WO1996027669A1 - Procede de production de trans-4-hydroxy-l-proline - Google Patents

Procede de production de trans-4-hydroxy-l-proline Download PDF

Info

Publication number
WO1996027669A1
WO1996027669A1 PCT/JP1996/000559 JP9600559W WO9627669A1 WO 1996027669 A1 WO1996027669 A1 WO 1996027669A1 JP 9600559 W JP9600559 W JP 9600559W WO 9627669 A1 WO9627669 A1 WO 9627669A1
Authority
WO
WIPO (PCT)
Prior art keywords
proline
gene
hydroxy
amino acid
protein
Prior art date
Application number
PCT/JP1996/000559
Other languages
English (en)
French (fr)
Inventor
Akio Ozaki
Hideo Mori
Takeshi Shibasaki
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to CA002189682A priority Critical patent/CA2189682C/en
Priority to AT96905024T priority patent/ATE219142T1/de
Priority to DE69621714T priority patent/DE69621714T2/de
Priority to JP52677096A priority patent/JP3440100B2/ja
Priority to EP96905024A priority patent/EP0759472B1/en
Publication of WO1996027669A1 publication Critical patent/WO1996027669A1/ja
Priority to HK97102278A priority patent/HK1000712A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/24Proline; Hydroxyproline; Histidine

Definitions

  • the present invention relates to a method for industrially producing trans-14-hydroxyl-L-proline useful as a raw material for synthesis of pharmaceuticals or a food additive, and a protein having L-proline 4-position hydroxylase activity useful in the method.
  • the present invention relates to a gene to be encoded (hereinafter abbreviated as L-proline 4-position hydroxylation gene), a transformant containing the gene, and a method for producing L-proline 4-position hydroxylase using the transformant.
  • Methods for producing trans-4-hydroxy-L-broline using microorganisms include:
  • trans-14-hydroxy-L-proline The conventional method for producing trans-14-hydroxy-L-proline is as follows: 1) A substrate for producing trans-14-hydroxy-L-proline such as 4-hydroxyx-2-oxoglutaric acid is expensive and difficult to obtain; 2) Industrialization is difficult because of the low productivity of trans-1-hydroxy-L-proline and 3) the activity of the enzyme involved in the production of trans-14-hydroxy-L-proline is extremely weak.
  • L-proline 4-position hydroxylase was purified from the aforementioned microorganism belonging to the genus Streptomyces. The method and the physicochemical properties of the enzyme have not been disclosed. Furthermore, in the presence of 2-ketoglutaric acid and iron (II) ions, it encodes L-proline 4-hydroxylase, which has the activity of converting disturbed L-broline to trans-14-hydroxy-L-broline. Yes, there is no report that the gene was cloned.
  • An object of the present invention is to provide a method for efficiently producing trans-14-hydroxy-L-proline from L-proline, which is inexpensive and easily available, by using L-proline 4-hydroxylase.
  • a transformant containing the L-proline 4-position hydroxylase gene and the gene is provided, and L-proline is produced using the gene and the transformant.
  • An object of the present invention is to provide a method for industrially and inexpensively producing trans-4-hydroxy-L-broline using the transformant or the enzyme by producing the 4-position hydroxylase in large quantities. Disclosure of the invention
  • the present invention relates to a novel L-proline 4-position hydroxylase gene derived from a microorganism, , A transformant containing the recombinant DNA, a method for producing L-broline 4-position hydroxylase using the transformant, the enzyme and the transformant or the enzyme.
  • the present invention relates to a method for producing trans-14-hydroxy-L-proline.
  • the L-proline 4-hydroxylase according to the present invention is an enzyme that hydroxylates free L-broline in the presence of 2-ketoglutaric acid and ferrous ion to produce trans-14-hydroxy-L-broline. is there.
  • the protein having an L-proline 4-hydroxylase activity may be any protein having an L-proline 4-hydroxylase activity, such as a protein having the amino acid sequence shown in SEQ ID NO: 1, A fusion protein having an amino acid sequence in which a protein having a partial amino acid sequence of the protein and a peptide having a partial amino acid sequence of a 3-galactosidase protein derived from Escherichia coli, and a protein having the amino acid sequence shown in SEQ ID NO: 1 or A specific example of a fusion protein is a fusion protein having an amino acid sequence in which a protein having a partial amino acid sequence of a protein and a peptide having a partial amino acid sequence of a maltose binding protein derived from Escherichia coli are combined. Is a protein having the amino acid sequence shown in SEQ ID NO: 18 or 19. It can be mentioned.
  • amino acid sequence represented by SEQ ID NO: 1, 18 or 19 refers to a protein having an amino acid sequence in which one or more amino acids are S-substituted, deleted or added, and which has proline 4-position hydroxylase activity. I can give it.
  • amino acid substitution, deletion or addition is described in Nucleic Acid Research, Vol. 10, Vol. 6, pp. 487-650 (1992), Bros. Ding's National Academy of Sciences (Pro at l. Acad. Sci., USA), Vol. 79, pp. 609-64.13 (1992), Proc. Deings of National Academy of Sciences, Proc. Natl. Acad.
  • L-proline 4-position hydroxylase gene any DNA fragment containing a gene encoding a protein having L-proline 4-position hydroxylation activity may be used.
  • SEQ ID NO: 1 A gene encoding protein K having an amino acid sequence represented by SEQ ID NO: 18, or 19, or an amino acid sequence represented by SEQ ID NO: 1, 18 or 19, wherein one or more amino acids are substituted or deleted.
  • a gene encoding protein K having a lost or added amino acid sequence and having proline 4-position hydroxylase activity can be given. Specific examples include DNAs represented by SEQ ID NOs: 2, 8, and 15.
  • DNAs into which mutations such as insertion mutations have been introduced for example, DNAs having homology to SEQ ID NO: 2, 8 or 15 can be mentioned.
  • the DNA having this homology can be obtained by using a DNA containing the nucleotide sequence shown in SEQ ID NO: 2, 8 or 15 as a probe and using a colony hybridization method or a plaque hybridization method. Means DNA. These procedures are based on known ⁇ vitro recombination techniques [Molecular Cloning: A Laboratory Manual, 2nd Edition, Edited by Sambrook, Fritsch, Maniatis, Cold Subling 'Cold Spring Harbor Laboratory Press, 1989'.
  • the DNA fragment containing the L-proline 4-position hydroxylase gene can be obtained from a microorganism having the ability to generate trans-14-hydroxy-L-proline by hydrolyzing L-broline.
  • any microorganism can be used as long as it has the ability to hydroxylate L-proline to produce trans-14-hydroxy-L-proline.
  • microorganisms that are exhibited in Streptomyces ⁇ and have L-proline 4-position hydroxylase activity can be mentioned. More preferably, Dactylosporangium sp. RH 1 (FER BP—440), Amycolatopsis sp. RH 2 (FER M BP—4581), Streptomyces sp. Examples of such a strain include Streptomyces griseoviridis JCM425, Streptomyces daghestanicus JCM43365, and mutants or conductors of these strains.
  • Dactylosporandium 'SP RH 1 and Amycolatobsis sp. RH 2 are microorganisms isolated by the present inventors as microorganisms capable of producing L-proline 4-position hydroxylase
  • Zeobilides JCM42550 and Streptomyces dadiestanics JCM4365 are microorganisms newly discovered by the present inventors to have the ability to produce proline 4-hydroxylase.
  • Vectors for constructing a chromosome DNA library of a microorganism capable of producing L-proline 4-position hydroxylase DNA that can autonomously replicate in E. coli K12 strain include phage vectors and brassmid vectors. Etc. can be used. Preferred examples include AZAP II, pUC18, pBluescript (commercially available from STRATA GENE), and the like.
  • any microorganisms that are associated with Escherichia coli can be used.
  • Preferable examples include Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, and Escherichia col @ MC1000.
  • a DNA primer is prepared, and a polymerase chain reaction (hereinafter abbreviated as PCR) is performed using this DNA primer, and the resulting DNA fragment is obtained.
  • PCR polymerase chain reaction
  • a transformant containing the L-proline 4-position hydroxylase gene can be selected by the hybridization method.
  • the amino acid sequence information of L-proline 4-position hydroxylase is obtained by using a commonly used amino acid sequence analyzer such as Protein seauencer model PPSQ-10 manufactured by Shimadzu Corporation. It can be obtained by analyzing oxidase.
  • a partial amino acid sequence in the amino acid sequence shown in SEQ ID NO: 1 can be mentioned. And partial amino acid sequences having the amino acid sequence up to the first amino acid sequence, and the like.
  • the DNA primer can be synthesized using a commonly used DNA synthesizer, for example, a 380 A DNA synthesizer manufactured by Applied Biosystems.
  • a partial fragment of the L-proline 4-position hydroxylase gene can be used as a probe used in the hybridization method.
  • a partial fragment of the L-proline 4-position hydroxylase gene can be obtained by using the PCR method. Specifically, the DNA shown in SEQ ID NO: 3 (corresponding to the sense strand DNA encoding the 1st to 6th amino acids of the amino acid sequence described in SEQ ID NO: 1) and the DNA shown in SEQ ID NO: 4 ( Corresponding to the antisense strand DNA encoding the 19th to 24th amino acids of the amino acid sequence), and PCR was performed using these DNA primers. The indicated 7 lbp DNA fragment can be used as a probe.
  • the analysis can be carried out using an automatic base sequence analyzer, for example, 3773A / DNA sequencer (SeQuencer) manufactured by Applied Biosystems.
  • Examples of the nucleotide sequence of the L-proline 4-position hydroxylase gene thus determined include the nucleotide sequences shown in SEQ ID NOs: 2 and 8.
  • a plasmid containing DNA encoding the L-proline 4-position hydroxylase of the present invention is pRH71.
  • Escherichia coli S0LR / pRH71 which is Escherichia coli containing pRH71-1, was established on March 2, 1995 by the Institute of Biotechnology, Industrial Science and Technology, 1-3-1 Higashi, Tsukuba, Ibaraki, Japan (Zip code 3 No. 05) has been deposited as FER BP-520.
  • a DNA fragment containing the L-proline 4-hydroxylase gene should be digested with restriction enzymes or DNA-degrading enzymes.
  • a DNA fragment of appropriate length containing the L-proline 4-position hydroxylase gene is inserted into the expression vector downstream of the promoter, and then the above-described DNA-inserted expression vector is adapted to the expression vector.
  • the host any host that can express the target gene can be used.
  • Examples thereof include microbial strains belonging to the genus Escherichia, Serratia stable, Corynepacterium, Brevipacterium, Pseudomonas, Bacillus, etc., as well as yeast strains and animal cell hosts.
  • those which can replicate autonomously in the above-mentioned host or can be integrated into the chromosome, and which contain a promoter at a position where the L-proline 4-position hydroxylase gene can be transcribed are used.
  • the L-proline 4-hydroxylase expression vector is capable of autonomous replication in the microorganism, as well as a promoter, liposome binding sequence, and L-proline 4-hydroxylase. It is preferably composed of a gene and a transcription termination sequence. A gene that controls the promoter may be included.
  • expression vectors include, for example, pBTr p2, pBTacl, BTac2 (All are commercially available from Boehringer Mannheim), pKYP10 (Japanese Patent Application Laid-Open No. 58-111600), pKYP200 (Agric. Biol. Chem.). 4 Vol. 8, pp.
  • Any promoter can be used as long as it can be expressed in a host such as Escherichia coli.
  • IIb promoter PliB
  • 1 ⁇ promoter Pi
  • P L promoter P L promoter
  • P R promoter bromo one terpolymer derived from Escherichia coli or phage, or the like.
  • PU ⁇ a promoter (PU ⁇
  • Any liposome-binding sequence can be used as long as it can be expressed in a host such as Escherichia coli, but the ribosome-binding sequence and the initiation udon are translated to an appropriate distance (for example, 6 to 18 bases). It is preferable to use a brassmid.
  • L-proline 4-hydroxylase gene can be used as long as it encodes L-proline 4-hydroxylase, but the DNA sequence of the gene is most suitable for expression in host microorganisms. It is preferable to use the base by substituting it so that the codons are optimal.
  • a specific example of the L-proline 4-position hydroxylase gene in which the base has been S-substituted so that the codon is optimal for expression using Escherichia coli as a host is, for example, the base sequence represented by SEQ ID NO: 15.
  • a transcription termination sequence is not required for expression of this gene, but It is desirable to arrange a transcription termination sequence immediately below the child.
  • Escherichia coli XLl-Blue Escherichia coli XL2-Blue
  • Escherichia coli DH1 Escherichia coli MC1000
  • Escherichia coli Y3276 Escherichia coli 1485
  • Escherichia coli JM109 Escherichia coli HBIOK Escherichia coli No.49
  • Escherichia Bacillus amyloliguefacines Brevibacterium immariophil um ATCC14068, Brevibacterium saccharolyticum ATCC14066, Brevibacterium f lavum ATCC14067, Brevibacterium lactofermentum ATCC138 bacillus, etc.
  • examples of expression vectors include YEp13 (ATCC37115), YEp24 (ATCC37051), and YCp50 (ATCC37419).
  • Any promoter can be used as long as it can be expressed in a yeast strain host.
  • promoters of glycolytic genes such as hexose kinase, gal 1 promoter, gal 10 promoter, heat shock protein promoter, MFrl promoter, CUP 1 promoter and the like can be mentioned.
  • Examples of the host include Saccharomyces cerevisae, Schizosaccaromyces pombe> Kluy veromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius and the like.
  • examples of expression vectors include pcDNA I / Amp, pcDNA I, pcDM8 (all commercially available from Funakoshi), and the like.
  • Any promoter can be used as long as it can be expressed in the host of animal cells.
  • a promoter such as the promoter of the IE (imniediate early) gene of human CMV can be mentioned.
  • the enhancer of the IE gene of human CMV may be used together with the promoter.
  • Examples thereof include Namalba cells, HBT5663 (JP-A-63-2999), COS cells, CHO cells and the like.
  • any method for introducing DNA into animal cells any method can be used as long as DNA can be introduced into animal cells.
  • the calcium phosphate method Japanese Patent Laid-Open No. 2-227075
  • the lipofection method Philip L. Feigner et al .: Proceeding of the National Academy, Ob Science (Proc. Natl. Acad. Sc., USA), 84. 7413 (1987)].
  • the transformant can be obtained and cultured according to the method described in JP-A-2-227075 or JP-A-2-257789.
  • the culture of the transformant obtained as described above is performed according to a usual culture method.
  • a medium for culturing a transformant using a microorganism such as Escherichia coli or yeast as a host contains a carbon source, a nitrogen source, inorganic salts, and the like, which can be degraded by the microorganism, and efficiently cultivates the transformant.
  • a natural medium or a synthetic medium may be used.
  • Any carbon source may be used as long as each microorganism can be degraded.
  • Glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolyzate, and organic acids such as acetic acid and brobionic acid can be used.
  • Alcohols such as acids, ethanol, and propanol are used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, etc., various ammonium and ammonium salts of organic acids, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor. , Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digests thereof.
  • Inorganic substances include potassium (II) phosphate, potassium (II) phosphate, and magnesium phosphate Gum, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, etc. are used.
  • the culture is performed under aerobic conditions such as shake culture or deep aeration stirring culture.
  • the culturing temperature is preferably 15 to 40, and the culturing time is usually 16 to 96 hours.
  • the pH is maintained at 3.0 to 9.0.
  • the pH is adjusted using inorganic or organic acids, alkaline solutions, urea, calcium carbonate, ammonia and the like.
  • L-proline 4-hydroxylase is produced more efficiently by adding L-proline to the culture medium at a suitable time to a concentration of 5 to 100, preferably 20 to 20 OmM. be able to.
  • antibiotics such as ambicillin / tetracycline may be added to the medium during the culture.
  • an inducer may be added to the medium, if necessary.
  • an inducer such as isopropyl-D-thiogalactovyranoside (IPTG).
  • IPTG isopropyl-D-thiogalactovyranoside
  • IAA indoleacrylic acid
  • Culture media for culturing transformants using animal cells as a host include commonly used RPMI164 medium, Eag1e MEM medium, or a medium obtained by adding fetal calf serum or the like to such a medium. Used.
  • Culture 3 ⁇ 4 is carried out under conditions such as 5% C0 2 presence.
  • the culture temperature is preferably 35 to 37, and the culture time is usually 3 to 7 days.
  • L-proline 4-hydroxylase By adding L-proline to the medium in a timely manner so as to have a viscosity of 5 to 100, preferably 20 to 20 OmM, the production of L-proline 4-hydroxylase can be performed more efficiently. It can be carried out.
  • antibiotics such as kanamycin and penicillin to the culture medium. May be added.
  • L-proline 4-position hydroxylase was significantly present in comparison with the microorganism strain used as the gene source, for example, Dactylosporandim sp. RH1 etc.
  • Microbial strains that have been used as gene sources for the isolation and purification of enzymes or the production of trans-14-hydroxy-L-proline from L-proline using the enzymes as gene sources for example, Dactylosporandium SB RH It can be performed much more efficiently than when using 1 etc.
  • L-proline 4-position hydroxylase in the transformant indicates that the culture medium, the cells or the treated cells are placed in an aqueous medium suitable for the enzyme reaction. It can be found by detecting the trans-14-hydroxy-L-broline formed by adding it together with ferrous ion and 2-ketoglutaric acid and, if necessary, adding a surfactant and an organic solvent.
  • the activity of the produced L-proline 4-hydroxylase is expressed as 1 unit (U) of the activity to produce l-nmol trans-4-hydroxy-1-L-proline per minute under the following measurement conditions.
  • the cells include animal cells.
  • trans-14-hydroxyl-L-proline in the reaction solution may be used in a ligand exchange chromatography column.
  • a ligand exchange chromatography column For example, Sumitomo Corporation Separation and elution by HPLC using SUMICHIRAL 0A5000 manufactured by Kagaku Kagaku Kagaku Center, etc., followed by derivatization with a Bost column using 7-chloro-4-412trobenzo-2-oxa-1,3-diazole (hereinafter abbreviated as NBD) for detection.
  • NBD 7-chloro-4-412trobenzo-2-oxa-1,3-diazole
  • simple enzymatic purification of the enzyme Method may be used. For example, by centrifuging the culture of the transformant, the cells in the culture are collected, and after washing the cells, the cells are treated with an ultrasonic crusher, French Breath, Mantongaulin homogenizer, Dynomill or the like. To obtain a cell-free extract.
  • the supernatant obtained by centrifuging the cell-free extract is subjected to salting out with ammonium sulfate or the like, anion exchange chromatography such as getylaminoethyl (DEAE) -Sepharose, butyl sepharose, phenyl, etc.
  • Purified enzyme products can be obtained using techniques such as hydrophobic chromatography such as sepharose, gel filtration using molecular sieves, and electrophoresis such as isoelectric focusing.
  • the transformant in which the production of L-proline 4-position hydroxylase was confirmed in the cultured cells was cultured under the same conditions as those for the above-mentioned transformant, and trans-14-hydroxy-1-L-proline was obtained. Is produced and accumulated, and trans-14-hydroxy-L-broline is collected from the culture, whereby trans-14-hydroxy-L-broline can be produced.
  • trans-1-hydroxy L-proline can be produced without adding L-broline during culturing, but L-proline can be produced in 5-1000, preferably 20-200.
  • L-proline 4-position hydroxylase can be produced more efficiently.
  • a transformant capable of producing 2-ketoglutaric acid from a sugar source and accumulating in a culture solution it is possible to produce trans-1-hydroxy-L-broline without adding 1-ketoglutaric acid during the culture. it can.
  • a sugar source such as glucose is added to the medium in a timely manner to generate and accumulate 2-ketoglutaric acid in the culture solution, so that L-proline 4-position water can be more efficiently used. Oxidation enzyme production can be performed. If a transformant that does not have the ability to produce 2-ketoglutaric acid from a sugar source and accumulate in the culture medium is used, add 2-ketoglutaric acid during the culture, if necessary.
  • 2-ketoglutaric acid and ferrous ion may be added during the culture.
  • Trans-1-hydroxy-L-broline is produced by using a culture of a transformant in which the production of L-proline 4-position hydroxylase has been confirmed, a cell isolated from the culture, or a treated cell as an enzyme source. You can do it too.
  • the culture of the transformant, the cells isolated from the culture, or the treated cells were placed in an aqueous medium suitable for an enzymatic reaction, and treated with L-proline, ferrous ion, 2-ketoglutinyl.
  • L-proline is converted to trans-14-hydroxy-L-broline by adding it with an acid and, if necessary, a surfactant or an organic solvent, and then trans-14-hydroxy-L-proline is obtained from the reaction solution.
  • trans-14-hydroxy-L-broline can be produced.
  • the treated cells include dried cells, freeze-dried cells, surfactant-treated cells, enzyme-treated cells, ultrasonically treated cells, and mechanically treated cells. Milled products, solvent-processed cells, protein fractions of cells, immobilized cells and processed cells I can do it.
  • an enzyme having L-proline 4-position hydroxylase activity obtained by extraction from the cells, a purified product of the diamine, and an immobilized product may also be used.
  • aqueous medium examples include water, phosphates, carbonates, acetates, buffers such as borate, citrate, and tris; alcohols such as methanol and ethanol; esters such as ethyl acetate; and ketones such as acetone. And amides such as acetoamide.
  • the surfactant examples include polyoxyethylene stearylamine (for example, Nimine S-215, manufactured by NOF Corporation), cetyltrimethylammonium bromide, cation FB, cation F2-40E, etc.
  • Anionic surfactants such as cationic surfactants, sodium permoleamide sulphate, Neurex TAB, Ravisol 80, polyoxyethylene sorbitan monostearate (eg Nonion ST221)
  • amphoteric surfactants other tertiary amines PB, and hexadecyl dimethylamine, and any of those that promote the reaction can be used. These are usually used at a rate of 0.1-5 Omg / l, preferably 1-2 OmgZl.
  • organic solvent examples include toluene, xylene, aliphatic alcohol, benzene, and ethyl persulfate. It is usually used at a concentration of 0.1 to 50 lZm1, preferably 1 to 201 / m1.
  • the reaction is as follows: After culturing a transformant having L-proline 4-position hydroxylase activity, a culture of the transformant, a cell isolated from the culture, and a treated cell are used as an enzyme source. In an aqueous medium.
  • the enzymatic activity of these enzyme sources in the reaction solution is determined by the amount of the base used, etc., but is usually from 1,000 to 100, 000, 000 UZ1, preferably 100, 000. 33, 0000, 0000 UZ1.
  • the concentration is usually 1 to 300 gZ1 for wet cells.
  • the reaction is usually carried out at a temperature of 15 to 50 :, pH 6.0 to 9.0, for 1 to 96 hours.
  • concentration of L-proline used in the reaction is between 1 mM and 2M.
  • L-proline may be used by adding L-proline directly to the reaction solution, or may be supplied using a culture solution of a microorganism capable of generating L-proline from a sugar source and storing it in the culture solution. You may.
  • L-proline produced by the host microorganism can be used for the reaction.
  • the reaction requires ferrous ion and is usually used at a concentration of 1 to 10 O mM.
  • divalent iron ion any substance containing ferrous iron and not inhibiting the reaction can be used.
  • sulfides such as ferrous sulfate, chlorides such as ferrous chloride, ferrous carbonate, etc., as well as organic salts such as citrate, lactate, fumarate, etc. Can be.
  • the culture of the transformant to be used the cells isolated from the culture, the treated cells, or the components of the reaction solution contain ferric ion, the ferric ion is not particularly added. Is also good.
  • 2-Ketoglutaric acid may be added alone to the reaction solution, or may be supplied using a compound that can be converted to 2-ketoglutaric acid by the metabolic activity of the cells used and the processed cells.
  • examples of such compounds include sugars such as glucose, amino acids such as glutamic acid, and organic acids such as succinic acid. These compounds may be used alone or in combination of two or more.
  • trans-14-hydroxy-L-proline As a method for recovering trans-14-hydroxy-L-proline from a culture or an aqueous medium, a conventional separation method such as column chromatography using ion-exchange resin or a crystallization method is used.
  • the recovered trans one 4 Hidoroki Sea L Burorin was the 1 3 C-NM R spectrum, '.eta. NMR spectrum, Masusu vector, by conventional analytical means specific rotation or the like, leaving in it to confirm its structure.
  • trans-14-hydroxy-L-broline produced according to the present invention can be quantitatively analyzed by the above-mentioned boss column derivatization method and bleed column rust conversion method.
  • FIG. 1 is a diagram showing a restriction map of brassmid pRH71 and a process for constructing brassmids PYan10 and pYan13.
  • the portion indicated by the thick black line indicates the cloned chromosome portion of Dactylosporangium sp. RH1.
  • Ap indicates the ambicillin resistance gene derived from pBR322.
  • only the restriction enzyme sites related to the construction of the plasmid are shown.
  • FIG. 2 is a view showing a forming process of the brass radiator 14.
  • the portion indicated by the thick black line indicates the portion containing the L-proline 4-position hydroxylase gene.
  • Ap indicates the ambicillin resistance gene derived from pBR322, and indicates the promoter of E. coli tributofan operon.
  • the arrows indicate the directions of transcription and translation of the gene. In the figure, only the restriction enzyme sites related to the formation of the plasmid are shown.
  • FIG. 3 is a diagram showing a step of forming brassmid pT c 4 OH.
  • the portion indicated by the thick black line indicates the portion containing the L-proline 4-hydroxylase gene.
  • Ap indicates an ambicillin resistance gene derived from pBR322
  • Pi indicates an ll promoter. Arrows indicate the direction of gene transcription and translation. In the figure, only the restriction enzyme sites related to the formation of the plasmid are shown.
  • FIG. 4 is a diagram showing a step of constructing brasmid pTr2-4OH.
  • the thick black line indicates the portion containing the L-proline 4-position hydroxylase gene.
  • Ap indicates an ambicillin resistance gene derived from pBR322
  • PiipX2 indicates a bromointermediate (tandem tritophan fan promoter) in which two E. coli-derived tritophan operon promoters are arranged in tandem.
  • Arrows indicate the direction of transcription and translation of the gene.
  • restriction enzyme sites related to the construction of brasmid are shown. Only is shown.
  • FIG. 5 is a diagram showing a construction process of plasmid pTr24-14 ⁇ .
  • the black thick line indicates the portion containing the L-proline 4-position hydroxylase gene.
  • indicates an ambicillin resistance gene derived from pBR322
  • PllfiX 2 indicates a bromoester (tandem tributophan promoter) in which two E. coli-derived tributophan operon promoters are arranged in tandem.
  • Arrows indicate the direction of gene transcription and translation. In the figure, only the restriction enzyme sites related to the construction of the plasmid are shown.
  • FIG. 6 is a diagram showing a construction process of plasmid pWFH1.
  • the shaded portion indicated by the thick line indicates the inserted portion of the ⁇ and I-treated PCR fragment.
  • the portion indicated by the thick black line indicates the portion containing the L-proline 4-position hydroxylase gene derived from Dactyl osporangium sp. RH1.
  • Ap indicates an ambicillin resistance gene derived from pBR322
  • Piipx2 indicates a promoter (tandem tributophan promoter) in which two E. coli-derived tributophan operon promoters are arranged in tandem. Arrows indicate the direction of gene transcription and translation. In the figure, only restriction enzyme sites related to the construction of the plasmid are shown.
  • FIG. 7 is a diagram showing a process of forming brassmid pES 1-23a.
  • the portion indicated by the thick black line indicates the portion containing the L-proline 4-position hydroxylase gene.
  • i ⁇ Z indicates the Escherichia coli / 3-galactosidase gene
  • 8 indicates the ambicillin resistance gene derived from 811322
  • indicates the 1 ⁇ promoter
  • the arrow indicates the direction of transcription and translation of the ⁇ gene.
  • only the restriction enzyme sites related to the formation of the brassmid are shown.
  • FIG. 8 is a view showing a step of forming brassmid pMc 4 OH.
  • the portion indicated by the thick black line indicates the portion containing the L-proline 4-position hydroxylase gene.
  • lE E. coli maltose binding gene
  • il ⁇ Z is E. coli / 3-galactosidase gene
  • Ap is pBR322-derived ampicillin resistance gene
  • ll Q is a Riburessa Yadenko E. coli lactose O Perron
  • I SB terminator is a terminator one IinB gene
  • Pl £ denotes a ii ⁇ promoter.
  • the arrow indicates the direction of transcription and translation of the gene. In the figure, only the restriction enzyme sites related to the formation of the brassmid are shown.
  • the chromosomal DNA of Dactylosporangium sp. RH1 was damaged in the following manner according to the usual method.
  • SK # 2 medium supplemented with mannitol 5% and glycine 0.05% (glucose 0.25%, soluble starch 0%, yeast extract 0.25%, ⁇ butone 0.25%, meat extract 0.15%, phosphoric acid 1 10 ml of a medium (containing 0.01% of potassium and 0.03% of magnesium sulfate and adjusted to pH 7.6 with 6N NaOH) was dispensed into test tubes, and sterilized for 120 minutes and 20 minutes.
  • Add HT agar plate medium soluble starch 1%, NZamine 0.2%, yeast extract 0.1%, meat extract
  • the culture was centrifuged, and the obtained cells were washed with 10 ml of a 10.3% sucrose solution, and then 6 ml of TS (10.3% sucrose, 50 mM Tris-HC 1
  • the upper layer was removed, and an aqueous solution of RNase A (1 OmgZm 1), which had been subjected to a heat treatment of 100: 10 minutes, was added to the upper layer, and incubated at 37 * C for 45 minutes.
  • RNase A-treated solution was added 1Z10 volumes of 5 M saline and 1 / volume of 50% PEG600, mixed vigorously, and allowed to stand under ice cooling overnight. The mixture was centrifuged at 1,200 rpm for 10 minutes, and the supernatant was completely discarded. The remaining precipitate was dissolved in 5 ml of TE.
  • L-proline 4-hydroxylase produced by Dactylosporangium sp. RH1 is purified by simple method according to the method of Reference Example 1, and the N-terminal amino acid sequence of the purified enzyme protein is obtained by Shimadzu Protein seauencer. Analysis was performed using model PPSQ-10, and the sequence of the N-terminal 24 amino acid residues of the sequence shown in SEQ ID NO: 1 was determined.
  • the antisense strand mix DNA primer set forth in SEQ ID NO: 4 was obtained from Applied Biosystems. 0 A ⁇ Synthesized using a DNA synthesizer.
  • the synthetic DNA was used as a primer, and PCR was carried out using Dactylosporandium SP RH1 chromosome DNA as type III. PCR was carried out using Astec Co., Ltd. Program, Tenb Control, System PC-700. The reaction was carried out using a reaction solution 20a1 having the following composition.
  • Reaction solution composition Dactylosporandium sp. RH 1 chromosome DNA 22 ne / sense strand mix DNA primer and antisense strand mix DNA primer 10 / zM each, Pfu DNA polymerase (manufactured by STRATAGENE) 0.1 2 5U // I DMSO 10%, Tris-HCl (pH8.2) 2 OmM, KC 11 Om, ammonium sulfate 6 mM, magnesium clay 2 mM, Tr
  • the reaction was repeated 5 times at 96 for 5 minutes, followed by 96 to 12 minutes, 37 to 11 minutes, and 72 to 11 minutes.
  • the incubation step was repeated 35 times at 0-1 min, 72 * C—1 min.
  • the reaction solution was subjected to 15% polyacrylamide (Atoichi Co., Ltd., Padiel NPU-15L) electrophoresis, and then a 71 bp band was applied to Da Vinci-kun (Pen-Touch Recovery NB-7 (Type 00).
  • the recovered 71 bp DNA fragment was inserted into the ⁇ I site of pUC18 using the Sure Clone Ligation Kit from Pharmacia, and a nucleotide sequencing kit (Tad DyeDeoxy TM Terminator Cycle, manufactured by Abride Biosystems) was used. The nucleotide sequence was determined using Sequencing Kit). The base sequence of the determined 71 bp DNA fragment is shown in SEQ ID NO: 5. The amino acid sequence deduced from the nucleotide sequence of this 71 bp DNA fragment completely matched the N-terminal amino acid sequence of the purified enzyme described in SEQ ID NO: 1.
  • Example 2 Obtaining DNA fragment containing L-proline 4-position hydroxylase gene
  • the reaction was repeated 35 times at 96 for 5 minutes, followed by incubation at 96 for 12 minutes, 50 * 0-1 minute, and 72-1 minute.
  • the reaction solution was subjected to 12.5% polyacrylamide gel electrophoresis to confirm the generation of a 71 bp amplified fragment.
  • the fragment was recovered from the gel by the same operation as in Example 1 (3), and this was used as a probe. Using.
  • the agarose gel was gently shaken in 0.25N hydrochloric acid for 20 minutes, and then immersed in 0.5M sodium hydroxide-1.5M sodium chloride for 50 minutes. Further, the plate was immersed in 2 M sodium chloride- 1 MT ris ⁇ HC 1 (pH 5.0) for 25 minutes. At 7.5mmHg using ATTO's dienobilator pump AE-6680P and ATTO's dienobilator AE-6680C.
  • the Hybond-N + membrane (manufactured by Amersham) was applied to a 20-fold concentration of SSC (the composition of the 1-fold concentration SSC is: 15 OmM sodium chloride, 15 mM sodium citrate) Inside, it was blotted. After blotting, it was dried at 8 o for 10 minutes, and then cross-linked using FUNA-UV-LINKER FS-800 (manufactured by Funakoshi).
  • the membrane obtained in this way was prepared using Hybridization 'buffer (formamide 50% vZv, blocking drug 2%, N-lauryl sarcosine 0.1% wZv, SDS 0.02 w / v) of the DIG Luminescent Detection Kit.
  • the probe solution [probe 31 obtained in Example 2 (1)
  • the hybridization buffer (1) treat at 95 * C for 2 minutes, add the hybridization buffer to 1.5 ml), and soak overnight.
  • the membrane was further washed twice at room temperature for 5 minutes each with 25 ml SSC at a double concentration containing 0.1% SDS, and then washed with 25% at a concentration of 25% at a concentration of 0.1% SDS. Washed twice with lSSC for 15 minutes at 68.
  • washing buffer buffer containing 0.3% w / v Teen-20 (0.1 M maleic acid, 0.15 M sodium chloride, pH 7.5) at room temperature. ⁇ 5 min, using 50 ml buffer 2 (buffer 1 containing 1% blocking reagent) for 30 min at room temperature, using 10 ml buffer 2 containing 1 ⁇ 1 anti-digoxigenin-AP Fab. 10 ml Buffer 3 (0.1 TrisHC1, 0.1 M sodium chloride, 5 OmM, twice for 30 minutes at room temperature for 30 minutes at room temperature using 50 ml buffer 2) Magnesium chloride, pH 9.5) at room temperature for 2 to 5 minutes, and with Lmnigen PPD 50 uI 5 ml buffer 3 at room temperature for 5 minutes at room temperature. Was cut and wrapped in Saran wrap, followed by static S at 37 for 15 minutes. This was subjected to ⁇ -light at room temperature for 30 minutes using Hyper lm-ECL (manufactured by Amersham).
  • an ethanol precipitation method the operation of obtaining an ethanol precipitate using TE-saturated phenol Z chloroform and cold ethanol is referred to as an ethanol precipitation method.
  • the precipitate was dissolved in 1201 TE and subjected to agarose gel electrophoresis. After the electrophoresis, the DNA fraction around 5.5 kb was extracted and purified from agarose gel using Prep-A-gene (manufactured by Bio-Rad) to obtain about 7 ⁇ g of a XiI-cut chromosomal DNA fraction.
  • a phage library was created as follows.
  • the ligation kit (TAKARA ligation Kit, manufactured by Takara Shuzo Co., Ltd.) was used to combine the thus obtained Xl I digested DNA 0.36 / ig and the ⁇ I digested chromosomal DNA 0.35 / xg obtained in Example 2 (3).
  • the reaction was carried out at 26 for 2.5 hours and ligated. Ethanol was added to the reaction solution, and the resulting DNA precipitate was dissolved in 4/1 TE.
  • the DN A was further packaged in ⁇ phage particles using Gigapack II Gold Packaging Extract (manufactured by STRATAGENE).
  • coH XLl-Blue MRF 'strain (manufactured by STRATAGENE) was added to LB medium containing 0.2% (w / v) maltose and 1 OmM magnesium sulfate (10 g of pact tributon, 5 g of pact yeast extract, 5 g of sodium chloride). g was contained in 1 liter of distilled water, sterilized at 120 for 20 minutes), inoculated into 3 ml, and cultured at 30 for 16 hours. After the culture, the cells were collected by centrifugation, and the obtained cells were suspended in a 1 OmM sterile magnesium sulfate solution so that the absorbance at 60 O nm was about 0.5.
  • a plaque having a target clone was selected by the following method.
  • the plaques appearing on the LB agar medium were transferred to a Nymouth membrane (Nytran, Schleicher & Sclmell, Schleicher & Sclmell) washed with 5-fold concentration of SSC, and the membrane was 0.5 M The mixture was allowed to stand for 5 minutes on rapa paper impregnated with 5 M sodium chloride in sodium hydroxide. In addition, the membrane was applied twice on a rapa paper impregnated with 1.5 M sodium chloride-0.5 Tris-HCl (pH 8.0) for 2 minutes, on a rapa paper impregnated with twice the concentration of SSC. After standing still twice for 1 minute, 8 0 For 30 minutes. The dried membrane was washed with SSC of 0.1% SDS containing 0.1% SDS, and then washed with SSC of 2 ⁇ O, and air-dried.
  • Example 2 Using the DIG probe obtained in Example 2 (1) and the DIG Luminescent Detection Kit manufactured by Boehringer Mannheim, the detection was performed according to the method described in Example 2 (2). One positive plaque was detected.
  • SM sodium sodium hydride, 2 gZl magnesium chloride, 0.01% gelatin, 5 OmM Tr 1 sHC pH 7. 5
  • 201 Approximately 1 square centimeter was cut out from the periphery of the positive plaque, and 1 ml of SM (5.8 g / 1 sodium sodium hydride, 2 gZl magnesium chloride, 0.01% gelatin, 5 OmM Tr 1 sHC pH 7. 5) and 201 were added, and the mixture was thoroughly stirred and centrifuged. The obtained supernatant was used as a phage extract.
  • the antisense strand DNA primer (the base corresponding to the 6th and 6th bases in SEQ ID NO: 5 was set to G) was replaced with an Ablido Biosystems (380A) DNA synthesizer. And synthesized.
  • PCR was performed according to the method described in Example 1 (3), and The bp DNA fragment was obtained. This DNA fragment was analyzed by 12.5% polyacrylamide gel electrophoresis to confirm that it was the target clone.
  • Examples 2 (4) to (6) were repeated again to purify the target clone.
  • the X-Blue MRF 'strain was inoculated into 3 ml of an LB medium containing 0.2% (w / v) maltose and 1 OmM magnesium sulfate, and 3 O :, 16 Cultured for hours. After culturing, the cells were centrifuged, and the obtained cells were suspended in a 1 OmM magnesium sulfate solution so that the absorbance at 60 O nm became about 0.
  • the phage extract 1001 obtained in Example 2 (6) and ExAssist helper phage (manufactured by STRATAGENE) 11 were added to the bacterial solution 2001, and the mixture was incubated at 37 for 15 minutes.
  • Brassmid pRH 7 obtained
  • a deletion mutant brassmid was prepared from pYanlO using a Takasequo's kilosequence de- siration kit. Specific reagents and methods followed the instructions attached to the kit.
  • nucleotide sequence of the I-XhoI fragment of about 2.4 kb in the deletion plasmid was determined using a nucleotide sequencing kit (Tad DyeDeoxy TM Terminator Cycle Seauencing Kit) manufactured by Abride Biosystems. .
  • a deletion mutant plasmid was prepared, and its nucleotide sequence was analyzed.
  • the nucleotide sequence of Sac l-I fragment (fragment cleaved by l1-1 and ⁇ 1-2 in FIG. 1) 2707b is shown in SEQ ID NO: 8.
  • the nucleotide sequence determined in this manner includes the nucleotide sequence shown in SEQ ID NO: 2 which encodes a protein composed of 272 amino acid shown in SEQ ID NO: 1 (from nucleotide numbers 264 to 1 in SEQ ID NO: 8). 079).
  • This amino acid sequence contains the N-terminal amino acid sequence shown in SEQ ID NO: 1 determined using purified L-proline 4-position hydroxylase, and is contained in the obtained approximately 5.5 kb I fragment. The presence of the L-proline 4-position hydroxylase gene was confirmed.
  • the sense strand DNA primer described in SEQ ID NO: 9 and the antisense strand DNA primer described in SEQ ID NO: 10 were synthesized using a 380 A DNA synthesizer manufactured by Applied Biosystems. PCR was performed using the synthetic DNA as a primer and pRH71 as a type II. The reaction is pRH71 1 0.1 g, a reaction solution 201 containing 2 each of a sense strand and an antisense strand DNA primer was carried out in the same manner as in Example 1. The reaction was repeated 30 times, including a 5-minute incubation at 96, a 12-minute incubation at 96, a 11-minute incubation at 58, and a 5-111 minute incubation.
  • the reaction mixture was subjected to agarose gel electrophoresis, and after confirming that an 844 bp amplified fragment encoding the structural gene of L-proline 4-position hydroxylase had been generated, the wide fragment was extracted from the agarose gel by a conventional method. Fragments were recovered using Pred-A-gene from Rad. Both ends of the recovered 844 bp DNA fragment were cleaved with, III and HI, and an ethanol precipitate was obtained by an ethanol precipitation method. The ethanol precipitate was dissolved in 5 / z 1 TE.
  • Brassmid pTrS30 DNA containing PUP was cut with Hind I and to HI.
  • the above L-proline 4-position hydroxylase structural gene fragment treated with SI and HI was inserted into the cleavage site using a ligation kit manufactured by Takara Shuzo.
  • the resulting plasmid was used to transform the £ .coU XLl-Blue MRF 'strain in a conventional manner, and the transformant was applied to an LB agar medium containing 50 gZm1 of ambicilin. And then cultured. Brassmids were extracted from the grown transformant colonies according to a conventional method, and the structure was confirmed by restriction enzyme digestion.
  • a plasmid pTr14 (FIG. 2) was obtained in which a DNA fragment encoding the structural gene of L-proline 4-position hydroxylase was inserted in the same direction as the transcription direction of Pixp.
  • An expression plasmid using P1 was constructed in the same manner as in Example 3 (1).
  • a sense strand DNA primer of SEQ ID NO: 11 and an antisense strand DNA primer of SEQ ID NO: 12 were synthesized, and PCR was performed using the synthesized DNA as a primer and pRH71 as a type III, L-proline 4 position
  • An 846 bp amplified fragment encoding the hydroxylase structural gene was obtained. After digesting this fragment with ⁇ RI and HindIII, Eco R of the plasmid ⁇ BTac1 (Boehringer Mannheim) containing Ptac It was inserted into I-HindIII cleavage site and transformed into coU XLl-Blue MF 'strain.
  • Example 3 (1) an amplified fragment encoding the structural gene of L-proline 4-position hydroxylase was recovered, treated with a restriction enzyme, and then ethanol precipitated by an ethanol precipitation method. .
  • the ethanol precipitate was dissolved in 51 ⁇ l.
  • An ATG vector pTrS32 DNA prepared by combining a plasmid pKYP200 with a promoter PliX2 and a synthetic linker based on PBR322 and two Piips in tandem with III and ⁇ 1 Cut with HI.
  • the above L-proline 4-position hydroxylase structural gene fragment digested with Hind III and SHI was inserted into the cleavage site using a ligation kit manufactured by Takara Shuzo.
  • the coil XLl-Blue MRF 'strain was transformed according to a conventional method, and the transformant was spread on an LB agar medium containing 5O ⁇ gZml of ambicilin, and then cultured overnight at 37. .
  • Plasmids were extracted from the grown transformant colonies according to a conventional method, and the structure was confirmed by restriction enzyme digestion.
  • the nucleotide sequence of the structural gene portion was determined using a nucleotide sequence determination kit (Tad Dy eDeoxy TM Terminator Cycle Sequencing Kit) manufactured by Abride Biosystems, and it was confirmed that the nucleotide sequence was as shown in SEQ ID NO: 2. .
  • the DNA of SEQ ID NO: 13 and the DNA of SEQ ID NO: 14 were synthesized using an Ablido Biosystems (380A) DNA synthesizer.
  • the 25 bp at the 3 ′ end of the synthetic DNA is designed to have complementary sequences to each other. Have been.
  • the synthetic DNA contains a nucleotide sequence encoding the N-terminal portion of L-proline 4-position hydroxylase protein from Dactylosporangium sp. RH1, which is derived from Dactylosporangium sp. RH1.
  • Site-specific S-substitution has been performed on the nucleotide sequence of Escherichia coli so that it becomes the optimal codon for expression in Escherichia coli.
  • PCR was performed using the synthetic DNA as a primer and type II.
  • the reaction was performed with 0.5 U of ElM DNA polymerase (manufactured by STRATAGENE), XI 0 buffer solution for Pfu DNA polymerase (manufactured by STRATAGENE) 21, DMS O 2/1, 2.5 mM dNT P solution 1 SEQ ID NO: 1
  • the reaction was carried out using a reaction solution 20 ⁇ 1 containing the synthetic DNA described in 3 and the synthetic DNA described in SEQ ID NO: 14 each having 2 aM.
  • the reaction was carried out for 96 minutes, followed by incubation for 5 minutes, followed by repeating the incubation process for 96 minutes for 12 minutes, 50-1 minute, and 75 for 11 minutes 35 times.
  • the reaction solution was subjected to 15% polyacrylamide gel electrophoresis to confirm the formation of an amplified fragment of 107 b ⁇ , and the fragment was recovered from the gel by the same operation as in Example 1 (3). Both ends of the recovered 107 bp DNA fragment were digested with Hind III and ⁇ ! I, and then recovered using a MERmaid Kit manufactured by Bio, Inc. The recovered liquid volume was 16 ⁇ 1.
  • Brasmid pTr2-4OH DNA was cut with HI and ExyII.
  • the reaction solution was subjected to agarose gel electrophoresis, and it was confirmed that two fragments were generated. Then, the longer fragment containing the structural gene for L-brolin hydroxylase was recovered using Bio-Rad's Prep-A-gene and blunt-ended using a Takara Shuzo branding kit. It was connected and circularized using a ligation kit manufactured by Takara Shuzo.
  • E. coli JM109 strain was transformed according to a conventional method, and the resulting transformant was spread on an LB agar medium containing 50 g / ml of ambicilin, and then cultured at 37 with 1 7.
  • a plasmid was extracted from the grown transformant colonies according to a conventional method, and its structure was confirmed by restriction enzyme digestion. As a result, a plasmid pTr2-4 4 ⁇ (FIG. 5) in which a part of the sequence of pTr2-4 4 was deleted was obtained. Brasmid pTr2-4OH DNA was cut with Hind III and I. The PCR amplified fragment treated with III and I was inserted into the cut site using a ligation kit manufactured by Takara Shuzo.
  • the coli XL1-Blue MRF 'strain was transformed according to a conventional method, and the transformant was spread on an LB agar medium containing 50 gZm1 of ampicillin, and cultured overnight at 37. did.
  • a plasmid was extracted from the grown transformant colonies according to a conventional method, and its structure was confirmed by restriction enzyme digestion.
  • the PCR amplified fragment insert was used for the nucleotide sequence determination kit (Tad DyeDeoxy TM Terminator Cycle) manufactured by Abride Biosystems. The nucleotide sequence was determined using the Sequencing Kit). The nucleotide sequence represented by SEQ ID NO: 15 was confirmed.
  • U ATCC12435 was transformed using the plasmid pTr14, pTc4.0H and pWFHl obtained in Example 3, and a transformant, E. coll ATCC12435 / pTr14, E. coli ATCC12435 / pTc4OH E. coH ATCC12435 / pWFH1 was obtained.
  • the E. coli ATCC12435 / pTr14 and E. coli ATCC12435 / pTc4OH strains were each inoculated into a 3 ml LB medium containing 50 gZm1 of ampicillin, and cultured with shaking at 3O: for 1 hour.
  • Transformant coll ATCC12435 / pWFH1 was added to 5 Oml Med 4 medium containing 100 g / m1 of ampicillin (Polypeptone (Nippon Pharmaceutical) 1%, Yeast Extract (Difco) 0.5%, NaCll%). Inoculate and 30 at 16 o'clock Shake cultured while, further, the culture medium a seed culture solution, 2 Ritsuta of Me d 6 medium (glucose 2 I 0, Anmoniumu 1% sulfuric acid, K 2 HP0 4 0. 1% , N a C 1 0. 2%, Mg S0 4 0. 0 5%, F e S 0 4 0. 0 2 7 8%, C aC l 2 0.
  • the culture solution obtained by culturing the above transformant was centrifuged to obtain bacterial cells.
  • the L-proline 4-hydroxylase activity of the cells was measured under the following conditions.
  • the cells can be stored frozen at 120 if necessary, and can be thawed at the time of use and used for measuring enzyme activity.
  • Reaction solution [2 4 01111 ⁇ in 115 buffer solution (pH 6.5) in 12 mM L-brolin, 24 mM 2-ketoglutaric acid, 4 mM ferrous sulfate and 8 mM L-corbin [Acid-containing]] to 2501 so that the amount of wet cells was 4% (/ v), and the mixture was reacted at 35 with 10 minutes. The reaction was stopped by heating the reaction mixture at 100: 2 for 2 minutes.
  • the reaction stop solution was centrifuged and the obtained supernatant was added to 0.3 M borate buffer (PH 10.7) 100, 10% ( ⁇ / ⁇ ) aqueous solution of mercaptoethanol. 4 n 1 and 5% (w / v) phthalaldehyde in ethanol solution 1 Add 6 ⁇ 1 and leave at 60 for 30 seconds, then 2% (w / v) NBD in ethanol solution 50 n 1 was added, and the mixture was reacted at 6 Ot: for 40 minutes. The reaction was quenched by the addition of 301 N hydrochloric acid. After the reaction stopped solution was centrifuged, the mixture was filtered, and the precipitate was removed. After that, analysis was performed by high performance liquid chromatography to quantify the amount of trans-14-hydroxyl-proline produced.
  • Detection fluorescence detection, excitation wavelength 503 nm, emission wavelength 541 nm
  • the transformant contained 210 to 142 times more L-cell phosphorus 4 cells per cell line compared to one strain of Dactylose boranedium sp. RH used as a gene source. Was producing hydroxylase.
  • the cell activity is the enzyme activity per mg of wet cells (U / mg wet cells)
  • Relative activity depends on the activity of the enzyme produced by DactylosD-orangiuiD sp.
  • Example 4 The same experiment as in Example 4 was carried out in a culture using a 5-litre jar
  • Example 5 Construction of a fusion protein-expressing brassmid
  • Restriction enzyme ⁇ I was added to 4 tg of brassmid pRH71 DNA, and the DNA was cleaved, followed by ethanol precipitation in the same manner as described above. After dissolving the ethanol precipitate (DNA fragment) in TE of 361, both ends of the DNA fragment were blunted using Takara DNA Blunting Kit manufactured by Takara Shuzo. The treated DNA was subjected to agarose gel electrophoresis, and a DNA fragment of about 2.4 kb was extracted from the gel by a conventional method, and recovered using Biop Prep-A-gene. The recovered DNA was cut with ⁇ I, and an ethanol precipitate was obtained in the same manner as described above. The ethanol precipitate was dissolved in 10 ⁇ 1 TE.
  • the RV-Xba I-cleaved pBluescript I IKS (+) DNA was ligated with the ⁇ I-cleaved blunted and ⁇ I-cleaved DNA and recovered using Takara Ligation Kit manufactured by Takara Shuzo.
  • the transformed strain was transformed with 50 gZml of ambicilin, 0.2 mM I PTG, 40 p.
  • G / m 1 X Plated on LB agar medium containing G a 1 and cultured at 37 overnight. Brassmids were extracted from the growing colonies according to a conventional method, and the structure was confirmed by restriction enzyme digestion and elementary digestion.
  • PCR was carried out using the plasmid as a ⁇ type, the DNA of SEQ ID NO: 16 as a sense strand primer, and the DNA of SEQ ID NO: 7 as an antisense strand primer.
  • the reaction produced a 50 bp DNA fragment corresponding to the N-terminal amino acid sequence of L-proline 4-hydroxylase, indicating that the desired L-proline 4-hydroxylase structure in brasmid It was confirmed that the gene was inserted.
  • Brassmid PES 1-23 in which the structural gene for L-broline 4-position hydroxylase was inserted in the same direction as the transcription direction of the promoter in a manner fused to the N-terminal 34 amino acids of / 3—Ga1 a was obtained ( Figure 7).
  • the amino acid sequence of the constructed fusion protein is shown in SEQ ID NO: 18.
  • PCR was performed according to the method of Example 1 (3), using the DNA of SEQ ID NO: 17 as the sense strand primer, the DNA of SEQ ID NO: 12 as the antisense strand primer, and pRH71 as type III.
  • the above L-proline 4-position hydroxylase structural gene fragment was inserted into the I-Hind III cleavage site of pMAL-c2 using a DNA ligation kit manufactured by Takara Shuzo Co., Ltd., and E. coll XL2-Blue M F
  • the strain was transformed according to a conventional method.
  • the transformant was spread on an LB agar medium containing 50 gZml of ambicilin, and then cultured for 10 minutes with 37. Brassmids were extracted from the colonies obtained in this manner according to a conventional method, and the structure was extracted. Was confirmed by restriction enzyme digestion.
  • E. coli DH1 was transformed using the plasmid pES 1-23a and pMc 4 OH obtained in Example 5.
  • culture of the obtained transformant and productivity of L-proline 4-position hydroxylase of the transformant were determined.
  • a medium supplemented with 0.1 mM of 0.1-0.1 was used.
  • the transformant contained 29 to 298 times as much L-proline per cell as compared to the D. porphyrum sp. Strain RH1 used as a gene source.
  • the 4-position hydroxylase was produced.
  • the cell activity is the enzyme activity per mg of wet cells ( ⁇ / mg wet cells)
  • the relative activity depends on the enzyme activity produced by Dactylosporangium sp.
  • the transformant ATCC12435 / pTrl4 obtained in Example 4 was inoculated into a 3 ml LB medium containing 100 g of ampicillin, and cultured with shaking at 30 for 16 hours *. The culture was centrifuged, and the amount of trans-14-hydroxy-L-proline in the obtained supernatant was quantified.
  • the transformant £. Coli ATCC12435 / PWFH1 is inoculated into a 50 ml Med4 medium supplemented with 100/100 g of Ambicillin / gZml and 2% of glucose, and shaken at 30 for 16 hours. Cultivated.
  • the culture solution was used as a seed culture solution and inoculated into a 5-liter one-jar fermenter containing 2 liters of a Med 6 medium supplemented with 0.8% peptone instead of polypeptone.
  • the operation was performed under the conditions of a culture temperature of 33, a number of stirring of 400 revolutions, Z minutes, and an aeration rate of 1 liter, and a culture medium of 1 liter, Z minutes.
  • glucose was added as appropriate so as not to be lost, and the lower limit was controlled to pH 6.5 using NH 4 OH.
  • the culture solution was centrifuged, and the amount of trans-4-hydroxy-L-phosphorin in the obtained supernatant was quantified.
  • the trans-4-hydroxy-L of 10.7 mM (1.4 gZL) was obtained in 52 hours of culture.
  • L-Brolin was produced and accumulated in the culture supernatant of coU ATCC12435 / pWFH1.
  • the transformant E. coli ATCC12435ZPWFH1 was inoculated into a 5 Oml Med 4 medium containing 100 g / m 1 of ambicilin, and cultured at 30 * C for 16 hours.
  • the culture was used as a seed culture and inoculated into a 5 liter jar fermenter containing 2 liters of Med 6 medium.
  • L-Pro was added at 20 OmM, and the operation was carried out under the conditions of a culture temperature of 30 * 0, a stirring number of 400 revolutions Z, an aeration rate of 1 liter and a culture solution of 1 liter Z.
  • L-proline was added at a time of about 5 OmM so that glucose was not lost, and the lower limit was controlled to pH 6.5 using NH 4 OH.
  • the culture was centrifuged, and the amount of trans-4-hydroxy-L-broulin in the obtained supernatant was quantified. After culture for 72 hours, 185 mM (24 gZL) of trans-4-hydroxy-L-broline was obtained. Was produced and accumulated in the culture medium of coH ATCC12435 / pWFH1.
  • the transformant E. coli ATCC12435 / pMc40H was inoculated into a 5 Oml Med 4 medium containing 100 g / m 1 of ampicillin, and cultured with shaking at 30 for 16 hours.
  • the culture solution was used as a seed culture * solution, and inoculated in a 5-liter jar fermenter containing 2 liters of a Med 6 medium.
  • L-Pro was added at 20 OmM, and the operation was carried out at a culture temperature of 30 at a stirring speed of 400 revolutions / minute, an aeration rate of 1 liter Z-culture solution and 1 liter of 1-minute Z.
  • L-proline will be about 5 OmM so that glucose is not lost. And the lower limit was controlled to pH 6.5 using NH 4 OH.
  • the culture was centrifuged, and the amount of trans-4-hydroxy-L-phosphorin in the obtained supernatant was quantified. Transformation of 85.4 mM (11.2 gZL) in 72 hours of culture was performed. -Hydroxy-L-broline was produced and accumulated in the culture supernatant of E. coli ATCC12435 / PWFH1.
  • the transformant E. ⁇ il ATCC12435 / pTrl4 was inoculated into 1 Oml LB medium containing 50 gZm1 of ambicilin and shaken with 30 overnight. The culture was centrifuged to obtain bacterial cells. The cells were cryopreserved at 120 if necessary and thawed before use.
  • SR 3 medium (0% glucose, 0% soluble starch, 0.5% yeast extract, 0.5% tribton, 0.3% meat extract and 0.05% magnesium phosphate (A medium containing 6N NaOH and adjusted to pH 7.2) was dispensed into a 2-liter Erlenmeyer flask in an amount of 200 ml each, and sterilized with 12 O :, 20 minutes.
  • This medium contains HT agar plate medium (1% soluble powder, 0.2% NZamine, 0.1% yeast extract, 0.1% meat extract and 1.5% agar, 6N NaOH pH7. After adjusting to 2, inoculate Dactylosporangium sp. RH 1 grown on a medium sterilized for 20 minutes at 120 and shake culture at 28 for 2 days. And used as a seed culture.
  • Df1 medium (containing 5% soluble powder, 1.5% soybean meal, 0.05% potassium phosphate, 0.05% magnesium sulfate heptahydrate and 0.5% calcium carbonate, 6N NaOH
  • the medium (pH adjusted to 7.0) was dispensed in 2 litters into a 5 litter jar fermenter, and sterilized at 120 for 20 minutes.
  • the above-mentioned seed culture solution was aseptically inoculated into this area and cultured for 2 days at 28 rpm under the condition of 700 rpm and 1 V vm. The pH during feeding was not adjusted.
  • the obtained culture was centrifuged at 7,000 X g for 10 minutes at 4 at 4 to obtain 75 g of wet cells per liter of culture.
  • the wet cells were washed with saline at 4 and centrifuged and stored frozen at 180 until use.
  • the active fraction obtained in the above step was diluted 3-fold with buffer A, and then passed through a DAE Sepharose column (5 cm ⁇ 15 cm) which had been equilibrated with buffer A in advance. After washing the column with buffer A, the enzyme-containing fraction was eluted with a linear gradient from 0 to 0.3 M of saline prepared in buffer A.
  • Salt was added to the active fraction obtained in the above step so as to have a concentration of 3 M and dissolved, and a butyl sepharose column (Butyl Sepharose 4 Fast Flow, 2. 6 cm x 13 cm).
  • buffers with different concentrations of the enzyme: buffer A containing 3 M saline, buffer A containing 1.98 M saline, buffer A containing 0.99 M saline, and buffer A only.
  • the solution eluted in a stepwise manner from high to low.
  • the active fraction obtained in the above step was desalted using a PD-10 column (Pharmacia), and then a reactive red 120 column (Reactive red 120, Sigma) pre-equilibrated with buffer A. lcm (12.7 cm). After washing with buffer A, a fraction containing the enzyme was prepared in buffer A. Use a linear gradient of sodium chloride from 0 to 1.5 M. And eluted.
  • the active fraction obtained in the above step was mixed with buffer B C2mM DTT, 5 OmM TAPS buffer (pH 8.0) containing 0.1% (v / v) Tween 20 and 20% (v / v) glycerol.
  • buffer B C2mM DTT 5 OmM TAPS buffer (pH 8.0) containing 0.1% (v / v) Tween 20 and 20% (v / v) glycerol.
  • the solution was passed through a resource Q column (Pharmacia RE SOURCE TM Q, lml) which had been equilibrated with buffer B in advance. Elution was carried out using a linear gradient of food salt from 0 to 0.2M prepared in buffer B.
  • Table 3 summarizes the isolation and purification of L-proline 4-position hydroxylase.
  • SR3 medium 10 ml of the SR3 medium was dispensed into test tubes and sterilized with 120 for 20 minutes.
  • This medium was inoculated with a platinum loop of dactylosporangium sp. (21 ctylosporangium sp.) RH1 grown on an HT agar plate, shake-cultured at 28 for 2 days, and used as a seed culture * Using.
  • Df1 medium was dispensed into test tubes at 1 Oml each, and sterilized at 120 for 20 minutes. This 1 ml of the above seed culture solution was aseptically inoculated into the culture medium, and the cells were shake-cultured for 2 days at 28, and the obtained culture solution was collected at 800 rpm, 10 minutes, and 4 Centrifuged. The obtained cells were washed with 8 OmM TES [N-tris (hydroxymethyl) methyl-2-aminoethanesulfonic acid] mouthwash (pH 7.5), and then centrifuged.
  • OmM TES N-tris (hydroxymethyl) methyl-2-aminoethanesulfonic acid
  • a reaction solution [8 mM containing 4 mM L-proline, 8 mM ⁇ -ketoglutaric acid, 4 mM L-ascorbic acid, 2 mM ferrous sulfate]
  • a Nimeen solution (4 g of Nimeen S—215 (manufactured by NOF Corporation) dissolved in 1 ml of xylene 1 Om1) was suspended in 1.4% (vZv) and suspended in 30%. Then, a 30 minute interrogation reaction was performed.
  • hydroxybuline produced in the supernatant obtained by centrifuging and removing the cells from the cell reaction solution was analyzed, and the L-proline 4-position hydroxylase activity of dactylosporandium sp. It was measured.
  • the L-proline 4-hydroxylase activity was measured using Streptoiyces griseoviridis J CM4250 and Streptomyces daziestanix J CM4 365 as in Reference Example 2. did. However, instead of D ⁇ 1, Df4 medium [glycerol 2.5%, glucose 2.5%, soybean meal 1.5%, potassium monophosphate 0.05%, magnesium sulfate heptahydrate 0.0 A medium containing 5% and 0.5% calcium carbonate and adjusted to pH 7.0 with 6N NaOH] was used.
  • a transformer useful as a raw material for synthesizing a pharmaceutical or a food additive is provided.
  • a method for industrially producing 4-hydroxy-L-broline, a gene useful for the method, which encodes a protein having a 4-hydroxylase activity, a recombinant DNA containing the gene, A transformant containing the recombinant DNA, a method for producing L-proline 4-position hydroxylase using the transformant, and the enzyme can be provided.
  • Organism name Dactylosporangium sp.
  • 100 105 110 lie Phe Trp Ala Arg Glu Asp Gly Met Asp Arg Pro His Val Val Asn
  • Asp Leu Asp Tyr Ala lie Asp Ala Asp Leu Leu Ala Arg Leu Thr Ala
  • Sequence type nucleic acid
  • Organism name Dactvlosporan ⁇ ium sp. Stock Name: RH1
  • Sequence type nucleic acid
  • Sequence type other nucleic acids, synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acids, synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acids, synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acids, synthetic DNA
  • Sequence type nucleic acid
  • Organism name Dactylosporangium sp.
  • soos 3 ⁇ 4333 ⁇ 4333303 Is> v; 3svs 1V ⁇ D0v3
  • Sequence type nucleic acid
  • Sequence type other nucleic acids, synthetic DNA
  • Sequence type nucleic acid Topology: single strand
  • Sequence type other nucleic acids, synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acids, synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acids, synthetic DNA
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type other nucleic acids, synthetic DNA
  • Sequence type nucleic acid
  • Gly Arg Gly lie Glu Ser Ala Thr Gly Pro Al a Gly Ser lie Leu Leu
  • Sequence type nucleic acid
  • Sequence type other nucleic acids, synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acids, synthetic DNA
  • Organism name Dactylosporangiui sp.
  • Organism name Escherichia coli
  • Organism name Escherichia col i
  • Trp Glu lie Pro Ala Leu Asp Lys Glu Leu Lys Al a Lys Gly
  • Tyr Asp lie Lys Asp Val Gly Val Asp Asn Ala Gly Ala Lys Ala Gly
  • Thr Asp Tyr Ser lie Ala Glu Al a Ala Phe Asn Lys Gly Glu Thr Ala

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pyrrole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

明 細 書 トランス一 4ーヒドロキシー L一ブロリンの製造法
本発明は、 医薬品の合成原料または食品添加物として有用なトランス一 4—ヒ ドロキシー L一プロリンを工業的に製造する方法、 該方法に有用な L一プロリン 4位水酸化酵素活性を有する蛋白質をコードする遺伝子 (以下、 L一プロリン 4 位水酸化遺伝子と略記する) 、 該遺伝子を含有する形質転換体、 および該形質転 換体を用いた L一プロリン 4位水酸化酵素の製造法に関する。
微生物を用い卜ランス一 4ーヒドロキシー L一ブロリンを製造する方法として は、
1 ) エッシェリヒァ属に厲する微生物を用い、 4ーヒドロキシー 2—才キソグ ルタル酸からトランス一 4ーヒドロキシー L一プロリンを製造する方法 (特開平 3 - 2 6 6 9 9 5 )
2 ) 細菌やかび類を用い直接発酵生産する方法 (European Patent Appl icat ion EP 0 547 898 A2、 特開平 5— 2 3 6 9 8 0、 特開平 6— 2 4 5 7 8 2 )
3 ) ストレブトミセス展に厲する微生物を用い、 L一プロリンから製造する方 法 〔ジャーナル ·ォブ ·バイオロジカル ·ケミストリ一 (J. Biol. Che . ) 、 2 5 4卷、 6 6 8 4〜 6 6 9 0ページ ( 1 9 7 9年) 、 バイオケミカル ·アンド · バイオフィジカル · リサーチ ·コミュニケーション (Biochem. Biop ys. Res. Comm. ) 、 1 2 0卷, 4 5〜 5 1ページ ( 1 9 8 4年) 、 テトラへドロン · レ夕 ーズ (Tetrahedron Le xers) , 3 4巻, 7 4 8 9〜 7 4 9 2ページ(1 9 9 3 年)、 テトラへドロン · レターズ (Tetrahedron Let ters) 、 3 5卷, 4 6 4 9〜 4 6 5 2ページ (1 9 9 4年) 〕 が知られている。
従来のトランス一 4—ヒドロキシー L一プロリンの製造方法は、 1 ) 4ーヒド 口キシー 2—ォキソグルタル酸等のトランス一 4ーヒドロキシー L一プロリンを 製造するための基質が高価で入手困難である、 2 ) トランス一 4ーヒドロキシー L一プロリンの生産性が低い、 3 ) トランス一 4ーヒドロキシー L一プロリンの 製造に関与する酵素の活性が極めて微弱である、 等の理由から、 工業化は困難で ある。
トランス一 4ーヒドロキシー L一ブロリンの製造に関与する酵素については、 L一プロリン 4位水酸化酵素を前述のストレブトマイセス属に厲する微生物より 精製したとの報告があるが、 該酵素の取得方法および該酵素の理化学的性質は開 示されていない。 さらに、 2—ケトグルタル酸および 2価鉄イオンの存在下にお いて、 遊難の L一ブロリンをトランス一 4ーヒドロキシー L一ブロリンに変換さ せる活性を有する、 L一プロリン 4位水酸化酵素をコードする遗伝子をクロー二 ングしたという報告はない。
活性の高い L一プロリン 4位水酸化醉素を用い、 工業的に有利にトランス一 4 ーヒドロキシー L一プロリンを製造する方法が求められている。
本発明の目的は、 L一プロリン 4位水酸化酵素を用いて、 安価で入手が容易な L一プロリンから効率的にトランス一 4ーヒドロキシー L一プロリンを製造する 方法において、 より工業的に有利にトランス一 4ーヒドロキシー L一プロリンを 製造するために、 L一プロリン 4位水酸化酵素遺伝子および該遗伝子を含有する 形質転換体を提供し、 該遺伝子および該形質転換体を用いて L一プロリン 4位水 酸化酵素を大量に生産させ、 該形質転換体または該酵素を用いてトランス一 4 - ヒドロキシー L一ブロリンを工業的に安価に製造する方法を提供することにある。 発明の開示
本発明は、 微生物由来の新規な L一プロリン 4位水酸化酵素遣伝子、 該遺伝子 を含有する組換え体 D N A、 該組換え体 D N Aを含有する形質転換体、 該形質転 換体を用いた L一ブロリン 4位水酸化酵素の製造法、 該酵素および該形質転換体 または該酵素を用いたトランス一 4ーヒドロキシー L一プロリンの製造法に関す る。
以下に本発明を詳細に説明する。
本発明にかかわる L一プロリン 4位水酸化酵素は、 2—ケトグルタル酸および 2価鉄イオンの存在下において、 遊離の L一ブロリンを水酸化してトランス一 4 ーヒドロキシー L一ブロリンを生成する酵素である。
L一プロリン 4位水酸化酵素活性を有する蛋白質としては、 L一プロリン 4位 水酸化酵素活性を有する蛋白質であればいずれでもよく、 例えば配列番号 1に示 したアミノ酸配列を有する蛋白質、 該蛋白質あるいは該蛋白質の部分アミノ酸配 列を有する蛋白質と大腸菌由来の 3ガラクトシダーゼ蛋白質の部分アミノ酸配列 を有するペプチドとが結合したアミノ酸配列を有する融合蛋白質、 および配列番 号 1に示したアミノ酸配列を有する蛋白質あるいは該蛋白質の部分アミノ酸配列 を有する蛋白質と大腸菌由来のマルトース結合蛋白質の部分アミノ酸配列を有す るペプチドとが結合したアミノ酸配列を有する融合蛋白質等をあげることができ る, 融合蛋白質の具体的な例としては、 配列番号 1 8または 1 9に示したァミノ 酸配列を有する蛋白質等をあげることができる。
さらに、 配列番号 1、 1 8または 1 9で表されるアミノ酸配列とは一個以上の アミノ酸が S換、 欠失または付加したアミノ酸配列を有し、 かつプロリン 4位水 酸化酵素活性を有する蛋白質をあげることができる。 ここで、 アミノ酸の置換、 欠失または付加は、 ヌクレイツク ·ァシッド · リサーチ (Nuc leic Ac id Researc ) , 1 0卷, 6 4 8 7〜6 5 0 0ページ ( 1 9 8 2年) 、 ブロシ一ディングス •ォブ ·ナショナル ·アカデミー ·ォブ ·サイエンス (Pro at l . Acad. Sc i . , USA) , 7 9巻, 6 4 0 9〜6 4 1 3ページ ( 1 9 8 2年) 、 プロシーデイング ス ·ォブ ·ナショナル ·アカデミー ·ォブ,サイエンス (Proc. Nat l. Acad. Sc i., USA), 8 1卷, 5 6 6 2〜5 6 6 6ページ ( 1 9 8 4年) 、 サイエンス (Sc ience) , 2 2 4卷, i 4 3 1〜 1 4 3 3ページ ( 1 9 8 4年) 、 P C T WO 8 5 / 0 0 8 1 7 ( 1 9 8 5年) 、 ネイチヤー (Nature) , 3 1 6卷, 6 0 1〜 6 0 5ページ ( 1 9 8 5年) 、 ジーン (Gene) , 3 4卷, 3 1 5〜3 2 3ページ
( 1 9 8 5年) 、 ヌクレイック 'アシッド · リサーチ (Nucleic Acids Researc h) , 1 3卷, 4 4 3 1〜44 4 2ページ ( 1 9 8 5年) 、 カレン卜 'プロトコ ールズ ·イン 'モレキュラー 'バイオロジー (Current Protocols in Molecular
Biology) , 8章 Mutagenesis of Cloned DNA, J o hn W i l e y & S on s, I n c. ( 1 9 8 9年) 等に記載の方法に準じて実施することができる。 本発明にかかわる L一プロリン 4位水酸化酵素遗伝子としては、 L一プロリン 4位水酸化活性を有する蛋白質をコードする遺伝子を含む DN A断片であればい ずれでもよく、 例えば、 配列番号 1、 1 8または 1 9で表されるアミノ酸配列を 有する蛋白 Kをコードする遺伝子、 あるいは、 配列番号 1、 1 8または 1 9で表 されるァミノ酸配列とは一個以上のァミノ酸が置換、 欠失または付加したアミノ 酸配列を有し、 かつプロリン 4位水酸化酵素活性を有する蛋白 Kをコードする遗 伝子をあげることができる。 具体的には配列番号 2、 8および 1 5で示される D N A等をあげることができる。
更に、 本発明にかかわる L一プロリン 4位水酸化酵素遺伝子として、 上記で定 義される DNAに対して、 L一プロリン 4位水酸化酵素活性を失わない範囲内で 置換変異、 欠失変異、 挿入変異などの変異が導入された DNA、 例えば、 配列番 号 2、 8または 1 5と相同性を有する DNAなどをあげることができる。 この相 同性を有する DNAとは、 配列番号 2、 8または 1 5に示した塩基配列を含む D N Aをブローブとして、 コロニーハイブリダィゼーション法またはプラークハイ ブリダィゼーシヨン法を用いることにより得られる DN Aを意味する。 これらの 操作は、 公知の^ vitro組換え技法 〔モレキュラー ·クローニング:ァ ·ラポラ トリー,マニュアル (Molecular Cloning, A laboratory manual) 、 第 2版 〔サ ンブルック (Sambrook) 、 フリッチ (Fritsch), マニアチス (Maniatis) 編集、 コールド ·スブリング 'ハーバー · ラボラトリー ·ブレス (Cold Spring Harbor Laboratory Press)、 1 9 8 9年刊〕 に準じて行うことができる。
該 L一プロリン 4位水酸化酵素遺伝子を含む DN A断片は、 L一ブロリンを水 酸化してトランス一 4ーヒドロキシー L一プロリンを生成する能力を有する微生 物より取得することができる。 このような微生物としては、 L一プロリンを水酸 化してトランス一 4ーヒドロキシー L一プロリンを生成する能力を有する微生物 であればいずれでもよいが、 好ましくは、 ダクチロスポランジゥム属、 アミコラ トブシス厲またはストレブトミセス厲に展し、 かつ、 : L一プロリン 4位水酸化酵 素活性を有する微生物をあげることができる。 さらに好ましくは、 ダクチロスポ ランジゥム ·エスピー (Dactylosporangium sp.) RH 1 (FER BP— 4 4 0 0 ) 、 アミコラトブシス ·エスビー (Amycolatopsis sp.) RH 2 (FER M BP— 4 5 8 1 ) 、 ストレブトミセス ·グリゼオビリデイス (Streptomyces griseoviridis) J CM 4 2 5 0 , ストレブトミセス ·ダジエスタニクス (Strep tomyces daghestanicus) J CM 4 3 6 5あるいは、 これらの菌株の突然変異株 もしくは锈導体をあげることができる。
ダクチロスポランジゥム 'エスピー RH 1およびアミコラトブシス ·エスピー RH 2は、 本発明者らが L一プロリン 4位水酸化酵素を生成する能力を有する微 生物として分離した微生物であり、 ストレブトミセス ·グリゼオビリデイス J C M 4 2 5 0およびストレブトミセス ·ダジエスタニクス J CM4 3 6 5は、 本発 明者らがプロリン 4位水酸化酵素を生成する能力を有することを新たに見いだし た微生物である。
以下に L一プロリン 4位水酸化酵素を生成する能力を有する微生物由来のプロ リン 4位水酸化酵素遺伝子の取得方法について示す。
L一プロリン 4位水酸化酵素を生成する能力を有する微生物から、 通常の DN A単離法、 例えばフエノール法 〔バイオキミ力 ·ェ ·バイオフィジカ ·ァクタ (Biochim. Biophys. Acta) 72卷、 6 1 9〜6 2 9ページ〕 により、 該微生物 の染色体 DNAを調製する。 得られた染色体 DNAを適当な制限酵素により切断 し該制限酵素切断断片をベクター DN Aに組込むことにより、 該微生物染色体の 染色体 DN Aライブラリーを構築する。 この染色体 DN Aライブラリーを用いて 宿主微生物を形質転換する。 得られた形質転換体から八イブリダィゼーション法 により、 L一プロリン 4位水酸化酵素遗伝子を含む形質転換体の選択を行う。 選 択された該形質転換体より目的とする遺伝子を含む DN Aを得ることができる。
この一連の操作は、 公知の in vitro組換え技法 〔モレキュラー .クローニン グ:ァ *ラポラ卜リー ·マニュアル (Molecular Cloning, A laboratory lanua 1) 、 第 2版、 サンブルック (Sambrook) 、 フリッチ (Fritsch) 、 マニアテイス (Maniatis) 編集、 コールド ·スブリング ·ハーバー ·ラボラトリー ·ブレス (Cold Spring Harbor Laboratory Press) 、 1 9 8 9年刊〕 に準じて行うこと ができる,
L一プロリン 4位水酸化酵素を生成する能力を有する微生物の染色体 DN Aラ イブラリーを構築するベクター DNAとしては、 大腸菌 K1 2株中で自律複製で きるものであれば、 ファージベクター、 ブラスミツドベクターなどいずれでも使 用できる。 好適な例としては、 AZAP I I、 pUC 1 8、 pBlue script (STRATA GENE社より市販)などをあげることができる,
宿主微生物としては、 エツシエリヒア厲に厲する微生物であればいずれでも使 用することができる。 好適には、 エッシェリヒァ *コリ (Escherichia colp XL 1-Blue, Escherichia col i XL2-Blue、 Escherichia col i DH1、 Escherichia col 丄 MC1000等があげられる。
L一プロリン 4位水酸化酵素中のアミノ酸配列の情報を基に、 DNAブライマ 一を作製し、 この DNAブライマーを用い、 ポリメラーゼチェイン反応 (以下、 PCRと略記する) を行い、 得られた DNA断片を用い、 ハイブリダィゼーショ ン法により、 L一プロリン 4位水酸化酵素遺伝子を含む形質転換体を選択できる。 L一プロリン 4位水酸化酵素のァミノ酸配列の情報は、 通常用いられるアミノ 酸配列分析装置、 例えば島津製作所社製 Protein seauencer model PPSQ-10等、 を用い、 精製された L一プロリン 4位水酸化酵素を分析することにより、 得るこ とができる。 このようにして得られたアミノ酸配列情報としては、 例えば、 配列 番号 1に示したアミノ酸配列中の部分アミノ酸配列をあげることができ、 例えば、 配列番号 1に示したアミノ酸配列の N末端から 2 4番目までのアミノ酸配列を有 する部分アミノ酸配列等をあげることができる。
DNAブライマーの合成は、 通常用いられる DNA合成機、 例えばアブライド •バイオシステムズ (Applied Biosystems) 社製 3 8 0 A · DNA合成機等、 を 用い行うことができる。
ハイプリダイゼーシヨン法に使用するブローブとしては、 L一プロリン 4位水 酸化酵素遺伝子の部分断片を用いることができる。 L一プロリン 4位水酸化酵素 遺伝子の部分断片は、 PCR法を利用して得ることができる。 具体的には、 配列 番号 3 (配列番号 1に記載のアミノ酸配列の 1〜 6番目のアミノ酸をコードする センス鎖 DNAに対応する) に示した DNAと、 配列番号 4 (配列番号 1に記載 のアミノ酸配列の 1 9〜2 4番目のアミノ酸をコードするアンチセンス鎖 DN A に対応する) に示した DNAを化学合成し、 これらを DNAブライマーとして用 いて PCRを行い、 得られた配列番号 5に示した 7 l b pの DNA断片等をプロ ーブとしてあげることができる
ハイプリダイゼーシヨン法により選択された形質転換体より得られた、 Lーブ 口リン 4位水酸化酵素遺伝子を含む DNAを、 適当な制限酵素、 例えば^ Iな どで切断後、 pBluescript KS (+) (STRATAGEN社より市販)等のブラスミツドにク ローニングし、 通常用いられる塩基配列分析方法、 例えばサンガー (Sanger) ら のジデォキシ法 〔プロシーディングス *ォブ♦ナショナル ·アカデミー ·ォブ♦ サイエンス (Proc、 Natl. Acad. Sci.. USA), 7 4卷, 5 4 6 3ページ, 1 9 7 7年〕 等によって、 該遺伝子の塩基配列を決定することができる。 塩基配列の分 析は、 塩基配列自動分析装置、 例えばアブライド ·バイオシステムズ (Applied Biosystems) 社製 3 7 3 A · DN Aシークェンサ一 (SeQuencer) 等を用いて行 うことができる。 このようにして決定された L一プロリン 4位水酸化酵素遺伝子 の塩基配列として、 例えば、 配列番号 2および 8で示された塩基配列をあげるこ とができる。
本発明の L一プロリン 4位水酸化酵素をコードする DN Aを含むブラスミツド としては、 例えば pRH7 1があげられる。 pRH7 1を含む大腸菌である Esch erichia coli S0LR/pRH71は、 平成 7年 3月 2日付けで工業技術院生命工学工業 技術研究所、 日本国茨城県つくば市東 1丁目 1番 3号 (郵便番号 3 0 5 ) に FE R BP- 5 0 2 5として寄託されている。
上記のようにして得られる L一プロリン 4位水酸化酵素遺伝子を宿主中で発現 させるためには、 まず、 L一プロリン 4位水酸化酵素遺伝子を含む DNA断片を、 制限酵素類あるいは D N A分解酵素類で、 L一プロリン 4位水酸化酵素遺伝子を 含む適当な長さの DN A断片とした後に、 発現ベクター中プロモーターの下流に 挿入し、 次いで上記 DNAを挿入した発現ベクターを、 発現ベクターに適合した 宿主中に導入する。 宿主としては、 目的とする遺伝子を発現できるものは全て用 いることができる。 例えば、 エッシェリヒァ厲、 セラチア厩、 コリネパクテリウ ム厲、 ブレビパクテリゥム属、 シユードモナス厲、 バチルス厲、 等に属する微生 物菌株の他、 酵母菌株や動物細胞宿主等をあげることができる。
発現ベクターとしては、 上記宿主において自立複製可能ないしは染色体中への 組込みが可能で、 L一プロリン 4位水酸化酵素遺伝子を転写できる位置にプロモ 一ターを含有しているものが用いられる。
大腸菌等の微生物を宿主として用いる場合は、 L一プロリン 4位水酸化酵素発 現ベクターは微生物中で自立複製可能であると同時に、 プロモーター、 リポソ一 ム結合配列、 L一プロリン 4位水酸化酵素遺伝子、 転写終結配列、 より構成され ていることが好ましい。 プロモーターを制御する遗伝子が含まれていてもよい。 発現ベクターとしては、 例えば、 pBTr p 2、 pBTac l、 BT a c 2 (いずれもベーリンガーマンハイム社より市販) 、 pKYP 1 0 (特開昭 5 8一 1 1 0600 ) 、 pKYP 2 00 〔ァグリカルチヤラル ·バイオロジカル ·ケミ ストリー(Agric. Biol. Chem.).4 8卷, 6 69〜 6 7 5ページ (1 9 84年)〕 、 pLSA l 〔ァグリカルチヤラル ·バイオロジカル ·ケミストリー(Agric. Biol. Chem.), 53卷, 27 7ページ ( 1 98 9年) 〕 、 p G E L 1 〔プロシーディ ング ·ォブ *ザ*ナショナル ·アカデミー ·ォブ ·サイエンス(Proc. Natl. Aca d. Sci., USA), 8 2卷, 4 30 6ページ(1 9 8 5年) 〕 、 pBluescript (STRA TAGENE社) 、 pTr s 30 〔ェシエリヒア ·コリ JM109/pTrS30 (FERM B P- 5407 ) より調製〕 および pT r s 3 2 〔ェシエリヒア ·コリ JM109/pTr S32 (FERM BP- 54 08 ) より調製〕 等を例示することができる。
プロモーターとしては、 大腸菌等の宿主中で発現できるものであればいかなる ものでもよい。 例えば、 iiBプロモーター (PliB) 、 1 ^プロモーター (Pi ) 、 PLプロモーター、 PRプロモーターなどの、 大腸菌やファージ等に由来するブロモ 一ターをあげることができる。 また Pixpを 2つ直列させたプロモーター (PU卫
2) 、 Ιιςプロモーターのように人為的に設計改変されたプロモーター等も用 いることができる。
リポゾーム結合配列としては、 大腸菌等の宿主中で発現できるものであればい かなるものでもよいが、 リボソーム結合配列と開始ユドンとの間を適当な距離 (例えば 6〜1 8塩基) に翻節したブラスミツドを用いることが好ましい。
L一プロリン 4位水酸化酵素遺伝子は L一プロリン 4位水酸化酵素をコードす る遺伝子であればいずれも用いることができるが、 該遗伝子の DN A配列を宿主 微生物での発現に最適なコドンとなるように、 塩基を置換して用いることが好ま しい。 大腸菌を宿主として、 発現に最適なコドンとなるように塩基を S換した L 一プロリン 4位水酸化酵素遺伝子の具体例として、 配列番号 1 5で示される塩基 配列等をあげることができる。
本遗伝子の発現には転写終結配列は必ずしも必要ではないが、 好適には構造遣 子直下に転写終結配列を配置することが望ましい。
宿主としては、 Escherichia coli XLl-Blue, Escherichia coli XL2-Blue、 E scherichia coli DH1, Escherichia coli MC1000、 Escherichia coli Y3276, Escherichia coli 1485, Escherichia coli JM109, Escherichia coli HBIOK Escherichia coli No.49、 Escherichia coli W3110, Escherichia coli Y49、 B acillus subtilis. Bacillus amyloliguefacines, Brevibacterium immariophil um ATCC14068, Brevibacterium saccharolyticum ATCC14066, Brevibacterium f lavum ATCC14067, Brevibacterium lactofermentum ATCC13869、 Corynebacteriu m glutamicum ATCC13032, Corynebacterium acetoacidophilum ATCC13870, Micr obacterium ammoniaphilum ATCC15354等をあげることができる。
酵母菌株を宿主として用いる場合には、 発現ベクターとして、 例えば、 YEp 1 3 (ATCC37115) 、 YEp 24 (ATCC37051) 、 YCp 50 (ATCC37419) 等を 例示することができる。
プロモーターとしては、 酵母菌株の宿主中で発現できるものであればいかなる ものでもよい。 例えば、 へキソースキナーゼ等の解糖系の遺伝子のプロモーター、 gal 1プロモーター、 gal 10プロモーター、 ヒー卜ショック蛋白質プロモーター、 MF rlプロモーター、 CUP 1プロモーター等のプロモーターをあげることができる。 宿主として〖ま、 Saccharomyces cerevisae, Schizosacc aromyces pombe> Kluy veromyces lactis, Trichosporon pullulans, Schwann iomyces alluvius等をあ げることができる。
動物細胞を宿主として用いる場合には、 発現ベクターとして、 例えば、 p cD NA I /Amp, pcDNA I、 p c DM 8 (いずれもフナコシ社より市販) 等を例示することができる。 プロモーターとしては、 動物細胞の宿主中で発現で きるものであればいかなるものでもよい。 例えば、 ヒト CMVの IE(imniediate early)遺伝子のプロモーター等のプロモーターをあげることができる。 また、 ヒ 卜 CM Vの IE遺伝子のェンハンサーをプロモーターと共に用いてもよい。 宿主と しては、 ナマルバ細胞、 H B T 5 6 3 7 (特開昭 6 3 - 2 9 9 ) 、 C O S細胞、 C H O細胞等をあげることができる。
動物細胞への D N Aの導入法としては、 動物細胞に D N Aを導入することがで きればいかなる方法も用いることができる。 例えば、 エレクト口ポーレーシヨン 法 CMiyaj iら :サイトテクノロジー(Cytoteclmology) , 3, 133 (1990)〕 、 リン酸 カルシウム法 (特開平 2-227075) 、 リポフエクシヨン法 〔フィリップ ·エル ·フ エルグナー (Phi l ip L. Feigner)ら :プロシーデイング ·ォブ ·ザ ·ナショナル •アカデミー,ォブ ·サイエンス (Proc. Nat l. Acad. Sc i. , USA) , 84. 7413 (1987) 〕 等を用いることができる。 形質転換株の取得および培 ¾は、 特開平 2-2 27075あるいは特開平 2-257891に記載されている方法に準じて行なうことができ る。
上記のようにして得られた形質転換体の培 *は、 通常の培赛方法に従って行わ れる,
大腸菌や酵母菌等の微生物を宿主として用いた形質転換体を培養する培地は、 微生物が资化し得る炭素源、 窆素源、 無機塩類等を含有し、 形質転換体の培赛を 効率的に行える培地であれば天然培地、 合成培地のいずれでもよい。
炭素源としては、 それぞれの微生物が资化し得るものであればよく、 グルコ一 ス、 フラクトース、 スクロース、 これらを含有する糖蜜、 デンプンあるいはデン ブン加水分解物等の炭水化物、 酢酸、 ブロビオン酸等の有機酸、 エタノール、 ブ ロパノールなどのアルコール類が用いられる。
窒素源としては、 アンモニア、 塩化アンモニゥム、 硫酸アンモニゥム、 酢酸ァ ンモニゥム、 りん酸アンモニゥム、 等の各種無機酸や有機酸のアンモニゥム塩、 その他含窒素化合物、 並びに、 ペプトン、 肉エキス、 酵母エキス、 コーンスチー ブリカー、 カゼイン加水分解物、 大豆粕および大豆粕加水分解物、 各種発酵菌体 およびその消化物等が用いられる。
無機物としては、 りん酸第一カリウム、 りん酸第二カリウム、 りん酸マグネシ ゥム、 硫酸マグネシウム、 塩化ナトリウム、 硫酸第一鉄、 硫酸マンガン、 硫酸銅、 炭酸カルシウム等が用いられる。
培養は、 振 ¾培養または深部通気撹拌培養などの好気的条件下で行う。 培養温 度は 1 5〜4 0でがよく、 培養時間は、 通常 1 6〜9 6時間である。 培養中 pH は、 3. 0〜9.0に保持する。 pHの調整は、 無機あるいは有機の酸、 アルカリ 溶液、 尿素、 炭酸カルシウム、 アンモニアなどを用いて行う。
L一プロリンを 5〜 1 0 0 0、 好ましくは 2 0〜2 0 OmMの濃度となるよう に、 適時培地に添加することにより、 より効率的に L一プロリン 4位水酸化酵素 の製造を行うことができる。
また培養中必要に応じて、 アンビシリンゃテトラサイクリン等の抗生物質を培 地に添加してもよい。
プロモーターとして锈導性のプロモーターを用いた発現ベクターで形質転換し た微生物を培養するときには、 必要に応じてインデューサーを培地に添加しても よい。 例えば、 プロモーターを用いた発現ベクターで形質転換した微生物を 培養するときにはイソプロビル一 — D—チォガラクトビラノシド (I PTG) 等を、 i£pプロモーターを用いた発現ベクターで形質転換した微生物を培姜する ときにはインドールアクリル酸 (I AA) 等を培地に添加してもよい。
動物細胞を宿主として用いた形質転換体を培養する培地は、 一般に使用されて いる RPM I 1 6 4 0培地、 E a g 1 eの MEM培地またはこれら培地に牛胎児 血清等を添加した培地等が用いられる。
培 ¾は、 5 %C02存在下等の条件下で行う。 培養温度は 3 5〜3 7でがよく、 培養時間は、 通常 3〜7日間である。
L一プロリンを 5〜 1 0 0 0、 好ましくは 2 0〜 2 0 OmMの澳度となるよう に、 適時培地に添加することにより、 より効率的に L一プロリン 4位水酸化酵素 の製造を行うことができる。
また培姜中必要に応じて、 カナマイシン、 ペニシリン等の抗生物質を培地に添 加してもよい。
このように培養して得た形質転換体中には、 遺伝子源として用いた微生物菌株、 例えばダクチロスポランジゥム ·エスピー R H 1等、 と比較して L一プロリン 4 位水酸化酵素が著量生成蓄穣しており、 酵素の単離精製あるいは該酵素を用いた L一プロリンからのトランス一 4ーヒドロキシー L一プロリン製造を、 遺伝子源 として用いた微生物菌株、 例えばダクチロスポランジゥム ·エスビー R H 1等、 を用いた場合と比較して、 はるかに効率的に行うことができる。
該形質転換体中に L一プロリン 4位水酸化酵素が生成していることは、 培赛物、 菌体または菌体処理物を、 酵素反応に適した水性媒体中に、 L一プロリン、 二価 鉄イオン、 2—ケトグルタル酸とともに加え、 また必要に応じて界面活性剤や有 機溶剤を添加することにより、 生成するトランス一 4ーヒドロキシー L一ブロリ ンを検出することにより知ることができる。 生成された L一プロリン 4位水酸化 酵素の活性は、 下記測定条件下、 1分問に l nmol のトランス一 4ーヒドロキシ 一 L一プロリンを生成する活性を 1単位 (U) として表示する, なお、 ここでは、 微生物菌体に加え、 動物細胞を含めて菌体と呼ぶ。
L一プロリン 4位水酸化酵素活性の測定:
1 2 m L一プロリン、 2 4 mM 2—ケトグルタル酸、 4 mM 硫酸第一 鉄および 8 mM L—ァスコルビン酸を含有する 2 4. O mMの M E S 〔2— (N 一モルホリノ) エタンスルホン酸〕 緩衝液 (P H 6 . 5 ) に菌体、 菌体処理物ま たは酵素標品等を添加して合計 2 5 0 /Z 1とし、 3 5で、 1 0分間反応する。 反 応液を 1 0 O :、 2分間加熱して反応を停止した後に、 反応液中に生成したトラ ンスー 4ーヒドロキシー L一プロリンを高速液体クロマトグラフィー (以下、 H P L Cと略記する) を用いて定量する。
定量にはトランス一 4ーヒドロキシー Lーブロリンを定量できる方法であれば どのような方法を用いてもよいが、 例えば、 反応液中のトランス一 4ーヒドロキ シー L一プロリンを配位子交換クロマトグラフィーカラム、 例えば、 株式会社住 化分析センター製 SUMICHIRAL 0A5000等を用いて H P L Cで分離溶出後、 7—ク ロロ一 4一二トロべンゾー 2—ォキサ一 1、 3—ジァゾール (以下、 N B Dと略 記する) によってボストカラム誘導体化し検出する方法(ボストカラム锈導体化 法)、 あるいは反応液中の目的化合物をあらかじめ N B D锈導体化しておき、 こ れを H P L Cを用いた逆相クロマトグラフィーにかけて N B D锈導体化物を分離 後検出する方法 CWi l l iam J. Lindblad and Robert F. Diegelmann, アナリティ カル ·バイオケミストリー (Analyt ical Biochemistry) 、 1 3 8卷、 3 9 0〜 3 9 5ページ、 1 9 8 4年〕 (ブレカラム誘導体化法) 等があげられる。 N B D 锈導体化物の検出は、 いずれもその蛍光(励起波長 5 0 3 n m、 蛍光波長 5 4 1 n m)測定によって行われる。
上記のようにして培養菌体中に L一プロリン 4位水酸化酵素の生成が確認され た形質転換体の培 ¾物から、 酵素を単離精製するには、 通常の酵素の単雕、 精製 法を用いればよい。 例えば、 該形質転換体の培養液を遠心分離することにより、 培養液中の菌体を集め、 該菌体を洗浄した後に、 超音波破碎機、 フレンチブレス、 マントンガウリンホモゲナイザー、 ダイノミル等により菌体を破砕し、 無細胞抽 出液を得る。 該無細胞抽出液を遠沈分離することにより得られた上清から、 硫安 等による塩析、 ジェチルアミノエチル (DEAE) -セファロースなどの陰イオン交換 クロマトグラフィー、 ブチルセファロ一ス、 フエ二ルセファロースなどの疎水性 クロマトグラフィー、 分子篩を用いたゲル «過法、 等電点電気泳動等の電気泳動 法等の手法を用い、 精製酵素摞品を得ることができる。
培赛菌体中に L一プロリン 4位水酸化酵素の生成が確認された形質転換体を、 上記の形質転換体の培赛条件と同様の条件で培養し、 トランス一 4ーヒドロキシ 一 L一プロリンを生成蓄積させ、 該培養物よりトランス一 4ーヒドロキシー L一 ブロリンを採取することにより、 トランス一 4ーヒドロキシー L一ブロリンを製 造することができる。
L一ブロリンを糖源から生成し培養液中に蓄積する能力のある形質転換体を用 いることにより、 培養中に L一ブロリンを添加しなくともトランス一 4ーヒドロ キシー L一プロリンを製^することができるが、 L一プロリンを 5〜 1 0 0 0、 好ましくは 2 0〜2 0 O mMの濃度となるように、 適時培地に添加することによ り、 より効率的に L一プロリン 4位水酸化酵素の製造を行うことができる。
2ーケトグルタル酸を糖源から生成し培養液中に蓄積する能力のある形質転換 体を用いることにより、 培 «中に 1ーケトグルタル酸を添加しなくともトランス 一 4ーヒドロキシー L一ブロリンを製造することができる。 該形質転換体を用い る場合には、 グルコース等の糖源を適時培地に添加し、 2—ケトグルタル酸を培 養液中に生成、 蓄積させることにより、 より効率的に L一プロリン 4位水酸化酵 素の製造を行うことができる。 2—ケトグルタル酸を糖源から生成し培養液中に 蓄積する能力のない形質転換体を用いる場合には、 必要に応じて 2—ケトグル夕 ル酸を培養時に添加する。
また、 必要に応じて 2—ケトグルタル酸および 2価鉄イオンを培赛時に添加し てもよい。
トランス一 4ーヒドロキシー Lーブロリンの製造は、 L一プロリン 4位水酸化 酵素の生成が確認された形質転換体の培養物、 該培養物から分離した菌体または 菌体処理物を酵素源として用いて行うこともできる。
即ち、 該形質転換体の培養物、 該培養物から分離レた菌体または菌体処理物を、 酵素反応に適した水性媒体中に、 L一プロリン、 二価鉄イオン、 2—ケトグル夕 ル酸とともに加え、 また必要に応じて界面活性剤や有機溶剤を添加することによ り、 L一プロリンをトランス一 4ーヒドロキシー Lーブロリンに変換させ、 次い で反応液よりトランス一 4ーヒドロキシー L一プロリンを採取することにより、 トランス一 4ーヒドロキシー L一ブロリンを製造することができる。
菌体処理物としては、 菌体の乾燥物、 菌体の凍結乾燥物、 菌体の界面活性剤処 理物、 菌体の酵素処理物、 菌体の超音波処理物、 菌体の機械的摩砕処理物、 菌体 の溶媒処理物、 菌体の蛋白質分画物、 菌体および菌体処理物の固定化物などがあ げられる。 また、 該菌体より抽出して得られる L一プロリン 4位水酸化酵素活性 を有する酵素、 該醉素の精製摞品、 固定化物なども用いられる。
水性媒体としては、 水、 りん酸塩、 炭酸塩、 酢酸塩、 ほう酸塩、 クェン酸塩、 トリスなどの緩衝液、 メタノール、 エタノールなどのアルコール類、 酢酸ェチル などのエステル類、 アセトンなどのケトン類、 ァセトアミドなどのアミド類など があげられる。
界面活性剤としては、 ポリオキシエチレン ·ステアリルアミン (例えばナイミ ーン S— 2 1 5、 日本油脂社製等) 、 セチルトリメチルアンモニゥム ·プロマイ ド、 カチオン FB、 カチオン F 2— 4 0 Eなどのカチオン性界面活性剤、 ナトリ ゥムォレイルアミド硫酸、 ニューレックス TAB、 ラビゾール 8 0などのァニォ ン性界面活性剤、 ポリオキシエチレンソルビタン ·モノステアレート (例えばノ 二オン ST 2 2 1) などの両性界面活性剤、 その他三級アミン PB、 へキサデシ ルジメチルァミンなどがあげられ、 反応を促進するものであればいずれでも使用 できる。 これらは通常 0. 1〜5 Omg/ 1、 好ましくは、 1〜2 OmgZ lの 演度で用いられる。
有機溶剤としては、 トルエン、 キシレン、 脂肪族アルコール、 ベンゼン、 酔酸 ェチルなどが用いられる。 通常 0. 1〜5 0 lZm 1、 好ましくは 1〜 2 0 1 /m 1の濃度で用いられる。
反応は、 : L一プロリン 4位水酸化酵素活性を有する形質転換体を培養後、 該形 質転換体の培 *物、 該培養物から分離した菌体、 菌体処理物を酵素源として用い て水性媒体中で行う。
これら酵素源の反応液中における酵素活性は、 用いる基質量などにより決定さ れるが、 通常 1、 0 0 0〜 1 0、 0 0 0、 0 0 0 UZ 1、 好ましくは 1 0、 0 0 0〜3、 0 0 0、 0 0 0 UZ 1である。 微生物の菌体および菌体処理物を用いる 場合、 その濃度は通常湿菌体で 1〜 3 0 0 gZ 1である。
反応は通常、 温度 1 5〜5 0 :、 pH 6. 0〜9. 0、 で 1〜9 6時間行う。 反応に用いられる L一プロリンの濃度は、 l mM〜 2 Mである。 L一プロリンは、 単品を反応液に直接添加して用いてもよいし、 L一プロリンを糖源から生成し培 養液中に蓄粮する能力のある微生物の培養液等を用いて供給してもよい。 さらに は、 L一ブロリンを糖源から生成する能力のある微生物を形質転換体の宿主微生 物として用いることにより、 該宿主微生物が生成する L一プロリンを反応に利用 することもできる。
反応には二価鉄イオンが必要とされ、 通常 1〜 1 0 O mMの濃度で用いられる。 二価鉄イオンとしては、 二価鉄を含み反応を阻害しない物であれば、 どのような ものでも用いることができる。 例えば、 硫酸第一鉄などの硫化物、 塩化第一鉄等 の塩化物、 炭酸第一鉄などの他、 クェン酸塩、 乳酸塩、 フマル酸塩等のような有 機酸塩等をあげることができる。 使用する該形質転換体の培養物、 該培養物から 分離した菌体、 菌体処理物あるいは反応液成分中に二価鉄ィオンが含まれていれ ば、 特に二価鉄イオンを添加しなくてもよい。
2—ケトグルタル酸は、 反応液に単品を添加してもよいし、 用いる菌体および 菌体処理物の有する代謝活性によって 2—ケトグルタル酸に転換し得る化合物を 用いて供給してもよい。 このような化合物としては、 グルコースのような糖質、 グルタミン酸などのアミノ酸、 コハク酸などの有機酸等があげられる。 これらの 化合物は単独で用いてもよいし、 複数を併用してもよい。
培養物または水性媒体からトランス一 4ーヒドロキシー L一プロリンを回収す る方法としては、 イオン交換榭脂等を用いるカラムクロマトグラフィー、 あるい は晶出法等、 通常の分離方法が用いられる。 回収されたトランス一 4ーヒドロキ シー Lーブロリンは1 3 C— NM Rスペクトル、 ' Η— N M Rスペクトル、 マスス ベクトル、 比旋光度等の通常の分析手段によって、 その構造を確認することがで さる。
本発明により製造されたトランス一 4ーヒドロキシー L一ブロリンは、 前述の ボス卜カラム誘導体化法ゃブレカラム銹導体化法によって、 定量分析することが できる, 図面の簡単な説明
第 1図は、 ブラスミツド pRH 7 1の制限酵素地図、 および、 ブラスミツド P Y a n 1 0および pYan 1 3の造成工程を示す図である
図中、 黒塗の太線で示した部分が、 クロ一ン化された Dac tylosporangium sp. RH1の染色体部分を示す。 Apは pBR 3 2 2由来のアンビシリン耐性遺伝子を 示す, なお図中にはブラスミツドの造成に関係する制限酵素部位のみを表示して ある。
第 2図は、 ブラスミツド Ρ Τ Γ 1 4の造成工程を示す図である。
図中、 黒塗の太線で示した部分が、 L一プロリン 4位水酸化酵素遺伝子を含む 部分を示す。 Apは pBR 3 2 2由来のアンビシリン耐性遺伝子を、 は大腺 菌トリブトファンォペロンのプロモーターを示す。 矢印は遗伝子の転写並びに翻 釈の方向を示す, なお図中にはブラスミツドの造成に関係する制限酵素部位のみ を表示してある,
第 3図は、 ブラスミツド pT c 4 OHの造成工程を示す図である。
図中、 黒塗の太線で示した部分が、 L—プロリン 4位水酸化酵素遗伝子を含む 部分を示す。 Apは pBR 3 2 2由来のアンビシリン耐性遺伝子を、 Pi は ll プロモーターを示す。 矢印は遺伝子の転写並びに翻訳の方向を示す。 なお図中に はブラスミツドの造成に関係する制限酵素部位のみを表示してある。
第 4図は、 ブラスミド pT r 2 - 4 OHの造成工程を示す図である。
図中、 黒塗の太線で示した部分が、 L -プロリン 4位水酸化酵素遺伝子を含む 部分を示す。 Apは pBR 3 2 2由来のアンビシリン耐性遺伝子を、 PiipX 2 は大腸菌由来の卜リブ卜ファンオペロンのプロモーターを 2つ直列させたブロモ 一ター (タンデム卜リブトフアンプロモーター) を示す。 矢印は遣伝子の転写並 びに翻訳の方向を示す。 なお図中にはブラスミドの造成に関係する制限酵素部位 のみを示してある。
第 5図は、 プラスミド pT r 2一 4 ΟΗΔの造成工程を示す図である。
図中、 黒塗の太線で示した部分が、 L一プロリン 4位水酸化酵素遗伝子を含む 部分を示す。 Αρは pBR 3 2 2由来のアンビシリン耐性遺伝子を、 PllfiX 2 は大腸菌由来のトリブトファンオペロンのプロモーターを 2つ直列させたブロモ 一ター (タンデムトリブトファンプロモーター) を示す。 矢印は遺伝子の転写並 びに翻訳の方向を示す。 なお図中にはブラスミドの造成に関係する制限酵素部位 のみを示してある。
第 6図は、 プラスミド pWFH 1の造成工程を示す図である。
図中、 網掛けの太線で示した部分が、 ΙΠおよび I処理した PCR增 幅断片の挿入部分を示す。 黒塗の太線で示した部分が、 Dactyl osporangium sp. RH1由来の L一プロリン 4位水酸化酵素遺伝子を含む部分を示す。 A pは p B R 3 22由来のアンビシリン耐性遺伝子を、 Piipx 2は大腸菌由来のトリブトフ アンオペロンのプロモーターを 2つ直列させたプロモーター (タンデムトリブト ファンプロモーター) を示す。 矢印は遺伝子の転写並びに翻訳の方向を示す。 な お図中にはブラスミドの造成に関係する制限酵素部位のみを示してある。
第 7図は、 ブラスミツド pES 1 -2 3 aの造成工程を示す図である。
図中、 黒塗の太線で示した部分が、 L一プロリン 4位水酸化酵素遺伝子を含む 部分を示す。 i^Z は大腸菌 /3—ガラクトシダーゼ遗伝子を、 八 は 8113 2 2由来のアンビシリン耐性遺伝子を、 Ρΐ ςは 1^プロモーターを示す, 矢印は遗 伝子の転写並びに翻訳の方向を示す。 なお図中にはブラスミツドの造成に関係す る制限酵素部位のみを表示してある。
第 8図は、 ブラスミツド pMc 4 OHの造成工程を示す図である。
図中、 黒塗の太線で示した部分が、 L一プロリン 4位水酸化酵素遺伝子を含む 部分を示す。 lEは大腸菌マルトース結合蛋白遣伝子を、 il^Z は大腸菌 /3—ガ ラクトシダーゼ遺伝子を、 Apは pBR 3 22由来のアンピシリン耐性遺伝子を、 l lQは大腸菌ラクトースォペロンのリブレッサー遣伝子を、 I SB terminatorは IinB遺伝子のターミネータ一を、 Pl £は ii^プロモーターを示す。 矢印は遗伝子 の転写並びに翻訳の方向を示す。 なお図中にはブラスミツドの造成に関係する制 限酵素部位のみを表示してある。 発明を実施するための最良の形態
実施例 1 ダクチロスポランジゥム ·エスビー RH 1の L一プロリン 4位水酸 化酵素蛋白質をコードする遗伝子の部分 DNAの調製
( 1 ) ダクチロスポランジゥム ·エスビー RH 1染色体 DNAの単離
ダクチロスポランジゥム ·エスピー RH 1の染色体 DNAは常法に従って以下 の様に車難した。 マンニトール 5%、 グリシン 0.0 5 %を添加した SK# 2 培地 (グルコース 0.2 5%、 可溶性澱粉 し 0 %、 酵母エキス 0.2 5 %、 ぺ ブトン 0.2 5%、 肉エキス 0. 1 5%、 りん酸 1カリウム 0.0 1 %、 硫酸マ グネシゥム 0.0 3%を含み、 6N NaOHで pH7.6に調整した培地) を轼 験管に 1 0ml分注し、 1 2 0 、 20分間殺菌した。 これに、 HT寒天平板培 地 (可溶性澱粉 1 %、 NZァミン 0.2%、 酵母エキス 0. 1 %、 肉エキス
0.1 %、 寒天 1.5 %を含み、 6 N N aOHで pH 7.2に調整後、 1 2 0で、 20分間殺菌した培地) に生育したダクチロスポランジゥム ·エスピー RH 1を 一白金耳植菌し、 2 8で、 3日間振とう培 IIした。
該培養液を遠心分離し、 得られた菌体を 1 0m 1の 1 0.3 %スクロース溶液 で洗浄後、 6mlの TS 〔1 0.3% スクロース、 5 0 mM T r i s - HC 1
(pH8.0) 、 2 5mM EDTA〕 に懸溷し、 リゾチーム溶液 (5 Omg/ ml TS) 1mlを加え、 3 7 :、 6 0分間インキュベートした。 次いで、 該 リゾチーム処理液にプロティナーゼ K (シグマ社製) 溶液(2mgZml TS) 0.6mlを加え穏やかに混合し、 さらに 3.6mlの 3.3 % (W/V) SDS 溶液を穏やかに混合しつつ加え、 37で、 6 0分間インキュベートした。 該混合 液を 5 0で、 3 0分間加熱後水冷し、 TE U OmM T r i s · HC 1 (pH 8.0) 1 m EDTA〕 飽和フエノール Zクロ口ホルム (1 Z 1、 v/v) を等量加え、 3 0分間穏やかに振とうした。 遠心分離後、 上層をとり、 再度 TE 飽和フエノール Zクロ口ホルムによる抽出操作を行い、 遠心分離後、 得られた上 層に等量のクロ口ホルムを加え、 混合後、 再度遠心分離した。 上層をとり、 該上 層に 1 0 0 :、 1 0分間の加熱処理をした RN a s e A水溶液 ( 1 OmgZm 1 ) を 2 0 1加え、 3 7*C、 4 5分間インキュベートした。 該 RNa s e A 処理液に、 1 Z 1 0容量の 5 M食塩水および 1 / 容量の 5 0 % PEG 6 0 0 0を加え、 穗やかに混合後、 氷冷下一晩放置した。 該混合液を 1 2、 0 0 0 r p m、 1 0分問遠心分雕後、 上消を完全に捨て、 残った沈殿を 5m 1の TEに溶解 した。 1 1 0容量の 3 M 酢酸ナトリゥム溶液および 1ノ 3 0容量の 6 6 mM 塩化マグネシウム溶液を加え混合後、 2.2倍容量の冷エタノールを加え、 穏ゃ かに混合した。 該混合液を 1 0, 0 0 0 r pm、 1 0分間遠心分離後、 上清を捨 て、 得られた沈殿を 7 0 %冷エタノールで 2回洗浄した。 該沈殿 (2 5 0 /z gの 染色体 DNAを含有) を TEに溶解し、 染色体 DNAとして以後の実験に用いた。
(2) ダクチロスポランジゥム ·エスピー RH 1由来の L一プロリン 4位水酸化 酵素蛋白の部分アミノ酸配列の決定
ダクチロスポランジゥム ·エスピー RH 1の生産する L一プロリン 4位水酸化 酵素を参考例 1の方法に準じて単難精製し、 該精製酵素蛋白質の N末端アミノ酸 配列を島津製作所社製 Protein seauencer model PPSQ- 10を用いて分析し、 配列 番号 1に示された配列の N末端 2 4アミノ酸残基の配列を決定した。
(3) L一プロリン 4位水酸化酵素遺伝子の部分 DNAの調製
配列番号 1記載のアミノ酸配列のアミノ酸番号 1〜 6に対応する配列番号 3記 載のセンス鎖ミックス DN Aブライマーと、 配列番号 1記載のアミノ酸配列のァ ミノ酸番号 1 9〜2 4に対応する配列番号 4記載のアンチセンス鎖ミックス DN Aブライマーをアブライド ·バイオシステムズ (Applied Biosystems) 社製 3 8 0 A · DNA合成機を用いて合成した。
該合成 DNAをブライマーとし、 ダクチロスポランジゥム ·エスピー RH 1染 色体 DNAを铸型として PCRを行った。 PCRは、 株式会社アステック製プロ グラム ·テンブ ·コントロール 'システム P C— 7 0 0を用いて行った。 反応 は、 以下の組成の反応液 2 0 a 1を用いて行った。
反応液組成:ダクチロスポランジゥム ·エスピー RH 1染色体 DNA 2 2 n e/ し センス鎖ミックス DNAブライマーおよびアンチセンス鎖ミックス D NAブライマー各 1 0 /zM、 Pfu DNAポリメラーゼ (STRATAGENE社製) 0. 1 2 5U//I DMSO 1 0 %, T r i s - HC l (pH8.2) 2 OmM, KC 1 1 Om , 硫酸アンモニゥム 6mM、 埴化マグネシウム 2mM、 T r
1 t on X - 1 0 0 0. 1 %、 Bovine Serum Albumine 1 0 n gZ β 1。
反応は、 9 6で、 5分間のインキュベーション後、 9 6 一 2分間、 3 7で一 1分間、 7 2で一 1分間のインキュベーションの工程を 5回繰り返し、 さらに、 9 6 一 2分間、 5 0でー 1分間、 7 2*C— 1分間のインキュベーション工程を 3 5回緣り返した。 反応液を 1 5 %ポリアクリルアミド (アト一株式会社製、 パ ジエル NPU-15L) 電気泳動にかけた後、 7 1 b pのパンドを日本エイド一株式会 社製のダヴィンチくん (ペンタッチリカバリー NB— 7 0 0 0型) を用いて回収 した。 回収した 7 1 b pのDNA断片を、 フアルマシア社製 Sure Clone Ligatio n Kitを用いて pUC 1 8の^ I部位に挿入し、 アブライドバイオシステムズ社 製の塩基配列決定キッ卜 (Tad DyeDeoxy™ Terminator Cycle Sequencing Kit) を用いてその塩基配列を決定した。 決定した 7 1 b pの DNA断片の塩基配列を 配列番号 5に示す。 この 7 1 b pの DNA断片の塩基配列から推定されるァミノ 酸配列は、 配列番号 1記載の精製酵素の N末端アミノ酸配列と完全に一致した。 実施例 2 L—プロリン 4位水酸化酵素遺伝子を含む DN A断片の取得
( D D I G化プローブの作成 7 1 b pの DNA断片のジゴキシゲニン (Digoxigenin、 D I G) 化は、 ベー リンガー マンハイム社製 PCR DIG Labelling Kit を用いて行った。
Pfu DNAポリメラーゼ (STRATAGENE社製) 2.5 U、 Pfu DN Aポリメラー ゼ用 X 1 0緩衝液 (STRATAGENE社製) 5 し DM S O 5 1、 X 1 0 PCR D IG mix (ベーリンガー マンハイム社製) 、 実施例 1 (3) に於いて P CRにより作成しポリアクリルアミドゲル電気泳動後回収した 7 1 b pのフラグ メントを含む DNA溶液を 1 0倍希釈して得られた該希釈液 1 ^ 1、 配列番号 3記載のセンス鎖合成 DN Aと配列番号 4記載のアンチセンス鎖合成 DN Aを各 1 0 Mを含む反応液 5 0 1を用いて PCRを行った。 反応は、 9 6で、 5 分間のインキュベーション後、 9 6で一 2分間、 5 0*0— 1分間、 7 2でー 1分 間のインキュベーション工程を 3 5回繰り返した。 該反応液を、 1 2.5 %ポリ アクリルアミドゲル電気泳動にかけ、 7 1 b pの増幅断片の生成を確認し、 ゲル より実施例 1 (3) と同様の操作により該断片を回収し、 これをブローブとして 用いた。
(2) サザーンハイブリダィゼーシヨン
ダクチロスポランジゥム ·エスピー RH 1の染色体 DNA 1 0 gに、 制限 酵素^ I (宝酒造社製) 36 Uを添加し、 37で、 2時間反応させ、 該 DNA を切断後、 該 DNAをァガロースゲル電気泳動にかけた。 実施例 2 (1) で得た プローブを用い、 ベーリンガー マンハイム社製の DIG Luminescent Detection Kitを用いて、 添付の説明書記載の方法に従ってサザーンハイブリダィゼーショ ンを行った。
即ち、 ァガロースゲル電気泳動後、 ァガロースゲルを 0.2 5 N 塩酸中で 20 分間ゆるやかに振とうし、 次いで、 0.5M 水酸化ナトリウム一 1.5M 塩化ナ トリウム中で 5 0分間浸した。 さらに、 2M 塩化ナトリウム一 1 M T r i s · HC 1 (pH5.0) に 2 5分間浸した。 アト一社製ジエノビレーターポンプ AE- 6680Pおよびアト一社製ジエノビレーター AE-6680C を用いて、 7.5mmHgで 吸引しつつ、 Hybond-N+膜 (アマ一シャム社製) に、 20倍濃度の S SC (1倍 濃度の SS Cの組成は; 1 5 OmM 塩化ナトリウム、 1 5mM クェン酸ナトリ ゥムである) 中で、 ブロッテイングした。 ブロッテイング後、 8 o , 1 0分間 乾燥し、 さらに FUNA-UV-LINKER FS-800 (フナコシ社製) を用いてクロスリンク を行った。 このようにして得た膜を、 DIG Luminescent Detection Kit のハイブ リダィゼーシヨン 'バッファー (フオルムアミド 5 0 %vZv、 ブロッキング 轼薬 2 %、 N—ラウリルザルコシン 0. 1 %wZv、 SDS 0. 0 2 w/v, を 5倍濃度の S SC中に含んだ溶液) 1 0m l中に 4 2で、 1時間浸した後、 ブ ローブ溶液 〔実施例 2 ( 1 ) で得たプローブ 3 1を 2 0 0 /z 1のハイブリダィ ゼーシヨン ·バッファーに添加し、 9 5*C、 2分間処理後、 ハイブリダィゼーシ ヨン ·バッファーを添加し 1. 5mlに調製したもの〕 中に、 4 2 :、 一晩浸し た, 該膜をさらに、 0. 1 % SDSを含む 2倍濃度の 2 5ml S SCを用いて 室温で 5分間づっ 2回洗浄後、 0. 1 % SDSを含む 0. 1倍濃度の 2 5m l S SCを用いて 6 8でで 1 5分間づっ 2回洗浄した。
該洗浄膜を洗浄バッファー 〔0. 3 %w/v T e e n- 2 0を含むバッファ 一 1 (0. 1 M マレイン酸、 0. 1 5M 塩化ナトリウム、 pH7. 5) を用い て室温で 1〜 5分、 5 0mlのバッファー 2 ( 1 %ブロッキング試薬を含むパッ ファー 1) を用いて室温で 3 0分間、 1 β 1の anti- digoxigenin-AP Fab を含む 1 0m 1のバッファー 2を用いて室温で 3 0分間、 5 0 m 1のバッファー 2を用 いて室温で 3 0分間づっ 2回、 1 0m lのバッファー 3 (0. 1 T r i s · H C 1、 0. 1 M 塩化ナトリウム、 5 OmM 塩化マグネシウム、 pH 9. 5) を用 いて室温で 2〜 5分、 Lmnigen PPD 5 0 u Iを含む 5 m 1ノ ッファー 3を用いて 室温で 5分間、 順次処理した後、 濂紙上で素早く水を切り、 サランラップに包ん だ後、 3 7でで 1 5分間静 Sした。 これを Hyper lm-ECL (アマ一シャム社製) を用いて室温で 3 0分間 β光した。
約 5. 5 kbの位置にプローブと強くハイブリダィズする DN Α断片が存在す ることが判明した。
(3) 染色体 DNAの分画
ダクチロスボランジゥム ·エスビー RH 1の染色体 DNA 1 00 gに、 制限 酵素 I (宝酒造社製) 36 0 Uを添加し、 3 7で、 2時間反応させ、 該 DN Aを切断後、 等量の TE飽和フエノールノクロ口ホルムを加え混合した。 遠心分 離後、 上層をとり、 2.2倍容量の冷エタノールを加え、 穏やかに混合した。 1 0、 000 r pm, 1 0分間遠心分離し、 上涫を捨てたのち、 沈殿を 70%冷ェ タノールで 2回洗浄し、 エタノール沈殿を得た。 以後、 TE飽和フエノール Zク ロロホルム、 冷エタノールを用いエタノール沈殿を得る操作をエタノール沈殿法 と呼ぶ。 該沈殿を 1 2 0 1 TEに溶解し、 ァガロースゲル電気泳動にかけた。 泳動後、 5.5 kb付近の DNA画分を Prep-A-gene (バイオラッド社製) を用い てァガロースゲルより抽出精製し、 約 7 ^gの Xi I切断染色体 DNA画分を得 た。
(4) ファージライブラリーの作成
STRATAGENE社製の Undigested λΖΑΡΙΙ Cloning Kit を用いて以下の様にファ ージライブラリーを作成した。
λΖΑΡΙΙ DNA5 //gに、 制限酵素l I (宝酒造社製) 36 Uを添加し、 3 7で、 3時間反応させ、 該 DNAを切断後、 エタノール沈殿法により、 エタノー ル沈殿を得た。 該エタノール沈殿を 3 5 1の TEに溶解後、 宝酒造社製のアル カリフォスファターゼ CAlkaline Phosphatase (Calf Intesteine) 〕 を用い、 添 付の説明害記載の方法に従って脱リン酸化反応を行った。 反応後、 エタノール沈 殿法により、 エタノール沈殿を得た。 該沈殿を 5 1の TEに溶解した。 このよ うにして得た Xl I切断 ΖΑΡΠ DNA 0.36 /i gと実施例 2 ( 3 ) で得た^ I切断染色体 DNA 0.3 5 /xgを、 ライゲーシヨンキット (TAKARA ligation Kit 、 宝酒造社製) を用いて 2 6で、 2.5時間反応させ、 連結した。 該反応液 にエタノールを添加し、 生じた DNAの沈殿を 4 / 1の TEに溶解した。 該 DN Aをさらに、 Gigapack II Gold Packaging Extract (STRATAGENE社製) を用い て、 λファージ粒子中にパッケージングした。
一方、 coH XLl-Blue MRF'株 (STRATAGENE社製) を 0.2 % (w/v) マル トースおよび 1 OmM硫酸マグネシウムを含む LB培地 (パクトトリブトン 1 0 g、 パクトイーストエキストラクト 5 g、 食塩 5 gを蒸留水 1 リツターに含 み、 1 2 0で、 2 0分間滅菌) 3m lに植菌し、 3 0で、 1 6時間培養した。 培 養後、 遠心分離により集菌し、 得られた菌体を、 6 0 O nmにおける吸光度が約 0. 5となるように、 1 OmM 滅菌硫酸マグネシウム溶液に懸濁した。
上記の菌液 2 0 0 1とパッケージング液 1 0 1を混合後、 3 7 :、 1 5分 間インキュベートした, 該混合液に LB軟寒天培地 (LB培地に寒天を 0.6 % になるように加えたもの) 3m 1、 0. 5 M I PTG水溶液 1 5 1、 X-G a 1 (5—プロモー 4一クロロー 3—インドリル一 3— D—ガラクトシド) 溶液 (2 5 Omg X— Ga l m 1ジメチルフオルムアミド) 5 0 〖を添加混合 し、 LB寒天培地 (LB培地に寒天を 1.8 %になるように加えたもの) 上に重 層後、 3 7でで一晩培養した。
約 5 0 0 0個の無色のプラークが得られ、 これをファージライブラリ一として 用いた。
(5) 目的クローンの選択
上記ファージライブラリーの中から、 目的とするクローンを有するブラークを 以下の方法で選択した。
L B寒天培地上に出現したプラークを、 5倍濃度の S S Cで洗浄したナイ口ン 膜 (シュライヒヤー ·アンド,シュール、 Schleicher & Sclmell、 社製 Nytran) に移しとつた後、 該膜を 0. 5M 水酸化ナトリウム一 に 5 M塩化ナトリウムを 染み込ませた濂紙上に 5分間静置した。 さらに、 該膜を 1. 5 M 塩化ナトリウム - 0. 5 T r i s - HC l (pH 8. 0) を染み込ませた濂紙上に 2分間づっ 2回、 2倍濃度の S S Cを染み込ませた濂紙上に 1分間づっ 2回静置後、 8 0 で 3 0分間乾燥させた。 乾燥させた該膜を、 0. 1 % SDSを含む 2倍澳度の S SCで洗浄した後、 2倍澳度の S SCで洗浄し、 風乾した。
実施例 2 ( 1 ) で得られた D I G化ブローブおよび、 ベーリンガー マンハイ ム社製の DIG Luminescent Detection Kitを用いて、 実施例 2 (2) 記載の方法 に従って検出を行った結果、 目的とするクローンを有するポジティブプラークを 1つ検出した。
(6) クローンの確認
該ポジティブプラークの周辺約 1平方センチを切りだし、 1 m lの SM (5. 8 g/ 1 埴化ナトリウム、 2 gZ l 塩化マグネシウム、 0.0 1 % ゼラチン、 5 OmM T r 1 s · HC pH 7. 5 ) および 2 0 1のクロ口ホルムを添加 し充分に携拌後、 遠心分離し、 得られた上消をファージ抽出液とした。
配列番号 5に記載の塩基配列の 1 3〜 3 2に対応する配列番号 6記載のセンス 鎖 DNAブライマーと、 配列番号 5に記載の塩基配列の 5 3〜 7 1に対応する配 列番号 7記載のアンチセンス鎖 DNAブライマー (但し配列番号 5記載の 6 6番 目の塩基に対応する塩基を Gとした) をアブライド ·バイオシステムズ (Applie d Biosystems) 社製 3 8 0 A · D NA合成機を用いて合成した。
上記のファージ抽出液 5 1および配列番号 6記載のセンス鎖 DN Aブライマ 一と配列番号 7記載のアンチセンス鎖 DNAブライマーを用い、 実施例 1 (3) 記載の方法に準じ PCRを行い、 5 9 bp DNA断片を得た, この DNA断片 を、 1 2. 5 %ポリアクリルアミド亀気泳動で解析し、 目的とするクローンであ ることを確認した。
実施例 2 (4) に示したパッケージング液の代わりに、 上記ファージ抽出液を 用い、 再度実施例 2 (4) 〜 (6) を繰り返し、 目的とするクローンを純化した。
(7) ファージ DNAの in vivo切除 (excision) によるブラスミツド化 実施例 2 (6) で得た抽出液中のファージ DN Aの in vivo切除によるブラス ミツド化を、 STRATAGENE社製の Undigested λΖΑΡΙΙ Cloning Ki tを用い、 添付の 説明害記載の方法に従い、 以下の様に行った。
実施例 2 (4) の方法に準じ、 X -Blue MRF'株を 0. 2 % (w/v) マルトースおよび 1 OmM 硫酸マグネシウムを含む LB培地 3m 1に植菌し、 3 O :, 1 6時間培養した。 培 ¾後、 遠心分離し、 得られた菌体を、 6 0 O nm における吸光度が約し 0となるように、 1 OmM 硫酸マグネシウム溶液に懸獨 した。 この菌液 2 0 0 1に、 実施例 2 (6) で得たファージ抽出液 1 0 0 1 および ExAssist helper phage (STRATAGENE社製) 1 1を加え 3 7でで 1 5分 間インキュベートした。 これに 3m lの 2 xYT ( 1 0 g 塩化ナトリウム、 1 0 g ィース卜エキストラクト、 1 6 g パクトトリプトンを 1 リッターの蒸留水 に溶解し、 1 2 0で、 2 0分問滅菌したもの) を加え、 3 7でで 2時間振とうし た。 これを 7 0で、 2 0分問加熱後、 遠心分離し上清を得た。 該上清 1 ^ 1を coli XLl-Blue MRF'株と同様の方法で培養して得た coli SOLR株の懸«液 2 0 0 1に加え、 3 7で、 1 5分間インキュベートした後、 5 0 /z gZmlのアン ピシリンを含む LB寒天培地に塗布し、 3 7で、 一晚インキュベートした。 寒天 培地上に生育してきたコロニーの中から、 ファージ抽出液の代わりに、 該コロニ 一を用いる以外は、 実施例 2 (6) 記載の方法に準じ、 ポジティブコロニーを選 択した。
このようにして得たポジティブコロニーより、 常法に従ってブラスミツドを抽 出し、 その構造を制限酵素消化により確認した。 得られたブラスミツド pRH 7
1は、 pBluescript SK (-)の^ I部位に約 5. 5 kbの^ I切断 DNA断片が挿 入された構造を有していた (第 1図) 。
(8) 塩基配列の決定
上記で得られた PRH 7 1 に挿入されている約 5. 5 kbの I断片より、 約 2.4 k bの^ I-Xho I断片 (第 1図中^ 1-1および^ 1-1で切断される断 片) と、 約 2 k bの I断片 (第 1図中 1-1および i 1-2で切断される断 片) をそれぞれ制限酵素で切断後取得し、 pBluescriptll KS (+) の Sac I-Xho I 切断部位および I切断部位にそれぞれサブクローン化し、 ブラスミツド ργ an 1 0および pYan 1 3を得た (第 1図) 。
宝酒造社製キロシークェンス用デレーシヨンキットを用いて、 pYan l 0よ り欠失変異ブラスミツドを作成した。 具体的な試薬および方法は、 キットに添付 の説明書に従った。
次に、 アブライドバイオシステムズ社製の塩基配列決定キット (Tad DyeDeoxy ™ Terminator Cycle Seauencing Kit) を用いて、 該欠失ブラスミツド中の約 2. 4 kbの I-Xho I断片の塩基配列を決定した。
PYan 1 3についても同様に、 欠失変異ブラスミツドを作成後、 塩基配列の 分析を行い、 約 2 k bの I断片中の I-Sac I断片 (第 1図中 1-1およ t Sac 1-2で切断される断片) の塩基配列を決定した。
Sac l- I断片 (第 1図中 l 1-1および^ 1-2で切断される断片) 27 0 7 bの塩基配列を配列番号 8に示した。
このようにして決定された塩基配列には、 配列番号 1に示された 27 2ァミノ 酸から構成されるタンパク質をコードする配列番号 2に示した塩基配列 (配列番 号 8の塩基番号 264から 1 079に対応) が存在していた。 このアミノ酸配列 中には、 精製 L一プロリン 4位水酸化酵素を用いて決定された配列番号 1に示さ れる N末端アミノ酸配列が含まれており、 取得した約 5.5 kbの I断片中に 目的とする L一プロリン 4位水酸化酵素遺伝子が存在することが確認された。 実施例 3 L—プロリン 4位水酸化酵素発現ブラスミツドの構築
(1) tiE プロモーター (Pixp) を用いた発現ブラスミツドの構築
配列番号 9記載のセンス鎖 DNAブライマーと、 配列番号 1 0に記載のアンチ センス鎖 DNAプライマーをアブライド ·バイオシステムズ (Applied Biosyste ms) 社製 38 0 A · DNA合成機を用いて合成した。 該合成 DNAをブライマー として、 pRH7 1を铸型として PC Rを行った。 反応は、 pRH7 1を 0. 1 g、 センス鎖およびアンチセンス鎖 DNAブライマー各 2 を含む反応液 2 0 1を用い、 実施例 1と同様に行った。 反応は、 96で、 5分問のインキュぺ ーシヨン後、 9 6で一 2分間、 5 8で一 1分問、 7 5 一 1分間のインキュベー シヨン工程を 3 0回繰り返した。 反応液をァガロースゲル電気泳動にかけ、 L一 プロリン 4位水酸化酵素の構造遺伝子をコードする 844 bpの増幅断片が生成 されていることを確認後、 ァガロースゲルより該增幅断片を常法により抽出し、 バイオラッド社製の Prep-A-gene を用いて断片を回収した。 回収した 844 bp の DNA断片の両末端を , IIIおよび HIで切断後、 エタノール沈殿法によ り、 エタノール沈殿を得た。 該エタノール沈殿を 5 /z 1の TEに溶解した。
PUPを含むブラスミツド pT r S 30 DNAを Hind ΙΠおよび to HIで切断 した。 該切断部位に、 SI ΠΙおよび HI処理した上記の L一プロリン 4位水 酸化酵素構造遺伝子断片を、 宝酒造社製のライゲーシヨンキットを用いて、 挿入 した。 得られたブラスミドを用い、 £. coU XLl-Blue MRF'株を常法にしたがつ て形質転換し、 該形質転換体を 5 0 gZm 1のアンビシリンを含む LB寒天培 地に塗布後、 37でで一晚培養した。 生育してきた形質転換体のコロニーより常 法に従ってブラスミツドを抽出し、 その構造を制限酵素消化により確認した。 上記の結果、 Pixpの転写方向と同方向に L一プロリン 4位水酸化酵素の構造 遺伝子をコードする DNA断片が挿入されたブラスミツド pT r 1 4 (第 2図) を得た。
(2) l プロモーター (P1 ) を用いた発現ブラスミツドの構築
実施例 3 (1) と同様の方法で、 P1 を用いた発現ブラスミツドを構築した。 配列番号 1 1記載のセンス鎖 DNAブライマーと配列番号 1 2に記載のアンチ センス鎖 DNAブライマーを合成し、 該合成 DNAをブライマーとして、 pRH 7 1を铸型として PCRを行い、 L一プロリン 4位水酸化酵素の構造遺伝子をコ ードする 846 bpの増幅断片を得た。 この断片を^ RI及び Hind III切断後、 Ptacを含むブラスミツド ρ BT a c 1 (ベーリンガーマンハイム社製) の Eco R I一 Hind III切断部位に挿入し、 coU XLl-Blue M F' 株に形質転換した。
得られた形質転換体から、 P 1^の転写方向と同方向に L一プロリン 4位水酸 化酵素の構造遺伝子をコードする DN A断片が挿入されたブラスミツド pTc 4 OHを得た (第 3図) 。
(3) P丄 ipx 2を用いた発現プラスミドの構築
実施例 3 (1) と同様の方法により、 L一プロリン 4位水酸化酵素の構造遗伝 子をコードする増幅断片を回収し、 制限酵素処理後、 エタノール沈殿法によりェ 夕ノール沈殿を得た。 該エタノール沈殿を 5 1の ΤΕの溶解した。
PBR 3 2 2を基本とし、 Piipを 2つ直列させたプロモーター Pli X 2を持 つブラスミド pKYP 2 00と合成リンカ一を組み合わせて作製された ATGベ クタ一 pTr S 3 2 DNAを IIIおよび^ 1 HIで切断した。 該切断部位に、 Hind IIIおよび S HIで切断処理した上記の L一プロリン 4位水酸化酵素構造遗 伝子断片を、 宝酒造社製のライゲーシヨンキットを用いて、 挿入した。
得られたプラスミドを用い、 coil XLl-Blue MRF' 株を常法に従って形質 転換し、 該形質転換体を 5 O ^gZmlのアンビシリンを含む LB寒天培地に塗 布後、 37でで 1晩培養した。 生育してきた形質転換体のコロニーより常法に従 つてプラスミドを抽出し、 その構造を制限酵素消化により確認した。 構造遺伝子 部分についてはアブライドバイオシステムズ社製の塩基配列決定キット (Tad Dy eDeoxy™ Terminator Cycle Sequencing Kit) を用いて、 塩基配列を決定し、 配列番号 2で示した塩基配列であることを確認した。
該方法により、 Pix x 2の転写方向と同方向に L一プロリン 4位水酸化酵 素の構造遺伝子をコードする DNA断片が挿入されたブラスミド pT r 2— 4 O Η (第 4図) を得た。
配列番号 1 3記載の DN Αと配列番号 1 4記載の DNAをアブライド ·バイオ システムズ (Applied Biosystems) 社製 3 8 0 A · D N A合成機を用いて合成し た。 該合成 DN Aの 3 ' 末端 2 5 bpは互いに相補的な配列となるように設計さ れている。 さらに、 該合成 DNAには、 Dactylosporangium sp. RH1由来の L一 プロリン 4位水酸化酵素蛋白の N末端部分をコードする塩基配列が含有されてい るが、 該塩基配列には、 Dactylosporangium sp. RH1由来の塩基配列を、 大腸菌 での発現に最適なコドンとなるように部位特異的な塩基 S換がほどこされている。 該合成 DNAをブライマーかつ铸型として PCRを行った。 反応は ElM DNA ポリメラーゼ (STRATAGENE社製) 0. 5 U、 Pfu DNAポリメラーゼ用 X I 0緩 衝液 (STRATAGENE社製) 2 1、 DMS O 2 / 1、 各 2. 5 mM d NT P液 1 配列番号 1 3記載の合成 DNAと配列番号 1 4記載の合成 DNA各 2 a Mを含む反応液 2 0 β 1を用いて行った。 反応は 9 6で、 5分問のィンキュベー シヨンの後、 9 6で一 2分間、 5 0 ー 1分間、 7 5で一 1分問のインキュベー シヨン工程を 3 5回繰り返した。 該反応液を、 1 5 %ポリアクリルアミドゲル電 気泳動にかけ、 1 0 7 b ρの増幅断片の生成を確認し、 ゲルより実施例 1 (3) と同様の操作により該断片を回収した。 回収した 1 0 7 b pの DNA断片の両末 端を Hind IIIおよび^! Iで切断後、 Bio, Inc. 製 MERmaid Kitを用いて回収し た。 回収液量は 1 6 X 1となった。
ブラスミド pT r 2— 4 OHDNAを旦 HIおよび Exy IIで切断した。 反応液 をァガロースゲル亀気泳動にかけ、 2つの断片が生成していることを確認した。 そして、 L一ブロリン水酸化酵素の構造遺伝子を含む長い断片の方をバイオラッ ド社製の Prep-A-geneを用いて回収し、 宝酒造社製のブランティングキットを用 いて末端を平滑化した後、 宝酒造社製のライゲーシヨンキッ卜を用いて連結環状 化した。 得られたプラスミドを用い、 coli JM109株を常法に従って形質転換 し、 該形質転換体を 5 0 g/m 1のアンビシリンを含む LB寒天培地に塗布後、 3 7でで 1晚培養した。 生育してきた形質転換体のコロニーより常法に従ってブ ラスミドを抽出し、 その構造を制限酵素消化により確認した。 以上の結果、 pT r 2— 4 ΟΗの一部の配列を削除したブラスミド pT r 2— 4 ΟΗΔ (第 5図) を得た。 ブラスミド pT r 2— 4 OHDNAを Hind IIIおよび Iで切断した。 該切 断部位に、 IIIおよび I処理した上記 PCR増幅断片を、 宝酒造社製の ライゲーシヨンキットを用いて、 挿入した。 得られたプラスミドを用い、 coi i XL1— Blue MRF' 株を常法に従って形質転換し、 該形質転換体を 5 0 gZm 1のアンピシリンを含む LB寒天培地に塗布後、 3 7でで 1晩培養した。 生育し てきた形質転換体のコロニーより常法に従ってブラスミドを抽出し、 その構造を 制限酵素消化により確認した, PCR増幅断片挿入部分についてはアブライドバ ィォシステムズ社製の塩基配列決定キット (Tad DyeDeoxy™ Terminator Cycle Sequencing Kit) を用いて、 塩基配列を決定した。 配列番号 1 5で示した塩基 配列が確認された。
上記の結果、 Plipx 2の転写方向と同方向に、 構造遺伝子の N末端の
I 部位までが Dactylosporangium sp. RH1 由来の塩基配列とは一部異なるが、 2§ ctylosporangium sp. RH1 由来の Lーブロリン 4位水酸化酵素とまったく同じァ ミノ酸配列をコードする構造遺伝子 DN A断片が挿入されたブラスミド pWFH 1 (第 6図) を得た。 実施例 4 形質転換体による L一プロリン 4位水酸化酵素の生産
実施例 3で得たブラスミツド pT r 1 4、 pTc 4.0Hおよび pWFHlを用 いて、 U ATCC12435を形質転換し、 形質転換体、 E. coll ATCC12435/pT r 1 4 , E. coli ATCC12435/pTc 4 OH、 E. coH ATCC12435/ p WF H 1を 取得した。 coli ATCC12435/pT r 1 4および coli ATCC12435/ p T c 4 OH株を各々 5 0 gZm 1のアンピシリンを含む 3m 1 LB培地に植菌し 3 O :、 一晚振とう培養した。
形質転換体 coll ATCC12435/pWFH 1はアンピシリン 1 0 0 g/m 1 を含む 5 Oml Me d 4培地 〔ポリペプトン (日本製薬) 1 %、 イーストェキ ストラクト (D i f c o) 0. 5 %、 NaC l l %〕 に植菌し、 3 0でで 1 6時 間振とう培養し、 さらに、 該培養液を種培養液とし、 2リツターの Me d 6培地 (グルコース 2ん 0 、 硫酸アンモニゥム 1 %、 K2HP04 0. 1 %, N a C 1 0. 2 %, Mg S040. 0 5 %, F e S 040. 0 2 7 8 %, C aC l 20. 0 0 1 5 %、 ポリペプトン 0. 4 %) を入れた 5リツタージャーフアーメンターに植菌 後、 L一 P r oを 2 0 OmM添加し、 培養温度 3 0 ;、 撹拌数 4 0 0回転 Z分、 通気量 1 リツター Z培養液 1 リツター Z分という条件で 4 8〜7 2時間培赛した。 培 ¾中、 グルコースは無くならぬように、 L一プロリンは約 5 OmMとなるよ うに適時添加し、 NH4OHを用いて、 pH 6. 5に下限コントロールした。
上記形質転換体の培養により得られた培養液を遠心分難し、 菌体を取得した。 該菌体の L一プロリン 4位水酸化酵素活性を下記条件下で測定した。 該菌体は 必要に応じて一 2 0でで凍結保存することが可能で、 使用時に解凍し酵素活性の 測定に用いることができる。
反応液 〔2 4 01111^の\1£5緩街液 (pH 6. 5) 中に、 1 2mM L—ブロリ ン、 2 4mM 2—ケトグルタル酸、 4mM 硫酸第一鉄および 8mM L—ァス コルビン酸を含有する〕 2 5 0 1に湿菌体量として 4 % ( /v) となるよう に加え、 3 5でで 1 0分間反応した。 反応液を 1 0 0 :、 2分間加熱することに より反応を停止した。
該反応停止液を遠心分離し、 得られた上消 1 0 0 1に、 0. 3 M ホウ酸緩衝 液 (PH 1 0.7) 1 0 0 1 , 1 0 % (ν/ν) メルカブ卜エタノール水溶液 4 n 1および 5 % (w/v) フタルアルデヒドのエタノール溶液 1 6 ^ 1を添 加し 6 0でで 3 0秒問放置後、 2 % (w/v) NBDのエタノール溶液 5 0 n 1 を加え、 6 Ot:で 4 0分間反応した。 該反応液に 1 N 塩酸 3 0 1を加えて反 応を停止した。 該反応停止液を遠心分離後、 フィル夕一濂過し、 沈殿を除去した 後、 高速液体クロマトグラフィーにより分析を行い、 生成したトランス一 4—ヒ ドロキシー L一プロリンを定量した。
高速液体クロマトグラフィーは以下の条件で行った。 移動相: 1 0mM クェン酸 (pH 4. 0) ノメタノール = 3Z 1 (vZv) 流速: 1 m l 分
カラム: YMC Pack ODS AQ-312 (YMC社製、 6 x 1 5 0 mm)
カラム温度: 5 0で
検出:蛍光検出、 励起波長 5 0 3 nm、 蛍光波長 5 4 1 nm
第 1表に示したように、 形質転換体は、 遗伝子源として用いたダクチロスボラ ンジゥムエスピー RH 1株と比較して、 菌体あたり 2 1 0〜 1 4 2 0倍の Lーブ 口リン 4位水酸化酵素を生産していた。
第 1 表
形質転換体の生産する L一プロリン 4位水酸化酵素活性
¾株 菌体活性" 相対活性"
E. coli ATCC12435/PWFH1 4 0. 0 0 1 4 2 8
E. coJi ATCC12435/pWFHl9) 4.9 6 1 7 7
E. coli ATCC12435/pTrl4 1 0.6 8 3 8 1
E. coU ATCC12435/pTc40H 5.9 8 2 1 3
E. coli ATCC12435/pTrS30 検出せず
E. coU ATCC12435/pBTacl 検出せず
Dactylosporangium sp. RHl4) 0.0 2 8 1
Streptomyces griseoviridis JCM42505' 0. 0 2 0 0
Streptomyces dashes t an icus JCM43656' 0.0 0 9 0
1) 菌体活性は、 湿菌体 l mgあたりの酵素活性 (U/mg wet cells)
で表示した。 1 Uは、 1分間あたり 1 nmolのトランス一 4ーヒド 口キシー L
2) 一ブロリンを生成する酵素活性とした。
相対活性は DactylosD—orangiuiD sp. RHl株の生産する酵素活性を
3) 1 として表に示した Γ ~~ ^
実施例 4と同様の実験を、 5リツタージャーフアーメンターを用 いた培養時に L
4) 一ブロリンを添加せずに実施した結果を示した。
5) 参考例 に記載。
参考例 3に記載。 実施例 5 融合蛋白発現ブラスミツドの構築
( 1) —ガラクトシダーゼ蛋白断片との融合蛋白発現ブラスミツドの構築 ブラスミツド pBluescript II KS (+) DNA 2. 4 ^ に、 制限酵素!^ RVを添 加し、 該 DNAを切断後、 エタノール沈殿法により、 エタノール沈殿を得た。 該 エタノール沈殿を 5 II 1の TEに溶解した。
ブラスミツド pRH 7 1 DNA 4 t gに、 制限酵素 ^ Iを添加し、 該 DN Aを切断後、 上記と同様の方法でエタノール沈殿を得た。 該エタノール沈殿 (D NA断片) を 3 6 1の TEに溶解後、 宝酒造社製 Takara DNA Blunting Kit を 用いて、 該 DNA断片の両末端をブラント化した。 該処理 DNAをァガロースゲ ル電気泳動にかけ、 ゲルより約 2.4 kbの DNA断片を常法により抽出し、 バ ィォラッド社製の Prep-A-gene を用いて回収した。 回収した該 DNAを^ Iで 切断し、 上記と同様の方法でエタノール沈殿を得た。 該エタノール沈殿を 1 0 X 1の TEに溶解した。
上記の RV-Xba I切断した pBluescript I IKS (+) DNAと、 § I切断後ブ ラント化し^ I切断し回収した DNAとを、 宝酒造社製 Takara Ligation Kit を用いて連結した。
該連結 DNAを用い、 coll XL2-Blue MRF'株 (STRATAGE E社製) を形質転 換後、 該形質転換株を 5 0 gZmlのアンビシリン、 0.2mM I PTG、 4 0 p. g/m 1 X— G a 1を含む LB寒天培地に塗布し、 3 7 で一晩培養した。 生育してきたコロニーより常法に従ってブラスミツドを抽出し、 その構造を制 限酵,素消化により確認した。
更に、 該ブラスミツドを铸型、 配列番号 1 6記載の DNAをセンス鎖ブライマ 一、 配列番号 7記載の DNAをアンチセンス鎖ブライマーとして、 PCRを行つ た。 該反応により、 L一プロリン 4位水酸化酵素の N末アミノ酸配列に対応する 5 0 b pの DN A断片が生成されたことより、 ブラスミドに目的とする L一プロ リン 4位水酸化酵素の構造遺伝子が挿入されていることを確認した。 上記の方法により、 プロモーターの転写方向と同方向に Lーブロリン 4位 水酸化酵素の構造遺伝子が /3— G a 1の N末 34アミノ酸と融合した形で挿入さ れたブラスミツド PES 1 - 2 3 aを得た (第 7図) 。 構築した融合蛋白アミノ 酸配列を配列番号 1 8に示す。
(2) マルトース結合蛋白との融合蛋白発現ブラスミツドの構築
配列番号 1 7記載の DN Aをセンス鎖ブライマー、 配列番号 1 2に記載の DN Aをアンチセンス鎖プライマー、 pRH7 1を铸型として、 実施例 1 (3) の方 法に準じ、 PCRを行った。 即ち、 pRH7 1を 0. 1 g、 センス鎖およびァ ンチセンス鎖 DN Aブライマー各 2 を含む反応液 2 0 /ζ 1を用い、 9 6でで 5分間インキュベーションした後、 9 6 一 2分間、 5 8でー 1分間、 7 5 一 1分間のインキュベーション工程を 3 0回緣り返した。
該反応液をァガロースゲル電気泳動にかけた後、 L一プロリン 4位水酸化酵素 の構造遗伝子をコードする 8 33 bpの増幅断片を常法により抽出し、 パイオラ ッド社の Prep-A-gene を用いて該 DNA断片を回収した。 回収した 833 bpの DNA断片を HI IIIで切断後、 エタノール沈殿法により、 エタノール沈殿を得 た。 該エタノール沈殿を 5 Z 1の TEに溶解し、 L一プロリン 4位水酸化酵素構 造遺伝子断片として用いた。
^プロモーター (Pli^) 制御下にマルトース結合蛋白の構造遺伝子のみを有 する (シグナル配列を持たない) ブラスミツド pMAL— c 2 (NEW ENGLAND Bi olabs社製 PROTEIN FUSION & PURIFICATION SYSTEM) を Iおよび Hind IIIで 切断した。
上記 L一プロリン 4位水酸化酵素構造遺伝子断片を pM A L— c 2の I-Hi nd III切断部位に宝酒造社製の DNAライゲーシヨンキットを用いて挿入し、 E. coll XL2-Blue M F'株に常法にしたがって形質転換した。 該形質転換体を、 5 0 gZmlのアンビシリンを含む LB寒天培地に塗布後、 3 7でで一晚培饕した。 このようにして得たコロニーより常法に従ってブラスミツドを抽出し、 その構造 を制限酵素消化により確認した。
上記の方法により、 支配下、 マルトース結合蛋白の構造遺伝子と敏合し た形で L一プロリン 4位水酸化酵素の構造遣伝子をコードする DN A断片が挿入 されたブラスミツド pMc 4 OHを得た (第 8図) 。 構築した融合蛋白のァミノ 酸配列を配列番号 1 9に示す。 実施例 6 融合蛋白発現ブラスミッドを含む形質転換体による L一プロリン 4位 水酸化酵素の生産
実施例 5で得たブラスミツド pES 1 - 2 3 aおよび pMc 4 OHを用いて、 E. coli DH1を形質転換した。 実施例 4に準じた方法で、 得られた形質転換体の 培養および該形質転換体の L一プロリン 4位水酸化酵素の生産性を綢ぺた。 ただ し、 培養においては、 1 ?丁0を 0. 1 mM添加した培地を用いた。
第 2表に示したように、 該形質転換体は、 遗伝子源として用いたダクチロスポ ランジゥムエスビー RH 1株と比較して、 菌体あたり 2 9〜 2 9 8倍の L一プロ リン 4位水酸化酵素を生産した。
第 1 表
形質転換体の生産する L一プロリン 4位水酸化酵素活性 株 菌体活性1) 相対活性 3)
E. coll DHl/pESl-23a 0.8 0 2 9
E. coH DHl/pMc40H 8.3 5 2 9 8
E. coH DHl/pBluescript I IKS (+) 検出せず
E. coH DHl/pMAL-c2 検出せず
Dactvlosporan^ium sp. RH12) 0.0 2 8 1
1) 菌体活性は、 湿菌体 1 mgあたりの酵素活性 (ϋ/mg wet cells)
で表示した。 1 Uは、 1分間あたり 1 nmolのトランス一 4ーヒド 口キシー L一プロリンを生成する酵素活性とした。
2) 参考例 2に記載。
3) 相対活性は Dactylosporangium sp. RH1株の生産する酵素活性を
1 として表に示した。 実施例 7 形質転換体による卜ランス一 4ーヒドロキシー L一プロリンの生産
( 1 ) 形質転換体 g.' coll ATCC12435/pTrl4を用いたトランス一 4ーヒドロキ シー L一ブロリンの生産
実施例 4で得た形質転換体 ϋ ATCC12435/pTrl4をアンピシリン 1 0 0 gZm lを含む 3m l LB培地に植菌し、 3 0でで 1 6時間振とう培 *した。 該培養液を遠心分離し、 得られた上清中のトランス一 4ーヒドロキシー L一プロ リン量を定量した。
その結果、 c U ATCC12435/pTrl4の培 ¾液上清中に、 3 8 1 Μ (5 0.0 mg/ 1 ) のトランス一 4ーヒドロキシー L一プロりンが生成していた。
一方、 宿主として用いた g. coii ATCC12435の培養上淸中には遊離のトランス 一 4ーヒドロキシー L一ブロリンは検出されなかった。
(2) 形質転換体 coli ATCC12435ZPWFH1を用いたトランス一 4ーヒドロキシ 一 L一ブロリンの生産
該形質転換体 £. coli ATCC12435/PWFH1をアンビシリン 1 0 0 // gZm lおよ びグルコース 2 %を添加した 5 0m l Me d 4培地に植菌し、 3 0でで 1 6時 間振とう培赛した。 該培養液を種培蹇液とし、 ポリペプトンの代わりにペプトン 0. 8 %を添加した 2リッターの Me d 6培地を入れた 5リッタ一ジャーファー メンターに植菌した。 培養温度 3 3 、 携拌数 4 0 0回転 Z分、 通気量 1 リツ夕 一 培赛液 1 リツター Z分という条件で運転した。
培養中、 グルコースを無くならぬように適時添加し、 NH4OHを用いて、 p H 6. 5に下限コントロールした。
該培養液を遠心分離し、 得られた上清中のトランス一 4ーヒドロキシー Lーブ 口リンを定量したところ、 培養 5 2時間で 1 0. 7mM ( l . 4 gZL) のトラ ンス- 4ーヒドロキシー L一ブロリンが coU ATCC12435/pWFH 1の培養 液上清中に生成蓄積していた。
一方、 宿主として用いた E. coli ATCC12435の培養上清中には遊離のトランス 一 4ーヒドロキシー L一プロリンは検出されなかった。
(3) 形質転換体 coli ATCC12435ZPWFH1を用いたトランス一 4ーヒドロキシ 一 L一ブロリンの生産
該形質転換体 coli ATCC12435ZPWFH1をアンビシリン 1 0 0 g/m 1を含 む 5 Om l Me d 4培地に植菌し、 3 0 *Cで 1 6時問振とう培饕した。 該培養 液を種培養液とし、 2リツターの Me d 6培地を入れた 5リツタージャーファー メンターに植菌した。 さらに L一 P r oを 2 0 OmM添加し、 培養温度 3 0*0、 換拌数 4 0 0回転 Z分、 通気量 1 リツター 培養液 1 リツター Z分という条件で 運転した。
培 ¾中、 グルコースは無くならぬように、 L一プロリンは約 5 OmMとなるよ うに適時添加し、 NH4OHを用いて、 pH 6. 5に下限コントロールした。
該培養液を遠心分難し、 得られた上淸中のトランス一 4ーヒドロキシー Lーブ 口リンを定量したところ、 培養 7 2時間で 1 8 5mM (2 4 gZL) のトランス - 4ーヒドロキシー L一ブロリンが coH ATCC12435/pWFH 1の培養液上 淸中に生成蓄積していた。
—方、 宿主として用いた coli ATCC12435の培養上消中には遊離のトランス 一 4ーヒドロキシ -L一プロリンは検出されなかった。
(4) 形質転換体 coli ATCC12435ZPMC40Hを用いたトランス一 4ーヒドロキ シー L一ブロリンの生産
該形質転換体 E. coli ATCC12435/pMc40Hをアンピシリン 1 0 0 g/m 1を 含む 5 Om l Me d 4培地に植菌し、 3 0でで 1 6時間振とう培養した。 該培 養液を種培 *液とし、 2リツターの Me d 6培地を入れた 5リツタージャーファ 一メン夕一に植菌した。 さらに L一 P r oを 2 0 OmM添加し、 培養温度 3 0で、 携拌数 4 0 0回転/分、 通気量 1 リツター Z培養液 1 リツ夕一 Z分という条件で 運転した。
培 ¾中、 グルコースは無くならぬように、 L一プロリンは約 5 OmMとなるよ うに適時添加し、 NH4OHを用いて、 pH 6. 5に下限コントロールした。
該培養液を遠心分離し、 得られた上淸中のトランス一 4ーヒドロキシー Lーブ 口リンを定量したところ、 培養 7 2時間で 8 5. 4mM ( 1 1. 2 gZL) のト ランス一 4 -ヒドロキシー L一ブロリンが coli ATCC12435/PWFH 1の培 養液上清中に生成蓄穣していた。
一方、 宿主として用いた £. coli ATCC12435の培養上清中には遊離のトランス 一 4ーヒドロキシー L一ブロリンは検出されなかった。 実施例 8 形質転換菌体を用いた L一ブロリンからのトランス一 4ーヒドロキシ 一 L一プロリンへの転換
該形質転換体 E. ^il ATCC12435/pTrl4を 5 0 gZm 1のアンビシリンを含 む 1 Oml LB培地に植菌し 3 0 で一晩振とう培姜した。 該培養液を遠心分 離し、 菌体を取得した。 該菌体は必要に応じて一 2 0でで凍結保存し、 使用時に 解凍して用いた。
反応液 (2 4 OmMの MES緩衝液、 pH 6. 5、 中に、 2 OmM L—ブロリ ン、 2 4mM 2—ケトグルタル酸、 4mM 硫酸第一鉄および 8mM L—ァス コルビン酸を含有する) 2 5 0 1に湿菌体量として 1 0% (w/v) となるよ うに加え、 3 5 :で 6 0分間反応した。 反応液中に生成したトランス一 4ーヒド 口キシー L—プロリン量を定量した結果、 1 1.5mM ( 1.5 g/ 1) のトラン スー 4ーヒドロキシー L一ブロリンが生成していた。 参考例 1 L一プロリン 4位水酸化酵素の単離および精製
(1) ダクチロスポランジゥム ·エスピー (Dactyl osporangium sp.) RH 1の凍 結菌体の調製
SR 3培地 (グルコースし 0 %、 可溶性澱粉し 0 %、 酵母エキス 0. 5 %、 トリブトン 0. 5 %、 肉エキス 0. 3 %およびリン酸マグネシウム 0. 0 5 %を 含み、 6N NaOHで pH 7. 2に調整した培地) を 2リツター三角フラスコに 2 0 0 mlずつ分注し、 1 2 O :, 2 0分間殺菌した。 この培地に、 HT寒天平 板培地 (可溶性 «粉 1 %、 NZァミン 0. 2 %、 酵母エキス 0. 1 %、 肉エキス 0. 1 %および寒天 1. 5 %を含み、 6N N aOHTpH 7. 2に調整後、 1 2 0で、 2 0分間殺菌処理した培地) に生育したダクチロスポランジゥム ·ェスピ 一 (Dactylosporangium sp.) RH 1を植菌し、 2 8で、 2日間振逢培養し、 種 培赛液として用いた。
D f 1培地 (可溶性 «粉 5 %、 ソィビーンミール 1. 5 %、 リン酸 1カリウム 0. 0 5 %、 硫酸マグネシウム 7水塩 0. 0 5 %および炭酸カルシウム 0. 5 % を含み、 6N NaOHで pH 7. 0に調整した培地) を 5リツタージャーファー メンターに 2リツター分注後、 1 2 0で、 2 0分間殺菌した。 この垴地に、 上記 種培養液を無菌的に接種し、 7 0 0 r pm、 1 V vmの条件で 2 8で、 2日問培 養した。 ¾養中の pHは調整しなかった。 得られた培養液を 7, 0 0 0 X g, 1 0分間、 4でで遠心分離し、 湿菌体を培養液 1 リツター当たり 7 5 g得た。 湿菌 体は 4でで生理食塩水で洗浄し、 遠心後使用時まで一 8 0でで凍結保存した。
(2) 無細胞抽出液の調製
参考例 1 (1)で得た凍結菌体 6 0 0 gを融解後、 3リツターの緩衝液 A 〔2m DTT、 0. 2mM EDTAおよび 2 0 % (v/v) グリセロールを含む 5 OmM TAP S [N—トリス (ヒドロキシメチル) メチルー 3—アミノブロパ ンスルフォン酸] 緩衝液 (pH9. 0) 〕 に氷冷下で懸濁した。 懸獨液をダイノ ミル (DYNO-MILL, WILLY A BACHOFEN MASCHINENFABRIK, BASEL, スイス) で処理 し、 菌体を破砕した。 この処理液を、 4で、 6 , 5 0 0 x gで 3 0分間遠心分離 し、 上消を得た。
これ以降の操作は全て氷冷下ないしは 4でで行った。
(3)カラムクロマトグラフィーによる単離および精製
(3)— 1 ストリームライン 前記工程で得た上清を、 緩衝液 Aで平衡化しておいた D E A E吸着体 3 0 O m 1を充填したフアルマシア社製ストリームライン (STREAMLINE1"") に通塔し、 L 一プロリン 4位水酸化酵素を含む画分を 0 . 3 Mの食塩を含む緩衝液 Aで溶出し た。
(3) - 2 D E A Eセファロースカラムクロマトグラフィー
前記工程で得た活性画分を緩衝液 Aで 3倍に希釈後、 予め緩衝液 Aで平衡化し ておいた D E A Eセファロースカラム (5 c m X 1 5 c m) に通塔した。 力 ラムを緩衝液 Aで洗浄後、 該酵素を含む画分を緩衝液 A中に作成した 0から 0 . 3 Mまでの食塩の直線澳度勾配を用いて溶出した。
(3)— 3 プチルセファロースカラムクロマトグラフィー
前記工程で得た活性画分に 3 M濃度になるように食塩を添加溶解し、 予め 3 M 食塩を含む緩衝液 Aで平衡化しておいたプチルセファロースカラム (Butyl Seph arose 4 Fast Flow 、 2 . 6 c m x 1 3 c m) にかけた。 酵素を 3 M 食塩 を含む緩衝液 A、 1 . 9 8 M 食塩を含む緩衝液 A、 0 . 9 9 M 食塩を含む緩 銜液 Aおよび緩衝液 Aのみ、 の食塩濃度が異なる 4種類の緩衝液で、 食塩澳度の 高い方から低い方へ段階的に溶出した。
(3)— 4 フエ二ルセファロースカラムクロマトグラフィー
前記工程で得た活性画分に 3 M濃度になるように食塩を添加溶解し、 予め 3 M 食塩を含む緩衝液 Aで平衡化しておいたフエ二ルセファロースカラム (Phenyl S epharose HP HiLoad 16/10, 1. 6cm x 10cm) に通塔した。 3 M 食塩を含む緩衝 液 Aで洗浄後、 該酵素を含む画分を緩衝液 Aで溶出した。
(3)— 5 色素ァフィ二ティーカラムクロマトグラフィー
前記工程で得た活性画分をフアルマシア社製 P D— 1 0カラムを用いて脱塩後、 予め緩衝液 Aで平衡化しておいたリアクティブレッド 1 2 0カラム (シグマ社製 React ive red 120, lcm 12. 7 cm) に通塔した。 緩衝液 Aで洗浄後、 該酵素を 含む画分を緩衝液 A中に作成した 0から 1 . 5 Mまでの食塩の直線濃度勾配を用 いて溶出した。
(3)— 6 リソース Qカラムクロマトグラフィー
前記工程で得た活性画分を緩衝液 B C2mM DTT、 0. 1 % (v/v) Tw een 2 0および 20 % (v/v) グリセロールを含む 5 OmM TAPS緩衝液 (pH8. 0) 〕 で平衡化したフアルマシア社製 PD— 1 0カラムを用いて脱塩 後、 予め緩衝液 Bで平衡化しておいたリソース Qカラム (フアルマシア社製 RE SOURCE™ Q, lml ) に通塔した。 緩衝液 B中に作成した 0から 0. 2Mまでの食 塩の直線濃度勾配を用いて溶出した。
L一プロリン 4位水酸化酵素の単離および精製の概要を第 3表にまとめた。 第 3 表
L一プロリン 4位水酸化酵素の単離及び精製の概要 分 画 総蛋白 全活性 比活性 収量
ung) (U) (U/mg蛋白) (X)
無細胞抽出液 13,330 11,000 0.83 100
ス卜リームライン 4, 875 4, 880 1.00 44.4
DEAEセファロース 353 3,820 10.8 34.7
ブチルセファロース 35.1 1,310 37.3 11.9
フエ二ルセファロース 1.44 814 565.3 7.4
色素ァフィ二ティー 0.212 366 1,726 3.3
リソース Q 0.100 384 3,840 3.5 参考例 2 ダクチロスポランジゥム ·エスピーによる L一プロリン 4位水酸化酵 素の生産
SR 3培地を試験管に 1 0mlずつ分注し、 1 2 0で、 2 0分間殺菌した。 こ の培地に、 HT寒天平板培地に生育したダクチロスポランジゥム ·エスピー (21 ctylosporangium sp.) RH1を一白金耳植菌し、 2 8で、 2日間振逸培養し、 種培 *液として用いた。
D f 1培地を試験管に 1 Omlずつ分注し、 1 20で、 20分間殺菌した。 こ の培地に、 上記種培義液 l m lを無菌的に接種し、 2 8で、 2日間振通培 ¾した, 得られた培養液を 8 0 0 0 r pm、 1 0分問、 4でで遠心分離した。 得られた菌 体を 8 OmM TES [N—トリス (ヒドロキシメチル) メチルー 2—アミノエ タンスルホン酸] 緩銜液 (pH7. 5) で洗浄後、 遠心分離した。 得られた湿菌 体 1 5 0mgを、 1.5m 1の反応液 [4mM L—プロリン、 8 mM α—ケ 卜ーグルタル酸、 4mM L—ァスコルビン酸、 2mM 硫酸第一鉄、 を含有す る 8 OmM TES緩衝液 (pH 7. 5) にナイミーン溶液 (ナイミーン S— 2 1 5 (日本油脂株式会社製) 4 gをキシレン 1 Om 1に溶解) を 1.4 %(vZv) 添加] に懸濁し、 3 0で、 3 0分問反応を行った。 反応後、 菌体反応液より菌体 を遠心分離除去した上清中に生成したヒドロキシブ口リンについて分析を行い、 ダクチロスポランジゥム ·エスピー菌体の L一プロリン 4位水酸化酵素活性を測 定した。
結果を第 1表に示した。 参考例 3 ストレブトマイセス ·グリゼオビリデイスによる L一プロリン 4位水 酸化醉素の生産
ストレブトマイセス ·グリゼオビリデイス (Streptoiyces griseoviridis) J CM 4 2 5 0およびストレブトミセス ·ダジエスタニクス J CM4 3 6 5を用い て参考例 2と同様に L一プロリン 4位水酸化酵素活性を測定した。 但し D ί 1の かわりに D f 4培地 [グリセロール 2. 5 %、 グルコース 2. 5 %、 ソィビーンミ ール 1. 5 %、 りん酸 1カリウム 0. 0 5 %、 硫酸マグネシウム 7水塩 0. 0 5 %、 炭酸カルシウム 0. 5 %を含み、 6 N N aOHで pH 7. 0に調整した培地] を 用いた。
結果を第 1表に示した。 産業上の利用可能性
本発明によれば、 医薬品の合成原料または食品添加物として有用なトランス一
4ーヒドロキシー L一ブロリンを工業的に製造する方法、 該方法に有用な Lーブ 口リン 4位水酸化酵素活性を有する蛋白質をコードする遺伝子、 該遺伝子を含有 する組換え体 D NA、 該組換え体 D N Aを含有する形質転換体、 該形質転換体を 用いた L一プロリン 4位水酸化酵素の製造法、 該酵素を提供することができる。
配 列 表
配列番号: 1
配列の長さ : 2 7 2
配列の型:アミノ酸
鎖の数:直鎖状
配列の種類:タンパク質(protein)
起源
生物名: Dactylosporangium sp.
株名: RH1
配列
Met Leu Thr Pro Thr Glu Leu Lys Gin Tyr Arg Glu Ala Gly Tyr Leu
1 5 10 15
Leu lie Glu Asp Gly Leu Gly Pro Arg Glu Val Asp Cys Leu Arg Arg
20 25 30
Ala Ala Ala Ala Leu Tyr Ala Gin Asp Ser Pro Asp Arg Thr Leu Glu
35 40 45
Lys Asp Gly Arg Thr Val Arg Ala Val His Gly Cys His Arg Arg Asp
50 55 60.
Pro Val Cys Arg Asp Leu Val Arg His Pro Arg Leu Leu Gly Pro Ala 65 70 75 80
Met Gin lie Leu Ser Gly Asp Val Tyr Val His Gin Phe Lys lie Asn
85 90 95
Ala Lys Ala Pro Met Thr Gly Asp Val Trp Pro Trp His Gin Asp Tyr
100 105 110 lie Phe Trp Ala Arg Glu Asp Gly Met Asp Arg Pro His Val Val Asn
115 120 125 Val Ala Val Leu Leu Asp Glu Ala Thr His Leu Asn Gly Pro Leu Leu
130 135 140
Phe Val Pro Gly Thr His Glu Leu Gly Leu lie Asp Val Glu Arg Arg 145 150 155 160
Ala Pro Ala Gly Asp Gly Asp Ala Gin Trp Leu Pro Gin Leu Ser Ala
165 170 175
Asp Leu Asp Tyr Ala lie Asp Ala Asp Leu Leu Ala Arg Leu Thr Ala
180 185 190
Gly Arg Gly lie Glu Ser Ala Thr Gly Pro Ala Gly Ser He Leu Leu
195 200 205
Phe Asp Ser Arg lie Val His Gly Ser Gly Thr Asn Met Ser Pro His
210 215 220
Pro Arg Gly Val Val Leu Val Thr Tyr Asn Arg Thr Asp Asn Ala Leu 225 230 235 240
Pro Ala Gin Ala Ala Pro Arg Pro Glu Phe Leu Ala Ala Arg Asp Ala
245 250 255
Thr Pro Leu Val Pro Leu Pro Ala Gly Phe Ala Leu Ala Gin Pro Val
260 265 270 配列番号: 2
配列の長さ : 8 1 6
配列の型:核酸
鎖の数:二本鎖
配列の種類: Genomic DNA
起源
生物名: Dactvlosporan^ium sp. 株名: RH1
特徴を決定した方法: E
配列:
ATGCTGACCC CGACGGAGCT CAAGCAGTAC CGCGAGGCGG GCTATCTGCT CATCGAGGAC 60 GGCCTCGGCC CGCGGGAGGT CGACTGCCTG CGCCGGGCGG CGGCGGCCCT CTACGCGCAG 120 GACTCGCCGG ACCGCACGCT GGAGAAGGAC GGCCGCACCG TGCGCGCGGT CCACGGCTGC 180 CACCGGCGCG ACCCGGTCTG CCGCGACCTG GTCCGCCACC CGCGCCTGCT GGGCCCGGCG 240 ATGCAGATCC TGTCCGGCGA CGTGTACGTC CACCAGTTCA AGATCAACGC GAAGGCCCCG 300 ATGACCGGCG ATGTCTGGCC GTGGCACCAG GACTACATCT TCTGGGCCCG AGAGGACGGC 360 ATGGACCGTC CGCACGTGGT CAACGTCGCG GTCCTGCTCG ACGAGGCCAC CCACCTCAAC 420 GGGCCGCTGT TGTTCGTGCC GGGCACCCAC GAGCTGGGCC TCATCGACGT GGAGCGCCGC 480 GCGCCGGCCG GCGACGGCGA CGCGCAGTGG CTGCCGCAGC TCAGCGCCGA CCTCGACTAC 540 GCCATCGACG CCGACCTGCT GGCCCGGCTG ACGGCCGGGC GGGGCATCGA GTCGGCCACC 600 GGCCCGGCGG GCTCGATCCT GCTGTTCGAC TCCCGGATCG TGCACGGCTC GGGCACGAAC 660 ATGTCGCCGC ACCCGCGCGG CGTCGTCCTG GTCACCTACA ACCGCACCGA CAACGCCCTG 720 CCGGCGCAGG CCGCTCCGCG CCCGGAGTTC CTGGCCGCCC GCGACGCCAC CCCGCTGGTG 780 CCGCTGCCCG CGGGCTTCGC GCTGGCCCAG CCCGTC 816 配列番号: 3
配列の長さ : 1 7
配列の型:核酸
トポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA
配列:
ATGCTSACSC CNACNGA 17 配列番号: 4
配列の長さ : 1 7
配列の型:核酸
トポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA
配列:
GGSCCSAGNC CRTCYTC 17 配列番号: 5
配列の長さ : 7 1
配列の型:核酸
鎖の数:二本鎖
配列の種類:他の核酸、 合成 DNA
配列:
ATG CTG ACG CCG ACG GAG CTC AAG CAG TAC CGC GAG GCG GGC TAT CTG 48 Met Leu Thr Pro Thr Glu Leu Lys Gin Tyr Arg Glu Ala Gly Tyr Leu
1 5 10 15
CTC ATC GAG GAC GGT CTG GGC CC 71 Leu l ie Glu Asp Gly Leu Gly
20 配列番号: 6
配列の長さ : 1 0
配列の型:核酸
トポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA 配列:
ACGGAGCTCA AGCAGTACCG 20 配列番号: 7
配列の長さ : 1 9
SB列の型:核酸
トポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA
配列:
GGGCCGAGAC CGTCCTCGA 19 配列番号: 8
配列の長さ : 2 7 0 7
配列の型:核酸
鎖の数:二本鎖
配列の種類: Genomic DNA
起源
生物名: Dactylosporangium sp.
株名: RH1
配列
GAGCTCTACC GGCGAACGCG CNCNCGGTGG CCGAATACGA NCCGGCGCCC CACGATGTNC 60 GGGCCACCCT CGTGCAGNCG GCCGAGCAGG ACGCCGGGCT ACGGGCGGCG NCGGTCGAGN 120 CGTGGACCCG CGCCTGCGGG GCGCCCCCGN CGGTGCATGT GCTGCCGGGC GGGCACTTCT 180 CGCTCTGCGC CGGCCGCACG TCGAGCGGCT GGCCCGGCTC CTGCCCGGCC TGTAGGCGAC 240 CTAACCCACC GTGAGGAGCG CTCATGCTGA CCCCGACGGA GCTCAAGCAG TACCGCGAGG 300 CGGGCTATCT GCTCATCGAG GACGGCCTCG GCCCGCGGGA GGTCGACTGC CTGCGCCGGG 360 33333333νο 303339330V33.G31ϊ;VJ- 誠 §333i V3V 0 30 oosi §33§V
l讓讀達 333§§ o33 W31囊 31
03 33313Vv一 1
Figure imgf000054_0001
33303 ODisfs Dsisvg013V3VvvJ-v 30;333νν1
soos ¾33¾333303 Is>v;3svs 1V§D0v3
3 3331fUV3¥ 33009313 flgMisVVvl
¾s 30309339133333W3V33 J333 3vV30WV S3003¾}393ϊ}3 J-33330330033 ¾313ϊδνννVI VV 3§護
Figure imgf000054_0002
3 ssVvoiijs} olsgisi;
33 V
應 V〕13 §3議 3
JS333w0iv CCACGGGCGA CGGTGATCAG GCCAGTCCAG GCCGTGACAT TGGCCGGCTC CCGGCGTACC 1980
ACCTCCTGCA GGCAGTACTC GGCGAGTTCC AGCCGCTGCC GGAACAGCAC CCACGCTCAG 2040
GCGGGACGTA CGCGGCAGGA AGCCCGGTGC GAGCCTCCCA GGCCCACGCG ATCGCCCGGT 2100
GACCGCGCAC GAGCAGCGCC AGGGGATCGT CCGGCCCGTG CTCGATTACA TGCGCACAGC 2160
ACAGTGCTCG GTGCCGGGGA CCTGGGCCGC GACCGAGACC AGGAAGTCGA GATCCTCTCT 2220
TGTGCCGCTC GGCGGCCAGN ATGGGCCGCG CGGNAAGCCA GTCTCCGGCG GCCAACGCTG 2280
CCCACAGCCA CCGGGCGTCG GCATCACCGA GCGTCGGGTC GAAGGCGCGC GCCACGCGCC 2340
CTGCGGACCG CCGGAACAGG GGCATGCGCG CATCCTCCAG CCGATGCGCC GATCAGCCGG 2400
CGCGGCAAGA TCGTACGCCC GGACCGCGAG GTCGGGAGGT CCACGGGCGG TCCCCACTGG 2460
GCGACGACTG TCAGNTGCTA CGCTGGCCCG GTGGCCGAGA TCACCGGGGC GTTCGAGATC 2520
CATGTAACCG TCGAGGCGCA CCACGGCACG GACCTCGCCC GGTTCGCCGA GAAGCACGAC 2580
GTCAAGTTCC TGCACATCGT CCTGGACCGC GGCCGGTTTC CGTCCCAGCC GATCTCACGC 2640
TGCCGATGCA CGGCACCCTC GCTCAGGCAC GGAAGACGGC GCCACGTGGC GGGAGCGGCT 2700
ACTCGAG 2707 配列番号: 9
配列の長さ : 3 7
配列の型:核酸
トポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA
配列:
GTGAGGAAAG CTTATGCTGA CCCCGACGGA GCTCAAG 37 配列番号: 1 0
配列の長さ : 3 6
配列の型:核酸 トポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA
配列:
GCCTGCGGGA TCCTAGACGG GCTGGGCCAG CGCGAA 36 配列番号: 1 1
配列の長さ : 3 7
配列の型:核酸
トポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA
配列:
GTGAGGAGAA TTCATGCTGA CCCCGACGGA GCTCAAG 37 配列番号: 1 2
配列の長さ : 3 8
配列の型:核酸
トポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA
配列:
CCGCCTGAAG CTTCCTAGAC GGGCTGGGCC AGCGCGAA 38 配列番号: 1 3
配列の長さ : 6 4
配列の型:核酸
卜ポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA 配列:
TGAGGAAAGC TTATGCTGAC CCCGACCGAA CTGAAACAGT ATCGTGAAGC 50 GGGCTATCTG CTGA 64
SB列番号: 1 4
配列の長さ : 6 6
配列の型:核酸
トポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA
配列:
CCGGAATTCG TCGACTTCAC GCGGGCCCAG GCCATCTTCA ATCAGCAGAT 50 AGCCCGCTTC ACGATA 66 配列番号: 1 5
配列の長さ : 8 1 6
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:他の核酸
配列
ATG CTG ACC CCG ACC GAA CTG AAA CAG TAT CGT GAA GCG GGC TAT CTG 48 Met Leu Thr Pro Thr Glu Leu Lys Gin Tyr Arg Glu Ala Gly Tyr Leu
1 5 10 15
CTG ATT GAA GAT GGC CTG GGC CCG CGT GAA GTC GAC TGC CTG CGC CGG 96 Leu lie Glu Asp Gly Leu Gly Pro Arg Glu Val Asp Cys Leu Arg Arg
20 25 30 GCG GCG GCG GCC CTC TAC GCG CAG GAC TCG CCG GAC CGC ACG CTG GAG 144 Ala Ala Ala Ala Leu Tyr Ala Gin Asp Ser Pro Asp Arg Thr Leu Glu
35 40 45
AAG GAC GGC CGC ACC GTG CGC GCG GTC CAC GGC TGC CAC CGG CGC GAC 192 Lys Asp Gly Arg Thr Val Arg Ala Val His Gly Cys Hi s Arg Arg Asp
50 55 60
CCG GTC TGC CGC GAC CTG GTC CGC CAC CCG CGC CTG CTG GGC CCG GCG 240 Pro Val Cys Arg Asp Leu Val Arg His Pro Arg Leu Leu Gly Pro Ala
65 70 75 80
ATG CAG ATC CTG TCC GGC GAC GTG TAC GTC CAC CAG TTC AAG ATC AAC 288 Met Gin l ie Leu Ser Gly Asp Val Tyr Val His Gin Phe Lys l ie Asn
85 90 95
GCG AAG GCC CCG ATG ACC GGC GAT GTC TGG CCG TGG CAC CAG GAC TAC 336 Ala Lys Ala Pro Met Thr Gly Asp Val Trp Pro Trp His Gin Asp Tyr
100 105 110
ATC TTC TGG GCC CGA GAG GAC GGC ATG GAC CGT CCG CAC GTG GTC AAC 384 l ie Phe Trp Ala Arg Glu Asp Gly Met Asp Arg Pro His Val Val Asn
115 120 125
GTC GCG GTC CTG CTC GAC GAG GCC ACC CAC CTC AAC GGG CCG CTG TTG 432 Val Ala Val Leu Leu Asp Glu Ala Thr His Leu Asn Gly Pro Leu Leu
130 135 140
TTC GTG CCG GGC ACC CAC GAG CTG GGC CTC ATC GAC GTG GAG CGC CGC 480 Phe Val Pro Gly Thr His Glu Leu Gly Leu l ie Asp Val Glu Arg Arg
145 150 155 160
GCG CCG GCC GGC GAC GGC GAC GCG CAG TGG CTG CCG CAG CTC AGC GCC 528 Ala Pro Ala Gly Asp Gly Asp Ala Gin Trp Leu Pro Gin Leu Ser Ala 165 170 175
GAC CTC GAC TAC GCC ATC GAC GCC GAC CTG CTG GCC CGG CTG ACG GCC 576 sp Leu Asp Tyr Ala l i e Asp Al a Asp Leu Leu Ala Arg Leu Thr Ala
180 185 190
GGG CGG GGC ATC GAG TCG GCC ACC GGC CCG GCG GGC TCG ATC CTG CTG 624
Gly Arg Gly l ie Glu Ser Ala Thr Gly Pro Al a Gly Ser l ie Leu Leu
195 200 205
TTC GAC TCC CGG ATC GTG CAC GGC TCG GGC ACG AAC ATG TCG CCG CAC 672
Phe Asp Ser Arg l ie Val Hi s Gly Ser Gly Thr Asn Me t Ser Pro His
210 215 220
CCG CGC GGC GTC GTC CTG GTC ACC TAC AAC CGC ACC GAC AAC GCC CTG 720
Pro Arg Gly Val Val Leu Val Thr Tyr Asn Arg Thr Asp Asn Ala Leu
225 230 235 240
CCG GCG CAG GCC GCT CCG CGC CCG GAG TTC CTG GCC GCC CGC GAC GCC 768
Pro Ala Gin Ala Ala Pro Arg Pro Glu Phe Leu Ala Ala Arg Asp Ala
245 250 255
ACC CCG CTG GTG CCG CTG CCC GCG GGC TTC GCG CTG GCC CAG CCC GTC 816
Thr Pro Leu Val Pro Leu Pro Al a Gly Phe Ala Leu Ala Gin Pro Val
260 265 270 配列番号: 1 6
配列の長さ : 1 0
配列の型:核酸
トポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA
配列: AAGCAGTACC GCGAGGCGGG 20 配列番号: 1 7
配列の長さ : 2 1
配列の型:核酸
トポロジー:一本鎖
配列の種類:他の核酸、 合成 DNA
配列:
ATGCTGACCC CGACGGAGCT C 21 配列番号: 1 8
配列の長さ : 2 9 9
配列の型:アミノ酸
鎖の数:直鎖状
配列の種類:蛋白質
生物名: Dactylosporangiui sp.
株名: RH1
配列の特徴
特徴を表す記号: peptide
存在位置: 35..299
特徴を決定した方法: S
起源
生物名: Escherichia coli
直接の起源
pBluescriptIIKS+ - 6 S -
J¾ Aio OJJ IBA m Π9Ί Π3ΐ oid Λ13 usy Π^Ί SIH J¾ ¾tV ni dsy
091 99i OSI
n9i Π9 IBA BIV Λ usv I^A l^A S!H oij Sjy dsy ?9W Ajg dsy nyg
9SI οει Sjy BIV dJi aqj 9ji ΐΑχ dsy QIO SIH 1 OJJ dJi IBA dsy Ai
SZI OZI 9Π
)9W ojj BIV sAi eiv usv 311 sA aqj uig SIR IBA ΐΑχ {BA dsy A
0Π SOI 00Ϊ
j as n3i an UI0 13W ¾IV OJJ Aio nai nai Sjy OJJ SIH 8jy IBA n^l
S6 06 S8
dsy Sjy sA3 Ι¾Λ OJJ dsy 3iy Sjy SIH SA^ SIH IBA BIV Sjy I¾A
08 2 02, 59 im ajy Aio dsy sAq ndi 3iy dsy OJJ jas dsy nig EJV
09 SS OS nai BIV BIV BIV ¾IV 3iy Sjy nai s dsy IBA nig Siy OJJ AIQ na
0 9δ
Aio dsy nif) an ndi ^ϊθ ¾IV ni3 Sjy ΐΑχ sA an na
0g SZ 0Z
J9S 3ΪΙ -I9S m 1 Sly OJJ OJJ AIO o-id ΙΒΛ dJl J8S sAq
91 01 9 Ϊ usy Aio sAq J¾ n9q im naq UIQ BIV "S OJJ J¾ da W J¾ 9W
: a s: ¾ ¾:っ ¾ ^ 凝 ¾ 『 喜 凝 t ½aa T/X3d 699ム 2/96 ΟΛλ - 0 9 -
ΪΗΗ:
•ds ninisaBJOdsoiAj DBa : 3?<#^
m
^ ■ ^ > 瑰,ミ : o>
6 ΐ :
96Z 06Z ΙΒΛ ojj αΐθ BIV nai BIV Aio ^IV oij naq m m
OJJ ΙΒΛ Π3 OJJ im BIV dsy 3JV BIV ¾ IV n91 n]g OIJ 3jy OJJ
022 99Z 09Z
BIV BIV nio 8iv OJJ B IV asy dsy J¾ 3jy iisy ΐΑχ iqi ΪΒΑ Π9
S9Z 0S2 Z
IBA ΙΒΛ Αϊ9 Sly ojj sin OJJ id usy Jm Aig jas A S !H l¾A
5SZ ou m
311 2JV J3S dsv 8tid naq na 3Π ΐθς BIV OJJ Aig jqi BIV
02Z SI2 OIZ nig an Aio Sjy Ai3 BIV im n9q Sjy BIV Η3Ί Η3Ί DSV BIV DSV 9II m 00Z 96Ϊ
BIV -i^i dsy dsy BIV 1^ n3q uig OJJ ii9q dJi uio BIV dsy Aio
061 98Ϊ 081
dsy Aio BIV OJJ BIV 3-iV 2iy nio dsy 911 na A13 na nio S IR
9il Oil S9I f/lDd 699^1/96 ΟΛλ 配列の特徴
特徴を表す記号: pept ide
存在位置: 389. . 659
特徵を決定した方法: E
起源
生物名: Escherichia col i
直接の起源
PMAL-C2
配列の特徴
特徴を表す記号: pept ide
存在位置: し 387
特徴を決定した方法: S
配列:
Met Lys lie Glu Glu Gly Lys Leu Val lie Trp lie Asn Gly Asp Lys
1 5 10 15
Gly Tyr Asn Gly Leu Ala Glu Val Gly Lys Lys Phe Glu Lys Asp Thr
20 25 30
Gly lie Lys Val Thr Val Glu His Pro Asp Lys Leu. Glu Glu Lys Phe
35 40 45
Pro Gin Val Ala Ala Thr Gly Asp Gly Pro Asp lie lie Phe Trp Ala
50 55 60
Hi s Asp Arg Phe Gly Gly Tyr Ala Gin Ser Gly Leu Leu Ala Glu lie 65 70 75 80
Thr Pro Asp Lys Ala Phe Gin Asp Lys Leu Tyr Pro Phe Thr Trp Asp
85 90 95
Ala Val Arg Tyr Asn Gly Lys Leu l ie Ala Tyr Pro lie Ala Val Glu 100 105 110
Ala Leu Ser Leu l ie Tyr Asn Lys Asp Leu Leu Pro Asn Pro Pro Lys
115 120 125
Thr Trp Glu Glu l ie Pro Ala Leu Asp Lys Glu Leu Lys Al a Lys Gly
130 135 140
Lys Ser Ala Leu Me t Phe Asn Leu Gin Glu Pro Tyr Phe Thr Trp Pro 145 150 155 160
Leu lie Ala Ala Asp Gly Gly Tyr Ala Phe Lys Tyr Glu Asn Gly Lys
165 170 175
Tyr Asp l ie Lys Asp Val Gly Val Asp Asn Ala Gly Ala Lys Ala Gly
180 185 190
Leu Thr Phe Leu Val Asp Leu l ie Lys Asn Lys Hi s Met Asn Ala Asp
195 200 205
Thr Asp Tyr Ser l ie Ala Glu Al a Ala Phe Asn Lys Gly Glu Thr Ala
210 215 220
Met Thr l ie Asn Gly Pro Trp Ala Trp Ser Asn l ie Asp Thr Ser Lys 225 230 235 240
Val Asn Tyr Gly Val Thr Val Leu Pro Thr Phe Lys. Gly Gin Pro Ser
245 250 255
Lys Pro Phe Val Gly Val Leu Ser Ala Gly l ie Asn Ala Ala Ser Pro
260 265 270
Asn Lys Glu Leu Al a Lys Glu Phe Leu Glu Asn Tyr Leu Leu Thr Asp
275 280 285
Glu Gly Leu Glu Al a Val Asn Lys Asp Lys Pro Leu Gly Al a Val Ala
290 295 300
Leu Lys Ser Tyr Glu Glu Glu Leu Al a Lys Asp Pro Arg l ie Ala Al a 一 ε 9—
Aio usv nai SIH «IV nif) dsy n nai ΪΒΛ ^iV Ι«Λ v ΪΒΑ Ι^Λ
0Ϊ5 S09 009
SIH OJJ SJV dsy ?3W Aio dsy nio SJV ¾IV dJi aqj 3Π JAi dsy
96^ 06 8^
SIH dJi ojj dJi IBA dsy Aio I^W OJJ BIV sAq BIV USV ^II sAq
08^ ^ UV S9
3qj aio SIH l«A ΪΒΑ dsy Aio J9S nai 9ΪΙ aio l^W ¾IV OJJ
09^ S^ OS
Π97 Π3 sjy OJJ SIH 2jy I¾A ndl dsy siy sA3 IB^ OJJ dsy Siy 8jy
0^
SIH SAQ Aio SIH ΙΒΛ BIV 2jy I^A nil 3jy Aio dsv sAi ndi im
0^ S ΟΖί'
Sjy dsy OJJ J8S dsy uio BIV J nsq BIV ¾IV BIV BIV 8jy 3jy Π3
S 0 SO
sAo dsy IBA nig 3jy OJJ nai dsy nig ΘΠ nai n9q JAi oo 6ε 06ε 58ε
BIV nig Sjy JAi uto s i naq nig jqi OJJ J¾ 〗3j¾ Sjy A
08ε m
3Π Aio n3q usy usy usy usy usy usy usy usy usy asy
m 092 99S nsy «19 BIV dsy sAi na BIV nio dsy IBA Jm uif) sjy Aio J9S
09S 0Π
BIV BiV usv 3Π l«A BIV ·πα 3JV ΪΒΛ eiV 1 a j BIV
9εε οεε szs
ΠΪ9 OJJ an usy oJd 〗3W an nio Ajg sAq uio- BIV usy w jqi
Figure imgf000065_0001
T/XDd 699.Ζ/96 ΟΛλ 一 9一
IBA oid ΠΪ
SS9 099 S^9
BIV Π3ΐ BIV 8qj Aio BIV OJJ naq OJJ IBA naq OJJ J¾ BIV dsy Sjy
0^9 9S9 0S9 SZ9
BIV BIV 9qj ni oij Sjy OJJ BIV BIV UIO BIV OJ^ naq EIV nsy
0Z9 SI9 019 dsy J¾ Sjy nsy ·ΐ¾ IBA
Figure imgf000066_0001
IBA ΪΒΛ 8JV OJJ SIH OJJ J9S
909 009 S69
}3N nsy Jqi Aio "s AJO SIH i«A 911 Sjy "s dsy aqj ΠΘΊ naq an
069 S89 089
J as Ai BIV OJJ Ai ""U «IV nio Siy BIV -iRl naq
SZS (US S99
8iy eiv na naq dsy BiV dsy 9Π BIV JAi dsy na dsy BIV J9Sひ
099 SSS OSS ^S ui9 OJJ dJi u BIV dsy dsy Aio ¾IV oJd B 3JV Sjy nig
SS 0S9 IBA dsy ail naq n3q ni SIH oii I¾A aqj nd-\ Π3Ί OJJ
SZ9 0ZS 9Ϊ9 df/XDd 699 96 ΟΛλ

Claims

請 求 の 範 囲
1. 2—ケトグルタル酸および 2価鉄イオンの存在下、 遊離の L一プロリンに 作用して、 トランス一 4ーヒドロキシー L一プロリンを生成する、 L一プロリン 4位水酸化酵素活性を有する蛋白質をコードする遗伝子。
2. 遺伝子が、 配列番号 1、 1 8および 1 9で表されるアミノ酸配列を有する 蛋白質から選ばれる蛋白質をコードするか、 あるいは、 配列番号 1、 1 8および 1 9で表されるアミノ酸配列を有する蛋白質から選ばれる蛋白質のアミノ酸配列 とは一偭以上のアミノ酸が置換、 欠失または付加したアミノ酸配列を有する蛋白 質をコードする遺伝子である、 請求項 1記載の遺伝子,
3. 遺伝子が、 配列番号 2、 8および 1 5で表される DNAから選ばれる遺伝 子である、 請求項 1記載の遗伝子。
4. 遗伝子が、 ダクチロスポランジゥム厲、 アミコラトブシス厲およびストレ ブトミセス厲に厲する微生物から選ばれる微生物由来の遠伝子である、 請求項 1 記載の遺伝子。
5. 微生物が、 ダクチロスポランジゥム,エスピー RH 1 (FERM BP— 4 4 0 0 ) 、 アミコラトブシス ·エスピー RH 2 (FERM BP- 4 5 8 1 ) , ストレブトミセス ·グリセオビリデイス J CM 4 2 5 0およびストレブトミセ ス ·ダジエスタニクス J CM 4 3 6 5から選ばれる微生物である、 請求項 4記載 の遗伝子。
6. 2—ケトグルタル酸および 2価鉄イオンの存在下、 遊離の L一プロリンに 作用して、 トランス一 4ーヒドロキシ— L一プロリンを生成する、 L一プロリン 4位水酸化酵素活性を有する蛋白質をコードする遺伝子を含む DN A断片をべク ターに組み込んで得られる組換え体 DNA。
7. 遗伝子が、 配列番号 1、 1 8および 1 9で表されるアミノ酸配列を有する 蛋白質から選ばれる蛋白質をコードするか、 あるいは、 配列番号 1、 1 8および 1 9で表されるアミノ酸配列を有する蛋白質から選ばれる蛋白質のアミノ酸配列 とは一個以上のアミノ酸が置換、 欠失または付加したアミノ酸配列を有する蛋白 質をコードする遗伝子である、 請求項 6記載の組換え体 DNA。
8. 遺伝子が、 配列番号 2、 8および 1 5で表される DNAから選ばれる遺伝 子である、 請求項 6記載の組換え体 DNA。
9. 遺伝子が、 ダクチロスポランジゥム厲、 アミコラトブシス厲およびストレ ブトミセス厲に厲する微生物から選ばれる微生物由来の遺伝子である、 請求項 6 記載の組換え体 DNAe
1 0. 微生物が、 ダクチロスポランジゥム 'エスピー RH 1 (FERM BP - 4 4 0 0 ) 、 アミコラトブシス ·エスピー RH 2 (FERM BP- 4 5 8
1 ) 、 ストレブトミセス ·グリセオビリデイス J CM 4 2 5 0およびストレブ トミセス ·ダジエスタニクス J CM 4 3 6 5から選ばれる微生物である、 請求項 9記載の組換え体 DNA。
1 1. 2—ケトグルタル酸および 2価鉄イオンの存在下、 遊離の L一プロリン に作用して、 トランス一 4ーヒドロキシー L一プロリンを生成する、 L一ブロリ ン 4位水酸化酵素活性を有する蛋白質をコードする遺伝子を含む DN A断片をべ クタ一に組み込んで得られる組換え体 DN Aを保有する形質転換体。
1 2. 遺伝子が、 配列番号 1、 1 8および 1 9で表されるアミノ酸配列を有 する蛋白質から選ばれる蛋白質をコードするか、 あるいは、 配列番号 1、 1 8お よび 1 9で表されるアミノ酸配列を有する蛋白質から選ばれる蛋白質のアミノ酸 配列とは一個以上のアミノ酸が置換、 欠失または付加したアミノ酸配列を有する 蛋白質をコードする遺伝子である、 請求項 1 1記載の形質転換体。
1 3. 遺伝子が、 配列番号 2、 8および 1 5で表される DNAから選ばれる遗 伝子である、 請求項 1 1記載の形質転換体。
1 4. 遗伝子が、 ダクチロスポランジゥム厲、 アミコラ卜ブシス厲およびスト レブ卜ミセス属に属する微生物から選ばれる微生物由来の遺伝子である、 請求項 1 1記載の形質転換体。
1 5. 微生物が、 ダクチロスポランジゥム 'エスピー RH 1 (FER BP - 4 4 0 0 ) 、 アミコラトブシス ·エスピー RH 2 (FERM BP- 5 8 1 ) 、 ストレブトミセス ·グリセオビリデイス J CM4 2 5 0およびストレブ 卜ミセス ·ダジエスタニクス J CM 4 3 6 5から選ばれる微生物である、 請求項 1 4記載の形質転換体。
1 6. 形質転換体が、 ェシエリヒア 'コリ S0LR/PRH71である、 請求項 1 1記 載の形質転換体。
1 7. 配列番号 1、 1 8および 1 9で表されるアミノ酸配列を有する蛋白質か ら選ばれる蛋白質、 あるいは、 配列番号し 1 8および 1 9で表されるアミノ酸 配列を有する蛋白質から選ばれる蛋白質のアミノ酸配列とは一個以上のアミノ酸 が置換、 欠失または付加したアミノ酸配列を有し、 かつ L一プロリン 4位水酸化 酵素活性を有する蛋白質。
1 8. 2—ケトグルタル酸および 2価鉄イオンの存在下、 遊離の L一プロリン に作用して、 トランス一 4ーヒドロキシ一: L一プロリンを生成する、 L一ブロリ ン 4位水酸化酵素活性を有する蛋白質をコードする遺伝子を含む DN A断片をべ クタ一に組み込んで得られる組換え体 DN Aを保有する形質転換体を培地中で培 養し、 L一プロリン 4位水酸化酵素を生成蓄核させ、 該培 *物から L一プロリン 4位水酸化酵素を採取することを特徴とする、 L一プロリン 4位水酸化酵素の製 造法。
1 9. 培地中に L一プロリンを添加することを特徴とする、 請求項 1 8記載の L一プロリン 4位水酸化酵素の製造法。
2 0. 遺伝子が、 配列番号 1、 1 8および 1 9で表されるアミノ酸配列を有す る蛋白質から選ばれる蛋白質をコードするか、 あるいは、 配列番号 1、 1 8およ び 1 9で表されるアミノ酸配列を有する蛋白質から選ばれる蛋白質のアミノ酸配 列とは一個以上のアミノ酸が S換、 欠失または付加したアミノ酸配列を有する蛋 白質をコードする遣伝子である、 請求項 1 8記載の L一プロリン 4位水酸化酵素 の製造法。
2 1. 遺伝子が、 配列番号 2、 8および 1 5で表される DNAから選ばれる遗 伝子である、 請求項 1 8または 1 9記載の L一プロリン 4位水酸化酵素の製造法。
2 2. 遺伝子が、 ダクチロスポランジゥム厲、 アミコラトブシス属およびスト レブトミセス属に属する微生物から選ばれる微生物由来の遺伝子である、 請求項 1 8記載の L一プロリン 4位水酸化酵素の製造法。
2 3. 微生物が、 ダクチロスポランジゥム ·エスピー RH 1 (FERM BP - 4 4 0 0 ) 、 アミコラトブシス 'エスピー RH 2 (FERM BP- 5 8 1 ) 、 ストレブ卜ミセス ·グリセオビリデイス J CM 4 2 5 0およびストレブ トミセス ·ダジエスタニクス J C 4 3 6 5から選ばれる微生物である、 請求項 2 2記載の L一プロリン 4位水酸化酵素の製造法。
2 4. 2—ケトグルタル酸および 2価鉄イオンの存在下、 遊離の L一プロリン に作用して、 トランス一 4ーヒドロキシー L—プロリンを生成する、 L一ブロリ ン 4位水酸化酵素活性を有する蛋白質をコードする遠伝子を含む DN A断片をべ クタ一に組み込んで得られる組換え体 DN Aを保有する形質転換体を培地中で培 赛し、 トランス一 4ーヒドロキシー L一プロリンを生成蓄穣させ、 該培養物より トランス一 4ーヒドロキシー L一プロリンを採取することを特徴とするトランス 一 4ーヒドロキシー L一プロリンの製造法。
2 5. 形質転換体が、 培地中の糖源より L一プロリンを生産し培赛液中に蓄積 する能力のある形質転換体であること特徴とする、 請求項 2 4記載のトランス一 4ーヒドロキシ— L一プロリンの製造法。
2 6. 形質転換体が、 培地中の糖源より 2—ケトグルタル酸を生産し培養液中 に蓄積する能力のある形質転換体であること特徴とする、 請求項 2 4記載のトラ ンスー 4ーヒドロキシー L—プロリンの製造法。
2 7. 培地中に L一プロリンを添加することを特徴とする、 請求項 2 4記載の トランス一 4ーヒドロキシー L一ブロリンの製造法。
2 8. 培地中に L一プロリン、 2—ケトグルタル酸および 2価鉄イオンを添加 することを特徴とする、 請求項 2 4記載のトランス一 4ーヒドロキシー L一プロ リンの製造法。
2 9. 遺伝子が、 配列番号 1、 1 8および 1 9で表されるアミノ酸配列を有 する蛋白質から選ばれる蛋白質をコードするか、 あるいは、 配列番号 1、 1 8お よび 1 9で表されるアミノ酸配列を有する蛋白質から選ばれる蛋白質のアミノ酸 配列とは一個以上のアミノ酸が置換、 欠失または付加したアミノ酸配列を有する 蛋白質をコードする遺伝子である、 請求項 2 4記載のトランス一 4ーヒドロキシ 一 L一プロリンの製造法。
3 0. 遺伝子が、 配列番号 2および 1 5で表される DNAから選ばれる遺伝子 である、 請求項 2 4記載のトランス一 4ーヒドロキシー L一プロリンの製造法。
3 1. 遺伝子が、 ダクチロスポランジゥム厲、 アミコラトブシス属およびスト レブトミセス属に厲する微生物から選ばれる微生物由来の遺伝子である、 請求項
2 4記載のトランス一 4ーヒドロキシー L一ブロリンの製造法。
3 2. 微生物が、 ダクチロスポランジゥム ·エスピー RH 1 (FERM BP - 4 4 0 0 ) 、 アミコラトブシス ·エスピー RH 2 (FERM BP- 4 5 8
1 ) 、 ストレブトミセス ·グリセオビリデイス J CM 4 2 5 0およびストレブ トミセス ·ダジエスタニクス J CM 4 3 6 5から選ばれる微生物である、 請求項 3 1記載のトランス一 4ーヒドロキシー L一プロリンの製造法。
3 3. 2—ケトグルタル酸および 2価鉄イオンの存在下、 遊離の L一プロリン に作用して、 トランス一 4ーヒドロキシー L一プロリンを生成する、 L—ブロリ ン 4位水酸化酵素活性を有する蛋白質をコードする遺伝子を含む DN A断片をべ クタ一に組み込んで得られる組換え体 DN Aを保有する形質転換体を培養し、 該 培養物、 菌体または菌体処理物を酵素源として、 2—ケトグルタル酸および二価 鉄イオンの存在下、 培養液中または水性媒体中で、 L一プロリンをトランス一 4 ーヒドロキシー L一ブロリンに変換させ、 生成したトランス一 4ーヒドロキシー L一ブロリンを該培養物または該水性媒体より採取することを特徵とするトラン スー 4ーヒドロキシー L一ブロリンの製造法。
3 4 . 形質転換体が、 培地中の糖源より L一プロリンを生産し培養液中に蓄積 する能力のある形質転換体であること特徴とする、 請求項 3 3記載の卜ランス— 4ーヒドロキシ一 L一ブロリンの製造法。
3 5 . 形質転換体が、 培地中の糖源より 2—ケトグルタル酸を生産し培姜液中 に蓄穣する能力のある形質転換体であること特徴とする、 請求項 3 3記載のトラ ンスー 4ーヒドロキシ一: L一プロリンの製造法。
3 6 . 菌体処理物が、 菌体の乾燥物、 菌体の凍結乾燥物、 菌体の界面活性剤処理 物、 菌体の酵素処理物、 菌体の超音波処理物、 菌体の機械的摩砕処理物、 菌体の 溶媒処理物、 菌体の蛋白質分画物、 菌体および菌体処理物の固定化物、 菌体より 抽出して得られる L一プロリン 4位水酸化酵素活性を有する酵素、 該酵素の精製 棟品および該酵素の固定化物から選ばれる菌体処理物であること特徴とする、 請 求項 3 3記載のトランス一 4ーヒドロキシー L一ブロリンの製造法。
3 7 . 遺伝子が、 配列番号 1、 1 8および 1 9で表されるアミノ酸配列を有 する蛋白質から選ばれる蛋白質をコードするか、 あるいは、 配列番号 1 、 1 8お よび 1 9で表されるアミノ酸配列を有する蛋白質から選ばれる蛋白質のアミノ酸 配列とは一個以上のアミノ酸が S換、 欠失または付加したアミノ酸配列を有する 蛋白質をコードする遗伝子である、 請求項 3 3記載のトランス一 4ーヒドロキシ 一 L一プロリンの製造法。
3 8 . 遺伝子が、 配列番号 2、 8および 1 5で表される D N Aから選ばれる遗 伝子である、 請求項 3 3記載のトランス一 4ーヒドロキシー L一プロリンの製造 法。
3 9 . 遺伝子が、 ダクチロスポランジゥム属、 アミコラトブシス属およびスト レブトミセス厲に厲する微生物から選ばれる微生物由来の遺伝子である、 請求項 3 3記載のトランス— 4ーヒドロキシー L一プロリンの製造法。
4 0. 微生物が、 ダクチロスポランジゥム ·エスピー RH 1 (FERM BP 一 4 4 0 0 ) 、 アミユラトブシス♦エスピー RH 2 (FERM BP- 4 5 8 1 ) 、 ストレブトミセス ·グリセオビリデイス J CM 4 2 5 0およびストレブ 卜ミセス ·ダジエスタニクス J CM 4 3 6 5から選ばれる微生物である、 請求項 3 9記載のトランス一 4ーヒドロキシー L一ブロリンの製造法。
PCT/JP1996/000559 1995-03-07 1996-03-07 Procede de production de trans-4-hydroxy-l-proline WO1996027669A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002189682A CA2189682C (en) 1995-03-07 1996-03-07 Process for producing trans-4-hydroxy-l-proline
AT96905024T ATE219142T1 (de) 1995-03-07 1996-03-07 Verfahren zur herstellung von trans-4-hydroxy-l- prolin
DE69621714T DE69621714T2 (de) 1995-03-07 1996-03-07 Verfahren zur herstellung von trans-4-hydroxy-l-prolin
JP52677096A JP3440100B2 (ja) 1995-03-07 1996-03-07 トランス−4−ヒドロキシ−l−プロリン
EP96905024A EP0759472B1 (en) 1995-03-07 1996-03-07 Process for producing trans-4-hydroxy-l-proline
HK97102278A HK1000712A1 (en) 1995-03-07 1997-11-28 Process for producing trans-4-hydroxy-l-proline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4698895 1995-03-07
JP7/46988 1995-03-07

Publications (1)

Publication Number Publication Date
WO1996027669A1 true WO1996027669A1 (fr) 1996-09-12

Family

ID=12762595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000559 WO1996027669A1 (fr) 1995-03-07 1996-03-07 Procede de production de trans-4-hydroxy-l-proline

Country Status (10)

Country Link
EP (1) EP0759472B1 (ja)
JP (1) JP3440100B2 (ja)
KR (1) KR100460579B1 (ja)
CN (1) CN1132938C (ja)
AT (1) ATE219142T1 (ja)
CA (1) CA2189682C (ja)
DE (1) DE69621714T2 (ja)
ES (1) ES2176441T3 (ja)
HK (1) HK1000712A1 (ja)
WO (1) WO1996027669A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126783A1 (ja) 2007-04-06 2008-10-23 Kyowa Hakko Bio Co., Ltd. ジペプチドの製造法
WO2010090330A1 (ja) 2009-02-09 2010-08-12 協和発酵バイオ株式会社 L-アミノ酸の製造法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864436B (zh) * 2010-05-26 2012-05-23 东北农业大学 同位素13c标记的4-羟基脯氨酸的生物合成方法
CN103275998B (zh) * 2013-06-14 2015-03-04 河北博伦特药业有限公司 一种编码高活性反式-4-羟基-l-脯氨酸羟化酶的基因片段及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641862A2 (en) * 1993-09-07 1995-03-08 Kyowa Hakko Kogyo Co., Ltd. Process for producing trans-4-hydroxy-l-proline

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555475B1 (en) * 1991-08-26 1997-05-14 Kyowa Hakko Kogyo Co., Ltd. Process for producing 4-hydroxy-l-proline
JPH05236980A (ja) * 1991-12-17 1993-09-17 Sankyo Co Ltd トランス−4−ヒドロキシ−l−プロリンの製造法
JPH07126297A (ja) * 1993-11-05 1995-05-16 Sagami Chem Res Center カルモジュリン融合蛋白質

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641862A2 (en) * 1993-09-07 1995-03-08 Kyowa Hakko Kogyo Co., Ltd. Process for producing trans-4-hydroxy-l-proline

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TETRAHEDRON LETT., Vol. 34, No. 46, (1993), BALDWIN J.E. et al., "Proline 4-Hydroxylase: Stereochemical Course of the Reaction", p. 7489-7492. *
TETRAHEDRON LETT., Vol. 35, No. 26, (1994), BALDWIN J.E. et al., "Substrate Specificity of Proline 4-Hydroxylase: Chemical and Enzymatic Synthesis of 2S,3R,4S-Epoxyproline", p. 4649-4652. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126783A1 (ja) 2007-04-06 2008-10-23 Kyowa Hakko Bio Co., Ltd. ジペプチドの製造法
WO2010090330A1 (ja) 2009-02-09 2010-08-12 協和発酵バイオ株式会社 L-アミノ酸の製造法

Also Published As

Publication number Publication date
KR970702921A (ko) 1997-06-10
CN1132938C (zh) 2003-12-31
HK1000712A1 (en) 2002-09-27
DE69621714T2 (de) 2003-01-30
EP0759472A4 (en) 1999-05-19
EP0759472B1 (en) 2002-06-12
CN1150821A (zh) 1997-05-28
CA2189682C (en) 2001-12-04
ES2176441T3 (es) 2002-12-01
EP0759472A1 (en) 1997-02-26
ATE219142T1 (de) 2002-06-15
KR100460579B1 (ko) 2005-01-15
DE69621714D1 (de) 2002-07-18
CA2189682A1 (en) 1996-09-12
JP3440100B2 (ja) 2003-08-25

Similar Documents

Publication Publication Date Title
ES2197076T3 (es) Procedimiento para la produccion microbiana de l-valina.
US20090263885A1 (en) Process for producing trans-4-hydroxy-L-proline
KR100591500B1 (ko) 트랜스―4―히드록시―l―프롤린의 제조법
WO1996027669A1 (fr) Procede de production de trans-4-hydroxy-l-proline
JP4529338B2 (ja) ヒダントイナーゼをコードするdna、n−カルバミル−l−アミノ酸ハイドロラーゼをコードするdna、組み換えdna、形質転換された細胞、タンパク質の製造方法および光学活性アミノ酸の製造方法
US6767726B2 (en) Process for producing cis-3-hydroxy-L-proline
US6617139B1 (en) Amidase gene
JP2003024073A (ja) D−ヒダントインハイドロラーゼをコードするdna、n−カルバミル−d−アミノ酸ハイドロラーゼをコードするdna、該遺伝子を含む組み換えdna、該組み換えdnaにより形質転換された細胞、該形質転換細胞を用いるタンパク質の製造方法、および、d−アミノ酸の製造方法
JP4516712B2 (ja) L−ピペコリン酸の生物学的な製造方法
CA2189675C (en) Process for producing cis-3-hydroxy-l-proline
EP0645457B1 (en) L-proline-3-hydroxylase and process for producing cis-3-hydroxy-L-proline
WO2008013262A1 (fr) L-leucine hydroxylase et adn codant pour l&#39;enzyme
US7112432B2 (en) Process for producing cis-3-hydroxy-L-proline
JP3764164B2 (ja) トランス−4−ヒドロキシ−l−プロリンの製造法
JP2002330784A (ja) 5置換ヒダントインラセマーゼ、これをコードするdna、組み換えdna、形質転換された細胞および光学活性アミノ酸の製造方法
JPH10136987A (ja) ピコリン酸類の製造方法
JP2002112783A (ja) 酸化還元酵素遺伝子、同遺伝子のクローニングおよび同酵素の製造方法
JPH11155572A (ja) 4(r)−ヒドロキシ−2−ケトグルタル酸アルドラーゼおよび該酵素をコードするdna

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190335.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2189682

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1019960706294

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996905024

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996905024

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996905024

Country of ref document: EP