WO1996011377A1 - Illuminator for inspecting appearance of device and automatic apparatus for inspecting appearance of device using the illumination device - Google Patents

Illuminator for inspecting appearance of device and automatic apparatus for inspecting appearance of device using the illumination device Download PDF

Info

Publication number
WO1996011377A1
WO1996011377A1 PCT/JP1995/002043 JP9502043W WO9611377A1 WO 1996011377 A1 WO1996011377 A1 WO 1996011377A1 JP 9502043 W JP9502043 W JP 9502043W WO 9611377 A1 WO9611377 A1 WO 9611377A1
Authority
WO
WIPO (PCT)
Prior art keywords
illuminator
camera
appearance
image
illumination
Prior art date
Application number
PCT/JP1995/002043
Other languages
French (fr)
Japanese (ja)
Inventor
Aritomo Kikuchi
Hisao Hayama
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to KR1019960702964A priority Critical patent/KR960706627A/en
Publication of WO1996011377A1 publication Critical patent/WO1996011377A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0813Controlling of single components prior to mounting, e.g. orientation, component geometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to an illuminator used for inspecting the appearance of electronic components (hereinafter, referred to as a device) such as a semiconductor device, a filter, and a vibrator, and an automatic device appearance inspection apparatus using the illuminator.
  • a device such as a semiconductor device, a filter, and a vibrator
  • an automatic device appearance inspection apparatus using the illuminator.
  • the present invention relates to a illuminator useful for inspecting the appearance of Ic, which is a typical example of a semiconductor device, for example, a surface mount LSI (large-scale integrated circuit), and an automatic device appearance inspection apparatus.
  • this type of illuminator is used not only when a human visually inspects the appearance of a device but also when a visual inspection of the device is performed by an automatic appearance inspection apparatus having an image processing unit.
  • the case where the IC is used as the light source of an automatic device appearance inspection device is taken as an example, and the case where the IC is illuminated and its appearance is inspected for simplicity is described. It goes without saying that it can be used to illuminate any device, including devices such as filters and vibrators, and inspect their appearance. Background art
  • testing of ICs including LSIs involves testing at the wafer stage in the manufacturing process and testing on finished products with packages.
  • Finished product testing includes electrical characteristics testing and appearance testing.
  • the appearance test may be performed by human visual inspection or by using an automatic appearance inspection device.
  • the IC must be illuminated.
  • lighting used for visual inspection of ICs is lighting that illuminates the entire IC under test to a certain brightness, both in visual inspection and when using an automatic visual inspection device. Constant illumination was performed with a light source from obliquely above or from the side.
  • the package is relatively large and the number of input / output lead bins is small, so that the lead pin interval (pitch) is relatively wide and the precision is small. The reason was that the above-mentioned constant lighting was sufficient for both the visual inspection and the automatic inspection because the degree was not severe.
  • An automatic appearance inspection apparatus generally has an image processing unit similar to an image processing apparatus.
  • FIG. 5 shows an example of processing image data in a conventional image processing apparatus.
  • the camera unit 50 converts the photographed image into digital pixel data of a total of 302,000 pixels, for example, 62 pixels in the horizontal axis and 484 pixels in the vertical axis, and outputs the data.
  • This pixel data is stored directly in the image memory 51, or is stored in the image memory 51 via a filter 52 and a LUT (Look-Up Table) 53.
  • the LUT 53 is a conversion table for selecting colors to be displayed on a television (TV) monitor 18 or the like.
  • the input data value is used as the address, and the output data corresponding to the input data is output. This is a pre-written memory.
  • the LUT 53 data conversion function is used to perform binarization, pre-processing of gray-scale images, and conversion processing of display images.
  • the filter 52 has a function of emphasizing the edge and preprocessing in cooperation with the data output from the shading memory 58 when, for example, the periphery of the IC to be tested is blurred. I have.
  • the window memory 55 is a memory used for drawing a window on the screen of the TV monitor 18.
  • the graphic memory 56 is a memory used to display the display of the measurement results as a graph or as a work area.
  • the character memory 57 is a memory mainly for displaying characters, and is also used for editing programs and displaying tally results.
  • the display control unit 54 is a control unit that directly processes pixel data from the camera unit 50 or processes pixel data from the image memory 51 and displays an image on the TV monitor 18. .
  • the display control unit 54 displays an image using the data of the window memory 55, the graphic memory 56, and the character memory 57 depending on an instruction.
  • inspection can be performed with a conventional device by automatically adjusting the brightness with the above-mentioned constant illumination. Met.
  • the vertical and horizontal dimensions are 1 O mm X 1 O mm to 3 O mm x 3 O mm, and lead pins are arranged on four sides of this package, and lead pins on each side
  • the number is very large, from 8 to 76.
  • the lead pitch width is very narrow, from 0.3 mm to 0.8 mm, and the thickness is about 2 mm to 1 Omm.
  • An object of the present invention is to provide a compact device visual inspection illuminator that can illuminate a device evenly and easily illuminate from a specific direction.
  • the illuminator for visual inspection of a device comprises: an illumination frame provided with an opening for arranging a camera or an operator's eyes at substantially the center; It is composed of a number of arranged light-emitting elements whose luminance can be controlled, and an illumination control unit that can selectively control the luminance of each light-emitting element.
  • an illumination frame provided with an opening for arranging a camera or an operator's eyes at substantially the center; It is composed of a number of arranged light-emitting elements whose luminance can be controlled, and an illumination control unit that can selectively control the luminance of each light-emitting element.
  • a DUT When illuminating the device under test (generally called a DUT), if the overall illumination is uneven, adjust the brightness of each light emitting element to eliminate the unevenness. For some DUTs, illumination from a slightly lower position provides better reflection at the measured (observed) location. In this case, for example, the upper light emitting element is turned off.
  • the brightness is controlled so that only the lower light emitting element is turned on.
  • the opposite lighting method may be used. Thereby, the shading can be sharpened.
  • the luminance adjustment or control includes not only increasing or decreasing the brightness of the light emitting element, but also turning on or off the light emitting element. This brightness adjustment may be performed manually or automatically.
  • the DUT is horizontal, it should be horizontal, if it is vertical, it should be vertical, and a quadrilateral similar to DUT should be used. This is to spread the lighting over the entire surface of DUT.
  • the central opening may be as large as the line of sight or the lens of the camera.
  • the dimensions of the frame are determined by the size of DUT.
  • the light emitting element is not limited as long as it is a small light emitter such as an LED (Ught Emitting Diode), a fluorescent tube or a white lamp.
  • the light emitting elements are arranged in a certain range of the lighting frame. When the light emitting elements are arranged regularly in rows and columns, uniformity of illumination can be obtained, and control is easy. In the case of a DUT having a specific property in light reflection, the number of light emitting elements at the top, bottom, or left may be changed. It is desirable that the brightness of each light emitting element can be adjusted by voltage or current.
  • the lighting control unit that controls the luminance of each light emitting element controls the luminance including turning on and off the individual light emitting elements. Initially, all light-emitting elements are turned on with the same brightness, and if there is uneven brightness on the DUT observation surface, the brightness of the light-emitting elements is controlled in row units, column units, or block units to eliminate unevenness. Here, one block is composed of a plurality of light emitting elements. Finally, brightness control may be performed for each light emitting element. This brightness control can be performed either manually or automatically. In the case of automatic brightness control, it is recommended that the brightness be controlled by a fixed control sequence and the control sequence be stopped at the optimum value.
  • the lighting control unit may be provided adjacent to the lighting frame, or may be provided at a separate location.
  • an illuminator configured in this way can illuminate the DUT uniformly, or illuminate a specific location with strong illumination, for example, with a large number of lead pins and a very large lead pitch. Even with a narrow IC, the IC can be illuminated so that the flatness of the tip of the lead pin and the lead pitch can be accurately measured.
  • an automatic device appearance inspection apparatus includes: A camera that converts and outputs pixel data of the device under test, an image processing unit that processes pixel data input from this camera and converts it into image data, and an external view of the device under test according to preset inspection items And a display device for displaying an image corresponding to the image data input from the image processing unit.
  • the above-mentioned force film is preferably a CD (Charge Coupled Device) force film.
  • CD Charge Coupled Device
  • AZD analog-to-digital
  • the AZD conversion is preferably performed in the camera. High sensitivity is desired. This is because we want to capture light and dark of light reflection clearly.
  • the lens of this camera is placed in the opening at the center of the lighting frame of the illuminator, facing the DUT.
  • the pixel data obtained by the camera is sent to the image processing unit and converted into image data.
  • the image processing section may have the same configuration as the conventional image processing apparatus, but it is desirable to install the above-mentioned illumination control section inside. This is because the lighting control is performed using the image data processed by the image processing unit and the calculation data by the calculation processing unit.
  • the arithmetic processing unit performs various arithmetic processes based on the image data and outputs the results.
  • the image data and, if necessary, the results of the calculation processing are sent to the display device (TV monitor), and the display device displays the corresponding DUT image.
  • the processing unit performs various measurements according to the preset inspection (measurement) items, outputs the measurement results from the measurement result output terminal, and displays and prints them.
  • the inspection items vary depending on the DUT. For example, in the above-described LSI of QFP, there are the number of lead pins, the lead pitch width, the flatness of the lead pins, and the like. 3 ⁇ 4 ⁇ f ⁇ na ⁇ sun moon
  • FIG. 1 is a schematic perspective view showing one embodiment of a device appearance inspection illuminator according to the present invention.
  • FIG. 2 is a schematic configuration diagram showing an embodiment of an automatic device appearance inspection apparatus according to the present invention provided with the device appearance inspection illuminator of FIG. 1 together with an IC under test.
  • Fig. 3 shows the illumination state of one lead pin of the IC imaged using the device appearance inspection illuminator of Fig. 1,
  • A is a side view showing a good lead pin
  • B is (A).
  • C is a side view showing a defective lead pin
  • D is a perspective view from (C) as seen from the left side.
  • FIG. 4 is a flowchart for explaining an example of an inspection method using the automatic device appearance inspection apparatus according to the present invention.
  • FIG. 5 is a schematic configuration diagram for explaining a flow of image data of an example of a conventional image processing apparatus.
  • the illuminator for device appearance inspection and the automatic device appearance inspection apparatus according to the present invention can be used to illuminate not only semiconductor devices but also all devices including devices such as filter elements and to inspect their appearance.
  • an embodiment used for illuminating an IC, which is a typical example of a semiconductor device, and inspecting its appearance, particularly the appearance of lead pins, will be described.
  • FIG. 1 is a schematic perspective view showing one embodiment of a device appearance inspection illuminator according to the present invention.
  • the illuminator for device appearance inspection according to the present invention comprises: an illumination frame 10 provided with an opening for arranging a camera or an operator's eyes substantially at the center; It is composed of a number of light-emitting elements 19 that can be controlled in luminance arranged in the periphery and an illumination control unit 11 that can selectively control the luminance of each light-emitting element 19.
  • the illumination frame 10 is horizontally elongated as shown in FIG. It is formed in a horizontally long rectangular quadrilateral similar to.
  • the lens of the camera 9 is arranged in an opening formed in the center of the rectangular frame 10, and a number of light emitting elements 19 are arranged around the opening around the opening. Are arranged.
  • LED light-emitting elements are used as light-emitting elements 19, and these light-emitting elements 19 are regularly arranged in rows and columns, but the upper part of the opening is thinned out to about half the number compared to the lower side and both sides. State (almost every other).
  • the reason for the regular arrangement is that it is easier to control the brightness.
  • the reason why the number of the light emitting elements on the upper side is reduced is that, in this embodiment, the main purpose is to measure the appearance of the lead pins of the IC, so that it is easier to inspect the IC by irradiating the IC with strong light from a little below.
  • the arrangement of the light-emitting elements 19 be arranged so as to be in an optimal illumination state in consideration of the DUT appearance inspection items.
  • the luminance may be controlled by arranging the light emitting elements without thinning.
  • the number of LEDs depends on the size of the DUT, the distance to the DUT, test items, test accuracy, and the like. It is better to decide. Usually, it is sufficient to use 40 to 60 LEDs. Further, the LED emission color is preferably a color that increases the sensitivity of the camera.
  • the lighting control unit 11 is provided adjacent to the frame 10 and performs initial setting of lighting and correction of lighting based on measurement results.
  • the calibration target is placed at a measurement position at a certain distance in front of the illuminator, and the target is illuminated. If the image is good, the value is set to the optimum value, and if the image is bad, the value is set to a predetermined fixed sequence.
  • the brightness of each light emitting element is turned off and turned on, and the control is performed to stop at the optimum value.
  • it is configured so that when a failure occurs in the measurement result of each DUT, it can be readjusted so that it can be measured in the optimum state each time.
  • FIG. 2 is a schematic configuration diagram showing an embodiment of an automatic device appearance inspection apparatus according to the present invention provided with the device appearance inspection illuminator of FIG. 1 together with an IC under test.
  • the IC under test 20 is mounted and fixed on a rotating stage 21 rotatably arranged on the measuring table 22.
  • the IC 20 is a QFP LSI, and since the lead pins are on the four sides of the package, it is necessary to measure all four sides.Each time the external appearance of the rotary stage 21 is measured, Turn 90 degrees and measure the appearance of the lead pins on the next side. Then, the appearance inspection is completed by measuring the appearance of the four lead pins.
  • the camera 9 and the illuminator are opposed to the IC 20 under test and are set at a fixed distance.
  • the illuminator illuminates the IC 20 appropriately in the manner described above, and the camera 9 converts the captured screen into pixel data and sends it to the image processing unit 12.
  • the camera 9 is a CCD camera, which immediately converts the imaging screen into an AZD, and in this embodiment, 4 8 4 X 6 4 points Is converted to pixel data.
  • the distance resolution can be increased by appropriately selecting the distance between the camera 9 and the IC 20 and the magnification of the lens. For example, if 100 mm pixels are imaged at an interval of 10 mm of IC 20, a high resolution of 0.1 mmZ pixels can be obtained. In this embodiment, 8-bit image data is used. ⁇ ! ! It is possible to obtain a high resolution (experience value), that is, a high resolution of about 0.02 mm.
  • the image processing unit 12 receives the pixel data sent from the camera 9 through the pixel data input terminal 13a, and performs processing to increase the density of the image. This process facilitates the measurement position determination.
  • FIG. 3 (A) is a side view when the lead pin of the IC under test 20 is a good lead pin 25. It can be seen that the bottom surface of the tip of the lead pin 25 is flat.
  • FIG. 3 (B) is a front view of FIG. 3 (A), showing a case where the light is strongly irradiated from slightly below IC 20.
  • Fig. 3 (C) is a side view showing an example in which the lead pin of the IC under test 20 is a defective lead pin 26, and the tip of the lead pin 26 is bent slightly upward. The bottom surface is not flat.
  • Fig. 3 (D) is a front view of (C), which also shows a case where the illumination is strongly applied from slightly below IC20.
  • the reflected light from the tip (end face) is not incident on the camera 9, and is displayed black (dark) on the TV monitor 18. Therefore, neither the width nor the position of the lead pin 26 can be determined. Therefore, it is determined that the product is defective, but there are still cases where it is desired to know the position of the lead pin 26.
  • the illumination control section 11 is operated to slightly increase the illumination from above.
  • strong reflected light from the tip of the defective lead pin 26 is incident on the force camera 9, and the tip position of the defective lead pin 26 is also adjusted in the image processing unit 12. It is confirmed.
  • the flatness (step) with the position of the good lead pin 25 can also be determined.
  • the image processing unit 12 processes the pixel data from the camera 9 as described above and converts it into an image data to emphasize the shading or to arbitrarily measure an arbitrary measurement portion of the IC under test through the LUT 53. Change the color display, display the window, or display the characters, and display the image on the TV monitor 18.
  • the output signal of the image processing unit 12 is supplied to the TV monitor 18 through the TV image output terminal 17.
  • the arithmetic processing unit 14 determines the quality of the lead pin based on the image data of the image processing unit 12, and measures the lead pin width, the lead pitch width, and the flatness (step). The calculation result can be displayed on the TV monitor 18 and can be output from the measurement result output terminal 16 to the outside. The measurement items and the procedure of the processing method are input from the setting input terminal 15 to the arithmetic processing unit 14. The arithmetic processing unit 14 also controls the entire system. The control data from the arithmetic processing unit 14 is output to the illuminator via the illuminator control data output terminal 13b.
  • FIG. 4 is a flowchart showing an example of an operation when a defective appearance IC is detected in the measurement procedure.
  • the IC under test 20 is fixed on the rotating stage 21 and the measurement of the reflected light starts with the signal of the measurement start (step 30).
  • the next step 31 it is determined whether or not the measurement points set in advance have been measured, that is, whether or not all the lead pins have been measured.
  • step 34 the lighting control unit 11 is driven to control the brightness of the light emitting element 19. For example, change the lighting position of the LED.
  • step 35 re-measurement of the lead pin which cannot be measured is executed, and it is determined in step 36 whether or not the measurement was successful. If the result of the determination in step 36 is YES, the measurement result of the IC is output in step 32, and the visual inspection ends (step 33). If the result of the determination in step 36 is N ⁇ , return to step 34 again, change the LED lighting position, and stop measurement in step 35.
  • Step 40 Perform re-measurement of available lead pins. This re-measurement is limited to, for example, three times, and the number of re-measurements is counted in steps 37 and 38.If the number of re-measurements exceeds three times, the process proceeds to step 39. Yes (Step 40).
  • the illuminator for device visual inspection according to the present invention can control the brightness of each light emitting element according to the observation result by arranging a large number of light emitting elements which can observe the DUT, for example, a camera and can adjust the brightness. Therefore, illumination unevenness can be eliminated, and irradiation from a specific direction can be easily performed, so that irradiation and observation of a specific part of the DUT can be performed correctly. Therefore, an illuminator that is indispensable for observing minute parts can be provided.
  • the device appearance automatic inspection device using this illuminator has an irradiator that can irradiate the measurement part of the DUT from any direction, it is possible to sharpen the density of the measurement part of the DUT captured by the camera, Automatic measurement has become easier. Also, by increasing the number of pixels in the image data, the distance resolution can be reduced to 0.1 mmZ pixels or less, enabling ultra-precision measurement.
  • the present invention is optimal for miniaturized appearance inspection of devices such as semiconductor devices, filters, and vibrators, and has a great technical effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

An illuminator most suitable when the appearance of a small precision device is inspected, and an apparatus for automatically inspecting the appearance of a device using this illuminator. An illuminator including an illumination frame having a large number of light-emitting devices the luminance of which can be regulated and which are disposed around a camera lens, and an illumination control section for regulating the luminance of each light-emitting device, is prepared. An automatic device appearance inspection apparatus comprises this illuminator, a camera such as a CCD camera for converting an image to pixel data and outputting the pixel data, an image processor for converting the pixel data into image data, an arithmetic processor for measuring the size, position, etc, of a specific portion of the appearance of a tested device, and a display for receiving the image data from the image processor and displaying a corresponding image. The illumination control section is operated in accordance with the result of imaging by the camera so as to control the luminance of each light-emitting device, and high precision appearance inspection can be made by optimizing illumination for the specific area of the tested device.

Description

明 細 書 デバイス外観検査用照明器及びこの照明器を用いた デバイス外観自動検査装置 抟術分野  Description Illuminator for device appearance inspection and automatic device appearance inspection device using this illuminator
この発明は、 半導体デバイス、 フィル夕、 振動子等の電子部品 (以下、 デバイ スと称す) の外観を検査するときに用いる照明器及びこの照明器を用いたデバイ ス外観自動検査装置に関し、 特に、 半導体デバイスの代表例である I c、 例えば 表面実装用 L S I (大規模集積回路) 、 の外観を検査するときに用いて有用な照 明器及びデバイス外観自動検査装置に関する。  The present invention relates to an illuminator used for inspecting the appearance of electronic components (hereinafter, referred to as a device) such as a semiconductor device, a filter, and a vibrator, and an automatic device appearance inspection apparatus using the illuminator. The present invention relates to a illuminator useful for inspecting the appearance of Ic, which is a typical example of a semiconductor device, for example, a surface mount LSI (large-scale integrated circuit), and an automatic device appearance inspection apparatus.
なお、 この種の照明器は、 人間が目視によりデバイスの外観検査を行うときに も、 また、 画像処理部を有する外観自動検査装置によりデバイスの外観検査を行 うときにも使用されるが、 以下においては主としてデバイス外観自動検査装置の 光源として使用した場合を例に取り、 また、 説明を簡単にするために I Cを照明 し、 その外観を検査する場合について記載するが、 半導体デバイスのみならず、 フィルタゃ振動子等のデバィスを含むあらゆるデバイスを照明し、 それらの外観 を検査する場合に使用できることは言うまでもない。 背景技術  It should be noted that this type of illuminator is used not only when a human visually inspects the appearance of a device but also when a visual inspection of the device is performed by an automatic appearance inspection apparatus having an image processing unit. In the following, the case where the IC is used as the light source of an automatic device appearance inspection device is taken as an example, and the case where the IC is illuminated and its appearance is inspected for simplicity is described. It goes without saying that it can be used to illuminate any device, including devices such as filters and vibrators, and inspect their appearance. Background art
例えば、 L S Iを含む I Cのテストには、 製造工程におけるゥェ一ハ段階での テス卜とパッケージ付きの完成品でのテストとがある。 完成品のテストには電気 的諸特性のテストと外観のテストとがある。 外観テストは人間の目視による場合 と外観自動検査装置を使用する場合とがあるが、 いずれにしても I Cを照明する 必要がある。 従来、 I Cの外観検査時に用いる照明は、 目視検査においても外観 自動検査装置を使用する場合においても、 被試験 I Cの全体を一定の明るさに照 らす照明であり、 被試験 I Cの上方や斜め上から、 或いは側面からの光源で一定 の照明を行っていた。 これは、 従来はパッケージが比較的大きく、 かつ入出力リ 一ドビンの数が少ないため、 リードピン間隔 (ピッチ) が比較的広く、 また、 精 度も厳しくなかったから、 目視検査でも自動検査でも上記の一定照明で十分であ つたためである。 For example, testing of ICs including LSIs involves testing at the wafer stage in the manufacturing process and testing on finished products with packages. Finished product testing includes electrical characteristics testing and appearance testing. The appearance test may be performed by human visual inspection or by using an automatic appearance inspection device. In any case, the IC must be illuminated. Conventionally, lighting used for visual inspection of ICs is lighting that illuminates the entire IC under test to a certain brightness, both in visual inspection and when using an automatic visual inspection device. Constant illumination was performed with a light source from obliquely above or from the side. Conventionally, the package is relatively large and the number of input / output lead bins is small, so that the lead pin interval (pitch) is relatively wide and the precision is small. The reason was that the above-mentioned constant lighting was sufficient for both the visual inspection and the automatic inspection because the degree was not severe.
外観自動検査装置は一般的に画像処理装置に準じた画像処理部を有する。 図 5 に従来の画像処理装置における画像データの処理例を示す。 カメラュニッ卜 5 0 は撮影した画像を、 例えば横軸方向に 6 2 4画素、 縦軸方向に 4 8 4画素の計 3 0万 2千画素のディジ夕ル画素データに変換して出力する。 この画素データは直 接画像メモリ 5 1に記憶されるか、 或いはフィルタ 5 2、 L U T (ルック .アツ プ ·テーブル (Look-Up Table)) 5 3を介して画像メモリ 5 1に記憶される。  An automatic appearance inspection apparatus generally has an image processing unit similar to an image processing apparatus. FIG. 5 shows an example of processing image data in a conventional image processing apparatus. The camera unit 50 converts the photographed image into digital pixel data of a total of 302,000 pixels, for example, 62 pixels in the horizontal axis and 484 pixels in the vertical axis, and outputs the data. This pixel data is stored directly in the image memory 51, or is stored in the image memory 51 via a filter 52 and a LUT (Look-Up Table) 53.
L U T 5 3はテレビジョン (T V) モニタ 1 8などで表示する色を選択するた めの変換テーブルであり、 入力データの値をそのアドレスとし、 入力デ一夕に対 応した出力デ一夕が予め書き込まれたメモリである。 この L U T 5 3のデータ変 換機能を用いて 2値化や濃淡画像の前処理や表示画像の変換処理などを行う。 フィルタ 5 2は、 例えばテストする I Cの周辺がぼやけているときに、 シェ一 ディングメモリ 5 8からのデ一夕出力と協働してそのエッジを強調し、 前処理す る機能を有している。 ウィンドメモリ 5 5は T Vモニタ 1 8の画面にウィンドを 描画するために使用するメモリである。 グラフィックメモリ 5 6は計測結果の表 示をグラフ表示したり、 或いは作業領域として使用されるメモリである。 キャラ クタメモリ 5 7は主に文字を表示するためのメモリであり、 プログラムの編集や 集計結果の表示などにも使用される。  The LUT 53 is a conversion table for selecting colors to be displayed on a television (TV) monitor 18 or the like. The input data value is used as the address, and the output data corresponding to the input data is output. This is a pre-written memory. The LUT 53 data conversion function is used to perform binarization, pre-processing of gray-scale images, and conversion processing of display images. The filter 52 has a function of emphasizing the edge and preprocessing in cooperation with the data output from the shading memory 58 when, for example, the periphery of the IC to be tested is blurred. I have. The window memory 55 is a memory used for drawing a window on the screen of the TV monitor 18. The graphic memory 56 is a memory used to display the display of the measurement results as a graph or as a work area. The character memory 57 is a memory mainly for displaying characters, and is also used for editing programs and displaying tally results.
表示制御部 5 4は、 カメラユニット 5 0からの画素デ一夕を直接処理し、 或い は画像メモリ 5 1からの画素データを処理し、 T Vモニタ 1 8に画像を表示する 制御部である。 この表示制御部 5 4は、 命令によってはウィンドメモリ 5 5、 グ ラフィックメモリ 5 6、 及びキャラクタメモリ 5 7のデータを用いて画像を表示 する。  The display control unit 54 is a control unit that directly processes pixel data from the camera unit 50 or processes pixel data from the image memory 51 and displays an image on the TV monitor 18. . The display control unit 54 displays an image using the data of the window memory 55, the graphic memory 56, and the character memory 57 depending on an instruction.
このようなカメラを用いた画像処理装置よりなるデバイスの外観自動検査装置 を使用するときにも、 従来のデバイスの場合には、 上述した一定の照明で、 明る さを自動調整すれば検査が可能であった。  When using an automatic appearance inspection device for a device consisting of an image processing device using such a camera, inspection can be performed with a conventional device by automatically adjusting the brightness with the above-mentioned constant illumination. Met.
しかしながら、 近年の市場の要求により、 機器の小型化、 部品の高密度実装が 進み、 デバイスも小型化し、 表面実装のパッケージが多くなつてきた。 特に超 L S Iの Q F P (Quad Flat Package) の場合には縦横の大きさが 1 O mm X 1 O m mから 3 O mmx 3 O mmであり、 このパッケージの四辺にリードピンが配置さ れ、 かつ各辺のリードピン数は 8本から 7 6本と非常に多くなつている。 その上 、 リードピッチ幅は 0 . 3 mmから 0 . 8 mmと非常に狭くなつており、 厚さは 2 mmから 1 O mm程度である。 However, recent market demands have led to miniaturization of equipment and high-density mounting of components, miniaturization of devices, and an increase in surface-mount packages. Especially super L In the case of SI QFP (Quad Flat Package), the vertical and horizontal dimensions are 1 O mm X 1 O mm to 3 O mm x 3 O mm, and lead pins are arranged on four sides of this package, and lead pins on each side The number is very large, from 8 to 76. In addition, the lead pitch width is very narrow, from 0.3 mm to 0.8 mm, and the thickness is about 2 mm to 1 Omm.
この Q F Pや S O P (Small Outline Package) のような表面実装用パッケージ は、 プリント配線基板の表面に直接半田付けされるからリードピンの先端部の底 面は平坦でなければならないし、 かつリ一ドピッチ幅が一定の間隔でなければな らない。 このように微細で正確性を必要とする外観検査には、 従来の一定の照明 では不十分であり、 さらにきめ細かな照明が要求されていた。 これは、 従来の一 定の照明ではリ一ドビンの光反射状況の違いが分かってもリ一ドビンの先端部の 底面が平坦であるか否かの判断や、 リ一ドピッチ幅が一定の間隔であるか否かの 判断はできなかったためである。 B月の  Surface mounting packages such as QFP and SOP (Small Outline Package) are soldered directly to the surface of the printed wiring board, so the bottom surface of the tip of the lead pin must be flat and the lead pitch width Must be at regular intervals. For such fine and accurate appearance inspections, the conventional fixed lighting is not enough, and more detailed lighting is required. The reason for this is that even if the difference in the light reflection state of the lead bin is known with the conventional fixed lighting, it is determined whether the bottom surface of the leading end of the lead bin is flat or the lead pitch width is constant. This is because it was not possible to determine whether or not it was. B month
この発明の 1つの目的は、 デバイスをムラなく照明することができるとともに 特定方向からの照明も容易に行える小型のデバイス外観検査用照明器を提供する ことである。  An object of the present invention is to provide a compact device visual inspection illuminator that can illuminate a device evenly and easily illuminate from a specific direction.
この発明の他の目的は、 デバイスの外観を自動的に、 かつ正確に検査すること ができる上記照明器を備えた小型で高分解能のデバイス外観自動検査装置を提供 することである。  It is another object of the present invention to provide a small and high-resolution automatic device appearance inspection apparatus provided with the above-mentioned illuminator, which can automatically and accurately inspect the appearance of a device.
この発明によるデバイス外観検査用照明器は、 ほぼ中央にカメラを配置する或 いはオペレータの目を配するための開口部が設けられた照明用フレームと、 この 照明用フレームの開口部の周囲に配列された多数個の輝度制御可能な発光素子と 、 各発光素子の輝度を選択的に制御することができる照明用制御部とから構成さ れている。 被試験デバイス (一般に D U Tと呼ばれる) を照明したときに、 全体 の照明にムラがある場合には個々の発光素子の輝度を調整してムラを無くすよう にする。 また、 D U Tによっては、 やや下方からの照明の方が被測定 (被観測) 箇所の反射が良好になるものがあり、 この場合には例えば上方の発光素子を消灯 し、 下方の発光素子のみを点灯するように輝度制御する。 この逆の照明方法でも よい。 これによつて濃淡を鮮明にすることができる。 本明細書では輝度調整又は 制御とは発光素子の明るさを増加、 減少させるだけでなく、 発光素子の点灯や消 灯を含む。 この輝度調整は手動で行つても自動的に行ってもよい。 The illuminator for visual inspection of a device according to the present invention comprises: an illumination frame provided with an opening for arranging a camera or an operator's eyes at substantially the center; It is composed of a number of arranged light-emitting elements whose luminance can be controlled, and an illumination control unit that can selectively control the luminance of each light-emitting element. When illuminating the device under test (generally called a DUT), if the overall illumination is uneven, adjust the brightness of each light emitting element to eliminate the unevenness. For some DUTs, illumination from a slightly lower position provides better reflection at the measured (observed) location. In this case, for example, the upper light emitting element is turned off. Then, the brightness is controlled so that only the lower light emitting element is turned on. The opposite lighting method may be used. Thereby, the shading can be sharpened. In this specification, the luminance adjustment or control includes not only increasing or decreasing the brightness of the light emitting element, but also turning on or off the light emitting element. This brightness adjustment may be performed manually or automatically.
照明用フレームは D U Tが横長であれば横長に、 縦長であれば縦長に、 D U T と相似の四辺形がよい。 これは照明を D U Tの全面に行き渡らせるためである。 中央部の開口部は視線或いはカメラのレンズが入る程度の大きさでよい。 フレー ムの寸法は D U Tの大きさによって決める。  If the DUT is horizontal, it should be horizontal, if it is vertical, it should be vertical, and a quadrilateral similar to DUT should be used. This is to spread the lighting over the entire surface of DUT. The central opening may be as large as the line of sight or the lens of the camera. The dimensions of the frame are determined by the size of DUT.
発光素子は L E D(Ught Emitting Diode)や蛍光管や白色ランプ等の小型の発 光体であれば制限はない。 この発光素子を照明用フレームの一定の範囲に配列す る。 この発光素子の配列は行及び列に規則正しく配列した方が照明の均一性が得 られ、 また、 制御もし易い。 光の反射に特定の性質を有する D U Tの場合には、 上下或いは左おにおける発光素子の個数を変えるとよい。 各発光素子は電圧或い は電流で明るさを調整できることが望ましい。  The light emitting element is not limited as long as it is a small light emitter such as an LED (Ught Emitting Diode), a fluorescent tube or a white lamp. The light emitting elements are arranged in a certain range of the lighting frame. When the light emitting elements are arranged regularly in rows and columns, uniformity of illumination can be obtained, and control is easy. In the case of a DUT having a specific property in light reflection, the number of light emitting elements at the top, bottom, or left may be changed. It is desirable that the brightness of each light emitting element can be adjusted by voltage or current.
各発光素子の輝度を制御する照明用制御部は、 個々の発光素子の点灯や消灯を 含めて輝度の制御を行う。 当初は全発光素子を同一輝度で点灯させ、 D U Tの被 観測面で光度のムラがあるときには、 行単位、 列単位或いはブロック単位で発光 素子の輝度を制御してムラを無くすようにする。 ここで、 1つのブロックは複数 の発光素子で構成する。 最後に個々の発光素子毎に輝度制御を行ってもよい。 こ の輝度制御は手動でも自動でも行えるが、 自動の場合には一定の制御シーケンス で輝度制御し、 最適値で制御シーケンスをストップするようにするとよい。 この 照明用制御部は照明用フレームに隣接して設けてもよいし、 別個の場所に設置し てもよい。  The lighting control unit that controls the luminance of each light emitting element controls the luminance including turning on and off the individual light emitting elements. Initially, all light-emitting elements are turned on with the same brightness, and if there is uneven brightness on the DUT observation surface, the brightness of the light-emitting elements is controlled in row units, column units, or block units to eliminate unevenness. Here, one block is composed of a plurality of light emitting elements. Finally, brightness control may be performed for each light emitting element. This brightness control can be performed either manually or automatically. In the case of automatic brightness control, it is recommended that the brightness be controlled by a fixed control sequence and the control sequence be stopped at the optimum value. The lighting control unit may be provided adjacent to the lighting frame, or may be provided at a separate location.
このように構成された照明器は、 D U Tを均一に照明することができるし、 ま た、 特定の位置に強い照明を当てることもでき、 例えばリードピン数の多い、 か つリードピッチ幅が非常に狭い I Cでもリードピンの先端部の平坦度やリ一ドピ ツチ幅を正確に測定することができるように I Cを照明することができる。 一方、 この発明によるデバイス外観自動検査装置は、 上記のように構成された 輝度制御可能な小型の照明器と、 被試験デバイスを撮像し、 その撮像画面を多数 の画素データに変換して出力するカメラと、 このカメラから入力された画素デー 夕を処理して画像デー夕に変換する画像処理部と、 予め設定された検査項目に従 つて被試験デバィスの外観を計測する演算処理部と、 上記画像処理部から入力さ れる画像データに応じた画像を表示する表示装置とを具備する。 An illuminator configured in this way can illuminate the DUT uniformly, or illuminate a specific location with strong illumination, for example, with a large number of lead pins and a very large lead pitch. Even with a narrow IC, the IC can be illuminated so that the flatness of the tip of the lead pin and the lead pitch can be accurately measured. On the other hand, an automatic device appearance inspection apparatus according to the present invention includes: A camera that converts and outputs pixel data of the device under test, an image processing unit that processes pixel data input from this camera and converts it into image data, and an external view of the device under test according to preset inspection items And a display device for displaying an image corresponding to the image data input from the image processing unit.
上記力メラは C D (Charge Coupled Device) 力メラが好ましい。 これはアナ ログ一ディジタル (AZD) 変換が容易であるからであるが、 一般のカメラでも 使用可能である。 AZD変換はカメラ内で行うのが好ましい。 感度は高感度が望 まれる。 これは光反射の明暗を鮮明に捕らえたいからである。 このカメラのレン ズを上記照明器の照明用フレームの中央部にある開口部内に D U Tと対向させて 設置する。  The above-mentioned force film is preferably a CD (Charge Coupled Device) force film. This is because analog-to-digital (AZD) conversion is easy, but it can be used with ordinary cameras. The AZD conversion is preferably performed in the camera. High sensitivity is desired. This is because we want to capture light and dark of light reflection clearly. The lens of this camera is placed in the opening at the center of the lighting frame of the illuminator, facing the DUT.
カメラで得られた画素データは画像処理部に送られて画像データに変換処理さ れる。 画像処理部は従来の画像処理装置と同様の構成のものでよいが、 内部に上 記照明用制御部を設置することが望ましい。 これは照明の制御を画像処理部で処 理した画像データ及び演算処理部での演算データを用いて行うからである。 演算処理部では画像データに基づいて各種の演算処理を行い、 その結果を出力 する。 画像データと必要に応じて演算処理結果のデ一夕を表示装置 (T Vモニタ ) に送り、 表示装置は対応する D U Tの画像を表示する。  The pixel data obtained by the camera is sent to the image processing unit and converted into image data. The image processing section may have the same configuration as the conventional image processing apparatus, but it is desirable to install the above-mentioned illumination control section inside. This is because the lighting control is performed using the image data processed by the image processing unit and the calculation data by the calculation processing unit. The arithmetic processing unit performs various arithmetic processes based on the image data and outputs the results. The image data and, if necessary, the results of the calculation processing are sent to the display device (TV monitor), and the display device displays the corresponding DUT image.
演算処理部は、 予め設定されている検査 (測定) 項目に従って各種の計測を行 い、 測定結果出力端子より計測結果を出力し、 表示や印刷を行う。 検査項目は D U Tによって異なるが、 例えば上述の Q F Pの L S Iではリードピンの数、 リー ドピッチ幅、 リ一ドピンの平坦度等がある。 ¾ίの f^ な^日月  The processing unit performs various measurements according to the preset inspection (measurement) items, outputs the measurement results from the measurement result output terminal, and displays and prints them. The inspection items vary depending on the DUT. For example, in the above-described LSI of QFP, there are the number of lead pins, the lead pitch width, the flatness of the lead pins, and the like. ¾ί f ^ na ^ sun moon
図 1はこの発明によるデバイス外観検査用照明器の一実施例を示す概略斜視図 である。  FIG. 1 is a schematic perspective view showing one embodiment of a device appearance inspection illuminator according to the present invention.
図 2は図 1のデバイス外観検査用照明器を備えたこの発明によるデバィス外観 自動検査装置の一実施例を、 被試験 I Cとともに示す概略構成図である。  FIG. 2 is a schematic configuration diagram showing an embodiment of an automatic device appearance inspection apparatus according to the present invention provided with the device appearance inspection illuminator of FIG. 1 together with an IC under test.
図 3は図 1のデバイス外観検査用照明器を用いて撮像した I Cの 1本のリード ピンの照明状態を示し、 (A) は良品のリードピンを示す側面図、 (B ) は (A ) を左側面から見た斜視図、 (C) は不良品のリードピンを示す側面図、 (D) は (C ) を左側面から見た斜視図である。 Fig. 3 shows the illumination state of one lead pin of the IC imaged using the device appearance inspection illuminator of Fig. 1, (A) is a side view showing a good lead pin, and (B) is (A). ) Is a perspective view from the left side, (C) is a side view showing a defective lead pin, and (D) is a perspective view from (C) as seen from the left side.
図 4はこの発明によるデバイス外観自動検査装置による検査方法の一例を説明 するためのフローチヤ一卜である。  FIG. 4 is a flowchart for explaining an example of an inspection method using the automatic device appearance inspection apparatus according to the present invention.
図 5は従来の画像処理装置の一例の画像データの流れを説明するための概略構 成図である。 発明を荬施するための の  FIG. 5 is a schematic configuration diagram for explaining a flow of image data of an example of a conventional image processing apparatus. Of applying the invention
この発明によるデバイス外観検査用照明器及びデバイス外観自動検査装置は半 導体デバィスのみならず、 フィル夕ゃ振動子等のデバィスを含むあらゆるデバイ スを照明し、 それらの外観を検査する場合に使用できるものであるが、 以下にお いては半導体デバイスの代表例である I Cを照明し、 その外観、 特にリードピン の外観を検査する場合に使用した一実施例について説明する。  INDUSTRIAL APPLICABILITY The illuminator for device appearance inspection and the automatic device appearance inspection apparatus according to the present invention can be used to illuminate not only semiconductor devices but also all devices including devices such as filter elements and to inspect their appearance. In the following, an embodiment used for illuminating an IC, which is a typical example of a semiconductor device, and inspecting its appearance, particularly the appearance of lead pins, will be described.
図 1はこの発明によるデバイス外観検査用照明器の一実施例を示す概略斜視図 である。 この発明によるデバイス外観検査用照明器は、 ほぼ中央にカメラを配置 する或いはオペレータの目を配するための開口部が設けられた照明用フレーム 1 0と、 この照明用フレーム 1 0の開口部の周囲に配列された多数個の輝度制御可 能な発光素子 1 9と、 各発光素子 1 9の輝度を選択的に制御することができる照 明用制御部 1 1とから構成されている。  FIG. 1 is a schematic perspective view showing one embodiment of a device appearance inspection illuminator according to the present invention. The illuminator for device appearance inspection according to the present invention comprises: an illumination frame 10 provided with an opening for arranging a camera or an operator's eyes substantially at the center; It is composed of a number of light-emitting elements 19 that can be controlled in luminance arranged in the periphery and an illumination control unit 11 that can selectively control the luminance of each light-emitting element 19.
本実施例の照明器は前述の Q F Pの超 L S Iのような I Cを照明するように構 成されているため、 照明用フレーム 1 0はこの I Cが図 2に示すように横長であ るのでこれに相似した横長の矩形状の四辺形に形成されている。 また、 本実施例 ではこの矩形状のフレーム 1 0の中央部に形成された開口部にカメラ 9のレンズ が配置されており、 この開口部を中心としてその周囲に多数個の発光素子 1 9が 配列されている。  Since the illuminator of the present embodiment is configured to illuminate an IC such as the above-described QFP super LSI, the illumination frame 10 is horizontally elongated as shown in FIG. It is formed in a horizontally long rectangular quadrilateral similar to. In this embodiment, the lens of the camera 9 is arranged in an opening formed in the center of the rectangular frame 10, and a number of light emitting elements 19 are arranged around the opening around the opening. Are arranged.
発光素子 1 9として L E D発光素子が使用され、 これら発光素子 1 9は行及び 列に規則正しく配列されているが、 開口部の上側はその下側及び両側部と比較し て半分程度の数に間引きした状態 (ほぼ 1個置きに配列した状態) にある。 規則 正しく配列したのはその方が輝度の制御が容易になるためであり、 また、 開口部 の上側の発光素子を少なくしたのは、 この実施例では I Cのリードピンの外観を 測定することを主眼としているため、 やや下方から強い光を I Cに照射した方が 検査し易いからである。 このように発光素子 1 9の配列は DU Tの外観検査項目 を考慮して最適の照明状態となるように配列することが好ましい。 勿論、 間引き せずに発光素子を配列し、 輝度を制御してもよい。 LED light-emitting elements are used as light-emitting elements 19, and these light-emitting elements 19 are regularly arranged in rows and columns, but the upper part of the opening is thinned out to about half the number compared to the lower side and both sides. State (almost every other). The reason for the regular arrangement is that it is easier to control the brightness. The reason why the number of the light emitting elements on the upper side is reduced is that, in this embodiment, the main purpose is to measure the appearance of the lead pins of the IC, so that it is easier to inspect the IC by irradiating the IC with strong light from a little below. As described above, it is preferable that the arrangement of the light-emitting elements 19 be arranged so as to be in an optimal illumination state in consideration of the DUT appearance inspection items. Of course, the luminance may be controlled by arranging the light emitting elements without thinning.
なお、 L E D 1個の明るさは約 2 0 0 O m c d (ミリ ·カンデラ) であるので 、 L E Dの数は D UTの大きさ、 D UTまでの距離、 試験項目、 試験精度等を考 慮して決めるのがよい。 通常は 4 0から 6 0個の L E Dを使用すれば十分である 。 また、 L E Dの発光色はカメラの感度が高くなる色が好ましい。  Since the brightness of one LED is about 200 O mcd (milli-candela), the number of LEDs depends on the size of the DUT, the distance to the DUT, test items, test accuracy, and the like. It is better to decide. Usually, it is sufficient to use 40 to 60 LEDs. Further, the LED emission color is preferably a color that increases the sensitivity of the camera.
照明用制御部 1 1はフレーム 1 0に隣接して設けられており、 照明の初期設定 並びに測定結果による照明の修正を行う。 つまり、 初期設定ではこの照明器の前 方の一定距離の測定位置にキャリブレーション ·ターゲットを置いて照明し、 画 像が良ければその値を最適値とし、 悪ければ予め決められた一定のシーケンスで それぞれの発光素子の消灯、 点灯を含む輝度調整を行って最適値でストップさせ る制御を行う。 また、 個々の D UTの測定結果において不具合が生じたときには その都度最適な状態で測定できるように再調整することができるように構成され ている。  The lighting control unit 11 is provided adjacent to the frame 10 and performs initial setting of lighting and correction of lighting based on measurement results. In other words, in the initial setting, the calibration target is placed at a measurement position at a certain distance in front of the illuminator, and the target is illuminated. If the image is good, the value is set to the optimum value, and if the image is bad, the value is set to a predetermined fixed sequence. The brightness of each light emitting element is turned off and turned on, and the control is performed to stop at the optimum value. In addition, it is configured so that when a failure occurs in the measurement result of each DUT, it can be readjusted so that it can be measured in the optimum state each time.
図 2は図 1のデバイス外観検査用照明器を備えたこの発明によるデバイス外観 自動検査装置の一実施例を、 被試験 I Cとともに示す概略構成図である。 被試験 I C 2 0は測定台 2 2上に回転可能に配置された回転ステージ 2 1上に載置され て固定される。 I C 2 0は本実施例では Q F Pの L S Iであり、 リードピンがパ ッケージの四辺に出ているので四辺とも測定する必要があり、 回転ステージ 2 1 を、 一辺のリードピンの外観を測定する度に、 9 0度回転させて次の辺のリード ピンの外観測定を行う。 そして四辺のリードピンの外観を測定して外観検査は終 了する。  FIG. 2 is a schematic configuration diagram showing an embodiment of an automatic device appearance inspection apparatus according to the present invention provided with the device appearance inspection illuminator of FIG. 1 together with an IC under test. The IC under test 20 is mounted and fixed on a rotating stage 21 rotatably arranged on the measuring table 22. In this embodiment, the IC 20 is a QFP LSI, and since the lead pins are on the four sides of the package, it is necessary to measure all four sides.Each time the external appearance of the rotary stage 21 is measured, Turn 90 degrees and measure the appearance of the lead pins on the next side. Then, the appearance inspection is completed by measuring the appearance of the four lead pins.
カメラ 9と上記照明器は被試験 I C 2 0と対向し、 一定距離を置いて設置され ている。 照明器は上述した態様で I C 2 0に適切な照明を行い、 カメラ 9は撮影 した画面を画素データに変換して画像処理部 1 2に送る。 カメラ 9は C C Dカメ ラであり、 撮像画面を直ちに AZD変換して、 この実施例では 4 8 4 X 6 2 4点 の画素データに変換する。 距離分解能は、 カメラ 9と I C 2 0との距離やレンズ の倍率を適当に選ぶことによって、 高くすることができる。 例えば I C 2 0の 1 O mm間隔を 1 0 0画素で撮像すると、 0 . 1 mmZ画素の高い分解能を得るこ とができる。 この実施例では 8ビットの画像データを用いるため、 実際には 0 . ェ!^!!の丄ノ (経験値) 、 つまり、 0 . 0 2 mm程度の高い分解能を得ること ができる。 The camera 9 and the illuminator are opposed to the IC 20 under test and are set at a fixed distance. The illuminator illuminates the IC 20 appropriately in the manner described above, and the camera 9 converts the captured screen into pixel data and sends it to the image processing unit 12. The camera 9 is a CCD camera, which immediately converts the imaging screen into an AZD, and in this embodiment, 4 8 4 X 6 4 points Is converted to pixel data. The distance resolution can be increased by appropriately selecting the distance between the camera 9 and the IC 20 and the magnification of the lens. For example, if 100 mm pixels are imaged at an interval of 10 mm of IC 20, a high resolution of 0.1 mmZ pixels can be obtained. In this embodiment, 8-bit image data is used. ^! ! It is possible to obtain a high resolution (experience value), that is, a high resolution of about 0.02 mm.
画像処理部 1 2は画素データ入力端子 1 3 aによりカメラ 9から送られた画素 デ一夕を受信し、 画像の濃淡を強くさせるように処理する。 この処理によって測 定の位置判断を容易にさせる。 一例を図 3を参照して説明する。 なお、 図 3にお いては説明を簡単にするために被試験 I C 2 0の 1本のリードピンのみを例示す る。 図 3 (A) は被試験 I C 2 0のリードピンが良品のリードピン 2 5である場 合の側面図であり、 リードピン 2 5の先端部の底面が平坦になっていることが分 かる。 図 3 (B ) は (A) の正面図であり、 照明を I C 2 0のやや下方から強く 照射した場合を示す。 この照明により図 3 ( B ) では黒く表示されているリード ピン 2 5の先端 (端面) から強い反射光がカメラ 9に入射し、 T Vモニタ 1 8で は白く (明るく) 鮮明に表示される。 この白い (明るい) 部分の画素数によりリ 一ドビン 2 5の幅が求められ、 また、 その中心点の位置も求められる。 さらに、 図 3には示していないが、 隣のリードピントの間隔、 即ち、 リードピッチ幅も求 めることができる。  The image processing unit 12 receives the pixel data sent from the camera 9 through the pixel data input terminal 13a, and performs processing to increase the density of the image. This process facilitates the measurement position determination. An example will be described with reference to FIG. In FIG. 3, only one lead pin of the IC under test IC 20 is shown for simplicity. FIG. 3 (A) is a side view when the lead pin of the IC under test 20 is a good lead pin 25. It can be seen that the bottom surface of the tip of the lead pin 25 is flat. FIG. 3 (B) is a front view of FIG. 3 (A), showing a case where the light is strongly irradiated from slightly below IC 20. Due to this illumination, strong reflected light enters the camera 9 from the tip (end face) of the lead pin 25, which is displayed in black in FIG. The number of pixels in the white (bright) portion determines the width of the lead bin 25, and also determines the position of the center point. Further, although not shown in FIG. 3, the interval between adjacent lead focuses, that is, the lead pitch width can also be obtained.
図 3 (C) は被試験 I C 2 0のリードピンが不良品のリードピン 2 6である場 合の一例を示す側面図であり、 リードピン 2 6の先端部が曲がってやや上向きに なっており、 先端部底面は平坦ではない。 図 3 (D) は (C ) の正面図であり、 同じく照明を I C 2 0のやや下方から強く照射した場合を示す。 不良リードピン 2 6の場合にはその先端 (端面) からの反射光はカメラ 9に入射されず、 T Vモ 二夕 1 8では黒く (暗く) 表示される。 従って、 リードピン 2 6の幅も位置も判 断できない。 よって不良品と判断されるが、 それでもリードピン 2 6の位置を知 りたい場合がある。 この場合には照明用制御部 1 1を動作させてやや上部からの 照明を強くする。 これによつて不良リードピン 2 6の先端からの強い反射光が力 メラ 9に入射され、 画像処理部 1 2においても不良リードピン 2 6の先端位置が 確認される。 そして良品リードピン 2 5の位置との平坦度 (段差) も求めること ができる。 Fig. 3 (C) is a side view showing an example in which the lead pin of the IC under test 20 is a defective lead pin 26, and the tip of the lead pin 26 is bent slightly upward. The bottom surface is not flat. Fig. 3 (D) is a front view of (C), which also shows a case where the illumination is strongly applied from slightly below IC20. In the case of the defective lead pin 26, the reflected light from the tip (end face) is not incident on the camera 9, and is displayed black (dark) on the TV monitor 18. Therefore, neither the width nor the position of the lead pin 26 can be determined. Therefore, it is determined that the product is defective, but there are still cases where it is desired to know the position of the lead pin 26. In this case, the illumination control section 11 is operated to slightly increase the illumination from above. As a result, strong reflected light from the tip of the defective lead pin 26 is incident on the force camera 9, and the tip position of the defective lead pin 26 is also adjusted in the image processing unit 12. It is confirmed. The flatness (step) with the position of the good lead pin 25 can also be determined.
画像処理部 1 2は上述のようにカメラ 9からの画素データを処理して画像デ一 夕に変換し、 濃淡を強調させたり、 L UT 5 3を通じて被試験 I Cの任意の測定 部分を任意のカラー表示に変更したり、 ウィンドウ表示させたり、 文字表示させ たりして、 T Vモニタ 1 8に画像を表示させる。 画像処理部 1 2の出力信号は T V画像出力端子 1 7を通じて T Vモニタ 1 8に供給される。  The image processing unit 12 processes the pixel data from the camera 9 as described above and converts it into an image data to emphasize the shading or to arbitrarily measure an arbitrary measurement portion of the IC under test through the LUT 53. Change the color display, display the window, or display the characters, and display the image on the TV monitor 18. The output signal of the image processing unit 12 is supplied to the TV monitor 18 through the TV image output terminal 17.
演算処理部 1 4は画像処理部 1 2の画像データに基づいてリードピンの良否を 判断したり、 リードピン幅やリードピッチ幅や平坦度 (段差) を計測する。 演算 結果は T Vモニタ 1 8に表示させることができ、 また、 測定結果出力端子 1 6か ら外部へ出力することもできる。 また、 測定項目や処理方法の手順は設定入力端 子 1 5から演算処理部 1 4に入力する。 演算処理部 1 4はシステム全体の制御も 行う。 演算処理部 1 4からの制御データは照明器制御データ出力端子 1 3 bを通 じて照明器へ出力される。 なお、 演算処理部 1 4自体に設定ボタンやテン ·キー を設けて、 これらボタンやキーから測定項目や処理方法の手順を入力するように してもよい。 照明用制御部 1 1も演算処理部 1 4内に設けた方が都合がよい。 図 4は測定手順の内で特に外観不良 I Cが検出された場合の動作の一例を示す フローチャートである。 被試験 I C 2 0が回転ステージ 2 1上に固定され、 計測 開始の信号で反射光の計測が始まる (ステップ 3 0 ) 。 次のステップ 3 1で予め 設定されている測定点が計測できたか否か、 つまり、 全部のリードピンが計測で きたか否かが判断される。 ステップ 3 1の判定の結果が Y E Sであるならば、 そ の I Cの計測結果がステップ 3 2で出力され、 外観検査は終了する (ステップ 3 3 ) 。 ステップ 3 1の判定の結果が N Oである場合には、 ステップ 3 4で照明用 制御部 1 1が駆動されて発光素子 1 9の輝度制御を行う。 例えば L E Dの点灯位 置を変化させる。 続いてステップ 3 5で計測不可のリードピンの再計測を実行し 、 ステップ 3 6で計測できたか否かを判断する。 ステップ 3 6の判定の結果が Y E Sであるならば、 その I Cの計測結果がステップ 3 2で出力され、 外観検査は 終了する (ステップ 3 3 ) 。 ステップ 3 6の判定の結果が N〇である場合には、 再びステップ 3 4に戻り、 L E Dの点灯位置を変化させてステップ 3 5で計測不 可のリードピンの再計測を実行する。 この再計測は例えば 3回までとし、 ステツ プ 3 7及び 3 8で再計測の回数を計数し、 3回を越えた場合にはステップ 3 9に 進み、 計測不可と判断して外観検査を終了する (ステップ 4 0 ) 。 The arithmetic processing unit 14 determines the quality of the lead pin based on the image data of the image processing unit 12, and measures the lead pin width, the lead pitch width, and the flatness (step). The calculation result can be displayed on the TV monitor 18 and can be output from the measurement result output terminal 16 to the outside. The measurement items and the procedure of the processing method are input from the setting input terminal 15 to the arithmetic processing unit 14. The arithmetic processing unit 14 also controls the entire system. The control data from the arithmetic processing unit 14 is output to the illuminator via the illuminator control data output terminal 13b. A setting button or numeric key may be provided in the arithmetic processing unit 14 itself, and the measurement item or the procedure of the processing method may be input from the button or key. It is more convenient to provide the lighting control unit 11 in the arithmetic processing unit 14. FIG. 4 is a flowchart showing an example of an operation when a defective appearance IC is detected in the measurement procedure. The IC under test 20 is fixed on the rotating stage 21 and the measurement of the reflected light starts with the signal of the measurement start (step 30). In the next step 31, it is determined whether or not the measurement points set in advance have been measured, that is, whether or not all the lead pins have been measured. If the result of the judgment in step 31 is YES, the measurement result of the IC is output in step 32, and the visual inspection ends (step 33). If the result of the determination in step 31 is NO, in step 34 the lighting control unit 11 is driven to control the brightness of the light emitting element 19. For example, change the lighting position of the LED. Subsequently, in step 35, re-measurement of the lead pin which cannot be measured is executed, and it is determined in step 36 whether or not the measurement was successful. If the result of the determination in step 36 is YES, the measurement result of the IC is output in step 32, and the visual inspection ends (step 33). If the result of the determination in step 36 is N〇, return to step 34 again, change the LED lighting position, and stop measurement in step 35. Perform re-measurement of available lead pins. This re-measurement is limited to, for example, three times, and the number of re-measurements is counted in steps 37 and 38.If the number of re-measurements exceeds three times, the process proceeds to step 39. Yes (Step 40).
以上の説明で明白なように、 この発明によれば、 近年の非常に小型化し、 高精 度化し、 かつ微細化して来たデバイスの外観検査を容易に行うことができる。 こ の発明によるデバイス外観検査用照明器は、 D UTを観測する例えばカメラを中 心にして輝度調整可能な発光素子を多数個配列し、 観測結果に応じて個々の発光 素子の輝度を制御できるので、 照明ムラを無くすことができ、 また、 特定の方向 からの照射も容易に行えるので、 D U Tの特定部分への照射や観測が正しく実施 できる。 従って、 微細部分の観測には不可欠の照明器が提供できる。  As is apparent from the above description, according to the present invention, it is possible to easily perform an appearance inspection of a device that has recently become very small, highly accurate, and miniaturized. The illuminator for device visual inspection according to the present invention can control the brightness of each light emitting element according to the observation result by arranging a large number of light emitting elements which can observe the DUT, for example, a camera and can adjust the brightness. Therefore, illumination unevenness can be eliminated, and irradiation from a specific direction can be easily performed, so that irradiation and observation of a specific part of the DUT can be performed correctly. Therefore, an illuminator that is indispensable for observing minute parts can be provided.
この照明器を用いたデバイス外観自動検査装置は、 D U Tの測定部分を任意の 方向から照射できる照射器を具備するため、 カメラで撮像した D UTの測定部分 の濃淡を鮮明にさせることができ、 自動測定が容易になった。 また、 画像データ の画素数を多くすることにより、 距離分解能を 0 . I mmZ画素以下にすること ができ、 超精密測定が可能となった。  Since the device appearance automatic inspection device using this illuminator has an irradiator that can irradiate the measurement part of the DUT from any direction, it is possible to sharpen the density of the measurement part of the DUT captured by the camera, Automatic measurement has become easier. Also, by increasing the number of pixels in the image data, the distance resolution can be reduced to 0.1 mmZ pixels or less, enabling ultra-precision measurement.
このようにこの発明は、 半導体デバイス、 フィル夕、 振動子等のデバイスの微 細化した外観検査には最適なものであり、 その技術的効果は大である。  As described above, the present invention is optimal for miniaturized appearance inspection of devices such as semiconductor devices, filters, and vibrators, and has a great technical effect.

Claims

請 求 の 範 囲 The scope of the claims
1 . ほぼ中央にカメラを配置する或いはオペレータの目を配するための開口部が 形成された照明用フレームと、 1. An illumination frame with an opening for placing a camera or an operator's eye at approximately the center,
この照明用フレームの開口部の周囲に配列された多数個の輝度制御可能な発 光素子と、  A number of light-emitting elements that can be controlled in brightness arranged around the opening of the lighting frame;
前記各発光素子の輝度を選択的に制御することができる照明用制御部 とを具備することを特徴とするデバイス外観検査用照明器。  A lighting control unit capable of selectively controlling the brightness of each of the light emitting elements.
2 . 前記発光素子は L E D発光素子である請求項 1に記載のデバイス外観検査用 照明器。 2. The illuminator for device appearance inspection according to claim 1, wherein the light emitting element is an LED light emitting element.
3 . ほぼ中央にカメラを配置する或いはオペレータの目を配するための開口部が 形成された照明用フレームと、 この照明用フレームの開口部の周囲に配列された 多数個の輝度制御可能な発光素子と、 前記各発光素子の輝度を選択的に制御する ことができる照明用制御部とを具備するデバイス外観検査用照明器と、 3. An illumination frame in which an opening for placing a camera or an operator's eyes is formed substantially in the center, and a number of light sources with brightness controllable arranged around the opening of the illumination frame. An illuminator for device appearance inspection, comprising: an element; and an illumination control unit that can selectively control the luminance of each of the light emitting elements.
被試験デバイスを撮像し、 その撮像画面を多数の画素データに変換して出力 するカメラと、  A camera that images the device under test, converts the imaged screen into a large number of pixel data, and outputs the data.
このカメラから入力された画素データを処理して画像データに変換する画像 処理部と、  An image processing unit that processes pixel data input from the camera and converts the pixel data into image data;
予め設定された検査項目に従って被試験デバイスの外観を計測する演算処理 部と、  An arithmetic processing unit for measuring the appearance of the device under test in accordance with a preset inspection item;
前記画像処理部から入力される画像デー夕に応じた画像を表示する表示装置 とを具備することを特徴とするデバイス外観自動検査装置。  A display device for displaying an image corresponding to the image data input from the image processing unit.
PCT/JP1995/002043 1994-10-06 1995-10-05 Illuminator for inspecting appearance of device and automatic apparatus for inspecting appearance of device using the illumination device WO1996011377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960702964A KR960706627A (en) 1994-10-06 1995-10-05 Fixture for device appearance inspection and automatic device appearance inspection device using this illuminator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/268229 1994-10-06
JP6268229A JPH08105722A (en) 1994-10-06 1994-10-06 Illuminator for inspecting device external appearance and device external appearance automatic inspecting apparatus using the illuminator

Publications (1)

Publication Number Publication Date
WO1996011377A1 true WO1996011377A1 (en) 1996-04-18

Family

ID=17455709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002043 WO1996011377A1 (en) 1994-10-06 1995-10-05 Illuminator for inspecting appearance of device and automatic apparatus for inspecting appearance of device using the illumination device

Country Status (4)

Country Link
JP (1) JPH08105722A (en)
KR (1) KR960706627A (en)
CN (1) CN1138897A (en)
WO (1) WO1996011377A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303916B1 (en) 1998-12-24 2001-10-16 Mitutoyo Corporation Systems and methods for generating reproducible illumination
CN113257696A (en) * 2021-04-02 2021-08-13 晶澳(扬州)太阳能科技有限公司 Photovoltaic module EL detection system and test method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1455179A1 (en) * 2003-03-07 2004-09-08 MV Research Limited A machine vision inspection system and method
JP6155900B2 (en) * 2013-06-26 2017-07-05 富士通株式会社 Lighting adjustment apparatus, lighting adjustment method, and lighting adjustment program
CN104280118A (en) * 2013-07-11 2015-01-14 华为技术有限公司 Low illumination level testing tool and control method thereof
CN104534983A (en) * 2014-12-05 2015-04-22 苏州佳祺仕信息科技有限公司 Automatic detection process method of workpiece assembling quality
EP4013205A4 (en) * 2019-08-05 2022-08-10 FUJI Corporation Light source device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132082A (en) * 1979-04-03 1980-10-14 Toshiba Corp Light input/output device
JPH04109106A (en) * 1990-08-29 1992-04-10 Mazda Motor Corp Surface defect inspecting device
JPH04329344A (en) * 1991-05-01 1992-11-18 Elmo Co Ltd Mounted board inspecting device
JPH04337404A (en) * 1991-05-14 1992-11-25 Toshiba Corp Position measurement device
JPH04364404A (en) * 1991-06-11 1992-12-16 Matsushita Electric Ind Co Ltd Method for illuminating electronic parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132082A (en) * 1979-04-03 1980-10-14 Toshiba Corp Light input/output device
JPH04109106A (en) * 1990-08-29 1992-04-10 Mazda Motor Corp Surface defect inspecting device
JPH04329344A (en) * 1991-05-01 1992-11-18 Elmo Co Ltd Mounted board inspecting device
JPH04337404A (en) * 1991-05-14 1992-11-25 Toshiba Corp Position measurement device
JPH04364404A (en) * 1991-06-11 1992-12-16 Matsushita Electric Ind Co Ltd Method for illuminating electronic parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303916B1 (en) 1998-12-24 2001-10-16 Mitutoyo Corporation Systems and methods for generating reproducible illumination
CN113257696A (en) * 2021-04-02 2021-08-13 晶澳(扬州)太阳能科技有限公司 Photovoltaic module EL detection system and test method thereof

Also Published As

Publication number Publication date
JPH08105722A (en) 1996-04-23
CN1138897A (en) 1996-12-25
KR960706627A (en) 1996-12-09

Similar Documents

Publication Publication Date Title
US7474329B2 (en) Apparatus and method to evaluate an illuminated panel
US7062080B2 (en) Method of inspecting curved surface and device for inspecting printed circuit board
JPH05121512A (en) Bonding wire inspecting device
US7664311B2 (en) Component mounting board inspecting apparatus
KR960005090B1 (en) Bonding wire inspection apparatus
EP1314974B1 (en) Method of inspecting curved surface and device for inspecting printed circuit board
WO1996011377A1 (en) Illuminator for inspecting appearance of device and automatic apparatus for inspecting appearance of device using the illumination device
JPH04158238A (en) Inspecting method of liquid crystal panel
JP3243385B2 (en) Object shape inspection device
JP7030079B2 (en) 3D measuring device and 3D measuring method
JPH05256791A (en) Inspecting apparatus of defect of board
JP3363103B2 (en) Appearance inspection device
JPH0731131B2 (en) Method for spotting periodic pattern
JP2605971B2 (en) Observation equipment
JPS63246795A (en) Display tester
JP2842486B2 (en) Transparent mold IC inspection equipment
JP2981510B2 (en) Lead parts inspection equipment
JPH06174444A (en) Soldered state inspection method for discrete type electronic component
JP2701872B2 (en) Surface inspection system
JP3904208B2 (en) Image defect correction method for image sensor and inspection apparatus using the same
JPH06341817A (en) Inspection of quantity of transparent resin for semiconductor element
KR920008310B1 (en) Apparatus of testing stray emission of cathode ray tube
JPH08193914A (en) Method and equipment for inspecting colored pattern
KR19980069900A (en) Soldering state inspection device and inspection method
JPH01219548A (en) Substrate inspecting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95191197.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE KR SG