WO1996017382A1 - Lothöcker für die flip-chip-montage und verfahren zu dessen herstellung - Google Patents

Lothöcker für die flip-chip-montage und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO1996017382A1
WO1996017382A1 PCT/DE1995/001590 DE9501590W WO9617382A1 WO 1996017382 A1 WO1996017382 A1 WO 1996017382A1 DE 9501590 W DE9501590 W DE 9501590W WO 9617382 A1 WO9617382 A1 WO 9617382A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder bump
gold
core
solder
diffusion barrier
Prior art date
Application number
PCT/DE1995/001590
Other languages
English (en)
French (fr)
Inventor
Elke Zakel
Rolf Aschenbrenner
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to US08/849,035 priority Critical patent/US5906312A/en
Priority to JP8518016A priority patent/JPH10511226A/ja
Publication of WO1996017382A1 publication Critical patent/WO1996017382A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections

Definitions

  • solder bumps made of a homogeneous alloy material, e.g. B. Pb / Sn 95/5 or eutectic composition.
  • the bump metallization is applied, for example, by means of galvanic deposition processes or by vapor deposition.
  • galvanic deposition processes or by vapor deposition.
  • the invention is important for those areas of application in which the materials used for the substrates and / or pads (English: pads) allow soft and electrically highly conductive metal bumps, in particular gold bumps, and corresponding solders for the production of connections , especially flip-chip connections.
  • pads allow soft and electrically highly conductive metal bumps, in particular gold bumps, and corresponding solders for the production of connections , especially flip-chip connections.
  • Gold bumps are often used together with solder containing tin to make connections. Problems can arise due to intermetallic phases, which form extremely quickly with this material pairing.
  • the strong reaction of the solder, ie the tin in the solder, with the gold leads to intermetallic compounds such as AuSn, AuSn 2 and AuSn 4 , which are brittle and have an adverse effect on the mechanical stability but also the electrical and thermal conductivity of the solder joints or -Have connections. Pores can even arise due to different diffusion coefficients (so-called Kirkendal effect), which are detrimental to the reliability of the connection.
  • a soft-solderable layer can also be applied by dipping for special purposes. Tin or tin alloy or lead solder layers have proven to be favorable for this. While only gold compression or ultrasound connection techniques can be used for gold bumps without a nickel layer, gold bumps with a nickel layer can also be used for flip-chip soldering.
  • a disadvantage of the known method is the cleaning step for the galvanic gold bumps, which is necessary for a good primer before the nickel plating. This Cleaning step slows down the production of the diffusion barrier layer on the gold bumps and reduces the maximum throughput in production.
  • the object of the invention is to provide a solder bump with particularly good adhesion properties and to specify a method for its production which can be carried out simply, quickly and inexpensively.
  • a solder bump according to the invention consists of a core to which at least one layer is applied.
  • the solder bump core contains a high proportion of a metal which is soft and has good electrical conductivity and also enables the production of very small solder bump cores.
  • a small proportion of a seeding material is contained in a solder bump core, which ensures good adhesion of a diffusion barrier layer on a solder bump core.
  • a solder bump according to the invention consists of a core with a high proportion of gold, on which a layer is applied, which acts as a diffusion barrier layer between the gold in the core material of the solder bump and the solder material that comes into contact with the solder bump according to the invention.
  • the core material of a solder bump according to the invention is not made of 100% gold, such as. B. in the known galvanic gold bumps, but also contains a small proportion of a material that serves as a seeding material for the material of the diffusion barrier layer subsequently to be applied to the core material of a solder bump.
  • This seeding material contained in the core material brings about a good and reliable adhesion of the diffusion barrier layer to the core material Lothöckers according to the invention. Therefore, during the manufacturing process of this diffusion barrier layer, the otherwise necessary pretreatment to achieve a good primer, be it through a cleaning solution or a germination bath, can be dispensed with.
  • the method steps for pretreating a solder bump core are no longer necessary, which means a considerable saving of time and thus allows a higher throughput.
  • the first process step of the method according to the invention is that on a carrier material, for. B. on a wafer or a semiconductor chip, one or more solder bump cores are produced.
  • a diffusion barrier layer is then deposited directly onto these cores without pretreatment. This is advantageously carried out using an electroless, autocatalytic process, as a result of which the diffusion barrier layer material is deposited only on the solder bump cores and not on the passivation layers in areas between the solder bumps.
  • the layer thickness of a diffusion barrier layer can be adjusted very simply by the dwell time in the catalytic bath and can be made so large that a diffusion of gold or solder material, in particular tin, through this layer is excluded.
  • the material of the diffusion barrier layer should neither diffuse into the core of the solder bump nor be dissolved by the solder material which will later come into contact with the solder bump during the soldering process.
  • a further layer is applied to the diffusion barrier layer after a cleaning or rinsing process, which layer protects the diffusion barrier layer from oxidation and enables good solder wetting.
  • a thin gold layer is preferably applied, this being best done by immersion in an immersion gold bath.
  • This outer protective gold layer is so thin and thus the absolute gold content so low that the formation of intermetallic phases of this gold with the solder does not lead to an impairment of the mechanical stability of the solder connection. Since the inventive method a pretreatment of the Loth ⁇ cker core is unnecessary, it can be carried out particularly easily and quickly, so that it is also very suitable for the industrial scale.
  • a solder bump core is preferably produced mechanically as a so-called ball bump.
  • a conventional wire bonding device is used for this purpose, the software used and the holding device for the bonding wire being slightly modified in accordance with the requirements of ball bump production.
  • the bonding wire is pressed onto a connection surface (pad), which together with the heat generated thereby and the applied ultrasound (eg thermosonic bonding) leads to a connection to the pad.
  • the geometrical dimensions of a ball bump can be adjusted by the choice of the bonding parameters pressure (of the wire on the pad) and in particular the bonding wire diameter.
  • the wire is cut through a flame device of the wire bonding device and the height of the ball bump is thus determined. In order to achieve larger bump heights, several, typically two to three, ball bumps of this type are often stacked on top of one another.
  • the diffusion barrier layer is formed from nickel and / or palladium.
  • palladium is used as the germination material. Therefore, commercially available wire material with a high proportion of gold and a low residual proportion of palladium can be used inexpensively to produce the mechanical ball bumps.
  • mechanical ball bumps can be produced with comparatively little effort and thus inexpensively, in particular also on individual chips. B. as part of a prototype production. Their small space requirement, also in the manufacture, is an advantage which enables their use in fields of application which, in particular, cannot be tapped at all or only to a very limited extent by known galvanic gold bumps.
  • its mechanical deformability can be adjusted in comparatively wide ranges both in the vertical and in the horizontal direction.
  • a low deformability in the horizontal direction allows the production of gold ball bumps in the immediate vicinity without having to fear short circuits.
  • a high degree of deformability in the vertical direction is a prerequisite for the slightly different heights of gold ball bumps, for. B. on a semiconductor chip during the soldering process and thus the planarity of the components connected to the bumps is achieved.
  • the diffusion barrier layer applied to a solder bump core prevents the diffusion from the gold of the solder bump core to the solder, which comes into contact with the solder bump according to the invention, and vice versa.
  • the electrical and thermal conductivity of such a diffusion barrier layer is high and the contact resistances to the neighboring layers, in particular to the solder bump core, are low.
  • the mechanical properties, such as good adhesive strength and resistance to mechanical and thermal stresses, are met extremely well by the solder bump according to the invention.
  • connection techniques are soldering methods in flip-chip technology in which the solder has been deposited on the substrate or in which the solder remains adhered to the bumps according to the invention by adhesive forces by immersion in liquid solder.
  • soldering plugs according to the invention are to be carried out by the individual user in accordance with the application.
  • Gold ball bumps are an inexpensive alternative to electroplated gold bumps.
  • this bump metallization can also be used for the first time for flip-chip assembly with solder, in particular lead / tin solder.
  • the small proportion of a seeding material in a gold ball bump also has the advantage that the pretreatment necessary for electroplated gold bumps to achieve a good primer for the applied diffusion barrier layer can be dispensed with. This means that the method according to the invention manages at least one whole process step less.
  • An advantage of the simple and inexpensive process technology in the method according to the invention becomes particularly clear when applied to wafers with hundreds of bumps. This enables a very high throughput (high volume production) to be achieved in industrial production.
  • the invention is described below with reference to an embodiment with reference to the drawing.
  • the single figure shows the section of a silicon chip with a mechanically generated gold ball bump, onto which a diffusion barrier layer made of nickel and a gold contact metallization are deposited.
  • gold ball bumps (4) are formed on the aluminum pads (2) of a silicon chip (1).
  • the areas outside the aluminum pads are provided with electrically non-conductive passivation layers (3) for protection.
  • Wire material with 98% gold and 2% palladium is used to manufacture the ball bumps with conventional wire bonders.
  • only a section of the silicon chip with a single ball bump is shown in the figure.
  • the gold ball bumps of the silicon chip are in one step in the second process step
  • Commercial baths have proven to be suitable. With a dwell time of approx. 8 minutes and a growth rate of the nickel layer of approx. 25 ⁇ m per hour, a nickel layer of approx. 3 ⁇ m is deposited. After the nickel layer has been formed, it is rinsed in a water bath.
  • the nickel-coated gold ball bumps on the silicon chip are then immersed in an immersion gold bath.
  • the gold layer is deposited on a bump until a closed gold layer has formed and the exchange of ions with the nickel layer has ended.
  • the immersion gold layer (6) formed has a maximum thickness of approximately 0.2 ⁇ m. This contact metallization made of gold has the advantage that it leads to a good wetting of the solder and also protects the nickel against oxidation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)

Abstract

Die Erfindung beschreibt einen Lothöcker für die Flip-Chip-Montage, der aus einem Kern (4) mit einem hohen Anteil eines weichen und elektrisch gut leitfähigen Metalls, insbesondere Gold, und einer auf dem Lothöcker-Kern abgeschiedenen Diffusionsbarriereschicht (5) besteht. Die Diffusionsbarriereschicht dient bekanntermaßen dazu, intermetallische Verbindungen zwischen dem Gold des Lothöcker-Kerns und dem Lotmaterial, insbesondere Zinn-Blei-Lot, zu verhindern, da diese sonst die mechanische Stabilität der Lotverbindung reduzieren würden. Damit die Diffusionsbarriereschicht, zumeist Nickel, gut auf dem Lothöcker-Kern haftet, ist bisher eine Vorbehandlung mit einer Reinigungslösung oder in einem Bekeimungsbad notwendig. Dieser Vorbehandlungsprozeßschritt ist bei der Erfindung nicht mehr erforderlich, da dem Lothöcker-Kern in geringen Mengen ein Material beigegeben ist, das für die Diffusionsbarriereschicht als Bekeimungsmaterial wirkt. Solche Lothöcker-Kerne sind z.B. sehr einfach und kostengünstig als Ball-Bumps (mit etwa 98 % Gold und 2 % Palladium) mechanisch herstellbar. Die Erfindung ermöglicht die Herstellung von Flip-Chip-Kontaktierungen mit Gold-Bumps mit hohem Durchsatz auf Industrieniveau. Die erfindungsgemäßen Lothöcker auf der Basis von Gold-Ball-Bumps als Lothöcker-Kerne haben wenig Platzbedarf und erschließen z.B. neue Anwendungsfelder bei der Herstellung von Miniaturkomponenten, etwa in der Mikrochirurgie.

Description

LOTHÖCKER FÜR DIE FLIP-CHIP-MONTAGE UND VERFAHREN ZU
DESSEN HERSTELLUNG
BESCHREIBUNG
Technisches Gebiet
Bei der Flip-Chip-Technologie werden Halbleiter-Chips mit Hilfe von Lothöckern (englisch: Bumps) direkt mit Substraten verbunden und erfordern daher nur ge¬ ringen Einbauplatz. Als Bumps für die Flip-Chip-Technologie werden derzeit Lot- Bumps aus einem homogenen Legierungsmaterial, z. B. Pb/Sn 95/5 oder eutektische Zusammensetzung, eingesetzt. Das Aufbringen der Bump-Metalli- sierung erfolgt beispielsweise mittels galvanischer Abscheideverfahren oder in Aufdampftechnik. Derzeit sind jedoch weltweit gebumpte Chips bzw. Wafer mit Blei-Zinn-Loten nur in beschränktem Umfang von Herstellern erhältlich, so daß die schon lange in der TABfTape Automated Bonding)-Techπologie erprobten und in einem weiten Feld eingesetzten Gold-Bumps eine kostengünstige Alter¬ native sind. Die Erfindung ist für diejenigen Anwendungsgebiete von Bedeutung, in denen die eingesetzten Materialien der Substrate und/oder Anschlußflächen (englisch: Pads) es erlauben, weiche und elektrisch gut leitfähige Metall-Bumps, insbesondere Gold-Bumps, und entsprechende Lote für die Herstellung von Verbindungen, insbesondere Flip-Chip-Verbindungen, zu verwenden. Stand der Technik
Gold-Bumps, insbesondere galvanisch hergestellte, werden häufig zusammen mit Zinn-haltigen Loten zur Herstellung von Verbindungen eingesetzt. Probleme können dabei durch intermetallische Phasen auftreten, die sich bei dieser Werkstoffpaarung extrem schnell bilden. Die starke Reaktion des Lotes, d. h. des Zinns im Lot, mit dem Gold führt zu intermetallischen Verbindungen wie AuSn, AuSn2 und AuSn4, die spröde sind und einen nachteiligen Einfluß auf die mechanische Stabilität aber auch die elektrische und thermische Leitfähigkeit der Lötstellen bzw. -Verbindungen haben. Es können sogar Poren aufgrund un¬ terschiedlicher Diffusionskoeffizienten entstehen (sogenannter Kirkendal-Effekt), die schädlich für die Zuverlässigkeit der Verbindung sind.
Aus der DE 20 32 872 ist bekannt, daß dieses Problem durch eine lötfähige Schutzschicht bzw. Diffusionsbarriereschicht oder Diffusionssperrschicht aus Nickel auf den Gold-Bumps beseitigt werden kann. Denn bei einer Löttemperatur von ca. 350°C diffundiert Nickel weder in Gold ein noch wird es im Blei-Zinn-Lot wesentlich gelöst und wirkt so als lötfähige Schutzschicht gegen den Angriff des Lotes auf das Gold. In der genannten Patentschrift werden galvanische Gold- Bumps zunächst in Aceton gereinigt. Anschließend wird auf die Gold-Bumps mit einem stromlosen Abscheideverfahren eine Nickelschicht aufgebracht. Diese selektive Nickelabscheidung auf den Gold-Bumps macht zusätzliche, teuere Masken, wie sie z. B. bei einem Aufdampfverfahren notwendig wären, überflüs¬ sig. Zusätzlich zur Nickelschicht kann für besondere Zwecke noch eine weichlötfähige Schicht im Tauchverfahren aufgebracht werden. Als günstig ha¬ ben sich dafür Zinn- bzw. Zinnlegierungs- oder Bleilot-Schichten erwiesen. Wäh¬ rend für Gold-Bumps ohne Nickelschicht nur Thermokompressions -oder Ultraschall-Verbindungstechniken einsetzbar sind, können Gold-Bumps mit einer Nickelschicht auch für das Flip-Chip-Löten benutzt werden. Nachteilig an dem bekannten Verfahren ist der für einen guten Haftgrund vor der Vernickelung notwendige Reinigungsschritt für die galvanischen Gold-Bumps. Dieser Reinigungsschritt verlangsamt die Herstellung der Diffusionsbarriereschicht auf den Gold-Bumps und reduziert den maximalen Durchsatz in der Produktion.
Darstellung der Erfindung
Ausgehend von dem oben dargelegten Stand der Technik, liegt der Erfindung die Aufgabe zugrunde, einen Lothöcker mit besonders guten Haftungseigen- schaften bereitzustellen sowie ein Verfahren zu dessen Herstellung anzugeben, das einfach, schnell und kostengünstig durchführbar ist.
Eine erfindungsgemäße Lösung dieser Aufgabe besteht in einem Lothöcker ge¬ mäß den kennzeichnenden Merkmalen des Anspruchs 1 und in einem Verfahren zu dessen Herstellung nach Anspruch 8. Bevorzugte Weiterbildungen sind in den Unteransprüchen aufgeführt.
Ein erfindungsgemäßer Lothöcker besteht aus einem Kern, auf den zumindest eine Schicht aufgebracht ist. Der Lothöcker-Kern enthält einen hohen Anteil eines Metalls, das weich und elektrisch gut leitfähig ist und zudem die Herstel¬ lung sehr kleiner Lothöcker-Kerne ermöglicht. Daneben ist in einem Lothöcker- Kern ein geringer Anteil eines Bekeimungsmaterials enthalten, das eine gute Haftung einer Diffusionsbarriereschicht auf einem Lothöcker-Kern sicherstellt. Insbesondere besteht ein erfindungsgemäßer Lothöcker aus einem Kern mit einem hohen Anteil Gold, auf dem eine Schicht aufgebracht ist, die als Diffusi¬ onsbarriereschicht zwischen dem Gold im Kernmaterial des Lothöckers und dem Lotmaterial, das mit dem erfindungsgemäßen Lothöcker in Kontakt kommt, fungiert. Es ist wesentlich, daß das Kernmaterial eines erfindungsgemäßen Lot¬ höckers nicht aus 100% Gold, wie z. B. bei den bekannten galvanischen Gold- Bumps, besteht, sondern zusätzlich einen geringen Anteil eines Materials enthält, das für das nachfolgend auf das Kernmaterial eines Lothöckers aufzu¬ bringende Material der Diffusionsbarriereschicht als Bekeimungsmaterial dient. Dieses im Kernmaterial enthaltene Bekeimungsmaterial bewirkt eine gute und zuverlässige Haftung der Diffusionsbarriereschicht auf dem Kernmaterial eines erfindungsgemäβen Lothöckers. Daher kann beim Hersteilungsprozeβ dieser Diffusionsbarriereschicht auf die sonst notwendige Vorbehandlung zur Erzielung eines guten Haftgrundes, sei es durch eine Reinigungslösung oder durch ein Bekeimungsbad, verzichtet werden. Beim erfindungsgemäßen Verfahren sind die Verfahrensschritte zur Vorbehandlung eines Lothöcker-Kerns nicht mehr notwendig, was einen erheblichen Zeitgewinn bedeutet und somit einen höheren Durchsatz gestattet.
Der erste Verfahrensschritt des erfindungsgemäßen Verfahrens besteht darin, daß auf einem Trägermaterial, z. B. auf einem Wafer oder einem Halbleiter-Chip, ein oder mehrere Lothöcker-Kerne hergestellt werden. Anschließend wird auf diese Kerne ohne Vorbehandlung direkt eine Diffusionsbarriereschicht ab¬ geschieden. Dies erfolgt vorteilhaft mit einem stromlosen, autokatalytischen Verfahren, wodurch die Abscheidung des Diffusionsbarriereschichtmaterials nur auf den Lothöcker-Kernen erfolgt und nicht auf den Passivierungsschichten in Bereichen zwischen den Lothöckern. Die Schichtdicke einer Diffusionsbarriere¬ schicht kann sehr einfach durch die Verweildauer im Katalysebad eingestellt werden und so groß gemacht werden, daß eine Diffusion von Gold oder Lotma¬ terial, insbesondere Zinn, durch diese Schicht ausgeschlossen ist. Das Material der Diffusionsbarriereschicht sollte weder in den Lothöcker-Kern eindiffundieren noch von dem mit dem Lothöcker später in Kontakt tretenden Lotmaterial beim Lötvorgang aufgelöst werden.
Nach einem Reinigungs- bzw. Spülvorgang wird bei einer vorteilhaften Weiterbil¬ dung der Erfindung auf die Diffusionsbarriereschicht eine weitere Schicht aufgebracht, welche die Diffusionsbarriereschicht vor Oxidation schützt und eine gute Benetzung des Lotes ermöglicht. Vorzugsweise wird dafür eine dünne Goldschicht aufgebracht, wobei dies am besten durch Eintauchen in ein Immersions-Gold-Bad erfolgt. Diese äußere Schutzgoldschicht ist so dünn und damit der absolute Goldgehalt so gering, daß die Bildung intermetallischer Phasen dieses Goldes mit dem Lot nicht zu einer Beeinträchtigung der mechani¬ schen Stabilität der Lotverbindung führt. Da das erfindungsgemäße Verfahren eine Vorbehandlung des Lothδcker-Kerns erübrigt, ist es besonders einfach und schnell durchführbar, so daß es auch für den industriellen Maßstab sehr gut ge¬ eignet ist.
Vorzugsweise wird ein Lothöcker-Kern mechanisch als sogenannter Ball-Bump hergestellt. Dazu wird ein herkömmliches Drahtbondgerät benutzt, wobei die eingesetzte Software und die Haltevorrichtung für den Bonddraht entsprechend den Anforderungen der Ball-Bump-Herstellung leicht modifiziert sind. Zur Ausbil¬ dung eines Ball-Bumps wird der Bonddraht auf eine Anschlußfläche (Pad) aufgedrückt, wobei es zusammen mit der dadurch erzeugten Wärme und dem beaufschlagten Ultraschall (z. B. Thermosonic Bonding) zur Verbindung mit dem Pad kommt. Die geometrischen Abmessungen eines Ball-Bumps sind durch die Wahl der Bondparameter Druck (des Drahtes auf das Pad) und insbesondere des Bonddrahtdurchmessers einstellbar. Durch eine Abflammeinrichtung des Drahtbondgerätes wird der Draht durchtrennt und so die Höhe des Ball-Bumps festgelegt. Um größere Bump-Höhen zu erzielen, werden oft mehrere, typisch zwei bis drei, solcher Ball-Bumps aufeinander gestapelt.
Bei einer vorteilhaften Ausgestaltung der Erfindung wird die Diffusionsbarriere¬ schicht aus Nickel und/oder Palladium gebildet. Als Bekeimungsmaterial dient in diesen Fällen Palladium. Deshalb kann zur Herstellung der mechanischen Ball- Bumps kostengünstig kommerziell erhältliches Drahtmaterial mit einem hohen Anteil Gold und einem geringen Restanteil Palladium verwendet werden. Mechanische Ball-Bumps können im Gegensatz zu galvanisch oder mit Auf¬ dampfverfahren erzeugten Bumps mit vergleichsweise geringem Aufwand und damit kostengünstig hergestellt werden, insbesondere auch auf einzelnen Chips z. B. im Rahmen einer Prototypenfertigung. Ihr geringer Platzbedarf, auch bei der Herstellung, ist ein Vorteil, der den Einsatz in Anwendungsfeldern ermög¬ licht, die insbesondere durch bekannte galvanische Gold-Bumps nicht oder nur sehr eingeschränkt erschließbar sind. Dazu gehört insbesondere der Bereich der Miniaturkomponenten, wie sie in der Mikrochirurgie eingesetzt werden. Darüber hinaus ist durch gezielt einstellbare Geometrieabmessungen eines Ball- Bumps dessen mechanische Verformbarkeit sowohl in vertikaler als auch in horizontaler Richtung in vergleichsweise weiten Bereichen einstellbar. Eine ge¬ ringe Verformbarkeit in horizontaler Richtung erlaubt die Herstellung von Gold- Ball-Bumps in unmittelbarer Nachbarschaft, ohne Kurzschlüsse befürchten zu müssen. Eine hohe Verformbarkeit in vertikaler Richtung ist Voraussetzung da¬ für, daß die geringfügig unterschiedlichen Höhen von Gold-Ball-Bumps z. B. auf einem Halbleiter-Chip beim Lötvorgang ausgeglichen werden können und damit die Planarität der mit den Bumps verbundenen Bauteile erreicht wird.
Die auf einen Lothöcker-Kern aufgebrachte Diffusionsbarriereschicht verhindert die Diffusion vom Gold des Lothöcker-Kerns zum Lot, welches mit dem erfin¬ dungsgemäßen Lothöcker in Kontakt kommt, und umgekehrt. Die elektrische und thermische Leitfähigkeit solch einer Diffusionsbarriereschicht ist hoch und die Kontaktwiderstände zu den Nachbarschichten, insbesondere zum Lot¬ höcker-Kern, sind klein. Daneben werden die mechanischen Eigenschaften, wie gute Haftfestigkeit und Widerstandsfestigkeit gegenüber mechanischen und thermischen Spannungen vom erfindungsgemäßen Lothöcker außerordentlich gut erfüllt.
Das erfindungsgemäße Verfahren führt zu einer Bumpmetallisierung, die unter¬ schiedliche Verbindungstechniken ermöglicht. Besonders geeignet als Verbin¬ dungstechniken sind dabei Lötverfahren in der Flip-Chip-Technik bei denen das Lot auf dem Substrat deponiert wurde oder bei denen das Lot durch Eintauchen in flüssiges Lot auf den erfindungsgemäßen Bumps durch Adhäsionskräfte haften bleibt.
Es ist möglich, daß das Aufbringen bzw. Bumping der Lothöcker-Kerne von er¬ findungsgemäßen Lothöckern auf z. B. einzelne Halbleiter-Chips oder ganze Wafer von darauf spezialisierten Bumping-Firmen vorgenommen wird. Die weiteren erfindungsgemäßen Verfahrensschritte zur endgültigen Ausbildung er- findungsgemäβer Lothδcker sind in diesem Fall entsprechend dem Anwen- dungsfall vom einzelnen Anwender selbst durchzuführen.
Mit der Erfindung werden die nachfolgend beschriebenen Vorteile erreicht.
Gold-Ball-Bumps sind eine kostengünstige Alternative zu galvanisch erzeugten Gold-Bumps. Mit der Erfindung ist diese Bumpmetallisierung erstmals auch für die Flip-Chip-Montage mit Lot, insbesondere Blei/Zinn-Lot, nutzbar. Der geringe Anteil eines Bekeimungsmaterials in einem Gold-Ball-Bump hat zudem den Vor¬ teil, daß auf die bei galvanisch erzeugten Gold-Bumps notwendige Vorbe¬ handlung zur Erzielung eines guten Haftgrundes für die aufgebrachte Diffusi¬ onsbarriereschicht verzichtet werden kann. Das bedeutet, daß das erfindungs- gemäße Verfahren mit zumindest einem ganzen Prozeßschritt weniger aus¬ kommt.
Ein Vorteil der einfachen und billigen Prozeßtechnik beim erfindungsgemäßen Verfahren wird besonders deutlich bei der Anwendung auf Wafer mit Hunderten von Bumps. Dadurch ist ein sehr hoher Durchsatz (high volume production) bei einer industriellen Fertigung erreichbar.
Die Erfindung wird nachstehend anhand eines Ausführungsbeispiels unter Be¬ zugnahme auf die Zeichnung näher beschrieben. Die einzige Figur zeigt den Ausschnitt eines Silizium-Chips mit einem mechanisch erzeugten Gold-Ball- Bump, auf den eine Diffusionsbarriereschicht aus Nickel und eine Gold-Kon¬ taktmetallisierung abgeschieden sind. Im Ausführungsbeispiel werden auf den Aluminium-Pads (2) eines Silizium-Chips (1) Gold-Ball-Bumps (4) ausgebildet. Die Bereiche außerhalb der Aluminium-Pads sind zum Schutz mit elektrisch nichtleitenden Passivierungsschichten (3) versehen. Zur Herstellung der Ball- Bumps mit herkömmlichen Drahtbondern wird Drahtmaterial mit 98% Gold und 2% Palladium verwendet. Der Einfachheit halber wird in der Figur nur ein Aus¬ schnitt des Silizium-Chips mit einem einzigen Ball-Bump gezeigt. Die Gold-Ball- Bumps des Silizium-Chips werden im zweiten Verfahrensschritt in einem Nickelbad durch autokatalytische Nickelabscheidung mit einer Nickelschicht (5) versehen. Als geeignet erwiesen haben sich handelsübliche Bäder. Mit einer Verweilzeit von ca. 8 Minuten und einer Aufwachsrate der Nickelschicht von ca. 25 μm pro Stunde wird eine Nickelschicht von etwa 3 μm abgeschieden. Nach dem Ausbilden der Nickelschicht erfolgt ein Spülvorgang in einem Wasserbad.
Danach werden die Nickel-beschichteten Gold-Ball-Bumps auf dem Silizium- Chip in ein Immersions-Goldbad eingetaucht. Die Anlagerung der Goldschicht auf einem Bump erfolgt so lange, bis sich eine geschlossene Goldschicht gebil¬ det hat und damit der Austausch der Ionen mit der Nickelschicht beendet ist. Die gebildete immersions-Goldschicht (6) erreicht maximal eine Dicke von etwa 0,2 μm. Diese Kontaktmetallisierung aus Gold hat den Vorteil, daß sie zu einer guten Benetzung des Lotes führt und zudem das Nickel vor einer Oxidation schützt.

Claims

PATENTANSPRÜCHE
1. Lothöcker bestehend aus einem Lothöcker-Kern, auf den eine oder meh¬ rere Schichten aufgebracht sind, wobei der Lothöcker-Kem einen hohen Anteil eines ersten Metalls enthält, das weich und elektrisch gut leitfähig ist, und eine erste auf den Lothöcker-Kem aufgebrachte Schicht als Diffu¬ sionsbarriere zwischen dem ersten Metall im Lothöcker-Kem und dem mit dem Lothöcker in Kontakt kommenden Lotmaterial dient, dadurch gekennzeichnet, daß der Lothöcker-Kem einen geringen Anteil eines Bekeimungsmaterials für die Diffusionsbarriereschicht enthält.
2. Lothöcker nach Anspruch 1 , dadurch gekennzeichnet, daß für das im Lothöcker-Kem in einem hohen Anteil enthaltene erste Me¬ tall das Edelmetall Gold verwendet ist.
3. Lothöcker nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß auf die Diffusionsbarriereschicht eine Kontaktmetallisierung aufge¬ bracht ist, welche die Diffusionsbarriereschicht vor Oxidation schützt und/oder eine gute Benetzung des Lotmaterials gestattet .
4. Lothöcker nach Anspruch 3, dadurch gekennzeichnet, daß die Kontaktmetallisierung aus Gold, insbesondere aus Immersions- Gold, besteht.
5. Lothöcker nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Bekeimungsmaterial Palladium ist und der Lothöcker-Kern insbe¬ sondere aus 98 % Gold und 2 % Palladium besteht.
6. Lothöcker nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Diffusionsbarriereschicht aus Nickel und/oder Palladium besteht.
7. Lothöcker nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Lothδcker-Kern als mechanisch hergestellter Ball-Bump ausgebil¬ det ist.
8. Verfahren zur Herstellung eines Lothöckers nach einem der Ansprüche 1 bis 7 gekennzeichnet durch folgende Verfahrensschritte:
- Herstellung des Lothöcker-Kerns
- Aufbringen einer Diffusionsbarriereschicht, wobei das Metall zur Bildung der Diffusionsbarriereschicht ohne Vorbehandlung des Lothöcker-Kerns direkt auf dem Lothöcker-Kern abgeschieden wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Lothöcker-Kern als Ball-Bump mechanisch hergestellt wird.
10. Verfahren nach einem der Ansprüche 8 bis 9, dadurch gekennzeichnet, daß der Lothöcker-Kern aus einem Material mit einem hohen Anteil Gold und einem Restanteil Palladium, insbesondere aus 98 % Gold und 2 % Palladium, hergestellt wird.
11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die Diffusionsbarriereschicht durch ein stromloses Verfahren auf dem Lothöcker-Kern abgeschieden wird.
12. Verfahren nach einem der Ansprüche 8 bis 11 , dadurch gekennzeichnet, daβ auf die Diffusionsbarriereschicht in einem weiteren Verfahrensschritt eine Kontaktmetallisierung, insbesondere durch ein stromloses Verfahren, aufgebracht wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß für die Kontaktmetallisierung Gold, insbesondere Immersions-Gold, verwendet wird.
14. Verfahren nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, daß als Metall für die Diffusionsbarriereschicht Nickel und/oder Palladium verwendet wird.
PCT/DE1995/001590 1994-12-02 1995-11-10 Lothöcker für die flip-chip-montage und verfahren zu dessen herstellung WO1996017382A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/849,035 US5906312A (en) 1994-12-02 1995-11-10 Solder bump for flip chip assembly and method of its fabrication
JP8518016A JPH10511226A (ja) 1994-12-02 1995-11-10 フリップチップ実装用はんだバンプおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4442960.6 1994-12-02
DE4442960A DE4442960C1 (de) 1994-12-02 1994-12-02 Lothöcker für die Flip-Chip-Montage und Verfahren zu dessen Herstellung

Publications (1)

Publication Number Publication Date
WO1996017382A1 true WO1996017382A1 (de) 1996-06-06

Family

ID=6534757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001590 WO1996017382A1 (de) 1994-12-02 1995-11-10 Lothöcker für die flip-chip-montage und verfahren zu dessen herstellung

Country Status (5)

Country Link
US (1) US5906312A (de)
JP (1) JPH10511226A (de)
KR (1) KR100373085B1 (de)
DE (1) DE4442960C1 (de)
WO (1) WO1996017382A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242106B1 (en) 1998-05-13 2001-06-05 W. C. Hereaeus Gmbh & Co. Kg Fine wire made of a gold alloy, method for its production, and its use

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2962351B2 (ja) * 1997-03-31 1999-10-12 日本電気株式会社 半導体チップへの接合構造及びそれを用いた半導体装置
DE19733954A1 (de) * 1997-07-07 1999-01-14 Heraeus Gmbh W C Feinstdraht aus einer Goldlegierung, Verfahren zu seiner Herstellung und seine Verwendung
EP0890987B1 (de) * 1997-07-07 2003-03-05 W.C. Heraeus GmbH & Co. KG Feinstdraht aus einer Goldlegierung, Verfahren zu seiner Herstellung und seine Verwendung
TW366548B (en) * 1998-04-18 1999-08-11 United Microelectronics Corp Trench bump block and the application of the same
US6164523A (en) * 1998-07-01 2000-12-26 Semiconductor Components Industries, Llc Electronic component and method of manufacture
DE19838418A1 (de) * 1998-08-24 2000-03-02 Delphi Automotive Systems Gmbh Elektrische Anschlußvorrichtung sowie Verfahren zur Herstellung einer elektrischen Kontaktierung
DE19921475C2 (de) * 1999-05-08 2003-04-10 Abb Patent Gmbh Kontaktanordnung für Schalter, Schütze, ect.
US6316286B1 (en) 1999-10-13 2001-11-13 Teraconnect, Inc. Method of equalizing device heights on a chip
DE60109339T2 (de) * 2000-03-24 2006-01-12 Texas Instruments Incorporated, Dallas Verfahren zum Drahtbonden
DE10025147C2 (de) * 2000-05-20 2002-03-07 Orga Kartensysteme Gmbh Kontaktanordnung für mehrkomponentige Smart Cards
US6492197B1 (en) * 2000-05-23 2002-12-10 Unitive Electronics Inc. Trilayer/bilayer solder bumps and fabrication methods therefor
US6643099B1 (en) 2000-06-20 2003-11-04 Seagate Technology Llc Transducer formed on a sacrificial metal substrate
US20020056742A1 (en) * 2000-11-10 2002-05-16 Rinne Glenn A. Methods and systems for attaching substrates to one another using solder structures having portions with different melting points
DE60108413T2 (de) * 2000-11-10 2005-06-02 Unitive Electronics, Inc. Verfahren zum positionieren von komponenten mit hilfe flüssiger antriebsmittel und strukturen hierfür
US6445069B1 (en) 2001-01-22 2002-09-03 Flip Chip Technologies, L.L.C. Electroless Ni/Pd/Au metallization structure for copper interconnect substrate and method therefor
WO2004001837A2 (en) * 2002-06-25 2003-12-31 Unitive International Limited Methods of forming electronic structures including conductive shunt layers and related structures
US7531898B2 (en) * 2002-06-25 2009-05-12 Unitive International Limited Non-Circular via holes for bumping pads and related structures
US7547623B2 (en) * 2002-06-25 2009-06-16 Unitive International Limited Methods of forming lead free solder bumps
US7015590B2 (en) * 2003-01-10 2006-03-21 Samsung Electronics Co., Ltd. Reinforced solder bump structure and method for forming a reinforced solder bump
US6959856B2 (en) * 2003-01-10 2005-11-01 Samsung Electronics Co., Ltd. Solder bump structure and method for forming a solder bump
TWI225899B (en) * 2003-02-18 2005-01-01 Unitive Semiconductor Taiwan C Etching solution and method for manufacturing conductive bump using the etching solution to selectively remove barrier layer
US7271497B2 (en) * 2003-03-10 2007-09-18 Fairchild Semiconductor Corporation Dual metal stud bumping for flip chip applications
JP4863746B2 (ja) * 2006-03-27 2012-01-25 富士通株式会社 半導体装置およびその製造方法
US20080083993A1 (en) * 2006-10-04 2008-04-10 Texas Instruments Incorporated Gold-Tin Solder Joints Having Reduced Embrittlement
US7749887B2 (en) * 2007-12-18 2010-07-06 Micron Technology, Inc. Methods of fluxless micro-piercing of solder balls, and resulting devices
US8476757B2 (en) * 2009-10-02 2013-07-02 Northrop Grumman Systems Corporation Flip chip interconnect method and design for GaAs MMIC applications
JP5383460B2 (ja) * 2009-12-04 2014-01-08 新光電気工業株式会社 半導体装置の製造方法
US9620469B2 (en) 2013-11-18 2017-04-11 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming post-passivation interconnect structure
FR3088018B1 (fr) * 2018-11-06 2023-01-13 Mbda France Procede de liaison par brassage permettant d'ameliorer la tenue en fatigue de joints brases

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893156A (en) * 1973-06-29 1975-07-01 Ibm Novel beam lead integrated circuit structure and method for making the same including automatic registration of beam leads with corresponding dielectric substrate leads
EP0256357A2 (de) * 1986-08-11 1988-02-24 International Business Machines Corporation Halbleiterchip mit einer Höckerstruktur für automatische Bandmontage
JPH02238630A (ja) * 1989-03-11 1990-09-20 Takehide Shirato 半導体装置
US5028454A (en) * 1989-10-16 1991-07-02 Motorola Inc. Electroless plating of portions of semiconductor devices and the like

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2032872B2 (de) * 1970-07-02 1975-03-20 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zum Herstellen weichlötfähiger Kontakte zum Einbau von Halbleiterbauelementen in Gehäuse
US5508561A (en) * 1993-11-15 1996-04-16 Nec Corporation Apparatus for forming a double-bump structure used for flip-chip mounting
JP2833996B2 (ja) * 1994-05-25 1998-12-09 日本電気株式会社 フレキシブルフィルム及びこれを有する半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893156A (en) * 1973-06-29 1975-07-01 Ibm Novel beam lead integrated circuit structure and method for making the same including automatic registration of beam leads with corresponding dielectric substrate leads
EP0256357A2 (de) * 1986-08-11 1988-02-24 International Business Machines Corporation Halbleiterchip mit einer Höckerstruktur für automatische Bandmontage
JPH02238630A (ja) * 1989-03-11 1990-09-20 Takehide Shirato 半導体装置
US5028454A (en) * 1989-10-16 1991-07-02 Motorola Inc. Electroless plating of portions of semiconductor devices and the like

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 14, no. 553 (E - 1010) 7 December 1990 (1990-12-07) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242106B1 (en) 1998-05-13 2001-06-05 W. C. Hereaeus Gmbh & Co. Kg Fine wire made of a gold alloy, method for its production, and its use

Also Published As

Publication number Publication date
US5906312A (en) 1999-05-25
JPH10511226A (ja) 1998-10-27
KR970707584A (ko) 1997-12-01
DE4442960C1 (de) 1995-12-21
KR100373085B1 (ko) 2003-06-19

Similar Documents

Publication Publication Date Title
DE4442960C1 (de) Lothöcker für die Flip-Chip-Montage und Verfahren zu dessen Herstellung
DE102005028951B4 (de) Anordnung zur elektrischen Verbindung einer Halbleiter-Schaltungsanordnung mit einer äusseren Kontakteinrichtung
DE10164502B4 (de) Verfahren zur hermetischen Verkapselung eines Bauelements
DE102007055017B4 (de) Verfahren zum Verbinden zweier Fügeflächen und Bauteil mit zwei verbundenen Fügeflächen
DE60023416T2 (de) Weichlotverbindung mit hoher Festigkeit
DE2032872A1 (de) Verfahren zum Herstellen weichlötfähiger Kontakte zum Einbau von Halbleiterbauelementen in Gehäuse
DE112004000360T5 (de) Zweimetallisches Stud-Bumping für Flipchip-Anwendungen
WO1996016442A1 (de) Kernmetall-lothöcker für die flip-chip-technik
DE3401065A1 (de) Kupferlegierungen mit verbesserter loetfaehigkeits-haltbarkeit
DE102007010242A1 (de) Verfahren zum Diffusionslöten
DE102015224845A1 (de) Halbleitervorrichtung und Verfahren zur Herstellung derselben
DE4311872A1 (de) Leiterrahmen für integrierte Schaltungen
DE1956501C3 (de) Integrierte Schaltungsanordnung
DE112012006812T5 (de) Elektronische Komponente und Fertigungsverfahren für elektronische Komponente
DE112018000876T5 (de) Halbleiterelement und verfahren zur herstellung desselben
DE102005058654A1 (de) Verfahren zum flächigen Fügen von Komponenten von Halbleiterbauelementen
DE1627762A1 (de) Verfahren zum Herstellen von Halbleiterbauelementen
DE112009005044B4 (de) Halbleitervorrichtung und Verfahren zu deren Herstellung
DE102005006281A1 (de) Halbleiterbauteil mit Goldbeschichtungen und Verfahren zur Herstellung desselben
DE4224012C1 (de) Lötfähiges elektrisches Kontaktelement
DE102012216546B4 (de) Verfahren zum verlöten eines halbleiterchips mit einem träger
DE19942885A1 (de) Halbleiter-Bauelement
DE3704200C2 (de)
DE1816748A1 (de) Halbleitervorrichtung und Verfahren zu ihrer Herstellung
DE2500206A1 (de) Metallisierungssystem fuer halbleiter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970703334

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08849035

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019970703334

Country of ref document: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1019970703334

Country of ref document: KR