WO1996032777A1 - Dispositif a ondes acoustiques de surface - Google Patents

Dispositif a ondes acoustiques de surface Download PDF

Info

Publication number
WO1996032777A1
WO1996032777A1 PCT/JP1996/001002 JP9601002W WO9632777A1 WO 1996032777 A1 WO1996032777 A1 WO 1996032777A1 JP 9601002 W JP9601002 W JP 9601002W WO 9632777 A1 WO9632777 A1 WO 9632777A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
output
connection
idt
acoustic wave
Prior art date
Application number
PCT/JP1996/001002
Other languages
English (en)
French (fr)
Inventor
Hidenori Abe
Hiroshi Honmo
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Priority to JP53088496A priority Critical patent/JP4014630B2/ja
Priority to DE69632710T priority patent/DE69632710T2/de
Priority to EP96909347A priority patent/EP0766384B1/en
Priority to US08/750,501 priority patent/US5850167A/en
Publication of WO1996032777A1 publication Critical patent/WO1996032777A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6459Coupled resonator filters having two acoustic tracks being electrically coupled via one connecting electrode

Definitions

  • the present invention relates to a surface acoustic wave device used for an intermediate frequency filter or the like of a mobile communication device.
  • filters using surface acoustic wave devices are widely used in communications equipment such as mobile communications, broadcasting equipment, and measurement equipment.
  • communications equipment such as mobile communications, broadcasting equipment, and measurement equipment.
  • intermediate-frequency filters used in analog communication systems have been required to have narrow-band characteristics, in addition to small changes in the center frequency with temperature, and to severe out-of-band attenuation characteristics.
  • a transversal surface acoustic wave using a ST cut quartz substrate and having a 3 dB specific bandwidth (hereinafter abbreviated as “specific bandwidth”) of about 0.33 to 1.0% is used. Filters were used.
  • a transversal surface acoustic wave filter composed of two comb electrodes is known.
  • This filter has an advantage that desired amplitude characteristics and phase characteristics can be independently designed.
  • transversal surface acoustic wave filters have large insertion loss
  • a large number of electrode fingers are required, which increases the size of the element and the amount of out-of-band attenuation is not sufficient.
  • a surface acoustic wave resonator filter is known as a small loss and small surface acoustic wave filter.
  • the structure of this surface acoustic wave resonator filter is determined only by considering the insertion loss and the out-of-band attenuation, and the desired group delay is determined. It is difficult to obtain time characteristics.
  • This filter consists of two comb-shaped electrodes with a perfect periodic structure on a quartz substrate and reflectors on both sides, with a normalized aluminum film thickness of 1.25% and an aperture length of 15 L (L is a reflector Period), the number of pairs of each comb-shaped electrode is 300, and the number of each reflector is 200.
  • L is a reflector Period
  • the minimum insertion loss is 6 dB
  • the relative bandwidth is 0.028%
  • the out-of-band attenuation is 70
  • the filter characteristic of dB is obtained.
  • the group delay time characteristic is unknown, and its fractional bandwidth is narrow.
  • the insertion loss is large, lower loss has been desired.
  • a longitudinally-coupled dual-mode SAW resonator filter described in the Toyo Tsushin Gijutsu Gijutsu published in June 986 is known (Masayoshi Tanaka, Takao Morita, Kazuo Ono, Nakazawa Yuzo, "High-frequency low-loss filter using longitudinally coupled double-mode SAW resonator", Toyo Tsushinki Giho, No. 39, pp. 9-16: June 1986).
  • This filter In this filter, two comb-shaped electrodes having 50 pairs of comb-shaped electrodes and 400 reflectors on both outer sides are arranged on an X-cut 112 ° Y-propagating lithium tantalate substrate.
  • This filter is a monolithic device that uses the thickness shear vibration of AT-cut quartz. It is described that the structure and the operating principle are similar to the check crystal filter. Therefore, a dual mode filter using a symmetric mode and an antisymmetric mode similar to a monolithic crystal filter is possible.
  • the normalized aluminum film thickness is 2.5%
  • the opening length is 50 LL (LL is the period of the comb-shaped electrode)
  • the comb-shaped electrode is weighted with cosine
  • the reflector period is calculated from the period of the comb-shaped electrode.
  • cascade connection of the two electrode structures described above results in a minimum insertion loss of 2.2 dB, a specific bandwidth of 0.24%, and an out-of-band attenuation.
  • a filter characteristic of 75 dB is obtained.
  • the termination impedance is 50 ⁇ .
  • the group delay time characteristic is not considered. Therefore, the inventors of the present application examined a group delay time characteristic, which is an important evaluation item as an intermediate frequency filter, in the conventional example.
  • a group delay time characteristic which is an important evaluation item as an intermediate frequency filter, in the conventional example.
  • the aperture length is as wide as 50 L L
  • the transverse mode is essentially generated in the band, although it is suppressed by the cosine weighting of the comb electrodes. Therefore, it was found that the ripple of the group delay time was particularly large, and it was not practical for an intermediate frequency filter.
  • the image parameters of the surface acoustic wave filter will be considered with reference to a design method using image impedance of a monolithic crystal filter using bulk vibration.
  • the loss in the elastic surface wave filter is small, and if the image impedance at the electrical input and output terminals is matched, the electrical As the reflection loss is reduced, a low-loss filter is obtained.
  • the transmission matrix element of the electrical equivalent circuit representing the surface acoustic wave filter is a complex number, its image impedance is also a complex number.
  • the transfer constant which is the-part of the image parameter Has not been discussed.
  • This S AW filter is mounted on a ST cut quartz substrate or lithium tantalate substrate.
  • a single surface acoustic wave propagation track is provided, two comb-shaped electrodes are arranged in series in the propagation direction, and reflectors having a period wider than the comb-shaped electrode period are arranged on both outer sides.
  • the total logarithm of the comb electrodes is set so that the frequency difference between the two oscillations of the symmetric and antisymmetric modes confined in the comb electrodes is almost half of the passband.
  • the standardized opening length is set to not more than 600 pairs, the normalized opening length is set to 5 or more, and in the case of a lithium tantalate substrate, the total number of comb electrodes is set to be not more than 400 pairs, and the normalized opening length is set to not less than 20 pairs.
  • the relative bandwidth becomes 0. . 2% is obtained.
  • the group delay time characteristic is not considered.
  • this conventional example it was found that some spurs occurred on the lower side of the pass band, and in particular, spurs near the pass band deteriorated the shape factor. . For this reason, in order to use it as an intermediate frequency filter, it is necessary to suppress spurious near the band. Since this conventional filter uses a symmetric mode and an antisymmetric mode, it has symmetry about the center in one surface acoustic wave propagation track.
  • a surface acoustic wave device described in Japanese Patent Application Laid-Open No. 7-95003 is known.
  • the group delay time is defined by defining the range of the sum Ns + Nf of the logarithms of the input IDT and the output IDT.
  • a flat surface wave filter with a relatively wide bandwidth and low insertion loss is realized.
  • spurious components are generated near the low band side of the pass band. Therefore, there is no mention of improving spurious near the low-pass side of the passband.
  • FIGS. 15 to 1 of the comparative example of JP-A-7-95003 no spurious near the lower side of the pass band is generated, but the characteristics in the pass band (example) For example, group delay time ripple and amplitude ripple) are not enough.
  • an acoustic wave transuser described in Japanese Patent Application Laid-Open No. Hei 6-225693.
  • An acoustic wave filter is disclosed in which an acoustic wave transducer having a pair of IDTs in a first electrode structure row and an acoustic wave transuser having an N2 pair of IDTs in a second electrode structure row are cascaded. ing.
  • a surface acoustic wave resonator-type filter described in Japanese Patent Application Laid-Open No. 59-37724 is known.
  • a resonator-type filter is realized.
  • this conventional example has an electrode structure without a reflector, and suppresses spurious components near the high band side of the pass band, improves spurious signals near the low band side of the pass band, and reduces ripples in the band. No improvement is mentioned.
  • the conventional surface acoustic wave filter described above has a relatively wide fractional bandwidth and a large out-of-band attenuation as required for an intermediate frequency filter used in a digital communication system. No spurious near the band, good shape factor, small size, low insertion loss, and flat characteristics of group delay time could not be achieved.
  • An object of the present invention is to provide a flat group delay time, a relatively wide fractional bandwidth, a low insertion loss, a good shape factor, a large out-of-band attenuation, and a suppression of spurs near the band reduction side.
  • An object of the present invention is to provide a surface acoustic wave device in which the influence of ripple due to a transverse mode is improved.
  • the vibration energy concentrates on a part of the vibrating body having a simple shape, and the displacement and the stress of the vibration can be considered to be zero in a certain distance from the vibrating body. It is defined as an asymptotic resonance mode.
  • the dispersion characteristic of the periodic strip array of the surface acoustic wave resonator causes a branch of the backward wave (bckwavardwave), so that a stopband is formed, where the propagation constant becomes a complex number.
  • the surface acoustic wave resonator in which grating reflectors are arranged on both sides of the comb electrode uses energy confinement by complex branching. If the period of the reflector is slightly wider than the period of the comb-shaped electrode, and the lower end of the stop band of the comb-shaped electrode is located near the center of the stop band of the reflector, the period at which the propagation constant of the comb-shaped electrode becomes a real number is obtained. Since the propagation constant of the reflector portion becomes complex at the wave number, a good confined resonance mode is realized.
  • the propagation constant in the comb-shaped electrode is a complex number at the same frequency as the reflector, so that there is no resonance mode when the comb-shaped electrode is short-circuited.
  • the anti-resonance mode is confined to the comb electrode and the entire reflector.
  • Resonance in the case of a multi-pair comb electrode without a reflector occurs at a frequency slightly lower than the lower end of the stop band, and the propagation constant becomes a real number in the entire band, so that the surface acoustic wave is not completely reflected.
  • This concept is extended to a surface acoustic wave device that has an electrode structure array consisting of two comb electrodes and reflectors on both sides.
  • the propagation constant of the comb electrode will be Since the propagation constant of the reflector becomes a complex number at a frequency that becomes a real number, a good confined resonance mode is realized. This state is called complete energy confinement.
  • the propagation constant in these comb-shaped electrodes becomes a complex number at the same frequency as the reflector, so that when the comb-shaped electrodes are short-circuited, the resonance mode It does not exist, and it is considered that the anti-resonance mode is confined to the comb electrode and the entire reflector when the comb electrode is opened.
  • the first conventional example, the second conventional example, and the eighth conventional example are not complete energy confinement, but the third conventional example and the fourth conventional example are not confined. It is considered a complete energy confinement structure. In other conventional examples, since the period of the reflector and the period of the comb electrode are not described, it cannot be determined whether or not the structure is a complete energy confinement.
  • the lateral mode can be essentially suppressed by reducing the aperture length.
  • the aperture length for which transverse mode spurious is not a problem is 12 L or less, and in the case of ST cut quartz, it is 15 L or less. In this case, it is 20 L or less.
  • the problem when the aperture length is reduced is that matching with the real-valued terminal impedance cannot be achieved.
  • Comparative Example 1 is a surface acoustic wave device in which the electrode configuration shown in FIG. 16 is formed on a piezoelectric substrate of lithium tetraborate single crystal. It has an electrode configuration in which two electrode structure rows are cascaded.
  • An input / output IDT 11 is provided as a first electrode structure row 10 on the piezoelectric substrate, and on the right side of the input / output IDT 11, the logarithm is substantially the same as the input / output IDT 11 at the same period.
  • IDTs 12 and 13 are provided, and reflectors 13 and 14 are provided outside of the IDTs 11 and 12 for connection.
  • an input / output IDT 21 is provided on the piezoelectric substrate, and on the left side of the input / output IDT 21, the same logarithm as the input / output IDT 21 has substantially the same period.
  • the connection IDT 22 is provided, and reflectors 23 and 24 are provided outside the connection IDT 22 and the input / output IDT 21.
  • the first electrode structure row 10 and the second electrode structure row 2 are connected to DT 22 by wiring.
  • Comparative Example 1 a 45 ° -rotated X-cut Z-propagated lithium tetraborate single crystal substrate (Li 2 B 4 O) was used as a piezoelectric substrate. , and the logarithm of N 2 connection I DT 1 2, 22 are each 3 1.5 pairs, the reflectors
  • the number of electrodes for 13, 14, 23, and 24 is 60. Reflectors 13, 14, 23,
  • the period of 24 is L
  • the period of the comb-shaped electrodes of the input / output IDTs 11 and 21 and the connection ID-cables 12 and 22 is 0.93636 L
  • the distance between the comb-shaped electrodes is 0.49 18 L. .
  • the distance between 23 and 24 is 0.4959 L.
  • the standardized aluminum film thickness hZL of the electrode is 1.7%.
  • the opening length W is relatively small, 7 L.
  • Figure 17 shows the conjugate image impedance and transfer constant of the two-stage cascaded surface acoustic wave device of Comparative Example 1 as viewed from the input IDT (or output IDT), and Figure 18 shows Comparative Example 1. Shows pass characteristics. The frequency is indicated by a normalized frequency normalized by the lower end frequency of the stop band of the comb electrode, and the pass band is defined by the frequency band when the real part of the transfer constant is extrapolated.
  • the conjugate image impedance seen from the input ID and the conjugate image impedance seen from the output IDT are the same due to their symmetry. As shown in Fig.
  • the conjugate image impedance of Comparative Example 1 has an imaginary part with a value of 189 to 2043 ⁇ and a real part with a value of 300 to 3280 ⁇ within the band. Has a dependency.
  • the pass characteristics of Comparative Example 1 shown in Fig. 18 were measured with the termination impedance at the input and output terminals set to 2000 ⁇ .
  • ripples in the passband remain.
  • the band ripple of the pass characteristic did not decrease.
  • the termination was performed at the real part of the conjugate image impedance at any frequency in the band, the in-band ripple remained.
  • the conjugate image impedance seen from the input IDT (or output IDT) side and the conjugate image impedance seen from the connection IDT side in one electrode structure row of the surface acoustic wave device are shown in Fig. 18. Are shown together. Since the logarithm of the input / output ID and the logarithm of the connection IDT are equal, the conjugate image impedance seen from the input IDT (or output IDT) side is equal to the conjugate image impedance seen from the connection IDT side. . As shown in Fig. 18, it can be seen that the conjugate image impedance viewed from the connection IDT side has an imaginary part in the band, and thus the matching in the cascade connection plane is not sufficiently achieved. As shown in Fig. 17, the real and imaginary parts of the conjugate image impedance viewed from the input and output terminals, especially the imaginary part, cannot be matched with the termination impedance of 2000 ⁇ , causing in-band ripple. You can see that.
  • Comparative Example 2 is a surface acoustic wave device in which the electrode configuration shown in FIG. 16 was formed on a piezoelectric substrate of lithium tetraborate single crystal. It has an electrode configuration in which two electrode structure rows are cascaded.
  • the electrode of Comparative Example 2 has basically the same structure as the fourth conventional example, although the piezoelectric substrate is different.
  • a 45 ° -rotated X-cut Z-propagating lithium tetraborate single crystal substrate (Li 2B 4O 7) was used as the piezoelectric substrate.
  • Logarithm of N 2 O for I DT 1 1, 2 1 logarithm N, and the connection I DT 1 2, 22 are each 29.5 pairs, the reflectors 1 3, 14, 23, 24 number of electrodes Is 60.
  • the period of the reflectors 1, 3, 14, 23, and 24 is L
  • the period of the comb electrodes of the input / output IDTs 11 and 21 and the connection IDTs 12 and 22 is 0.9636 L
  • the distance between the comb electrodes is 0.49 18 L.
  • the distance between the input / output IDTs 11 and 21 and the connection IDTs 12 and 22 and the reflectors 13, 14, 24, and 24 is 0.4959 L.
  • the standardized aluminum film thickness hZL of the electrode is 1.7%.
  • the opening length W is relatively wide, 350 L.
  • Figure 19 shows the conjugate image impedance and transfer constant of the two-stage cascaded surface acoustic wave device of Comparative Example 2 as viewed from the input IDT (or output IDT) side.
  • the transmission characteristics of Comparative Example 2 are shown.
  • the transmission characteristics of Comparative Example 2 shown in FIG. 20 were measured by setting the terminal impedance at the input / output terminals to 50 ⁇ .
  • the conjugate image impedance seen from the input IDT side and the conjugate image impedance seen from the output IDT side are the same due to their symmetry, and the real part is about 50 ⁇ and the imaginary number at frequencies within the band. Part is about 0 ⁇ . Therefore, as shown in FIG. 20, the pass characteristic when the terminal impedance is 50 ⁇ is a good in-band characteristic with relatively small ripple.
  • the conjugate image impedance of the connection IDT side of the surface acoustic wave propagation track also At frequencies in the same band as the conjugate image impedance on the terminal side, the real part is about 50 ⁇ and the imaginary part is about 0 ⁇ . Therefore, the complex conjugate impedance at the cascade connection is matched.
  • the in-band characteristics of Comparative Example 2 good electrical characteristics were obtained with a minimum insertion loss of 2 dB, a relative bandwidth of 0.56%, and a group delay time ripple of 3 seconds or less in the band.
  • the aperture length was 350 L
  • the effect of the electrode finger resistance was large
  • the minimum insertion loss was increased.
  • the frequency band of 30 MHz to 100 MHz used as the first intermediate frequency of the mobile communication device there is a problem that the size of the electrode becomes large and the element becomes large.
  • FIG. 20 shows the result of a numerical simulation, the influence of the transverse mode is not shown.
  • in-band ripple occurs due to the transverse mode.
  • ripples in the band exist essentially.
  • the ripple of the group delay time characteristic is large, and Comparative Example 2 cannot be used as an intermediate frequency filter.
  • the band is defined as the range where the real part of the transfer constant is zero, but as is clear from Fig. 19, the real part of the transfer constant, which is part of the conjugate image parameter of the surface acoustic wave filter, is It does not go to zero over the entire frequency range. Therefore, in this specification, we consider that the minimum value of the envelope of the real part of the transfer constant corresponds to the case where the real part of the transfer constant in the above-mentioned conventional filter theory is zero. In this way, the frequency range at the position where the outer line of the real part of the transfer constant intersects the frequency axis is defined as the bandwidth.
  • the conjugate image impedance on the cascade connection surface be as real as possible, considering the matching of the complex conjugate impedance on the cascade connection surface.
  • the input and output terminals match with the complex conjugate image impedance having an imaginary part as described above, the image impedance on the input and output IDT side and the image impedance on the connection IDT side in the surface acoustic wave propagation track are asymmetric. It is desirable to become.
  • a study of the fourth conventional example and comparative example 2 shows that, in the surface acoustic wave filter, if the electrode structure is symmetric, the conjugate image impedance is also symmetric.
  • the present inventors have come to the conclusion that the electrode configuration of the surface acoustic wave device should be made asymmetric in order to make the conjugate image impedance asymmetric, and made the present invention.
  • the surface acoustic wave device comprises: a piezoelectric substrate; N, a pair of input / output IDTs formed on the piezoelectric substrate; and a pair of input / output IDTs arranged in close proximity to one side of the input / output IDT.
  • a first electrode structure row including two pairs of connection IDTs, the input / output IDT, and two reflectors disposed outside the connection IDT, and a first electrode structure row formed on the piezoelectric substrate;
  • An IDT for input / output, an N2 pair of connection IDTs disposed close to the other side of the IDT for input / output, and two IDTs formed outside the IDT for connection and the IDT for input / output
  • a second electrode structure row connected in cascade with the first electrode structure row, the connection IDT of the first electrode structure row and the second 2.
  • the surface acoustic wave device is a lattice arm impedance.
  • the surface acoustic wave device is a lattice arm impedance.
  • the surface acoustic wave device according to the present invention is formed on a piezoelectric substrate, on the piezoelectric substrate, and disposed in close proximity to one side of the Nt pair of input / output IDTs and the input / output IDTs.
  • a first electrode structure row having two reflectors which are placed on the outside of the input and output for I DT the connection I DT, formed on the piezoelectric substrate is a input-output I DT pairs, and connecting I DT of N 2 pairs arranged in proximity to the other side of the input-output I DT, the connection I DT and the input-output I DT
  • a first electrode structure row and a second electrode structure row cascade-connected to the first electrode structure row, and two reflectors formed outside the first electrode structure row.
  • a surface acoustic wave device wherein an IDT and the connection IDT of the second electrode structure row are arranged so as to be electrically symmetric with respect to a cascade connection surface, wherein the input / output IDT DT logarithm N, and the different and logarithmic N 2 for connection I DT is a normalized electrode film thickness of the input and output for I DT the connecting I DT when the HZL, the input-output I DT
  • the logarithm is
  • the normalized electrode film thickness is expressed in%. Note that all normalized electrode film thicknesses in this specification are also expressed in%.
  • the surface acoustic wave device may further include a piezoelectric substrate, a pair of input / output IDTs formed on the piezoelectric substrate, and a pair of input / output IDTs disposed close to one side of the input / output IDTs.
  • a surface acoustic wave device in which an IDT and the connection IDT of the second electrode structure row are arranged so as to be electrically symmetric with respect to a cascade connection surface, wherein the input / output IDT It is different from the logarithm of N 2 log and the connection I DT, when the normalized electrode thickness of the input and output for I DT the connection I DT was HZL, logarithmic N 2 and prior to the connection I DT The logarithmic ratio of the input IDT ⁇ !
  • the logarithm of the ratio NzZNi logarithm N 2 and the input-output I DT of the connection I DT has the following formula
  • the surface acoustic wave device may further include a piezoelectric substrate, a pair of input / output IDTs formed on the piezoelectric substrate, and a pair of input / output IDTs disposed close to one side of the input / output IDTs.
  • the surface acoustic wave device may further include a piezoelectric substrate, a pair of input / output IDTs formed on the piezoelectric substrate, and a pair of input / output IDTs disposed close to one side of the input / output IDTs.
  • a first electrode structure row including two pairs of connection IDTs, the input / output IDT, and two reflectors disposed outside the connection IDT; formed on the piezoelectric substrate; and input-output I DT pairs, and connecting I DT of N 2 pairs arranged in proximity to the other side of the input-output I DT, on the outside of the connecting I DT and the input-output I DT And a second electrode structure row cascaded with the first electrode structure row, and the connection IDT of the first electrode structure row.
  • the piezoelectric substrate is a lithium tetraborate plate.
  • FIG. 1 is a diagram showing an electrode structure of a surface acoustic wave device according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing a symmetrical lattice circuit electrically equivalent to the surface acoustic wave device according to one embodiment of the present invention.
  • FIG. 3 shows that in the surface acoustic wave device according to one embodiment of the present invention, when the normalized aluminum film thickness hZL is 1.7%, the total number of comb electrodes N, + N 2 is constant, and the comb electrodes This is a graph showing a change in the low-frequency spurious level when the logarithmic ratio ⁇ 2 ⁇ is changed.
  • FIG. 4 shows that in the surface acoustic wave device according to one embodiment of the present invention, when the normalized aluminum film thickness hZL is 1.7%, the comb electrode ratio N 2 ZN, is kept constant, 6 is a graph showing a change in a low-frequency spurious level when a logarithm N, + N 2 is changed.
  • FIG. 5 shows that in the surface acoustic wave device according to one embodiment of the present invention, when the normalized aluminum film thickness hZL is 1.0%, the total number of comb electrodes N, + N 2 is constant, 6 is a graph showing a change in a low-frequency spurious level when a logarithmic ratio N 2 ZN is changed.
  • FIG. 6 shows that in the surface acoustic wave device according to one embodiment of the present invention, when the normalized aluminum film thickness hZL is 3.0%, the total number of comb-shaped electrodes Ni + Nz is constant, and the comb-shaped electrode log ratio 9 is a graph showing a change in a low-frequency spurious level when N 2 ZN is changed.
  • FIG. 7 shows the ratio of the comb-shaped electrode logarithmic ratio NzZN, which is suitable for suppressing the low-frequency side spur, when the normalized aluminum film thickness is changed in the surface acoustic wave device according to one embodiment of the present invention. It is a graph which shows a change of a range.
  • FIG. 8 shows changes in normalized relative bandwidth, normalized group delay time ripple, and amplitude ripple when the logarithm of the input / output IDT is changed in the surface acoustic wave device according to one embodiment of the present invention.
  • FIG. 9 shows the case where the number of comb electrodes is less than the optimal number of logarithms in the surface acoustic wave device according to one embodiment of the present invention (the logarithm 1 ⁇ 1 of the input / output I0 is 19.5 pairs and the logarithm of the connection IDT is 9 is a graph showing the frequency response of the real part of the transfer constant (when N 2 is 13.5 pairs), conjugate image impedance, and group delay time.
  • FIG. 10 shows the case of the optimal comb-electrode pair number in the surface acoustic wave device according to one embodiment of the present invention.
  • 7 is a graph showing the frequency response of the real part of the transfer constant, the conjugate image impedance, and the group delay time (when 2 is 25.5 pairs).
  • FIG. 11 shows that, in the surface acoustic wave device according to an embodiment of the present invention, when the number of pairs of comb electrodes is larger than the optimum number of pairs of comb electrodes (the logarithm 1 ⁇ 1 of the input / output I0 is 50.5 pairs, 7 is a graph showing the frequency response of the real part of the transfer constant, the conjugate image impedance, and the group delay time when the logarithm N 2 is 34.5 pairs.
  • FIG. 12 is a graph showing the dependence of the normalized conjugate image impedance square deviation DCII on the number N of input / output comb electrodes in the surface acoustic wave device according to one embodiment of the present invention.
  • FIG. 13 shows that in the surface acoustic wave device according to one embodiment of the present invention, when the standardized aluminum film thickness is changed, the effect of the transverse mode is effectively suppressed to obtain a good frequency characteristic.
  • 6 is a graph showing a change in the range of the number of comb-shaped electrode pairs for input / output suitable for obtaining.
  • FIG. 14 shows frequency characteristics of the lattice arm impedance Zb and the series arm impedance Za of the symmetrical lattice circuit in the case of the optimal comb electrode pair number in the surface acoustic wave device according to one embodiment of the present invention; 6 is a graph showing frequency response and conjugate image impedance.
  • FIG. 15 is a graph showing pass characteristics of the example of the present invention.
  • FIG. 16 is a diagram showing an electrode structure of a conventional surface acoustic wave device.
  • FIG. 17 is a graph showing the conjugate image impedance and the transfer constant of Comparative Example 1.
  • FIG. 18 is a graph showing the pass characteristic of Comparative Example 1 and the conjugate image impedance of one electrode structure row.
  • FIG. 19 is a graph showing the conjugate image impedance and the transfer constant of Comparative Example 2.
  • FIG. 20 is a graph showing the pass characteristic, the lattice arm impedance Zb, and the series arm impedance Za of Comparative Example 2.
  • a surface acoustic wave device according to one embodiment of the present invention will be described with reference to the drawings.
  • an electrode structure as shown in FIG. 1 is formed on a piezoelectric substrate of lithium tetraborate single crystal.
  • Two surface acoustic wave propagation tracks are formed by the electrode structure rows 10 and 20 on the piezoelectric substrate.
  • pairs of input / output IDTs 11 are provided on the piezoelectric substrate as the first electrode structure row 10, and on the right side of the input / output IDTs 11, at substantially the same period as the input / output IDTs 11. logarithmic different N 2 pairs of connection IDT 1 2 provided in the outside of the input-output IDT 1 1 between the connection IDT 1 2, it is provided with a reflector 1 3, 1 4.
  • a pair of input / output IDTs 21 is provided on the piezoelectric substrate as the second electrode structure row 20.On the left side of the input / output IDTs 21, the logarithm of the different N 2 pairs of connection IDT 2 2 provided, on the outside of the input-output IDT 2 1 a connection IDT 2 2, is provided with a reflector 2 3, 2 4.
  • connection IDTs 12 of the first electrode structure row 10 and the connection IDTs 22 of the second electrode structure row 20 are connected by wiring formed on the piezoelectric substrate, and the first electrode structure row 1 0 and the second electrode structure row 20 are cascaded.
  • connection IDT 1 and 2 For connection The other end of IDT 22 is grounded. Note that the connection IDT 12 and the connection IDT 22 may be connected by wiring outside the piezoelectric substrate.
  • the period L L of the IDT and the period L of the reflector are defined as twice the distance between adjacent electrode fingers, and are usually the center-to-center distance of the electrode fingers.
  • the number of pairs of IDTs is counted as one pair for each pair of electrode fingers, and 0.5 for one electrode finger alone.
  • the distance i between the ten fingers is defined as the distance between the centers of the outermost electrode fingers of each IDT.
  • the distance Lir between the IDT and the reflector is defined as the center-to-center distance between the outermost electrode finger of the IDT and the nearest electrode finger of the reflector.
  • the metallization ratio which indicates the ratio of electrodes formed on the substrate in the direction of surface acoustic wave propagation in the IDT, is defined as 2 ⁇ Lidt / LL, where Lidt is the width of the electrode finger.
  • the metallization ratio which indicates the ratio of electrodes formed on the substrate in the direction of surface acoustic wave propagation in the reflector, is defined as 2 X LrefZL, where the width of the electrode finger is Lrei.
  • the standardized aluminum film thickness h L is defined as the value obtained by dividing the electrode film thickness h by the reflector period L.
  • the aperture length is defined as the maximum value of the overlap width of each IDT.
  • a 45 ° rotation X-cut Z-propagation lithium tetraborate single crystal substrate is used as the piezoelectric substrate.
  • the number of electrodes of the reflectors 13, 14, 23, 24 is 60. Assuming that the period of the reflectors 13, 14, 23, and 24 is L, the period of the comb-shaped electrodes of the input and output IDTs 11 and 21 and the connection IDTs 12 and 22 is 0.93636 L, and the distance between the comb-shaped electrodes is 0. 49 1 8 L. The distance between the input / output IDTs 11 and 21 and the connection IDTs 12 and 22 and the reflectors 13, 14, 23 and 24 is 0.4959 L.
  • the normalized aluminum film thickness hZL of the electrode is 1.7%.
  • Input-output I DT 1 1, 21 logarithm N the sum of the logarithm of N 2 connection I DT 1 2, 22 ⁇ , + ⁇ 2 to be constant at 59 pairs, the connection I DT 1 2, 22 the change of split Asureberu when the logarithmic New 2 input-output I DT 1 1, 2 1 logarithm divided by log ratio NsZN, varied are shown in Figure 3.
  • the termination impedance is 50 ⁇ .
  • the spurious level is a difference obtained by subtracting the minimum insertion loss from the maximum value of the spurious generated on the low frequency side near the band. As is evident from Fig.
  • the comb electrode ratio in order to suppress the low-frequency splice to 30 dB or more, should be in the range of 0.590 to 0.770 or 1.198 to 1.986. Just set it. By suppressing the low-frequency spur to 30 dB or more, a surface acoustic wave filter with a good shape factor can be realized.
  • the comb electrode ratio NzZN may be set to a range of 0.641 to 0.725 or a range of 1.296 to 1.766. . If the low-frequency spur is suppressed to 40 dB or more, the shape factor can realize a better surface acoustic wave filter.
  • the comb electrode ratio N 2 is set to 0.680 or 1.500, the low-frequency spur can be suppressed most effectively.
  • a comb-shaped electrode pair number ratio Nz / Nh in 0.6 60 to 0.690 range suppression effect is large lower frequency spurious
  • Fig. 4 shows the change in the reduction-side spurious when this is done.
  • the reason that the comb electrode ratio N is in a certain range is that the number of comb electrodes only takes a discrete value with 0.5 pairs as a minimum unit.
  • the comb-shaped electrode gross log + N 2 is also vary, it is suppressed low frequency band spurs 30 d B above.
  • Figure 5 shows the spurious noise when the normalized aluminum film thickness h / L is 1%, the comb electrode sum ⁇ , + ⁇ is fixed at 59 pairs, and the comb electrode ratio ⁇ 2 / ⁇ is changed. Indicates a change in bell.
  • the comb electrode ratio ⁇ is in the range of 0.547 to 0.747, or 1.166 to 2.1. It should be set to the range of 61.
  • the comb electrode ratio N 2 ZN should be set in the range of 0.610 to 0.690, or in the range of 1.270 to 1.817. do it. Further, if the comb electrode ratio ⁇ is set to 0.650 or 1.490, the low-frequency side spurious can be suppressed most effectively.
  • the comb electrode ratio NzZN is in the range of 0.750 to 0.910, or 1.066 to 1.0. It should be set in the range of 1.5 1 2.
  • the comb electrode ratio ⁇ ! Is in the range of 0.780 to 0.870, or in the range of 1.128 to 1.362. Should be set to. Further, if the comb electrode ratio 2 1 ⁇ is set to 0.820 or 1.231, the low-frequency side spurious can be suppressed most effectively.
  • the optimum value of the comb electrode ratio NsZh that can most effectively suppress the low-frequency spurious is indicated by ⁇
  • the upper limit of the comb electrode ratio N 2 ZN that can suppress the low-frequency splice by 40 dB or more is indicated by ⁇
  • the upper limit of the comb electrode ratio N 2 ⁇ N, which can suppress the low-frequency spurs by 30 dB or more, is indicated by ⁇
  • the lower limit is indicated by ⁇ .
  • the comb electrode ratio N 2 ZN In order to suppress the low-frequency spurs by 30 dB or more, the comb electrode ratio N 2 ZN,
  • 0.542-0.021 (h / L) + 0.029 (h / L) 2 ⁇ N 2 /N, ⁇ 0.734-0.028(h/L) + 0.029 (h / L) may be set to the second range.
  • the comb electrode ratio N should be
  • 0.597-0.020 (/ L) + 0.027 ( h / L) 2 ⁇ N 2 /Ni ⁇ 0.690-0.032(h/L) + 0.031 (h / L) may be set to the second range.
  • the comb electrode ratio N 2 ZN, ( ⁇ ) can be calculated as
  • N 2 / N. 0.645-0.029 ( h / L) + 0.029 (h / L) 2 Should be set so as to satisfy.
  • the aperture length of the surface acoustic wave device is narrowed to suppress it.
  • the period of the reflectors 13, 14, 23, and 24 is the same, and the period of the comb-shaped electrodes of the input / output IDTs 11, 21 and the connection IDTs 12, 22 is
  • the distance between the input / output IDTs 11, 21 and connection IDTs 12, 22 and the reflectors 13, 14, 23, 24 is 0.4959 L.
  • the normalized aluminum film thickness hZL of the electrode was 1.7%, and the opening length W was 7 L.
  • the normalized fractional bandwidth ( ⁇ ) is the value of the normalized fractional bandwidth obtained by dividing the fractional bandwidth by the electromechanical coupling coefficient of the board
  • the normalized group delay ripple ( ⁇ ) is the group delay.
  • Time ripple i.e., the value of the normalized group delay time ripple obtained by multiplying the difference between the maximum group delay time and the minimum group delay time in the band by the center frequency of the frequency response
  • the amplitude ripple ( ⁇ ) is the in-band Is the difference between the maximum insertion loss and the minimum insertion loss.
  • the reason for using the normalized fractional bandwidth as the fractional bandwidth is as follows. It is known that the fractional bandwidth of the surface acoustic wave resonator filter is proportional to the electromechanical coupling coefficient of the piezoelectric substrate used. In order to make the judgment criteria independent of the type of piezoelectric substrate used, the value obtained by dividing the specific bandwidth by the electromechanical coupling coefficient of the substrate was used as the normalized specific bandwidth.
  • standardized group delay time ripple will be used as the group delay time ripple.
  • the reason is as follows. Since the group delay time is inversely proportional to the center frequency by its definition, it changes when the center frequency of the surface acoustic wave device is changed. Therefore, in order to generalize the criterion, a normalized group delay time ripple obtained by multiplying the group delay time ripple by the center frequency is used.
  • the normalized ratio bandwidth, I DT 1 1, 2 Number 1-one ⁇ is 37.5 pairs for input and output, the logarithm of N 2 connection I DT 1 2, 22 and 25 . Maximum when there are 5 pairs.
  • the amplitude ripple is zero when the logarithm of the input / output IDTs 11 and 21 is small, and increases when the logarithm is larger than 39.5 pairs.
  • the normalized group delay time ripple is minimal when the logarithm of the I / O IDTs 11 and 21 is 33.5 pairs, and increases slightly when the logarithm is smaller than 33.5 pairs. However, it exceeds 600 for 43 pairs or more.
  • the criteria for limiting the optimal range of the number of comb-shaped electrode pairs are standardized if the normalized fractional bandwidth is 0.38 or more, the normalized group delay ripple is 600 or less, and the amplitude ripple is 3 dB or less. It was found that when the aluminum film thickness was 1.7%, good electrical characteristics were obtained when the logarithm N of the input / output IDTs 11 and 21 was in the range of 25 to 43 pairs.
  • Fig. 9 shows the transfer constant when the logarithm of IDTs 1 1 and 2 1 for input and output is smaller than the above range, 19.5 pairs, and the logarithm N 2 of IDTs 1 2 and 22 for connection is 13.5 pairs.
  • the real part the conjugate image impedance, and the frequency response of the group delay time.
  • the bandwidth obtained from the real part of the transfer constant is wide, but the conjugate image impedance within this range varies greatly. Therefore, matching is performed at the conjugate image impedance value of 2 15 + j 1 902 ⁇ at the center of the band, and termination at the 50 ⁇ system matches at that frequency, but the conjugate image impedance is large at both outer frequencies. Since it is changing, no matching can be obtained, and its transmission characteristics are unimodal and narrow band characteristics. Zero amplitude ripple and relatively small group delay ripple No.
  • Figure 1 0 is a transmission constant if the input-output I DT 1 1, 2 1 of logarithm logarithmic N 2 is 25.5 pairs of connecting I DT 1 2, 22 at 37.5 pairs in the above range Are the real part, the conjugate image impedance, and the frequency response of the group delay time.
  • the bandwidth obtained from the real part of the transfer constant is relatively wide, and the conjugate image impedance in this range is flat, and the imaginary part is particularly flat.
  • Matching with a conjugate image impedance of 759 + j 580 ⁇ at the center of the band and terminating in a 50 ⁇ system yields a frequency response with flat amplitude and low group delay ripple.
  • Figure 1 the transfer constant when the input-output IDT 1 1, 2 1 logarithm N, but the logarithm of N 2 connection I DT 1 2, 22 in the range of greater than 50.5 pairs 34.
  • 5 The real part of, the conjugate image impedance, and the frequency response of the group delay time.
  • the bandwidth obtained from the real part of the transfer constant is narrow, and the conjugate image impedance within this range varies greatly, so that the conjugate image impedance at the center of the band 464-
  • the frequency response is narrow and the amplitude ripple and group delay ripple are large.
  • the squared deviation of the conjugate image impedance at the center frequency within the band was calculated.
  • DCII ⁇ (R (fi) -R (fo)) 2 ⁇ 1/2 / (nR (fo))-f ⁇ (I (fi) -I (fo)) 2 ⁇ 1/2 / CnI ( fo))
  • Figure 12 shows the dependence of the normalized conjugate image impedance squared deviation DC II on the number of comb-shaped electrode pairs for input and output.
  • the comb electrode ratio N ZNh was in the range of 0.660 to 0.690.
  • the normalized conjugate image impedance squared deviation DC II is 0.2 or less, and the amplitude ripple and group delay time in a wide band Good characteristics with small ripple are obtained.
  • the normalized conjugate image impedance squared deviation DC II is 0.13 or less, and the amplitude ripple and group delay time ripple over a wide band. Furthermore, better characteristics are obtained.
  • the normalized conjugate image impedance squared deviation DC II is 0.2 or less when the number of input / output comb electrodes is in the range of 32 to 50 pairs, and the amplitude ripple is broadband. In addition, good characteristics with small group delay ripple are obtained.
  • the number of pairs of comb-shaped electrodes for input and output is 39 to 48, the standardized conjugate image impedance squared deviation DCII is 0.13 or less, and the amplitude ripple and group delay time ripple are small over a wide band. Good characteristics are obtained.
  • the normalized conjugate image impedance squared deviation DC II becomes the minimum value, and the best characteristics with a small amplitude ripple and small group delay time ripple over a wide band are obtained. can get.
  • the normalized conjugate image impedance squared deviation DC II is 0.2 or less when the number N of input / output comb-shaped electrode pairs is in the range of 10 to 28 pairs. Good characteristics with small amplitude ripple and group delay time ripple can be obtained. Further, when the number of pairs of input / output comb electrodes ISh is in the range of 17 to 26 pairs, the standardized conjugate image impedance square deviation DCII is 0.13 or less, which is even wider. Better characteristics are obtained in which the amplitude ripple and the group delay time ripple are small in the band.
  • the normalized conjugate image impedance squared deviation DC II is the minimum value, and the best characteristics with a small amplitude ripple and small group delay time ripple over a wide band are obtained. .
  • the normalized conjugate image impedance squared deviation DC II is the minimum value, and the optimal value of the number of input / output comb electrode pairs that minimizes the effect of the transverse mode most effectively is indicated by ⁇ .
  • the normalized conjugate image impedance squared deviation DC II is The upper limit of the number of comb-shaped electrode pairs for input and output, which can suppress the effect of the transverse mode very effectively because it is 0.13 or less, is indicated by ⁇ , the lower limit is indicated by ⁇ , and the normalized conjugate image impedance squared deviation DC II is 0.20 or less.
  • the lower limit is indicated by ⁇ , and the lower limit is indicated by ⁇ .
  • the normalized conjugate image impedance squared deviation DC I I becomes 0.20 or less and the effect of the lateral mode is effectively suppressed, and in order to obtain good frequency characteristics, the number of comb-shaped electrode pairs for input and output is expressed as follows:
  • the normalized conjugate image impedance squared deviation DC II is 0.13 or less, and the effect of the transverse mode is more effectively suppressed to obtain better frequency characteristics.
  • the surface acoustic wave device has an electrode configuration that is electrically symmetrical with respect to the cascade connection surface as shown in FIG. 1, an electrically symmetric grid with respect to this cascade connection surface is formed as shown in FIG. It can be considered a shaped circuit.
  • Input-output I DT 1 1, 2 1 logarithm is 37.5 pairs
  • log N 2 for connection I DT 1 2, 22 is 25.5 pairs
  • an aperture length W is 7 L
  • standard Aluminum film thickness hZL is 1.7%
  • the period of the reflectors 13, 14, 23, and 24 is L
  • the comb-shaped electrodes of the input / output IDTs 11 and 21 and the connection IDTs 12 and 22 Is 0.93986 L
  • the distance between the input / output IDTs 11 and 21 and the connection IDTs 12 and 22 is 0.491 8 L.
  • the distance between the input / output IDTs 11 and 21 and the connection IDTs 12 and 22 and the reflectors 13, 14, 23 and 24 is 0.4959 L.
  • Figure 14 shows the frequency characteristics of the lattice arm impedance Zb and the series arm impedance Za in a symmetrical lattice circuit that is electrically equivalent to such a surface acoustic wave device.
  • the frequency response was measured at 700 + j 334 ⁇ , terminated with a 50 ⁇ system.
  • one set of resonance and anti-resonance on the high frequency side is called the 0th mode
  • one set of resonance and antiresonance on the low frequency side is called the 1st mode.
  • the resonance and antiresonance frequency positions of the lattice arm impedance Zb and the series arm impedance Za of the symmetric lattice circuit are represented by the resonance frequency (fb1) of the symmetric first-order mode of Zb and the antisymmetric 1
  • the anti-resonance frequency of the second-order mode (fa 1 ′) is slightly shifted, and the anti-resonance frequency of the symmetric first-order mode of Z b (fb 1 ′), the anti-symmetry of hy-a
  • the resonance frequency of the symmetric 0th-order mode of Z b (fb 0) and the anti-resonance frequency of the antisymmetric 0th-order mode of Z a (fa 0 ') are almost the same.
  • the resonance frequency (fa1 ') of the antisymmetric first-order mode of Za and the antiresonance frequency (fb0') of the symmetric zeroth-order mode of Zb do not match other resonance frequencies or antiresonance frequencies.
  • the bandwidth has already been defined at the intersection of the envelope of the real part of the transfer function of the conjugate image impedance and the straight line where the real part of the transfer constant is Z.
  • the modes that exist in the band are the anti-resonance frequency (fa 0) of the anti-symmetric first-order mode and the anti-resonance frequency (fa 1 ′) of the anti-symmetric first-order mode of the series arm impedance Za, and The anti-resonance frequency of the symmetric first-order mode of the lattice arm impedance Zb (fb1 ') and the resonance frequency of the symmetric first-order mode (fb1).
  • the resonance frequency of the lattice arm impedance Z b (fb 0) and the anti-resonance frequency of the anti-symmetric first-order mode (fa 1) of the series arm impedance Z a (fa 1) and the anti-resonance frequency of the anti-symmetric zero-order mode (fa 0 ′) ) Is located slightly outside the band defined above, but contributes to the flattening of the conjugate image impedance. From this point of view, these three modes are also necessary for forming a band.
  • the series arm impedance Za and the lattice arm impedance Zb have two resonances and two antiresonances, respectively.
  • the set of resonance and antiresonance on the high frequency side is called the 0th mode
  • the set of resonance and antiresonance on the low frequency side is called the first order mode.
  • the resonance frequency of the symmetric first-order mode of the lattice arm impedance Z b and the anti-resonance frequency of the anti-symmetric first-order mode of the series arm impedance Za almost match (f 1), and the anti-resonance frequency of the symmetric first-order mode of Z b
  • the resonance frequency and the resonance frequency of the antisymmetric 0th mode of Za are almost the same (f2), the resonance frequency of the symmetric 0th mode of Zb and the antiresonance of the antisymmetric 0th mode of Za are
  • the frequencies are almost the same (f3), and the frequency interval between the frequency f1 and the frequency f3 is almost the same as the pass bandwidth.
  • the distance L i between the comb-shaped electrodes was set to 0.491 8 L, and the distance L ir between the comb-shaped electrodes and the reflector was set to 0.49559 L. It is not limited to.
  • the opening length was described as 7 L, but similar results were obtained when the opening length was in the range of 5 L to 12 L.
  • the opening length was widened to 50 L to 350 L, when the termination impedance is terminated by a real number of 20 to 130 ⁇ , the in-band ripple due to the transverse mode is obtained.
  • the effect of the surface acoustic wave device was observed and the dimensions of the surface acoustic wave device were increased, good frequency response (effect of suppressing low-frequency spurs) was obtained.
  • two electrode structure rows are cascaded in two stages.
  • the electrode structures dependent on the two stages are further cascaded, and four, six, eight,. You may.
  • the electrode may be formed using another conductive material.
  • the comb-shaped electrode may be formed by lift-off or may be formed by patterning by etching.
  • a surface acoustic wave device having the structure shown in FIG. 1 was fabricated and evaluated.
  • Figure 15 shows the transmission characteristics.
  • a 45 ° Y-rotation X-plate lithium tetraborate single crystal substrate was used as the piezoelectric substrate, and the propagation direction of the elastic surface wave was set in the Z direction.
  • the pattern formation of the comb-shaped electrode and the reflector was performed by vacuum-depositing an aluminum metal film on a resist pattern formed by a known photolithography technique and then lifting off.
  • the comb-shaped electrode is a so-called regular type in which the lengths of the paired electrode treatments are almost the same, and the opening length is 6.88 L.
  • the logarithm N, of the input / output IDTs 1 1, 2 1 is 37.5 pairs, and the logarithm N 2 of the connection IDTs 1, 2, 2 is 25.5 pairs, and the reflectors 13, 1 4 , 23, and 24 are 60 in number.
  • an L-shaped matching circuit was formed with the inductor and the capacitor so that the terminal impedance was 759 + j580 ⁇ .
  • Its electrical characteristics include a minimum insertion loss of 2 dB, amplitude ripple of 0.2 dB, group delay time ripple of 2 sec, fractional bandwidth of 0.46%, and a shape factor of 3 dB.
  • the surface acoustic wave device has excellent characteristics such as a small insertion loss, a small amplitude ripple and a small group delay time ripple, a relatively wide fractional bandwidth, a good X-iv factor, and a large out-of-band attenuation. It can be realized and is useful as a filter used for mobile communication, etc., especially as an intermediate frequency filter for digital communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

明 細 書
[発明の名称]
弾性表面波装置
[技術分野]
本発明は、 移動体通信機器の中間周波フィルタ等に使用される弾性表面波装置 に関するものである。
[背景技術]
弾性表面波装置によるフィルタは、 小型、 軽量、 高性能なため、 移動体通信な どの通信機器、 放送機器、 測定装置などに多く使用されている。 従来、 アナログ 通信方式で使用される中間周波フィルタは、 狭帯域特性が要求され、 加えて、 中 心周波数の温度変化が小さく、 帯域外減衰特性にも厳しいものが要求される。 こ のような用途には、 S Tカッ ト水晶基板を用い、 3 d B比帯域幅 (以下、 比帯域 幅と略す) が 0 . 3 3 ~ 1 . 0 %程度である トランスバーサル型弾性表面波フィ ルタなどが使用されていた。
ところが、 周波数の有効利用や秘話性などのため、 移動体通信などにおいて、 アナ口グ通信方式からデジタル通信方式への移行が進んでいる。 デジ夕ル通信方 式に用いられる中間周波フィルタは、 比帯域幅が 0 . 2〜 0 . 5 %程度と比較的 広く、 群遅延時間が平坦で、 減衰特性もアナログ通信方式用の中間周波フィルタ を越える特性が要求されている。 特に、 移動体通信用の携帯機器では、 小型で低 消費電力が要求され、 弾性表面波フィルタとしても小型で、 最小挿入損失が低く、 帯域外減衰特性とシエイプファクタが良いものが求められている。 そのため、 従 来からさまざまな検討が行なわれている。
第 1の従来例として、 2個の櫛形電極からなる 卜ランスバーサル型弾性表面波 フィル夕が知られている。 このフィル夕は、 所望の振幅特性と位相特性を独立に 設計できるという利点を有している。
しかしながら、 トランスバーサル型弾性表面波フィルタは、 挿入損失が大きく、 0. 2〜0. 5 %程度の比帯域幅を得るためには、 多数の電極指が必要であり、 そのため素子が大きくなり、 また、 帯域外減衰量も十分でない。
また、 低損失で小型な弾性表面波フィルタとして、 弾性表面波共振子フィルタ が知られている。 しかしながら、 この弾性表面波共振子フィルタも、 トランスバ 一サル型弾性表面波フィルタと同様に、 挿入損失と帯域外減衰量を考慮して、 そ の構造を決定していただけであり、 所望の群遅延時間特性を得ることは困難であ つ 7乙。
第 2の従来例として、 1 977年 1 0月に発行された日本音響学会誌に記載さ れた多対の I D Tと反射器を用いた 2端子対弾性表面波共振器フィルタが知られ ている (小山田弥平、 吉川正吉郎、 「多対 I DTを用いた 2端子対弾性表面波共 振器」 、 日本音響学会誌第 33巻第 1 0号、 第 557〜564頁、 1 977年 1 0月) 。
このフィルタは、 水晶基板上に完全周期構造の 2個の櫛形電極とその両外側に 反射器を配置し、 規格化アルミニウム膜厚が 1. 25%、 開口長が 1 5 L (Lは 反射器周期) 、 各櫛形電極の対数が 300対、 各反射器の本数が 200本である。 終端インピーダンスを 50 Ωとして測定すると、 最小挿入損失 3 d B、 比帯域幅 0. 033 %、 帯域外減衰量 30 d Bのフィルタ特性が得られる。
さらに、 良好な帯域外減衰量を得るために、 上述した電極構造列を 2つ縦続接 続すると、 最小挿入損失が 6 d B、 比帯域幅が 0. 028 %、 帯域外減衰量が 7 0 d Bのフィルタ特性が得られている。
しかしながら、 この従来例の場合、 群遅延時間特性は不明であり、 その比帯域 幅も狭い。 また、 挿入損失が大きいため、 より低損失化が望まれていた。
第 3の従来例として、 1 986年 6月に発行された東洋通信機技報に記載され た縱結合 2重モード SAW共振器フィルタが知られている (田中昌喜、 森田孝夫、 小野和男、 中沢祐三、 「縦結合 2重モー ド SAW共振器による高周波低損失フィ ルタ」、東洋通信機技報、 No. 39、 第 9〜: 1 6頁、 1 986年 6月) 。
このフィルタは、 Xカツ 卜 1 1 2° Y伝搬タンタル酸リチウム基板上に、 各櫛 形電極対数 50対の 2個の櫛形電極と両外側に 400本の反射器を配置したもの である。 このフィルタは、 ATカッ ト水晶の厚みすベり振動を利用したモノ リシ ッククリスタルフィルタに構造及び動作原理が類似していると記載されている。 したがって、 モノリシッククリスタルフィルタと類似の対称モ一ドと反対称モー ドを利用した 2重モ一ドフィルタが可能である。
具体例として、 規格化アルミニウム膜厚を 2 . 5 %とし、 開口長を 5 0 L L ( L Lは櫛形電極の周期) とし、 櫛形電極にコサインの重み付けをし、 反射器周 期を櫛形電極周期より僅かに広くすることにより、 反対称モードについても高い 反射率を得ている。 つまり、 高次モードである反対称モードの閉じ込め効率を良 く している。
さらに、 良好な帯域外減衰量を得るために、 上述した電極構造列を 2つ縦続接 続すると、 最小挿入損失が 2 . 2 d B、 比帯域幅が 0 . 2 4 %、 帯域外減衰量が 7 5 d Bのフィルタ特性が得られている。 ここで、 終端インピーダンスは、 5 0 Ωである。
しかしながら、 この従来例の場合、 通過帯域の低域側にいくつかのスプリアス がある。 特に帯域近傍のスプリアスがあるため、 中間周波フィルタとして利用す ることはできない。
また、 この従来例では、 群遅延時間特性が考慮されてない。 そこで、 本願発明 者等は、 この従来例について、 中間周波フィルタとして重要な評価項目である群 遅延時間特性を検討した。 この従来例のフィルタの場合、 開口長が 5 0 L Lと広 いために、 櫛形電極のコサイン重み付けで抑圧されているとはいえ、 本質的に横 モードが帯域内に発生する。 したがって、 特に群遅延時間のリ ップルが大きく、 中間周波フィルタとしては実用に耐えないことが判明した。
このような 2重モードフィルタの動作原理は、 バルク振動を利用したエネルギ ー閉じ込めモノ リシッククリスタルフィル夕において良く知られている。 所定の 厚さを持つ A Tカツ 卜水晶基板の表面と裏面に正負の電極を形成し、 この電極を 2組近接配置した 2重モードモノリシッククリスタルフィルタにおいて、 2組の 電極の中央に関する対称性を利用し、 電気的に等価な対称格子形回路を想定し、 対称モードを表わす格子腕インピーダンスと反対称モ一 ドを表わす直列腕インピ 一ダンスにおける共振周波数及び反共振周波数位置を調整することにより、 帯域 内特性が良好なフィルタを実現することができる。 ここで、 帯域内リップルを低減するためには、 いわゆる 「周波数合わせ」 をす ることが有効であるとされている。 しかしながら、 直列腕インピーダンス又は格 子腕ィンピ一ダンスの高周波側の反共振周波数は一致させなくても良いことも知 られており、 重要なことはフィルタの影像インピーダンスを平坦とすることであ る。
そこで、 バルク振動を利用したモノ リシッククリスタルフィルタの影像インピ —ダンスによる設計方法を参考に弾性表面波フィル夕の影像パラメータについて 考察してみる。
まず、 トランスバーサル型弾性表面波フィルタにおいては、 櫛型電極の双方向 性損失に起因した本質的な損失があるため、 電気的入出力端子での影像インピー ダンスとの整合を考慮しても低損失フィルタが得られない。 むしろ、 卜リプルト ランジッ 卜エコーによるスプリアスを抑圧するために、 影像インピーダンスの整 合をしないことが行われていた。
ところが、 弾性表面波共振子フィルタ等のエネルギー閉じ込め構造の場合、 弾 性表面波フィルタ内での損失が少なく、 電気的入出力端子での影像インピーダン スの整合をとると、 入出力端子での電気的反射損失が減少するため低損失フィル 夕が得られる。 一般に、 弾性表面波フィルタを表わす電気的等価回路の伝送行列 要素は複素数であるため、 その影像インピーダンスも複素数である。
1 9 8 9年にウー ·ホクホア等により共役影像ィンピーダンス法による S A W フィルタの設計方法が発表されている (ウー · ホクホア、 笠置昌克、 坂本信義、
「共役影像インピーダンス法による整合回路の設計 (S AWフィルタへの応用) 」 、 電子情報通信学会研究報告 C P M 8 9— 7 2、 第 1 9〜 2 4頁、 1 9 8 9年) 。 共役影像インピーダンス法により 1個の弾性表面波伝搬トラックに形成された I
I D T構造の弾性表面波フィルタの整合回路の設計方法である。 これによれば、 周波数により変化する共役影像インピーダンスで終端した場合に得られる最小揷 入損失限界において、 挿入損失が大きい帯域内の周波数を終端周波数とし、 この 周波数における共役影像インピーダンス値を持つ T型整合回路をィンダクタとキ ャパシ夕で形成し、 これで終端すると、 帯域内が平坦な周波数応答が得られると 報告されている。 ただし、 この文献には、 影像パラメータの- -部である伝達定数 に関しては議論されていない。
第 4の従来例として、 特公平 3— 5 1 3 3 0号公報に記載された縦型 2重モー ド S A Wフィル夕が知られている。
この S A Wフィルタは、 S Tカツ ト水晶基板又はタンタル酸リチウム基板上に
1個の弾性表面波伝搬卜ラックを設け、 2個の櫛型電極を伝搬方向に沿って直列 に近接配置し、 両外側に櫛形電極周期より広い周期を持つ反射器を配置し、 2個 の櫛形電極内に閉じ込められた対称及び反対称モードの 2振動の周波数差が通過 域のほぼ半分となるように、 S Tカツ ト水晶基板の場合には、 櫛形電極総対数を
6 0 0対以下、 規格化開口長を 5以上とし、 タンタル酸リチウム基板の場合には、 櫛形電極総対数を 4 0 0対以下、 規格化開口長を 2 0以上とするものである。 例 えば、 S Tカツ 卜水晶基板上に規格化アルミニウム膜厚 2 %、 規格化開口長 5 0、 櫛形電極総対数 2 0 0対、 各反射器本数 5 0 0本を形成すると、 比帯域幅 0 . 2 %が得られている。
しかしながら、 この従来例においても群遅延時間特性は考慮されてない。 本願 発明者等の検討によれば、 この従来例の場合、 通過帯域の低域側にいくつかのス プリアスが発生し、 特に通過帯域近傍のスプリアスは、 シエイプファクタを劣化 させることが判った。 このため、 中間周波フィルタとして利用するためには、 帯 域近傍のスプリアスを抑圧する必要がある。 なお、 この従来例のフィルタは、 対 称モードと反対称モードとを利用していることから、 一つの弾性表面波伝搬トラ ック内ではその中央に関する対称性を有している。
第 5の従来例として、 特開平 7— 9 5 0 0 3号公報に記載された弾性表面波装 置が知られている。 N s対の入力用 I D Tと N f 対の出力用 I D Tを有する弾性 表面波装置において、 入力用 I D Tと出力用 I D Tの対数の和 N s + N f の範囲 を規定して、 群遅延時間が平坦で、 比帯域幅が比較的広く、 低挿入損失の弾性表 面波フィル夕を実現している。 しかしながら、 特開平 7 - 9 5 0 0 3号の実施例 の図 9乃至図 1 4に示されているように、 通過帯域の低域側近傍にスプリアスが 発生している。 従って、 通過帯域の低域側近傍のスプリアスの改善については言 及されていない。 なお、 特開平 7— 9 5 0 0 3号の比較例の図 1 5乃至図 1 Ίで は通過帯域の低域側近傍のスプリアスが発生していないが通過帯域内の特性 (例 えば群遅延時間リップル、 振幅リップル) が十分ではない。
第 6の従来例として、 特開昭 6 4 - 8 2 7 0 6号公報に記載された弾性表面波 狭帯域フィルタが知られている。 入力用すだれ状電極の両側に 2つの出力用すだ れ状電極が設けられた 3 I D T構造であって、 入力用 I D Tの対数を出力用 I D Tの対数よりも少なくすることにより、 低損失で狭帯域の弾性表面波フィルタを 実現している。 しかしながら、 通過帯域の低域側近傍のスプリアスの改善につい ては言及されていない。
第 7の従来例として、 特開平 6— 2 5 2 6 9 3号公報に記載された音響波トラ ンスジユーザが知られている。 第 1の電極構造列にある 対の I D Tを有する 音響波トランスジユーサと第 2の電極構造列にある N 2対の I D Tを有する音響 波トランスジユーザを縦続接続した音響波フィル夕が開示されている。
第 8の従来例として、 特開昭 5 9 - 3 7 7 2 4号公報に記載された弾性表面波 共振器型フィルタが知られている。 入力用電極と出力用電極の電極指対数を異な らせ、 入力用電極と出力用電極の共振周波数が一致するように電極指間隔を異な らせることにより、 低損失で狭帯域の弾性表面波共振器型フィル夕を実現してい る。 しかしながら、 この従来例は、 反射器を持たない電極構造であり、 通過帯域 の高域側近傍のスプリアスを抑圧するものであり、 通過帯域の低域側近傍のスプ リァスの改善や帯域内リップルの改善については言及されていない。
このように、 上述した従来の弾性表面波フィルタでは、 デジタル通信方式に使 用される中間周波フィルタに必要とされるような、 比帯域幅が比較的広く、 帯域 外減衰量も大きく、 特に、 帯域近傍にスプリアスがなく、 シエイプファクタが良 く、 小型、 低挿入損失で、 群遅延時間が平坦な特性を達成することができていな かった。
本発明の目的は、 群遅延時間が平坦で、 比帯域幅が比較的広く、 低挿入損失で シエイプファクタが良く、 帯域外減衰量の大きく、 帯域の低減側近傍のスプリア スを抑圧し、 横モードによるリップルの影響を改善した弾性表面波装置を提供す ることにある。
[発明の開示] 本願発明者等は、 上記課題を解決するために、 1 9 8 6年 1 2月に開催された 第 7回超音波エレク 卜ロニクスの基礎と応用に関するシンポジウムにおいて清水 により発表された弾性表面波共振子のエネルギー閉じ込めの考え方を、 2個の櫛 形電極とその外側に設けられた反射器からなる電極構造列を有する弾性表面波装 置に拡張することを検討した。
清水により発表された弾性表面波共振子のエネルギー閉じ込めの考え方の内容 は次の通りである (清水洋、 「圧電共振子におけるエネルギー閉込め」 、 第 7回 超音波エレク トロ二タスの基礎と応用に関するシンポジウム講演予講集、 第 8 1 〜8 6頁、 1 9 8 6年 1 2月) 。
まず、 エネルギー閉じ込めモードは、 単純な形状を持つ振動体の一部の領域に 振動エネルギーが集中し、 そこからある程度離れた領域では振動の変位も応力も ゼロと見なせる、 すなわち、 原理的にゼロに漸近するような共振モードであると 定義されている。 そして、 弾性表面波共振子の周期的なストリップ列の分散特性 は後方波 (b a c k w a r d w a v e ) の分岐が生じるため、 ストップバンド が形成され、 そこでは伝搬定数が複素数になる。
櫛形電極の両側にグレーティング反射器を配置した弾性表面波共振子は、 複素 分岐によるエネルギー閉じ込めを利用したものである。 反射器周期を櫛形電極周 期より僅かに広く し、 櫛形電極部分のストップバンドの下端が反射器のストップ バン ドの中心付近にくるようにすれば、 櫛形電極部分の伝搬定数が実数になる周 波数で、 反射器部分の伝搬定数が複素数になるので、 良好な閉じ込め共振モード が実現される。
また、 櫛形電極を反射器と連続な周期配列で構成した場合は、 櫛形電極内の伝 搬定数も反射器と同じ周波数で複素数となるから、 櫛形電極の短絡時には共振モ 一ドが存在せず、 櫛形電極の開放時には反共振モードが櫛形電極と反射器全体に 閉じ込められた形になる。
なお、 反射器を設けていない多対櫛形電極の場合の共振は、 ストップバンド下 端より僅かに低い周波数で起こり、 帯域内全域において伝搬定数は実数になるか ら弾性表面波が完全反射されず、 原理的に無損失であることがないので、 ェネル ギー閉じ込めの範噶に入らないと記述されている。 この考え方を 2個の櫛形電極とその両側の反射器からなる電極構造列を有する 弾性表面波装置に拡張する。 反射器の周期を 2個の櫛形電極の周期よりわずかに 広く し、 櫛形電極部分のストップバンドの下端が反射器部分のストップバンドの 中心付近にくるようにすれば、 櫛形電極部分の伝搬定数が実数になる周波数で、 反射器部分の伝搬定数が複素数になるので、 良好な閉じ込め共振モードが実現さ れる。 この状態を完全エネルギー閉じ込めと呼ぶことにする。
また、 2個の櫛形電極を反射器と連続な周期配列で構成した場合は、 これらの 櫛形電極内の伝搬定数も反射器と同じ周波数で複素数となるから、 櫛形電極の短 絡時には共振モードが存在せず、 櫛形電極の開放時には反共振モードが櫛形電極 と反射器全体に閉じ込められた形になると考えられる。
なお、 この考え方で前述した従来例を分類すると、 第 1の従来例、 第 2の従来 例、 第 8の従来例は、 完全エネルギー閉じ込めではなく、 第 3の従来例、 第 4の 従来例は、 完全エネルギー閉じ込め構造と考えられる。 その他の従来例について は、 反射器周期や櫛形電極周期が記載されていないので、 完全エネルギー閉じ込 め構造かどうか判断できない。
完全エネルギー閉じ込め構造の場合には、 弾性表面波フィルタの外へ弾性表面 波エネルギーが漏れないため、 低損失でモノ リシッククリスタルフィル夕と類似 の反対称モードが閉じ込められるため、 広帯域幅が得られると考えられる。
一方、 横モードを本質的に抑圧するには開口長を狭くすれば良いことが知られ ている。 四ほう酸リチウムの場合、 横モードスプリアスが問題とならない開口長 は 1 2 L以下であり、 S Tカツ 卜水晶の場合は 1 5 L以下であり、 Xカッ ト 1 1 2 ° Y伝搬タンタル酸リチウムの場合は 2 0 L以下である。 そして、 開口長を狭 く した場合の問題点は実数値を持つ終端インピーダンスとの整合がとれなくなる ことである。
比較例 1は、 四ほう酸リチウム単結晶の圧電基板上に、 図 1 6に示す電極構成 を形成した弾性表面波装置である。 2つの電極構造列を縦続接続した電極構成を している。
第 1の電極構造列 1 0として、 圧電基板上に、 入出力用 I D T 1 1を設け、 こ の入出力用 I D T 1 1の右側に、 入出力用 I D T 1 1とほぼ同一周期で同一対数 の接続用 I DT 1 2を設け、 入出力用 I DT 1 1と接続用 I DT 1 2の外側に、 反射器 1 3、 14を設けている。
第 2の電極構造列 20として、 圧電基板上に、 入出力用 I D T 2 1を設け、 こ の入出力用 I DT 2 1の左側に、 入出力用 I DT 2 1とほぼ同一周期で同一対数 の接続用 I DT 22を設け、 接続用 I DT 22と入出力用 I DT 2 1の外側に、 反射器 23、 24を設けている。
第 1の電極構造列 1 0の接続用 I D T 12と第 2の電極構造列 20の接続用 I
DT 22とは配線により接続され、 第 1の電極構造列 1 0と第 2の電極構造列 2
0とが縦続接続されている。
この比較例 1では、 圧電基板として、 45° 回転 Xカツ 卜 Z伝搬四ほう酸リチ ゥム単結晶基板 (L i 2B4O を用いた。 入出力用 I DT 1 1、 2 1の対数 N, 及び接続用 I DT 1 2、 22の対数 N2は、 それぞれ 3 1. 5対であり、 反射器
1 3、 14、 23、 24の電極本数は 60本である。 反射器 1 3、 1 4、 23、
24の周期を Lとして、 入出力用 I D T 1 1、 2 1及び接続用 I D丁 1 2、 22 の櫛形電極の周期は 0. 9836 L、 櫛形電極間距離は 0. 4 9 1 8 Lである。 入出力用 I DT 1 1、 2 1及び接続用 I DT 1 2、 22と、 反射器 1 3、 1 4、
23、 24との間の距離は 0. 4959 Lである。 電極の規格化アルミニウム膜 厚 hZLは 1. 7%である。 開口長 Wは 7 Lと比較的狭い。
図 1 7に比較例 1の 2段縦続接続した弾性表面波装置の入力用 I D T (又は出 力用 I DT) から見た共役影像ィンピーダンスと伝達定数を示し、 図 1 8に比較 例 1の通過特性を示す。 周波数は櫛形電極のス卜ップバンドの下端周波数で規格 化した規格化周波数で表示してあり、 通過帯域は伝達定数の実数部を外挿したと きの周波数帯域で定義される。 入力用 I D丁から見た共役影像インピーダンスと 出力用 I DTから見た共役影像インピーダンスは、 その対称性から同一である。 図 1 7に示すように、 比較例 1の共役影像インピーダンスは、 帯域内において、 その虚数部は 1 89〜2043 Ωの値であり、 その実数部は 300〜3280 Ω の値であり、 大きな周波数依存性を呈している。 図 1 8に示す比較例 1の通過特 性は、 入出力端子での終端インピーダンスを 2000 Ωとして測定した。 図 1 8 に示すように、 比較例 1には通過帯域内リップルが残っている。 ここで、 入出力用 I DT 1 1、 2 1と接続用 I DT 1 3、 1 4を同じ対数とし て変化させても、 通過特性の帯域內リ ップルは減少しなかった。 そして、 帯域内 のどの周波数における共役影像インピーダンスの実数部の値で終端しても帯域内 リップルが残った。
このときの弾性表面波装置の 1個の電極構造列における入力用 I DT (又は出 力用 I DT) 側から見た共役影像インピーダンスと接続用 I DT側から見た共役 影像インピーダンスを図 1 8に併せて示す。 入出力用 I D丁の対数と接続用 I D Tの対数は等しいので入力用 I DT (又は出力用 I DT) 側から見た共役影像ィ ンピーダンスと接続用 I DT側から見た共役影像インピーダンスは等しくなる。 図 1 8に示すように、 接続用 I DT側から見た共役影像インピーダンスは帯域 内において虚数部を持っため、 縦続接続面での整合が十分に取れていないことが わかる。 そして、 図 1 7に示すように、 入出力端子から見た共役影像インピーダ ンスの実数部及び虚数部、 特に虚数部は、 終端インピーダンス 2000 Ωと整合 が取れず帯域内リップルの原因になっていることがわかる。
比較例 2は、 四ほう酸リチウム単結晶の圧電基板上に、 図 1 6に示す電極構成 を形成した弾性表面波装置である。 2つの電極構造列を縦続接続した電極構成を している。 比較例 2の電極は、 圧電基板は異なるものの、 第 4の従来例と基本的 に同じ構造である。
この比較例 2では、 圧電基板として、 45° 回転 Xカッ ト Z伝搬四ほう酸リチ ゥム単結晶基板 (L i 2B 4O 7) を用いた。 入出力用 I DT 1 1、 2 1の対数 N, 及び接続用 I DT 1 2、 22の対数 N 2は、 それぞれ 29. 5対であり、 反射器 1 3、 14、 23、 24の電極本数は 60本である。 反射器 1 3、 1 4、 23、 24の周期を Lとして、 入出力用 I D T 1 1、 2 1及び接続用 I D T 1 2、 22 の櫛形電極の周期は 0. 9836 L、 櫛形電極間距離は 0. 4 9 1 8 Lである。 入出力用 I DT 1 1、 2 1及び接続用 I DT 1 2、 22と、 反射器 1 3、 1 4、 23、 24との間の距離は 0. 4959 Lである。 電極の規格化アルミニウム膜 厚 hZLは 1 , 7%である。 開口長 Wは 350 Lと比較的広い。
図 1 9に比較例 2の 2段縦続接続した弾性表面波装置の入力用 I DT (又は出 力用 I DT) 側から見た共役影像インピーダンスと伝達定数を示し、 図 20に比 較例 2の通過特性を示す。 図 2 0に示す比較例 2の通過特性は、 入出力端子での 終端ィンピーダンスを 5 0 Ωとして測定した。
図 1 9において、 入力用 I D T側から見た共役影像インピーダンスと出力用 I D T側から見た共役影像インピーダンスは、 その対称性から同一であり、 帯域内 の周波数で実数部は約 5 0 Ω、 虚数部は約 0 Ωである。 したがって、 終端インピ 一ダンスを 5 0 Ωとした場合の通過特性は、 図 2 0に示すように、 リップルが比 較的少ない良好な帯域内特性となっている。
この場合において、 弾性表面波伝搬卜ラック内の電極構造は、 入出力 I D Tと 接続用 I D T間の中央に関して対称であるので、 弾性表面波伝搬トラックの接続 用 I D T側の共役影像インピーダンスも、 入出力端子側の共役影像インピーダン スと同一帯内の周波数において、 実数部は約 5 0 Ω、 虚数部は約 0 Ωである。 し たがって、 縦続接続面における複素共役インピーダンスの整合が取れている。 比 較例 2の帯域内特性は、 最小挿入損失が 2 d B、 比帯域幅が 0 . 5 6 %、 帯域内 の群遅延時間リ ップルが 3 s e c以下と、 良好な電気的特性が得られた。
しかしながら、 比較例 2では、 図 2 0に示すように、 反射器のストップバン ド 内の低域側に、 大きなスプリアス 1 とスプリァス 2とが発生している。 特に、 ス プリアス 1があるためにシヱイブファクタに問題があり、 良好なシヱイプファク 夕が要求されるデジタル信号の中間周波フィルタとして使用できない。
また、 比較例 2では、 開口長が 3 5 0 Lもあり、 電極指抵抗の影響が大きく、 最小挿入損失が増大する。 さらに、 移動体通信機器の第 1中間周波として用いら れる 3 0 Μ Η ζ〜1 0 0 M H zの周波数帯では、 電極寸法が長大となり素子の大 型化を招くという問題がある。
また、 図 2 0は、 数値シミュレーションによる結果を図示したものであるので、 横モードの影響について示されていないが、 実際の弾性表面波素子の場合には、 横モードによる帯域内リップルが発生する。 櫛形電極のコサイン重み付けにより リップルを若干抑圧することができたとしても、 本質的には帯域内リップルが存 在するという問題がある。 特に、 群遅延時間特性のリップルは大きく、 比較例 2 を中間周波フィルタとしては使用できない。
なお、 一般的に知られているフィルタ理論の影像パラメ一夕を用いる設計方法 では、 帯域は伝達定数の実数部がゼロである範囲として定義されているが、 図 1 9から明らかなように、 弾性表面波フィルタの共役影像パラメータの一部である 伝達定数の実数部は、 全周波数範囲にわたってゼロとならない。 そこで、 本明細 書では、 伝達定数の実数部の包絡線の極小値が上述した従来のフィルタ理論にお ける伝達定数の実数部がゼロの場合に対応していると考え、 図 1 9に示すように、 伝達定数の実数部の外揷線が周波数軸と交差している位置の周波数範囲を帯域幅 として定義することとする。
図 1 6に示すように、 2つの電極構造列を縦続接続した電極構成の場合、 入出 力端子において虚数部を持つ共役影像ィンビーダンスで終端するのが最も整合が 取れている状態であることを考慮して、 本願発明者等は電極構造の望ましい形態 を考察した。
縱続接続面での共役影像インピーダンスは、 縦続接続面での複素共役インピー ダンスの整合を考えると、 なるべく実数であることが望ましい。 一方、 入出力端 子では上述したように虚数部を有する複素共役影像インピーダンスで整合するの で、 弾性表面波伝搬トラックにおける入出力 I D T側の影像インピーダンスと接 続用 I D T側の影像インピーダンスは非対称となることが望ましい。 一方、 第 4 の従来例及び比較例 2に対する検討から、 弾性表面波フィル夕において、 電極構 造が対称であると共役影像ィンピーダンスも対称となることがわかる。
このことから、 本願発明者等は、 共役影像インピーダンスを非対称にするため には弾性表面波装置の電極構成を非対称にすればよいことに思い至り、 本発明を なした。
したがって、 本発明による弾性表面波装置は、 圧電基板と、 前記圧電基板上に 形成され、 N ,対の入出力用 I D Tと、 前記入出力用 I D Tの一側に近接して配 置された N 2対の接続用 I D Tと、 前記入出力用 I D Tと前記接続用 I D Tの外 側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に 形成され、 対の入出力用 I D Tと、 前記入出力用 I D Tの他側に近接して配 置された N 2対の接続用 I D Tと、 前記接続用 I D Tと前記入出力用 I D Tの外 側に形成された 2つの反射器とを有し、 前記第 1の電極構造列と縦続接続された 第 2の電極構造列とを有し、 前記第 1の電極構造列の前記接続用 I D Tと前記第 2の電極構造列の前記接続用 I DTとが縱続接続面に対して電気的に対称となる ように配置されている弾性表面波装置であって、 前記弾性表面波装置を、 格子腕 インピーダンスと直列腕インピーダンスで表される電気的に等価な対称格子形回 路で表したとき、 前記格子腕ィンピーダンスの少なくとも 1個の共振点と少なく とも 1個の反共振点及び前記直列腕ィンピーダンスの少なくとも 1個の共振点と 少なくとも 1個の反共振点を用いて通過帯域を形成し、 前記入出力用 I DTの対 数 Nhと前記接続用 I DTの対数 N2とが異なることを特徴とする。
上述した弾性表面波装置において、 前記格子腕ィンピーダンスの少なくとも 2 個の共振点と少なくとも 1個の反共振点と、 前記直列腕ィンピーダンスの少なく とも 2個の共振点と少なくとも 2個の反共振点とを用いて通過帯域を形成したこ とが望ましい。
また、 本発明による弾性表面波装置は、 圧電基板と、 前記圧電基板上に形成さ れ、 Nt対の入出力用 I DTと、 前記入出力用 I DTの一側に近接して配置され た N 2対の接続用 I DTと、 前記入出力用 I DTと前記接続用 I DTの外側に配 置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成さ れ、 対の入出力用 I DTと、 前記入出力用 I DTの他側に近接して配置され た N2対の接続用 I DTと、 前記接続用 I DTと前記入出力用 I DTの外側に形 成された 2つの反射器とを有し、 前記第 1の電極構造列と縦続接続された第 2の 電極構造列とを有し、 前記第 1の電極構造列の前記接続用 I DTと前記第 2の電 極構造列の前記接続用 I DTとが縦続接続面に対して電気的に対称となるように 配置されている弾性表面波装置であって、 前記入出力用 I DTの対数 N,と前記 接続用 I DTの対数 N 2とが異なり、 前記入出力用 I DTと前記接続用 I DTの 規格化電極膜厚を hZLとしたとき、 前記入出力用 I DTの対数 が、 次式
43— 1 1 (h/L) ≤N,≤ 6 1 - 1 1 ( h/L)
を満足することを特徴とする。 ここで、 規格化電極膜厚は%表示である。 なお、 本明細書中の規格化電極膜厚もすベて%表示とする。
上述した弾性表面波装置において、 前記入出力用 I DTの対数 が、 次式
50 - 1 1 (h/L) ≤Ni≤ 59 - l 1 (h/L)
を満足することが望ましい。 また、 本発明による弾性表面波装置は、 圧電基板と、 前記圧電基板上に形成さ れ、 対の入出力用 I DTと、 前記入出力用 I DTの一側に近接して配置され た N2対の接続用 I DTと、 前記入出力用 I DTと前記接続用 I DTの外側に配 置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成さ れ、 対の入出力用 I DTと、 前記入出力用 I DTの他側に近接して配置され た N2対の接続用 I DTと、 前記接続用 I DTと前記入出力用 I DTの外側に形 成された 2つの反射器とを有し、 前記第 1の電極構造列と縱続接続された第 2の 電極構造列とを有し、 前記第 1の電極構造列の前記接続用 I DTと前記第 2の電 極構造列の前記接続用 I D Tとが縦続接続面に対して電気的に対称となるように 配置されている弾性表面波装置であって、 前記入出力用 I DTの対数 と前記 接続用 I DTの対数 N2とが異なり、 前記入出力用 I DTと前記接続用 I DTの 規格化電極膜厚を hZLとしたとき、 前記接続用 I DTの対数 N2と前記入出力 用 I DTの対数 の比 ΝίίΖΝ!が、 次式
0.542-0.021(h/L) + 0.029(h/L)2≤N2/N.≤ 0.734-0.028(h/L) + 0.029(h/L)2 を満足することを特徴とする。
上述した弾性表面波装置において、 前記接続用 I DTの対数 N 2と前記入出力 用 I DTの対数 の比 NzZNiが、 次式
0.597- 0.020(h/L) + 0.027(h/L)2≤Ν2ΛΊ≤0.690— 0.032(h/L) + 0.031(h/L)2 を満足することが望ましい。
また、 本発明による弾性表面波装置は、 圧電基板と、 前記圧電基板上に形成さ れ、 対の入出力用 I DTと、 前記入出力用 I DTの一側に近接して配置され た N2対の接続用 I DTと、 前記入出力用 I DTと前記接続用 I DTの外側に配 置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成さ れ、 N,対の入出力用 I DTと、 前記入出力用 I DTの他側に近接して配置され た N 2対の接続用 I DTと、 前記接続用 I DTと前記入出力用 I DTの外側に形 成された 2つの反射器とを有し、 前記第 1の電極構造列と縦続接続された第 2の 電極構造列とを有し、 前記第 1の電極構造列の前記接続用 I DTと前記第 2の電 極構造列の前記接続用 I DTとが縦続接続面に対して電気的に対称となるように 配置されている弾性表面波装置であって、 前記入出力用 I DTの対数 と前記 接続用 I DTの対数 N 2とが異なり、 前記入出力用 I DTと前記接続用 I DTの 規格化電極膜厚を hZLとしたとき、 前記接続用 I DTの対数 N2と前記入出力 用 I DTの対数 の比 Nz/N!が、 次式
0.542-0.021(h/L) + 0.029(h/L)2≤N2/N,≤ 0.734— 0.028(h/L) + 0.029(h/L)2 を満足し、 前記入出力用 I DTの対数 が、 次式
43 - 1 1 (h/L) ≤N,≤ 6 1 - 1 1 (h/L)
を満足することを特徴とする。
上述した弾性表面波装置において、 前記接続用 I DTの対数 N2と前記入出力 用 I DTの対数 の比 Νζ/Ν!が、 次式
0.597-0.020(h/L) + 0.027(h/L)2≤N2/N.≤ 0.690-0.032(h/L) + 0.031(h/L)2 を満足し、 前記入出力用 I DTの対数 が、 次式
50— 1 1 (hZL) ≤N,≤ 59 - 1 1 (h/L)
を満足することが望ましい。
また、 本発明による弾性表面波装置は、 圧電基板と、 前記圧電基板上に形成さ れ、 対の入出力用 I DTと、 前記入出力用 I DTの一側に近接して配置され た N2対の接続用 I DTと、 前記入出力用 I D Tと前記接続用 I D Tの外側に配 置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成さ れ、 対の入出力用 I DTと、 前記入出力用 I DTの他側に近接して配置され た N2対の接続用 I DTと、 前記接続用 I DTと前記入出力用 I DTの外側に形 成された 2つの反射器とを有し、 前記第 1の電極構造列と縦続接続された第 2の 電極構造列とを有し、 前記第 1の電極構造列の前記接続用 I DTと前記第 2の電 極構造列の前記接続用 I D Tとが縦続接続面に対して電気的に対称となるように 配置されている弾性表面波装置であって、 前記入出力用 I DTの対数 N,と前記 接続用 I DTの対数 N 2とが異なり、 通過帯域中央の周波数 f 0での共役影像ィ ンピーダンスを Z o = R ( f o) + j I ( f o ) とし、 前記通過帯域内で n個に 分割したときの各点 f i における周波数の共役影像インピーダンスを Z ( f i ) = R ( f i ) + j I ( f i ) ( i = l、 2、 3、 ···、 n ) としたとき、 次式 n n
DCII = {∑ (R(fi)-R(fo))2}l/7(nR(fo)) + {∑ (I(f i)-I(fo))2} 1/2/(nI(fo)) i=l i=l
であらわされる規格化共役影像インピーダンス自乗偏差 DC I I力、'、 次式
0≤D C I I≤ 0. 2
を満足することを特徵とする。
上述した弾性表面波装置において、 前記規格化共役影像インピーダンス自乗偏 差 D C I I 、 次式
0≤DC I I≤ 0. 13
を満足することが望ましい。
上述した弾性表面波装置において、 前記圧電基板が、 四ほう酸リチウム^板で あることが望ましい。
[図面の簡単な説明]
図 1は、 本発明の一実施形態による弾性表面波装置の電極構造を示す図である。 図 2は、 本発明の一実施形態による弾性表面波装置と電気的に等価な対称格子 形回路を示す図である。
図 3は、 本発明の一実施形態による弾性表面波装置において、 規格化アルミ二 ゥム膜厚 hZLが 1. 7%の場合に、 櫛形電極総対数 N, + N2を一定とし、 櫛形 電極対数比 Ν2ΖΝ ,を変化させた場合の低域スプリアスレベルの変化を示すグラ フである。
図 4は、 本発明の一実施形態による弾性表面波装置において、 規格化アルミ二 ゥム膜厚 hZLが 1. 7%の場合に、 櫛形電極対数比 N2ZN,を一定とし、 櫛形 電極総対数 N, + N2を変化させた場合の低域スプリァスレベルの変化を示すグラ フである。
図 5は、 本発明の一実施形態による弾性表面波装置において、 規格化アルミ二 ゥム膜厚 hZLが 1. 0%の場合に、 櫛形電極総対数 N, + N2を一定とし、 櫛形 電極対数比 N2ZN,を変化させた場合の低域スプリァスレベルの変化を示すグラ フである。 図 6は、 本発明の一実施形態による弾性表面波装置において、 規格化アルミ二 ゥム膜厚 hZLが 3. 0%の場合に、 櫛形電極総対数 Ni + Nzを一定とし、 櫛形 電極対数比 N2ZN,を変化させた場合の低域スプリァスレベルの変化を示すグラ フである。
図 7は、 本発明の一実施形態による弾性表面波装置において、 規格化アルミ二 ゥム膜厚を変化させた場合に、 低域側スプリァスを抑圧するのに適切な櫛形電極 対数比 NzZN,の範囲の変化を示すグラフである。
図 8は、 本発明の一実施形態による弾性表面波装置において、 入出力用 I DT の対数 を変化させた場合の規格化比帯域幅、 規格化群遅延時間リ ップル、 振 幅リ ップルの変化を示すグラフである。
図 9は、 本発明の一実施形態による弾性表面波装置において、 最適な櫛形電極 対数より少ない場合 (入出力用 I 0丁の対数1^1が1 9. 5対で接続用 I DTの 対数 N2が 1 3. 5対の場合) の伝達定数の実数部、 共役影像インピーダンス、 群遅延時間の周波数応答を示すグラフである。
図 1 0は、 本発明の一実施形態による弾性表面波装置において、 最適な櫛形電 極対数の場合 (入出力用 I 0丁の対数1^が37. 5対で接続用 I 0丁の対数 2 が 25. 5対の場合) の伝達定数の実数部、 共役影像インピーダンス、 群遅延時 間の周波数応答を示すグラフである。
図 1 1は、 本発明の一実施形態による弾性表面波装置において、 最適な櫛形電 極対数より多い場合 (入出力用 I 0丁の対数1^1が50. 5対で接続用 I DTの 対数N2が34. 5対の場合) の伝達定数の実数部、 共役影像インピーダンス、 群遅延時間の周波数応答を示すグラフである。
図 1 2は、 本発明の一実施形態による弾性表面波装置において、 規格化共役影 像インピーダンス自乗偏差 DC I Iの入出力用櫛形電極対数 N ,への依存性を示 すグラフである。
図 1 3は、 本発明の一実施形態による弾性表面波装置において、 規格化アルミ 二ゥム膜厚を変化させた場合に、 横モードの影響を効果的に抑圧して良好な周波 数特性を得るために適切な入出力用櫛形電極対数 の範囲の変化を示すグラフ である。 図 1 4は、 本発明の一実施形態による弾性表面波装置において、 最適な櫛形電 極対数の場合における、 対称格子形回路の格子腕インピーダンス Z bと直列腕ィ ンピーダンス Z aの周波数特性と、 周波数応答と、 共役影像インピーダンスを示 すグラフである。
図 1 5は、 本発明の実施例の通過特性を示すグラフである。
図 1 6は、 従来の弾性表面波装置の電極構造を示す図である。
図 1 7は、 比較例 1の共役影像インピーダンスと伝達定数を示すグラフである。 図 1 8は、 比較例 1の通過特性と 1個の電極構造列の共役影像インピーダンス を示すグラフである。
図 1 9は、 比較例 2の共役影像インピーダンスと伝達定数を示すグラフである。 図 2 0は、 比較例 2の通過特性と格子腕ィンピーダンス Z bと直列腕ィンピー ダンス Z aを示すグラフである。
[発明を実施するための最良の形態]
本発明の一実施形態による弾性表面波装置について図面を用いて説明する。 本実施形態による弾性表面波装置では、 四ほう酸リチウム単結晶の圧電基板上 に図 1に示すような電極構造を形成する。 圧電基板上に電極構造列 1 0、 2 0に よる 2つの弾性表面波伝搬トラックを形成する。
第 1の電極構造列 1 0として、 圧電基板上に、 N ,対の入出力用 I D T 1 1を 設け、 この入出力用 I D T 1 1の右側に、 入出力用 I D T 1 1 とほぼ同一周期で 対数の異なる N 2対の接続用 I D T 1 2を設け、 入出力用 I D T 1 1 と接続用 I D T 1 2の外側に、 反射器 1 3、 1 4を設けている。
第 2の電極構造列 2 0として、 圧電基板上に、 対の入出力用 I D T 2 1を 設け、 この入出力用 I D T 2 1の左側に、 入出力用 I D T 2 1 とほぼ同一周期で 対数の異なる N 2対の接続用 I D T 2 2を設け、 接続用 I D T 2 2と入出力用 I D T 2 1の外側に、 反射器 2 3、 2 4を設けている。
第 1の電極構造列 1 0の接続用 I D T 1 2と第 2の電極構造列 2 0の接続用 I D T 2 2とは圧電基板上に形成された配線により接続され、 第 1の電極構造列 1 0と第 2の電極構造列 2 0とが縱続接続されている。 接続用 I D T 1 2と接続用 I DT 22の他端は接地されている。 なお、 接続用 I D T 1 2と接続用 I DT 2 2を圧電基板外の配線により接続してもよい。
I DTの周期 L Lと反射器の周期 Lは、 隣接する電極指間の距離の 2倍として 定義され、 通常、 電極指の中心間距離である。 I DTの対数は、 組み合わされた 電極指が 1本ずつで 1対と数え、 片方の電極指だけの場合は 0. 5対と数える。 10丁間の距離し iは、 各 I DTの最も外側の電極指の中心間距離として定義さ れる。 I DTと反射器間の距離 Lirは、 I DTの最も外側の電極指と反射器の最 も近い電極指との中心間距離として定義される。
I DT内の弾性表面波伝搬方向での基板上に電極が形成されている比率を示す メタライズレシオは、 電極指の幅を Lidtとして、 2 X Lidt/L Lで定義される。 反射器内の弾性表面波伝搬方向での基板上に電極が形成されている比率を示すメ 夕ライズレシオは、 電極指の幅を Lreiとして、 2 X LrefZLで定義される。 規 格化アルミニゥム膜厚 h Lは、 電極の膜厚 hを反射器周期 Lで割つた値として 定義される。 開口長は、 各 I D Tの重なり幅の最大値として定義される。
このような構成の弾性表面波装置において、 第 1の課題である低域側スプリァ スの抑圧について検討する。
圧電基板として、 45° 回転 Xカッ ト Z伝搬四ほう酸リチウム単結晶基板を用 いる。 反射器 1 3、 1 4、 23、 24の電極本数は 60本である。 反射器 1 3、 14、 23、 24の周期を Lとして、 入出力用 I D T 1 1、 2 1及び接続用 I D T 1 2、 22の櫛形電極の周期は 0. 9836 L、 櫛形電極間距離は 0. 49 1 8 Lである。 入出力用 I DT 1 1、 2 1及び接続用 I DT 1 2、 22と、 反射器 1 3、 14、 23、 24との間の距離は 0. 4959 Lである。 電極の規格化ァ ルミ二ゥム膜厚 hZLは 1. 7%である。
入出力用 I DT 1 1、 21の対数 N,と接続用 I DT 1 2、 22の対数 N2の和 Ν, + Ν2を 59対と一定にして、 接続用 I DT 1 2、 22の対数 Ν2を入出力用 I DT 1 1、 2 1の対数 で割った対数比 NsZN,を変化させたときのスプリ ァスレベルの変化を図 3に示す。 終端インピーダンスは 50 Ωである。 ここで、 スプリアスレベルは、 帯域近傍の低域側に発生するスプリァスの極大値から最小 挿入損失を引いた差である。 図 3から明らかなように、 低域側スプリァスを 30 d B以上に抑圧するために は、 櫛形電極対数比 が 0. 590〜0. 770の範囲又は 1. 1 98〜 1. 986の範囲に設定すればよい。 低域側スプリァスを 30 d B以上に抑圧す ると、 シエイプファクタが良好な弾性表面波フィルタを実現できる。
また、 低域側スプリアスを 40 d B以上に抑圧するためには、 櫛形電極対数比 NzZN,が 0. 64 1〜0. 725の範囲又は 1. 296〜 1. 766の範囲に 設定すればよい。 低域側スプリァスを 40 d B以上に抑圧すると、 シヱイプファ クタがさらに良好な弾性表面波フィルタを実現できる。
さらに、 櫛形電極対数比 N2ノ N,を 0. 680又は 1. 500にすれば、 低域 側スプリァスを最も効果的に抑圧することができる。
次に、 櫛形電極対数比 Nz/Nhを低域側スプリアスの抑圧効果が大きい 0. 6 60〜0. 690の範囲に含まれる一定値にして、 櫛形電極総対数 N, + N2を変 化させた場合の低減側スプリアスの変化を図 4に示す。 なお、 櫛形電極対数比 N が一定の範囲の値となるのは、 櫛形電極対数が 0. 5対を最小単位とした 離散値しか取らないためである。 図 4から明らかなように、 櫛形電極総対数 + N 2が変化しても、 低域側スプリアスは 30 d B以上抑圧されている。
さらに、 規格化アルミニウム膜厚 hZLが 1 %と 3 %の場合において同様な測 定を行った。
図 5に、 規格化アルミニウム膜厚 h/Lが 1 %で、 櫛形電極対数和 Ν, + Νζを 59対と一定にして、 櫛形電極対数比 Ν2/Ν,を変化させたときのスプリアスレ ベルの変化を示す。
図 5から明らかなように、 低域側スプリアスを 30 d B以上に抑圧するために は、 櫛形電極対数比 ΝζΖΝ,が 0. 547〜0. 747の範囲、 又は 1. 1 66 〜2. 1 61の範囲に設定すればよい。 また、 低域側スプリアスを 40 d B以上 に抑圧するためには、 櫛形電極対数比 N2ZN が 0. 610〜0. 690の範囲、 又は 1. 270〜 1. 8 1 7の範囲に設定すればよい。 さらに、 櫛形電極対数比 ΝζΖΝ,を 0. 650又は 1. 490にすれば、 低域側スプリアスを最も効果的 に抑圧することができる。
図 6に、 規格化アルミニウム膜厚 h ZLが 3 %で、 櫛形電極対数和 N, + N2を 5 9対と一定にして、 櫛形電極対数比 NsZN,を変化させたときのスプリアスレ ベルの変化を示す。
図 6から明らかなように、 低域側スプリアスを 30 d B以上に抑圧するために は、 櫛形電極対数比 NzZN,が 0. 7 50〜0. 9 1 0の範囲、 又は 1. 06 6 〜 1. 5 1 2の範囲に設定すればよい。 また、 低域側スプリアスを 4 0 d B以上 に抑圧するためには、 櫛形電極対数比 ΝζΖΝ!が 0. 780〜0. 8 70の範囲、 又は 1. 1 28〜 1. 3 6 2の範囲に設定すればよい。 さらに、 櫛形電極対数比 2 1^を0. 820又は 1. 23 1にすれば、 低域側スプリアスを最も効果的 に抑圧することができる。
しかしながら、 開口長が 5 Lから 1 2 Lの範囲では, N2ZN,を 1より大きく した場合、 振幅リップルが大きくなる。 横モードによるスプリアスを十分抑圧す るためには、 四ほう酸リチウム単結晶の場合、 開口長を 5 Lから 1 2 Lの範囲に 設定する必要がある。 以降、 N2ZN,< 1の場合について述べる。
上述した結果をまとめて図 7に示す。
低域側スプリァスを最も効果的に抑圧できる櫛形電極対数比 NsZ hの最適値 を◎で示し、 低域側スプリァスを 4 0 d B以上抑圧できる櫛形電極対数比 N2Z N,の上限を〇で示し、 下限を暴で示し、 低域側スプリアスを 3 0 d B以上抑圧 できる櫛形電極対数比 N 2ノ N,の上限を△で示し、 下限を▲で示す。
低域側スプリアスを 30 d B以上抑圧するためには、 櫛形電極対数比 N2ZN, を、 次式
0.542-0.021(h/L) + 0.029(h/L)2≤N2/N,≤0.734-0.028(h/L) + 0.029(h/L)2 の範囲内に設定すればよい。
低域側スプリアスをさらに 4 0 d B以上抑圧するためには、 櫛形電極対数比 N を、 次式
0.597-0.020( /L) + 0.027(h/L)2≤N2/Ni≤0.690-0.032(h/L) + 0.031(h/L)2 の範囲内に設定すればよい。
低域側スプリアスを最も効果的に抑圧するためには、 櫛形電極対数比 N2ZN, (◎) を、 次式
N2/N. = 0.645-0.029(h/L) + 0.029(h/L)2 を満足するように設定すればよい。
次に、 第 2の課題である横モードの影響の抑圧について検討する。 弾性表面波 装置の開口長を狭く して抑圧するようにする。
図 1に示す電極構造において、 反射器 1 3、 14、 23、 24の周期をしとし て、 入出力用 I D T 1 1、 2 1及び接続用 I D T 1 2、 22の櫛形電極の周期は
0. 9836 L、 櫛形電極間距離は 0. 49 18 Lである。 入出力用 I DT 1 1、 21及び接続用 I DT 1 2、 22と、 反射器 1 3、 14、 23、 24との間の距 離は 0. 4959 Lである。 電極の規格化アルミニウム膜厚 hZLは 1. 7%で あり、 開口長 Wを 7 Lとした。
入出力用 I DT 1 1、 21の対数 N,と接続用 I DT 1 2、 22の対数 N2の櫛 形電極対数比 NzZNhを 0. 660〜0. 690の範囲とし、 入出力用 I D T 1
1、 2 1の対数 N,を変化させた場合の共役影像インピーダンスと伝達定数の変 化を求めた。 なお、 櫛形電極対数比 が一定の範囲の値となるのは、 櫛形 電極対数が 0. 5対を最小単位とした離散値しか取らないためである。
この伝達定数から帯域幅を定義し、 帯域内中央の周波数における共役影像ィン ピーダンスの値で終端したときの周波数応答を求めた。 この周波数応答における 規格化比帯域幅 (□) 、 規格化群遅延時間リップル (〇) 、 振幅リ ップル (園) を図 8に示す。
ここで、 規格化比帯域幅 (□) は、 比帯域幅を基板の電気機械結合係数で割つ た規格化比帯域幅の値であり、 規格化群遅延時間リップル (〇) は、 群遅延時間 リップル、 すなわち、 帯域内の最大群遅延時間と最小群遅延時間との差に周波数 応答の中心周波数を掛けた規格化群遅延時間リ ップルの値であり、 振幅リップル (■) は、 帯域内の最大挿入損失と最小挿入損失との差の値である。
なお、 比帯域幅として規格化比帯域幅を用いることにしたのは次の理由による。 弾性表面波共振子フィル夕の比帯域幅は、 使用した圧電基板の電気機械結合係数 に比例することが知られている。 判断基準が使用した圧電基板の種類によらない ようにするために、 比帯域幅を基板の電気機械結合係数で割った値を規格化比帯 域幅とした。
また、 群遅延時間リップルとして規格化群遅延時間リ ップルを用いることにし たのは次の理由による。 群遅延時間は、 その定義から中心周波数に反比例するた め、 弾性表面波装置の中心周波数を変えると変化する。 そこで、 判断基準を一般 化するために群遅延時間リップルに中心周波数を掛けた規格化群遅延時間リップ ルを利用する。
図 8から明らかなように、 規格化比帯域幅は、 入出力用 I DT 1 1、 2 1の対 数1^が37. 5対、 接続用 I DT 1 2、 22の対数 N2が 25. 5対の時に最大 となる。 また、 振幅リップルは、 入出力用 I D T 1 1、 2 1の対数 が少ない 場合ゼロであり、 対数 が 39. 5対より大きくなると増加する。 また、 規格 化群遅延時間リ ップルは、 入出力用 I DT 1 1、 2 1の対数?^が33. 5対の 時に極小となり、 対数 が 33. 5対より小さくなると僅かに増大し、 対数 が 43対以上では 600を越える。
櫛形電極対数の最適な範囲を限定するための基準を、 規格化比帯域幅が 0. 3 8以上、 規格化群遅延時間リップルが 600以下、 振幅リ ップルが 3 d B以下と すると、 規格化アルミニウム膜厚 1. 7%の場合は、 入出力用 I DT 1 1、 2 1 の対数 N ,が 25対〜 43対の範囲のときに良好な電気的特性が得られることが わかった。
次に、 入出力用 I D T 1 1、 2 1の対数 N!と接続用 I D T 1 2、 22の対数 N2を種々変化させた場合の伝達定数の実数部、 共役影像インピーダンス、 群遅 延時間の周波数応答を図 9乃至図 1 1に示す。 規格化アルミニウム膜厚は 1. 7 %である。
図 9は、 入出力用 I DT 1 1、 2 1の対数 が上記範囲より小さい 1 9. 5 対で接続用 I DT 1 2、 22の対数 N 2が 1 3. 5対の場合の伝達定数の実数部、 共役影像インピーダンス、 群遅延時間の周波数応答である。
図 9により明らかなように、 伝達定数の実数部から得られる帯域幅は広いが、 この範囲内の共役影像インピーダンスは大きく変化している。 そこで、 帯域中央 での共役影像インピーダンスの値 2 1 5 + j 1 902 Ωで整合を取り、 50 Ω系 で終端すると、 その周波数では整合するが、 その両外側の周波数では共役影像ィ ンピーダンスが大きく変化しているので、 整合が取れず、 その通過特性は単峰性 で狭帯域な特性となる。 振幅リップルはゼロで群遅延時間リップルも比較的小さ い。
図 1 0は、 入出力用 I DT 1 1、 2 1の対数 が上記範囲内である 37. 5 対で接続用 I DT 1 2、 22の対数 N 2が 25. 5対の場合の伝達定数の実数部、 共役影像インピーダンス、 群遅延時間の周波数応答である。
図 10から明らかなように、 伝達定数の実数部から得られる帯域幅は比較的広 く、 この範囲の共役影像インピーダンスは平坦であり、 特にその虚数部は平坦で ある。 帯域中央での共役影像インピーダンス 759 + j 580 Ωで整合を取り、 50 Ω系で終端すると、 振幅が平坦で群遅延時間リ ップルが少ない周波数応答が 得られる。
図 1 1は、 入出力用 I D T 1 1、 2 1の対数 N ,が上記範囲より大きい 50. 5対で接続用 I DT 1 2、 22の対数 N2が 34. 5対の場合の伝達定数の実数 部、 共役影像インピーダンス、 群遅延時間の周波数応答である。
図 1 1から明らかなように、 伝達定数の実数部から得られる帯域幅は狭く、 し かもこの範囲内での共役影像インピーダンスが大きく変化しているので、 帯域中 央での共役影像インピーダンス 464— j 1 27 Ωで整合を取り、 50 Ω系で終 端すると、 狭帯域で、 振幅リップルも群遅延時間リ ップルも大きな周波数応答と なる。
これらの変化を数値化するために帯域内の周波数における共役影像ィンビーダ ンスの帯域内中央での値に対する自乗偏差を求めた。 帯域内の規格化周波数を 0. 000 1刻みで η個に分割し、 各点 f i ( i = 1 , 2 , 3 , ···, η ) における共役 影像インピーダンスの実数部 R ( f i) と虚数部 I ( f i) からそれぞれの帯域中 央での値 R ( f 0) と I ( f 0) の差を求めて自乗し、 n個の和の平方根を求め、 それぞれを帯域中央での値 R ( f 0) と I ( f 0) で規格化し、 さらに帯域の分割 数 nで割る。 これの実数部と虚数部を足して、 規格化共役影像インピーダンス自 乗偏差 DC I I とした。 したがって、 規格化共役影像インピーダンス自乗偏差 D C I Iは次式であらわされる。
n n
DCII={∑(R(fi)-R(fo))2}1/2/(nR(fo))-f {∑(I(fi)-I(fo))2}1/2/CnI(fo)) i=l i=l 図 1 2に、 規格化共役影像インピーダンス自乗偏差 DC I Iの入出力用櫛形電 極対数 への依存性を示す。 ここで、 櫛形電極対数比 N ZNhは、 0. 660 〜 0. 690の範囲とした。
図 1 2から明らかなように、 入出力用櫛形電極対数 が 25対〜 43対の範 囲では、 規格化共役影像インピーダンス自乗偏差 DC I Iが 0. 2以下となり、 広帯域で振幅リップルも群遅延時間リップルも小さい良好な特性が得られる。 ま た、 入出力用櫛形電極対数 が 3 1対〜 40. 5対の範囲では、 規格化共役影 像インピーダンス自乗偏差 DC I Iが 0. 1 3以下となり、 さらに広帯域で振幅 リップルも群遅延時間リップルも小さいさらに良好な特性が得られる。 また、 入 出力用櫛形電極対数 Nhが 37対の場合には、 規格化共役影像インピーダンス自 乗偏差 DC I Iが最小値となり、 広帯域で振幅リップルも群遅延時間リ ップルも 小さい最も良好な特性が得られる。
上述した詳細な検討は規格化アルミニウム膜厚 1. 7%の場合であつたが、 親 格化アルミニウム膜厚が 1 %、 3 %の場合についても同様にして詳細な検討を行 つた。
規格化アルミニウム膜厚が 1 %の場合には、 入出力用櫛形電極対数 が 32 対〜 50対の範囲では、 規格化共役影像インピーダンス自乗偏差 DC I Iが 0. 2以下となり、 広帯域で振幅リ ップルも群遅延時間リップルも小さい良好な特性 が得られる。 また、 入出力用櫛形電極対数 が 39対〜 48対の範囲では、 規 格化共役影像インピーダンス自乗偏差 DC I Iが 0. 1 3以下となり、 さらに広 帯域で振幅リップルも群遅延時間リップルも小さいさらに良好な特性が得られる。 また、 入出力用櫛形電極対数 N,が 45対の場合には、 規格化共役影像インピー ダンス自乗偏差 DC I Iが最小値となり、 広帯域で振幅リップルも群遅延時間リ ップルも小さい最も良好な特性が得られる。
規格化アルミニウム膜厚が 3 %の場合には、 入出力用櫛形電極対数 N,が 1 0 対〜 28対の範囲では、 規格化共役影像インピーダンス自乗偏差 DC I Iが 0. 2以下となり、 広帯域で振幅リ ップルも群遅延時間リップルも小さい良好な特性 が得られる。 また、 入出力用櫛形電極対数 IShが 1 7対〜 26対の範囲では、 規 格化共役影像インピーダンス自乗偏差 DC I Iが 0. 1 3以下となり、 さらに広 帯域で振幅リップルも群遅延時間リップルも小さいさらに良好な特性が得られる。 また、 入出力用櫛形電極対数 が 23対の場合には、 規格化共役影像インピー ダンス自乗偏差 DC I Iが最小値となり、 広帯域で振幅リップルも群遅延時間リ ップルも小さい最も良好な特性が得られる。
上述した結果をまとめて図 13に示す。
規格化共役影像インピーダンス自乗偏差 DC I Iが最小値となり横モードの影 響の最も効果的に抑圧できる入出力用櫛形電極対数 の最適値を ©で示し、 親 格化共役影像インピーダンス自乗偏差 DC I Iが 0. 13以下となり横モードの 影響を非常に効果的に抑圧できる入出力用櫛形電極対数 の上限を〇で示し、 下限を ·で示し、 規格化共役影像インピーダンス自乗偏差 DC I Iが 0. 20以 下となり横モードの影響を効果的に抑圧できる入出力用櫛形電極対数 の上限 を△で示し、 下限を▲で示す。
規格化共役影像インピーダンス自乗偏差 DC I Iが 0. 20以下となり横モー ドの影響を効果的に抑圧して、 良好な周波数特性を得るためには、 入出力用櫛形 電極対数 を、 次式
43- 1 1 (h/L) ≤N,≤61 - 1 1 (hZL)
の範囲内に設定すればよい。
規格化共役影像インピーダンス自乗偏差 DC I Iが 0. 13以下となり横モー ドの影響をより効果的に抑圧して、 より良好な周波数特性を得るためには、 入出 力用櫛形電極対数 rvhを、 次式
50- 1 1 (h/L) ≤N,≤59- 1 1 (h/L)
の範囲内に設定すればよい。
規格化共役影像インピーダンス自乗偏差 DC I Iが最小値となり横モードの影 響の最も効果的に抑圧して、 最も良好な周波数特性を得るためには、
N, = 56 - 11 (h/L)
を満足するように設定すればよい。
本発明による弾性表面波装置は、 図 1に示すように、 縦続接続面に対して電気 的に対称な電極構成であるので、 図 2に示すように、 この縦続接続面に対する電 気的対称格子形回路と見なすことができる。 入出力用 I DT 1 1、 2 1の対数 が 37. 5対であり、 接続用 I DT 1 2、 22の対数 N 2が 25. 5対であり、 開口長 Wが 7 Lであり、 規格化アルミニゥ ム膜厚 hZLが 1. 7%であり、 反射器 1 3、 14、 23、 24の周期を Lとし て、 入出力用 I D T 1 1、 21及び接続用 I D T 1 2、 22の櫛形電極の周期は 0. 9836 Lであり、 入出力用 I D T 1 1、 2 1と接続用 I D T 1 2、 22間 の距離は 0. 49 1 8 Lである。 入出力用 I DT 1 1、 2 1及び接続用 I DT 1 2、 22と、 反射器 1 3、 14、 23、 24との間の距離は 0. 4959 Lであ る。
このような弾性表面波装置と電気的等価な対称格子形回路における格子腕ィン ピーダンス Z bと直列腕インピーダンス Z aの周波数特性を図 14に示す。 周波 数応答は 700 + j 334 Ωで整合を取り、 50 Ω系で終端して測定した。
格子腕インピーダンス Z bと直列腕インピーダンス Z aにおいて高周波側にあ る一組の共振及び反共振を 0次モード、 低周波側にある一組の共振及び反共振を 1次モードと呼ぶことにする。 この場合の対称格子形回路の格子腕ィンピーダン ス Z b及び直列腕インピーダンス Z aの共振、 反共振周波数位置は、 Z bの対称 1次モードの共振周波数 ( f b 1 ) と Z aの反対称 1次モードの反共振周波数 ( f a 1 ' ) はわずかにずれており、 Z bの対称 1次モードの反共振周波数 ( f b 1' 、 ヒ aの反対称 0次モ一ドの共振周波数 ( f a 0) は、 一致していない。 Z bの対称 0次モードの共振周波数 ( f b 0) と Z aの反対称 0次モードの反共 振周波数 ( f a 0' ) は、 ほぼ一致している。 さらに、 Z aの反対称 1次モード の共振周波数 ( f a 1 ' ) と Z bの対称 0次モードの反共振周波数 ( f b 0' ) は、 他の共振周波数又は反共振周波数と一致していない。
次に帯域を形成するために必要なモードについて考察する。
既に帯域幅は、 共役影像インピーダンスの伝達関数の実数部の包絡線と伝達定 数の実数部がゼ口である直線との交点で定義した。
この定義に従えば、 帯域内に存在するモードは、 直列腕インピーダンス Z aの 反対称 0次モー ドの共振周波数 ( f a 0 ) と反対称 1次モードの反共振周波数 ( f a 1 ' ) 、 及び格子腕インピーダンス Z bの対称 1次モードの反共振周波数 ( f b 1 ' ) と対称 1次モードの共振周波数 ( f b 1 ) である。 一方で、 格子腕インピーダンス Z bの共振周波数 ( f b 0 ) 及び直列腕インピ 一ダンス Z aの反対称 1次モードの共振周波数 ( f a 1 ) と反対称 0次モードの 反共振周波数 ( f a 0 ' ) は、 上記定義された帯域内のわずかに外側に位置して いるが、 共役影像インピーダンスの平坦化に寄与している。 この観点からすると、 これら 3つのモードも帯域を形成するために必要なモードといえる。
一方、 比較例 2の場合についても、 比較例 2の弾性表面波装置と電気的等価な 対称格子形回路における格子腕インピーダンス Z bと直列腕インピーダンス Z a の周波数特性を図 2 0中に示す。
直列腕インピーダンス Z aと格子腕インピーダンス Z bには、 それぞれ 2個の 共振と 2個の反共振が存在する。 各インピーダンスにおいて、 高周波側にある一 組の共振及び反共振を 0次モード、 低周波側にある一組の共振及び反共振を 1次 モードと呼ぶことにする。 格子腕ィンピーダンス Z bの対称な 1次モードの共振 周波数と直列腕インピーダンス Z aの反対称 1次モードの反共振周波数がほぼ一 致し ( f 1 ) 、 Z bの対称な 1次モードの反共振周波数と Z aの反対称な 0次モ ードの共振周波数がほぼ一致し ( f 2 )、 Z bの対称な 0次モードの共振周波数 と Z aの反対称な 0次モードの反共振周波数がほぼ一致しており ( f 3 ) 、 周波 数 f 1と周波数 f 3の周波数間隔が通過帯域幅とほぼ一致している。
従来の対称モードと反対称モードを利用した弾性表面波装置における 「周波数 合わせ」 の技術は、 比較例 2のような場合に成立している。 しかし、 本発明の場 合には、 図 1 7に示すように、 直列腕インピーダンス Z aと格子腕インピーダン ス Z bの共振周波数及び反共振周波数が完全には一致していない。 このような条 件でも、 平坦な振幅リップル及び群遅延時間リップルが得られるのは、 共役影像 ィンピーダンスが平坦となっているからである。
本発明は、 上記実施形態に限らず種々の変形が可能である。
例えば、 上記実施形態では、 櫛形電極間の距離 L iを 0 . 4 9 1 8 Lとし、 櫛 形電極と反射器間の距離 L i rを 0 . 4 9 5 9 Lとして検討したが、 この値に限 定されるものではない。
また、 上記実施形態では、 開口長が 7 Lとして説明したが、 開口長を 5 L〜1 2 Lの範囲においても同様の結果が得られた。 また、 上記実施形態に限らず、 開口長を 5 0 L〜3 5 0 Lと広く した場合にも、 終端インピーダンスを 2 0〜 1 3 0 Ωの実数で終端した場合、 横モードによる帯 域内リップルの影響は観察され、 また弾性表面波装置の寸法が大きくなるが、 良 好な周波数応答 (低域側スプリアスの抑圧の効果) が得られた。
また、 上記実施形態では、 2つの電極構造列を 2段縦続したが、 この 2段従属 した電極構造を更に縦続接続して、 4段、 6段、 8段、 …と更に多数段縦続接続 してもよい。
また、 櫛形電極の材料として、 アルミニウムに銅、 シリコン、 チタン、 H f B 2等を添加してもよいし、 他の導電性材料を用いて電極を形成してもよい。
また、 櫛形電極を形成する方法としては、 リフトオフにより形成してもよいし、 エツチングによりパターニングして形成してもよい。
(実施例)
図 1に示す構造の弾性表面波装置を作製して評価した。 図 1 5に通過特性を示 す。 圧電基板として 4 5 ° Y回転 X板の四ほう酸リチウム単結晶基板を用い、 弾 性表面波の伝搬方向は Z方向とした。 櫛形電極及び反射器のパターン形成は、 周 知のフォ トリソグラフィ技術により形成したレジス卜パターン上にアルミニウム 金属膜を真空蒸着した後、 リフ 卜オフすることにより行った。
櫛形電極は対となる電極措が重なつている長さがほぼ等しい所謂正規型であり、 その開口長は 6 . 8 8 Lである。 入出力用 I D T 1 1、 2 1の対数 N ,は 3 7 . 5対であり、 接続用 I D T 1 2、 2 2の対数 N 2は 2 5 . 5対であり、 反射器 1 3、 1 4、 2 3、 2 4の本数は 6 0本である。 メタライズレシオは 0 . 5である。 反射器 1 3、 1 4、 2 3、 2 4の周期を L ( = 1 2 m ) として、 入出力用 I D T 1 1、 2 1及び接続用 I D T 1 2、 2 2の櫛形電極の周期は 0 . 9 8 3 6 Lで あり、 入出力用 I D T 1 1、 2 1 と接続用 I D T 1 2、 2 2間の距離は 0 . 4 9 1 8 Lであり、 入出力用 I D T 1 1、 2 1及び接続用 I D T 1 2、 2 2と、 反射 器 1 3、 1 4、 2 3、 2 4との間の距離は 0 . 4 9 5 9 Lである。
終端インピーダンスは、 伝達定数の実数部から求めた帯域中央での共役影像ィ ンピーダンスの値から 7 5 9 + j 5 8 0 Ωとなるように、 インダクタとキャパシ 夕で L型整合回路を形成した。 その電気的特性は、 最小挿入損失が 2 d B、 振幅リップルが 0. 2 d B、 群遅 延時間リップルが 2 s e c、 比帯域幅が 0. 46 %、 シヱイプファクタ (3 d B帯域幅ノ30 d B帯域幅) が 0. 55、 ストップバンド内の低域側スプリァス が 50 d B以上の優れたフィルタ特性が得られた。
[産業上の利用可能性]
本発明による弾性表面波装置は、 挿入損失が小さく、 振幅リ ップルと群遅延時 間リップルが少なく、 比帯域幅が比較的広く、 シ Xイブファクタが良く、 帯域外 減衰量が大きい優れた特性を実現することができ、 移動体通信等に用いるフィル 夕、 特に、 デジタル通信用の中間周波フィルタとして有用である。

Claims

請 求 の 範 囲
1. 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT の一側に近接して配置された N 2対の接続用 I DTと、 前記入出力用 I DTと前 記接続用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT の他側に近接して配置された N2対の接続用 I DTと、 前記接続用 I DTと前記 入出力用 I D Tの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造 列と縦続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I DTと前記第 2の電極構造列の前記接続 用 I DTとが縦続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記弾性表面波装置を、 格子腕インピーダンスと直列腕インビーダンスで表さ れる電気的に等価な対称格子形回路で表したとき、 前記格子腕インピーダンスの 少なくとも 1個の共振点と少なくとも 1個の反共振点及び前記直列腕ィンビーダ ンスの少なく とも 1個の共振点と少なく とも 1個の反共振点を用いて通過帯域を 形成し、
前記入出力用 I D Tの対数 と前記接続用 I DTの対数 N 2とが異なる ことを特徴とする弾性表面波装置。
2. 請求の範囲第 1項記載の弾性表面波装置において、
前記格子腕インピーダンスの少なく とも 2個の共振点と少なく とも 1個の反共 振点と、 前記直列腕インピーダンスの少なく とも 2個の共振点と少なく とも 2個 の反共振点とを用いて通過帯域を形成したことを特徴とする弾性表面波装置。
3. 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT の一側に近接して配置された N2対の接続用 I DTと、 前記入出力用 I DTと前 記接続用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT の他側に近接して配置された N2対の接続用 I DTと、 前記接続用 I DTと前記 入出力用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造 列と縦続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I D Tと前記第 2の電極構造列の前記接続 用 I DTとが縱続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I DTの対数 N,と前記接続用 I DTの対数 N2とが異なり、 前記入出力用 I DTと前記接続用 I DTの規格化電極膜厚を h/Lとしたとき、 前記入出力用 I DTの対数 が、 次式
43 - 1 1 (h/L) ≤N.≤ 6 1 - 1 1 (hZL)
を満足することを特徴とする弾性表面波装置。
4. 請求の範囲第 3項記載の弾性表面波装置において、
前記入出力用 I DTの対数 が、 次式
50 - 1 1 (h/L) ≤Νι≤ 59 - 1 1 (h/L)
を満足することを特徴とする弾性表面波装置。
5. 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT の一側に近接して配置された N2対の接続用 I DTと、 前記入出力用 I DTと前 記接続用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT の他側に近接して配置された N2対の接続用 I DTと、 前記接続用 I DTと前記 入出力用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造 列と縱続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I DTと前記第 2の電極構造列の前記接続 用 I DTとが縦続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I D Tの対数 N!と前記接続用 I DTの対数 N 2とが異なり、 前記入出力用 I DTと前記接続用 I DTの規格化電極膜厚を hZLとしたとき、 前記接続用 I DTの対数 N 2と前記入出力用 I 0丁の対数1^1の比^^2 1^1が、 次 式
0.542-0.021(h/L) + 0.029(h/L)2≤N2/N,≤ 0.734-0.028(h/L) + 0.029(h/L)2 を満足することを特徵とする弾性表面波装置。
6. 請求の範囲第 5項記載の弾性表面波装置において、
前記接続用 I DTの対数 N 2と前記入出力用 I DTの対数N1の比N2/N1が、 次式
0.597-0.020(h/L) + 0.027(h/L)2≤N2/N.≤0.690-0.032(h/L) + 0.031(h/L)2 を満足することを特徴とする弾性表面波装置。
7. 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I D T の一側に近接して配置された N 2対の接続用 I DTと、 前記入出力用 I D Tと前 記接続用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 N,対の入出力用 I D Tと、 前記入出力用 I DT の他側に近接して配置された N2対の接続用 I DTと、 前記接続用 I DTと前記 入出力用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造 列と縦続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I DTと前記第 2の電極構造列の前記接続 用 I D Tとが縦続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I D Tの対数 N,と前記接続用 I D丁の対数 N 2とが異なり、 前記入出力用 I DTと前記接続用 I 0丁の規格化電極膜厚を //乙としたとき、 前記接続用 I DTの対数 N 2と前記入出力用 I 0丁の対数 !の比 2/ /?^1が、 次 式
0.542-0.021(h/L) + 0.029(h/L)2≤N2/Ni≤ 0.734-0.028(h/L) + 0.029(h/L)2 を満足し、
前記入出力用 I 0丁の対数1^が、 次式
4 3 - 1 1 Ch/L) ≤Νι≤ 6 1 - 1 1 ( h /L)
を満足することを特徴とする弾性表面波装置。
8. 請求の範囲第 7項記載の弾性表面波装置において、 前記接続用 I DTの対数 N 2と前記入出力用 I DTの対数N1の比N2/N1が、 次式
0.597-0.020(h/L) + 0.027(h/L)2≤N2/N>≤ 0.690-0.032(h/L) + 0.031(h/L)2 を満足し、
前記入出力用 I DTの対数 Niが、 次式
50 - 1 1 (h/L) ≤N,≤ 59 - l l ( h/L)
を満足することを特徴とする弾性表面波装置。
9. 圧電基板と、
前記圧電基板上に形成され、 N,対の入出力用 I D丁と、 前記入出力用 I DT の一側に近接して配置された N 2対の接続用 I DTと、 前記入出力用 I DTと前 記接続用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 N 対の入出力用 I DTと、 前記入出力用 I DT の他側に近接して配置された N2対の接続用 I DTと、 前記接続用 I DTと前記 入出力用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造 列と縱続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I D Tと前記第 2の電極構造列の前記接続 用 I DTとが縱続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I D Tの対数 と前記接続用 I DTの対数 N 2とが異なり、 通過帯域中央の周波数 f oでの共役影像インピーダンスを Z o = R ( f o) + j I ( f o) とし、 前記通過帯域内で n個に分割したときの各点 f iにおける周 波数の共役影像インピーダンスを Z ( f i ) =R ( f i ) + j I C f i ) ( i =
1、 2、 3、 '·■、 n) としたとき、 次式
n n
DCII={∑ (R(fi)-R(fo))2} 1/7(nR(fo))+{∑ (I(f i)-I(fo))2} 1 2/(nI(fo)) i=l i=l
であらわされる規格化共役影像インピーダンス自乗偏差 DC I I力 次式
0≤D C I I≤ 0. 2
を満足することを特徴とする弾性表面波装置。
1 0. 請求の範囲第 9項記載の弾性表面波装置において、
前記規格化共役影像インピーダンス自乗偏差 DC I Iカ^ 次式
0≤D C I I≤ 0. 1 3
を満足することを特徴とする弾性表面波装置。
1 1. 請求の範囲第 1項乃至第 1 0項のいずれかに記載の弾性表面波装置にお いて、
前記圧電基板が、 四ほう酸リチゥム基板であることを特徴とする弾性表面波装 tS.o
補正害の請求の範囲
[ 1 996年 9月 3日 (03. 09. 96) 国際事務局受理:新しい請求の範囲 1 2— 22が加えら れた;他の請求の範囲は変更なし。 (9頁) ]
1. 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT の一側に近接して配置された N 2対の接続用 I DTと、 前記入出力用 I DTと前 記接続用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 N!対の入出力用 I D Tと、 前記入出力用 I D T の他側に近接して配置された N 2対の接続用 I DTと、 前記接続用 I DTと前記 入出力用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造 列と縱続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I D Tと前記第 2の電極構造列の前;己接続 用 I D Tとが縦続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記弾性表面波装置を、 格子腕インピーダンスと直列腕インビーダンスで表さ れる電気的に等価な対称格子形回路で表したとき、 前記格子腕インピーダンスの 少なくとも 1個の共振点と少なくとも 1個の反共振点及び前記直列腕インピーダ ンスの少なく とも 1個の共振点と少なくとも 1個の反共振点を用いて通過帯域を 形成し、
前記入出力用 I D Tの対数 と前記接続用 I DTの対数 N 2とが異なる ことを特徴とする弾性表面波装置。
2. 請求の範囲第 1項記載の弾性表面波装置において、
前記格子腕ィンピ一ダンスの少なく とも 2個の共振点と少なくとも 1個の反共 振点と、 前記直列腕インピーダンスの少なく とも 2個の共振点と少なく とも 2個 の反共振点とを用いて通過帯域を形成したことを特徴とする弾性表面波装置。
3. 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT の一側に近接して配置された N 2対の接続用 I DTと、 前記入出力用 I DTと前 記接続用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT
36
^正された用欲 (条約第 1 ) の他側に近接して配置された N 2対の接続用 I DTと、 前記接続用 I DTと前記 入出力用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造 列と縱続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I D Tと前記第 2の電極構造列の前記接続 用 I DTとが縦続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I D Tの対数 と前記接続用 I DTの対数 N2とが異なり、 前記入出力用 I DTと前記接続用 I 0丁の規格化電極膜厚を11 /1^としたとき、 前記入出力用 I DTの対数 が、 次式
43 - 1 1 (h/L) ≤N.≤6 1 - 1 1 (hZL)
を満足することを特徴とする弾性表面波装置。
4. 請求の範囲第 3項記載の弾性表面波装置において、
前記入出力用 I DTの対数 が、 次式
50 - 1 1 (h/L) ≤N!≤ 59- 1 1 (hZL)
を満足することを特徴とする弾性表面波装置。
5. 圧電基板と、
前記圧電基板上に形成され、 N I対の入出力用 I D Tと、 前記入出力用 I D T の一側に近接して配置された N 2対の接続用 I DTと、 前記入出力用 I DTと前 記接続用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 N L対の入出力用 I D Tと、 前記入出力用 I D T の他側に近接して配置された N2対の接続用 I DTと、 前記接続用 I DTと前記 入出力用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造 列と縦続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I D Tと前記第 2の電極構造列の前記接続 用 I DTとが縱続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I D Tの対数 と前記接続用 I DTの対数 N 2とが異なり、 前記入出力用 I DTと前記接続用 I DTの規格化電極膜厚を hZLとしたとき、 前記接続用 I DTの対数 N2と前記入出力用 I DTの対数 N,の比 N2ZN,が、 次
37 補正された用紙 (条約第 19条) 式
0.542 - 0.021(h/L) + 0.029(h/L) 2≤N2/Ni≤0.734-0.028(h/L) + 0.029(h/L) 2 を満足することを特徴とする弾性表面波装置。
6. 請求の範囲第 5項記載の弾性表面波装置において、
前記接続用 I DTの対数 N 2と前記入出力用 I 0丁の対数1^1の比1^2ノ1^1が、 次式
0.597-0.020(h/L) + 0.027(h/L) 2≤N2/Ni≤0.690-0.032(h/L) + 0.031(h/L) 2 を満足することを特徴とする弾性表面波装置。
7. 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT の一側に近接して配置された N2対の接続用 I DTと、 前記入出力用 I DTと前 記接続用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 N,対の入出力用 I DTと、 前記入出力用 I DT の他側に近接して配置された N 2対の接続用 I DTと、 前記接続用 I DTと前記 入出力用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造 列と縦続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I DTと前記第 2の電極構造列の前記接続 用 I DTとが縦続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I D Tの対数 と前記接続用 I DTの対数 N 2とが異なり、 前記入出力用 I DTと前記接続用 I DTの規格化電極膜厚を h/Lとしたとき、 前記接続用 I DTの対数 N 2と前記入出力用 I DTの対数N1の比N2//N1が、 次 式
0.542 - 0.021(h/L) - 0.029(h/L) 2≤Ν2/Νι≤ 0.734- 0.028(h/L) + 0.029(h/L) 2 を満足し、
前記入出力用 I 0丁の対数1^1が、 次式
43 - 1 1 (h/L) ≤Ni≤ 6 1 - l l (h/L)
を満足することを特徴とする弾性表面波装置。
8. 請求の範囲第 7項記載の弾性表面波装置において、
38
補正された用紙 (条約第 19条) 前記接続用 I DTの対数 N 2と前記入出力用 I 0丁の対数1^1の比1^21が、 次式
0.597-0.020(h/L) + 0.027(h/L)2≤N2/Ni≤0.690-0.032(h/L) + 0.031(h/L)2 を満足し、
前記入出力用 I DTの対数 Nhが、 次式
50 - 1 1 (h/L) ≤N,≤ 59 - 1 1 (h/L)
を満足することを特徴とする弾性表面波装置。
9. 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT の一側に近接して配置された N2対の接続用 I DTと、 前記入出力用 I DTと前 記接続用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 N ,対の入出力用 I D Tと、 前記入出力用 I D T の他側に近接して配置された N2対の接続用 I DTと、 前記接続用 I D丁と前記 入出力用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造 列と縦続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I D Tと前記第 2の電極構造列の前記接続 用 I DTとが縦続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I D Tの対数 N,と前記接続用 I DTの対数 N 2とが異なり、 通過帯域中央の周波数 f oでの共役影像インピーダンスを Z o = R ( f o) + j I ( f o) とし、 前記通過帯域内で n個に分割したときの各点 f iにおける周 波数の共役影像インピーダンスを Z ( f i ) =R ( f i ) + j I ( f i ) ( i =
1、 2、 3、 ···、 n) としたとき、 次式
n n
DCII = {∑ (R(fi)-R(fo))2} 1/2/(nR(fo))+{∑ (I(f i)-I(fo))2} 1/2/(nI(fo)) i=l i=l
であらわされる規格化共役影像インピーダンス自乗偏差 DC I Iカ、 次式
0≤D C I I≤0. 2
を満足することを特徴とする弾性表面波装置。
39 補正された用紙 (条約第 19条)
1 0. 請求の範囲第 9項記載の弾性表面波装置において、
前記規格化共役影像インピーダンス自乗偏差 DC I Iカ^ 次式
0≤DC I 1≤0. 13
を満足することを特徴とする弾性表面波装置。
1 1. 請求の範囲第 1項乃至第 1 0項のいずれかに記載の弾性表面波装置にお いて、
前記圧電基板が、 四ほう酸リチウム基板であることを特徵とする弾性表面波装 置。
1 2. (追加) 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT に近接して配置された N2対の接続用 I DTと、 前記入出力用 I DTと前 接続 用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT に近接して配置された N2対の接続用 I DTと、 前記接続用 I DTと前記入出力 用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造列と縦 続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I DTと前記第 2の電極構造列の前記接続 用 I DTとが縦続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記弾性表面波装置を、 格子腕インピーダンスと直列腕インピーダンスで表さ れる電気的に等価な対称格子形回路で表したとき、 前記格子腕インピーダンスの 少なくとも 1個の共振点と少なくとも 1個の反共振点及び前記直列腕ィンビーダ ンスの少なくとも 1個の共振点と少なく とも 1個の反共振点を用いて通過帯域を 形成し、
前記入出力用 I D Tの対数 と前記接続用 I DTの対数 N 2とが異なる ことを特徴とする弾性表面波装置。
1 3. (追加) 請求の範囲第 1 2項記載の弾性表面波装置において、 前記格子腕ィンピーダンスの少なく とも 2個の共振点と少なくとも 1個の反共 振点と、 前記直列腕インピーダンスの少なく とも 2個の共振点と少なく とも 2個 O 補正された用紙 (条約第 19条) の反共振点とを用いて通過帯域を形成したことを特徴とする弾性表面波装置。
1 4. (追加) 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT に近接して配置された N2対の接続用 I DTと、 前記入出力用 I DTと前記接続 用 I D Tの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 N!対の入出力用 I D Tと、 前記入出力用 I D T に近接して配置された N 2対の接続用 I DTと、 前記接続用 I DTと前記入出力 用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造列と縦 続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I D Tと前記第 2の電極構造列の前記接続 用 I D Tとが縦続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I D Tの対数 と前記接続用 I DTの対数 N 2とが異なり、 前記入出力用 I DTと前記接続用 I DTの規格化電極膜厚を hZLとしたとき、 前記入出力用 I 0丁の対数1^1が、 次式
4 3 - 1 1 (h/L) ≤Ν ι≤ 6 1 - 1 1 (h/L)
を満足することを特徴とする弾性表面波装置。
1 5. (追加) 請求の範囲第 1 4項記載の弾性表面波装置において、 前記入出力用 I 0丁の対数1^1が、 次式
50 - 1 1 (h/L) ≤N,≤ 5 9 - 1 1 (h/L)
を満足することを特徴とする弾性表面波装置。
1 6. (追加) 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT に近接して配置された N2対の接続用 I DTと、 前記入出力用 I DTと前記接続 用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I D T に近接して配置された N2対の接続用 I DTと、 前記接続用 I DTと前記入出力 用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造列と縦 続接続された第 2の電極構造列とを有し、 1 補正された用紙 (条約第 19条) 前記第 1の電極構造列の前記接続用 I D Tと前記第 2の電極構造列の前記接続 用 I DTとが縦続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I D Tの対数 N,と前記接続用 I DTの対数 N 2とが異なり、 前記入出力用 I DTと前記接続用 I DTの規格化電極膜厚を hZLとしたとき、 前記接続用 I DTの対数 N 2と前記入出力用 I DTの対数N,の比N2/N1が、 次 式
0.542 - 0.021(h/L) + 0.029(h/L) 2≤N2/N,≤0.734 - 0.028(h/L) + 0.029(h/L) 2 を満足することを特徴とする弾性表面波装置。
1 7. (追加) 請求の範囲第 16項記載の弾性表面波装置において、 前記接続用 I DTの対数 N 2と前記入出力用 I 0丁の対数1^の比 2ノ^^が、 次式
0.597-0.020(h/L) + 0.027(h/L)2≤N2/N.≤0.690-0.032( /L) + 0.031(h/L)2 を満足することを特徴とする弾性表面波装置。
1 8. (追加) 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT に近接して配置された N2対の接続用 I DTと、 前記入出力用 I DTと前記接続 用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT に近接して配置された N2対の接続用 I DTと、 前記接続用 I DTと前記入出力 用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造列と縦 続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I D Tと前記第 2の電極構造列の前記接続 用 I DTとが縱続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I D Tの対数 と前記接続用 I DTの対数 N 2とが異なり、 前記入出力用 I DTと前記接続用 I DTの規格化電極膜厚を hZLとしたとき、 前記接続用 I DTの対数 N2と前記入出力用 I DTの対数 の比 N2ZN,が、 次 式
1
補正された用紙 (条約第 19条)
0.542-0.021(h/L) + 0.029(h/L)2≤N2/Ni≤ 0.734-0.028(h/L) + 0.029(h/L)2 を満足し、
前記入出力用 I DTの対数 1SUが、 次式
43 - 1 1 (h/L) ≤N.≤6 1 - 1 1 ( h/L)
を満足することを特徴とする弾性表面波装置。
1 9. (追加) 請求の範囲第 1 8項記載の弾性表面波装置において、 前記接続用 I DTの対数 N 2と前記入出力用 I DTの対数NIの比N2//N1が、 次式
0.597-0.020(h/L) + 0.027(h/L)2≤N2/N1≤0.690-0.032(h/L) + 0.031(h/L)2 を満足し、
前記入出力用 I DTの対数 N】が、 次式
50 - 1 1 (h/L) ≤Ni≤ 59 - l 1 (h/L)
を満足することを特徴とする弾性表面波装置。
20. (追加) 圧電基板と、
前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT に近接して配置された N2対の接続用 I DTと、 前記入出力用 I DTと前記接続 用 I DTの外側に配置された 2つの反射器とを有する第 1の電極構造列と、 前記圧電基板上に形成され、 対の入出力用 I DTと、 前記入出力用 I DT に近接して配置された N2対の接続用 I DTと、 前記接続用 I DTと前記入出力 用 I DTの外側に形成された 2つの反射器とを有し、 前記第 1の電極構造列と縦 続接続された第 2の電極構造列とを有し、
前記第 1の電極構造列の前記接続用 I D Tと前記第 2の電極構造列の前記接続 用 I DTとが縦続接続面に対して電気的に対称となるように配置されている弾性 表面波装置であって、
前記入出力用 I D Tの対数 N,と前記接続用 I DTの対数 N 2とが異なり、 通過帯域中央の周波数 f 0での共役影像インピーダンスを Z o = R ( f o) + j I ( f o) とし、 前記通過帯域内で n個に分割したときの各点 f iにおける周 波数の共役影像インピーダンスを Z ( f i ) = R ( f i ) + j I ( f i ) C i = 1、 2、 3、 ···、 n) としたとき、 次式
«正された用羝 (条約第 19条) n n
DCII={∑ (R(fi)-R(fo))2} 1/2/(nR(fo))+ {∑ (I(fi)-I(fo))2} '/2/(nI(fo)) i=l i=l
であらわされる規格化共役影像インピーダンス自乗偏差 DC I Iカ^ 次式
0≤DC I I≤ 0. 2
を満足することを特徴とする弾性表面波装置。
2 1. (追加) 請求の範囲第 20項記載の弾性表面波装置において、 前記規格化共役影像インピーダンス自乗偏差 DC I Iが、 次式
0≤D C I I≤ 0. 1 3
を満足することを特徴とする弾性表面波装置。
22. (追加) 請求の範囲第 1 2項乃至第 2 1項のいずれかに記載の弾性表面 波装置において、
前記圧電基板が、 四ほう酸リチウム基板であることを特徴とする弾性表面波装 。
捕正された用紙 (条約第 19条)
PCT/JP1996/001002 1995-04-11 1996-04-11 Dispositif a ondes acoustiques de surface WO1996032777A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP53088496A JP4014630B2 (ja) 1995-04-11 1996-04-11 弾性表面波装置
DE69632710T DE69632710T2 (de) 1995-04-11 1996-04-11 Akustische oberflächenwellenanordnung
EP96909347A EP0766384B1 (en) 1995-04-11 1996-04-11 Surface acoustic wave device
US08/750,501 US5850167A (en) 1995-04-11 1996-04-11 Surface acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/109146 1995-04-11
JP10914695 1995-04-11

Publications (1)

Publication Number Publication Date
WO1996032777A1 true WO1996032777A1 (fr) 1996-10-17

Family

ID=14502783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001002 WO1996032777A1 (fr) 1995-04-11 1996-04-11 Dispositif a ondes acoustiques de surface

Country Status (6)

Country Link
US (1) US5850167A (ja)
EP (1) EP0766384B1 (ja)
JP (1) JP4014630B2 (ja)
KR (1) KR100407463B1 (ja)
DE (1) DE69632710T2 (ja)
WO (1) WO1996032777A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3239064B2 (ja) * 1996-05-28 2001-12-17 富士通株式会社 弾性表面波装置
JP3253568B2 (ja) * 1997-08-29 2002-02-04 富士通株式会社 多段接続型弾性表面波フィルタ
JP3301399B2 (ja) * 1998-02-16 2002-07-15 株式会社村田製作所 弾性表面波装置
TW465179B (en) * 1999-05-27 2001-11-21 Murata Manufacturing Co Surface acoustic wave device and method of producing the same
DE19938748B4 (de) * 1999-08-16 2007-02-01 Epcos Ag Dualmode-Oberflächenwellen-Filter mit verbesserter Symmetrie und erhöhter Sperrdämpfung
US6720842B2 (en) * 2000-02-14 2004-04-13 Murata Manufacturing Co., Ltd. Surface acoustic wave filter device having first through third surface acoustic wave filter elements
JP3435638B2 (ja) * 2000-10-27 2003-08-11 株式会社村田製作所 弾性表面波装置及びその製造方法
JP2003124778A (ja) * 2001-10-05 2003-04-25 Samsung Electro Mech Co Ltd 一方向性弾性表面波変換器
JP2003289234A (ja) * 2002-01-28 2003-10-10 Murata Mfg Co Ltd 弾性表面波装置、通信装置
SE529375C2 (sv) * 2005-07-22 2007-07-24 Sandvik Intellectual Property Anordning för förbättrad plasmaaktivitet i PVD-reaktorer
US9048807B2 (en) * 2010-03-18 2015-06-02 University Of Maine System Board Of Trustees Surface acoustic wave resonator with an open circuit grating for high temperature environments

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269612A (ja) * 1987-04-28 1988-11-07 Asahi Glass Co Ltd 水晶弾性表面波共振子
JPH05129884A (ja) * 1991-11-01 1993-05-25 Toshiba Corp 多段接続多重モードフイルタ
JPH06244676A (ja) * 1993-02-19 1994-09-02 Daishinku Co 多段接続型弾性表面波フィルタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154917A (ja) * 1982-03-10 1983-09-14 Hitachi Ltd 弾性表面波バンドパスフイルタ
JPS61285814A (ja) * 1985-06-12 1986-12-16 Toyo Commun Equip Co Ltd 縦型2重モ−ドsawフイルタ
JP2748009B2 (ja) * 1989-01-31 1998-05-06 キンセキ株式会社 表面弾性波共振子フィルタ
JPH03270309A (ja) * 1990-03-19 1991-12-02 Fujitsu Ltd 多電極構成型弾性表面波素子
JPH06169231A (ja) * 1992-11-30 1994-06-14 Kyocera Corp 縦型多重モード弾性表面波フィルタ
JP3307455B2 (ja) * 1993-03-22 2002-07-24 日本碍子株式会社 弾性表面波フィルタ装置
JP3214226B2 (ja) * 1994-05-11 2001-10-02 株式会社村田製作所 弾性表面波共振子フィルタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269612A (ja) * 1987-04-28 1988-11-07 Asahi Glass Co Ltd 水晶弾性表面波共振子
JPH05129884A (ja) * 1991-11-01 1993-05-25 Toshiba Corp 多段接続多重モードフイルタ
JPH06244676A (ja) * 1993-02-19 1994-09-02 Daishinku Co 多段接続型弾性表面波フィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0766384A4 *

Also Published As

Publication number Publication date
EP0766384A1 (en) 1997-04-02
KR100407463B1 (ko) 2004-03-30
EP0766384B1 (en) 2004-06-16
DE69632710T2 (de) 2004-10-14
EP0766384A4 (en) 1998-07-29
US5850167A (en) 1998-12-15
DE69632710D1 (de) 2004-07-22
JP4014630B2 (ja) 2007-11-28
KR970706652A (ko) 1997-11-03

Similar Documents

Publication Publication Date Title
Ikata et al. Development of low-loss band-pass filters using SAW resonators for portable telephones
EP0652637B1 (en) Surface acoustic wave filter
JP3233087B2 (ja) 弾性表面波フィルタ
US5543757A (en) Surface acoustic wave filter including alternate open and shorted reflector grating
JP3376355B2 (ja) 弾性表面波フィルタ
JP3827232B2 (ja) フィルタ装置およびそれを用いた分波器
KR100323270B1 (ko) 단간정합용탄성표면파공진기를구비하는탄성표면파필터
JPH01260911A (ja) 弾性表面波共振器複合形フィルタ
JPH08265087A (ja) 弾性表面波フィルタ
JP3241293B2 (ja) 弾性表面波素子およびこれを用いた分波器
WO1996032777A1 (fr) Dispositif a ondes acoustiques de surface
JP3259459B2 (ja) 分波器
US6462633B1 (en) Surface acoustic wave device including parallel connected main and sub-filters
EP0637873B1 (en) SAW filter
EP1739830B1 (en) Elastic wave filter
JP3341709B2 (ja) 表面波装置及びそれを用いた通信装置
US20180337655A1 (en) Acoustic wave filter and multiplexer
JP4251409B2 (ja) 弾性表面波フィルタ
JP3137064B2 (ja) 弾性表面波フィルタ
JPH11340774A (ja) 弾性表面波フィルタ
JP2817380B2 (ja) 縦型2重モード弾性表面波フィルタ
JP3476299B2 (ja) 2重モ−ド弾性表面波共振子フィルタ
JPH10261935A (ja) 弾性表面波素子
JP3425394B2 (ja) 弾性表面波共振子および弾性表面波フィルタ
JP3327433B2 (ja) 弾性表面波フィルタ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019960706597

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996909347

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08750501

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996909347

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996909347

Country of ref document: EP