温磨损的硬质合金及其制备方法
US9856163B2 (en) 2015-04-15 2018-01-02 Owens-Brockway Glass Container Inc. Nanocomposite material
CN105543608A (zh) * 2015-12-04 2016-05-04 河源富马硬质合金股份有限公司 一种Ti(C,N)基金属陶瓷
CN107326242A (zh) * 2017-06-26 2017-11-07 扬中市第蝶阀厂有限公司 一种用于制作阀体的金属陶瓷材料
US20190247926A1 (en) 2018-02-14 2019-08-15 Kennametal Inc. Cutting insert with internal coolant passageways
CN112391520A (zh) * 2020-11-27 2021-02-23 上海天竺机械刀片有限公司 一种粉碎机用钨钢刀片热处理工艺
CN113355578A (zh) * 2021-06-10 2021-09-07 河南工业大学 一种Ti(C,N)基金属陶瓷的制备方法
CN113430410A (zh) * 2021-06-10 2021-09-24 河南工业大学 一种Ti(C,N)基金属陶瓷的新型制备方法
CN113373336A (zh) * 2021-06-10 2021-09-10 河南工业大学 一种超细多元Ti(C,N)基金属陶瓷的制备
CN115213409B (zh) * 2022-07-11 2024-02-20 哈尔滨工业大学 一种利用微波等离子体快速成型金刚石/金属基复合材料构件的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3327103A1 (de) * 1982-07-31 1984-02-09 Sumitomo Electric Industries, Ltd., Osaka Sinterlegierung und verfahren zu ihrer herstellung
EP0219231A1 (de) * 1985-09-26 1987-04-22 Nippon Kokan Kabushiki Kaisha Verfahren zum Sintern von Presslingen
WO1990005200A1 (de) * 1988-10-31 1990-05-17 Krupp Widia Gmbh Hartmetallkörper
EP0382530A2 (de) * 1989-01-17 1990-08-16 Donald J. Adrian Isostatisches Pressen mit Mikrowellenheizung und Verfahren dafür
CN1050908A (zh) * 1990-11-16 1991-04-24 武汉工业大学 碳化钨-钴硬质合金的微波烧结方法
JPH03267304A (ja) * 1990-03-19 1991-11-28 Hitachi Ltd マイクロ波焼結法
EP0476346A1 (de) * 1990-08-31 1992-03-25 Valenite Inc. Keramic-Metall Gegenstände und Verfahren zu ihrer Herstellung
EP0503082A1 (de) * 1990-10-01 1992-09-16 Idemitsu Petrochemical Company Limited Vorrichtung zur erzeugung von plasma durch mikrowellen und verfahren zur herstellung von diamantfilmen unter benutzung dieser vorrichtung
US5397530A (en) * 1993-04-26 1995-03-14 Hoeganaes Corporation Methods and apparatus for heating metal powders

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE392482B (sv) * 1975-05-16 1977-03-28 Sandvik Ab Pa pulvermetallurgisk veg framstelld legering bestaende av 30-70 volymprocent
CA1188136A (en) * 1980-08-18 1985-06-04 Nicholas Makrides Steel-hard carbide macrostructured tools, compositions and methods of forming
CA1174438A (en) * 1981-03-27 1984-09-18 Bela J. Nemeth Preferentially binder enriched cemented carbide bodies and method of manufacture
US4447263A (en) * 1981-12-22 1984-05-08 Mitsubishi Kinzoku Kabushiki Kaisha Blade member of cermet having surface reaction layer and process for producing same
AT377786B (de) * 1981-12-24 1985-04-25 Plansee Metallwerk Verschleissteil, insbesondere hartmetall -schneideinsatz zur spanabhebenden bearbeitung
DE3511220A1 (de) * 1985-03-28 1986-10-09 Fried. Krupp Gmbh, 4300 Essen Hartmetall und verfahren zu seiner herstellung
SU1491612A1 (ru) * 1986-03-04 1989-07-07 Донецкий физико-технический институт АН УССР Способ стационарного водородно-вакуумного спекани твердосплавных изделий
JPS63169356A (ja) * 1987-01-05 1988-07-13 Toshiba Tungaloy Co Ltd 表面調質焼結合金及びその製造方法
US4919718A (en) * 1988-01-22 1990-04-24 The Dow Chemical Company Ductile Ni3 Al alloys as bonding agents for ceramic materials
EP0329338A3 (de) * 1988-02-16 1990-08-01 Alcan International Limited Verfahren und Vorrichtung zum Erhitzen von Körpern auf eine hohe Temperatur mittels Mikrowellen-Energie
CA1313230C (en) * 1988-10-06 1993-01-26 Raymond Roy Process for heating materials by microwave energy
JPH0711048B2 (ja) * 1988-11-29 1995-02-08 東芝タンガロイ株式会社 高強度窒素含有サーメット及びその製造方法
US4935057A (en) * 1989-09-11 1990-06-19 Mitsubishi Metal Corporation Cermet and process of producing same
CA2001062A1 (en) * 1989-10-19 1991-04-19 Prasad Shrikrishna Apte Method of heat-treating unstable ceramics by microwave heating and susceptors used therefor
DE4004576C1 (de) * 1990-02-14 1991-02-21 Deutsche Thomson-Brandt Gmbh, 7730 Villingen-Schwenningen, De
SE500047C2 (sv) * 1991-05-24 1994-03-28 Sandvik Ab Sintrad karbonitridlegering med höglegerad bindefas samt sätt att framställa denna
SE500048C2 (sv) * 1991-06-12 1994-03-28 Sandvik Ab Sätt att tillverka sintrade karbonitridlegeringar

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3327103A1 (de) * 1982-07-31 1984-02-09 Sumitomo Electric Industries, Ltd., Osaka Sinterlegierung und verfahren zu ihrer herstellung
EP0219231A1 (de) * 1985-09-26 1987-04-22 Nippon Kokan Kabushiki Kaisha Verfahren zum Sintern von Presslingen
WO1990005200A1 (de) * 1988-10-31 1990-05-17 Krupp Widia Gmbh Hartmetallkörper
EP0382530A2 (de) * 1989-01-17 1990-08-16 Donald J. Adrian Isostatisches Pressen mit Mikrowellenheizung und Verfahren dafür
JPH03267304A (ja) * 1990-03-19 1991-11-28 Hitachi Ltd マイクロ波焼結法
EP0476346A1 (de) * 1990-08-31 1992-03-25 Valenite Inc. Keramic-Metall Gegenstände und Verfahren zu ihrer Herstellung
EP0503082A1 (de) * 1990-10-01 1992-09-16 Idemitsu Petrochemical Company Limited Vorrichtung zur erzeugung von plasma durch mikrowellen und verfahren zur herstellung von diamantfilmen unter benutzung dieser vorrichtung
CN1050908A (zh) * 1990-11-16 1991-04-24 武汉工业大学 碳化钨-钴硬质合金的微波烧结方法
US5397530A (en) * 1993-04-26 1995-03-14 Hoeganaes Corporation Methods and apparatus for heating metal powders

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9203, Derwent World Patents Index; Class L02, AN 92-016636 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 083 (M - 1216) 28 February 1992 (1992-02-28) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028462A1 (de) * 1996-12-24 1998-07-02 Widia Gmbh Verbundkörper, bestehend aus einem hartmetall-, cermet- oder keramiksubstratkörper und verfahren zu seiner herstellung
US6248434B1 (en) 1996-12-24 2001-06-19 Widia Gmbh Composite body comprising a hard metal, cermet or ceramic substrate body and method of producing same
WO1998040525A1 (de) * 1997-03-10 1998-09-17 Widia Gmbh Hartmetall- oder cermet-sinterkörper und verfahren zu dessen herstellung
DE19725914A1 (de) * 1997-03-10 1998-09-17 Widia Gmbh Hartmetall- oder Cermet-Sinterkörper und Verfahren zu dessen Herstellung
WO1999002289A1 (en) * 1997-07-08 1999-01-21 Sandvik Ab (Publ) Method for manufacturing inserts with holes for clamping
US6287352B1 (en) 1997-07-08 2001-09-11 Smith International, Inc. Method for manufacturing inserts with holes for clamping
DE19924174B4 (de) * 1998-05-27 2008-12-18 Widia Gmbh Verbundwerkstoff
WO2000003049A1 (en) * 1998-07-13 2000-01-20 Sandvik Ab; (Publ) Method of making cemented carbide
US6673307B1 (en) 1998-07-13 2004-01-06 Sandvik Ab Method of making cemented carbide
DE10005146A1 (de) * 2000-02-04 2001-08-09 Widia Gmbh Vorrichtung zur Einstellung einer Mikrowellen-Energiedichteverteilung in einem Applikator und Verwendung dieser Vorrichtung
US6630653B2 (en) 2000-02-04 2003-10-07 Widia Gmbh Device for adjusting the distribution of microwave energy density in an applicator and use of this device

Also Published As

Publication number Publication date
DE4340652A1 (de) 1995-06-01
JPH11504074A (ja) 1999-04-06
EP0827433A1 (de) 1998-03-11
DE4340652C2 (de) 2003-10-16
US6124040A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
DE4340652C2 (de) Verbundwerkstoff und Verfahren zu seiner Herstellung
EP0966550B1 (de) Hartmetall- oder cermet-sinterkörper und verfahren zu dessen herstellung
DE60033018T2 (de) Verfahren zur herstellung von metallprodukten, wie bleche durch kaltverformung und flashalterung
EP1751320B1 (de) Verschleissteil aus einem diamanthaltigen verbundwerkstoff
EP0433856B1 (de) Hartmetall-Mischwerkstoffe auf Basis von Boriden, Nitriden und Eisenbindemetallen
DE10035719A1 (de) Verfahren zum Herstellen von intermetallischen Sputtertargets
DE19825223C2 (de) Formwerkzeug und Verfahren zu dessen Herstellung
EP0874918B1 (de) Verbundkörper und verfahren zu seiner herstellung
EP1420076A1 (de) Hartlegierung und Kompositkarbidpulver auf W-Basis als Ausgangsmaterial
DE2830376C2 (de) Verfahren zur Herstellung kugelförmiger Teilchen für das Spritzauftragen von Schutzschichten
DE2630687C2 (de)
AT502394B1 (de) Verfahren zur herstellung eines keramischen werkstoffes und keramischer werkstoff
DE10117657B4 (de) Komplex-Borid-Cermet-Körper und Verwendung dieses Körpers
WO1995033079A1 (de) Bildung von intermetallischähnlichen vorlegierungen
EP0461260A1 (de) Verfahren zur herstellung eines werkstoffes für das funkenerosivlegieren
DE19924174B4 (de) Verbundwerkstoff
DE2508851A1 (de) Sinterhartmetallegierung aus eisenhaltigem borid und verfahren zu ihrer herstellung
WO1999050009A1 (fr) Materiau solidifie a base de metal haute resistance, acier acide et procedes de fabrication correspondants
DE19725914A1 (de) Hartmetall- oder Cermet-Sinterkörper und Verfahren zu dessen Herstellung
DE10134525A1 (de) Verfahren zum kapsellosen Umformen von gamma-TiAl-Werkstoffen
Brookes PECS flexed for Euro PM2007: hard materials at Toulouse
EP1230152A1 (de) Verfahren zur herstellung von metallkarbidpulver im mikrowellenofen
DE2453012B2 (de) Elektrodenfassung für Lichtbogenöfen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995916564

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 532068

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 08945561

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995916564

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995916564

Country of ref document: EP