JPH04109106A - Surface defect inspecting device - Google Patents

Surface defect inspecting device

Info

Publication number
JPH04109106A
JPH04109106A JP22880390A JP22880390A JPH04109106A JP H04109106 A JPH04109106 A JP H04109106A JP 22880390 A JP22880390 A JP 22880390A JP 22880390 A JP22880390 A JP 22880390A JP H04109106 A JPH04109106 A JP H04109106A
Authority
JP
Japan
Prior art keywords
light
camera
light irradiation
inspected
video signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22880390A
Other languages
Japanese (ja)
Other versions
JP2892464B2 (en
Inventor
Kazumoto Tanaka
一基 田中
Tatsumi Makimae
槙前 辰己
Hidenori Ishiide
石井出 秀則
Akinori Utsunomiya
昭則 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP22880390A priority Critical patent/JP2892464B2/en
Publication of JPH04109106A publication Critical patent/JPH04109106A/en
Application granted granted Critical
Publication of JP2892464B2 publication Critical patent/JP2892464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect a defect existing on an inspected face including a curved face efficiently and correctly with no breakaway of the camera visual field by feeding only the reflected light from the inspected face of the light sent from the light source of a light radiating means in the region corresponding to the camera visual field of a video signal generating means. CONSTITUTION:In the painting defect inspection by a light radiating means 23 and a CCD camera 24, a robot controller 32 is driven by the command given by a host computer 31. The signal of the controller 32 is sent to a robot device 21. An actuator stored in the device 21 is operated, and the device 21 moves the means 23 and camera 25 so that the means 23 and camera 24 trace the surface of a vehicle body 26. The luminous intensity of the light sent from light sources of the means 23 can be controlled to be gradually changed in optional directions of X, Y-coordinates by a light radiating means controller 34 when it receives the control signal from the computer 31.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は被検査面に光を照射してその反射光から塗装欠
陥等の表面欠陥の有無を検出する表面欠陥検査装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a surface defect inspection device that irradiates a surface to be inspected with light and detects the presence or absence of surface defects such as paint defects from the reflected light.

(従来の技術) 自動車等の車両の製造ラインにおいては、一般に、車体
の塗装は製造ライン中に設けた塗装ステーションにおい
て行なわれる。
(Prior Art) In a manufacturing line for vehicles such as automobiles, painting of vehicle bodies is generally performed at a painting station provided in the manufacturing line.

ところで、車体の塗装後の塗装欠陥の検査は、従来より
、人間の目視検査によって行なわれていた。この検査で
は、検査者は塗膜面から微小な欠陥部を発見しなければ
ならないため、検査者の神経的負担か大きく、また肉体
的(こもきひしい作業か強いられていた。
By the way, inspection for paint defects after painting a vehicle body has conventionally been carried out by human visual inspection. In this inspection, the inspector had to find minute defects on the paint surface, which placed a heavy burden on the inspector's nerves and forced him to perform physically demanding work.

塗装欠陥の検査におけるこのような事情に鑑みて、物体
の被検査面に光を超射し、その反射光をスクリーン上に
投影させ、その投影像の鮮映度から被検査面の表面欠陥
を自動的に検出するようにした表面検査装置か提案され
ている(たとえば、特開昭62−233710号公報参
照)。
In view of these circumstances in inspection of paint defects, light is superimposed onto the surface to be inspected of an object, the reflected light is projected onto a screen, and surface defects on the surface to be inspected can be detected from the sharpness of the projected image. A surface inspection device for automatic detection has been proposed (see, for example, Japanese Patent Laid-Open No. 62-233710).

この表面検査装置を車体の塗装欠陥の検出に応用すれば
、上記した塗装欠陥の自動検出か可能になり、従来の目
視による検査作業から検査者を解放することができる。
If this surface inspection device is applied to detect paint defects on vehicle bodies, the above-mentioned paint defects can be automatically detected, and the inspector can be freed from the conventional visual inspection work.

(発明が解決しようとする課題) ところで、上記の光照射による表面検査技術を車体塗装
の自動検査に応用する場合、第7図に示すように、塗膜
面1の鏡面反q、j性を利用し、この塗膜面1に光源2
から線状(あるいはスポット状)の光を照射して、T膜
而面に次に述へるビデオカメラ3のカメラ視1Ili’
Fよりも十分にづ・さい光解射領域を作り、この先り]
射領域からのt射光をビデオカメラ3により受光する装
置か考えられる。
(Problem to be Solved by the Invention) By the way, when applying the above-mentioned surface inspection technique using light irradiation to automatic inspection of car body coating, as shown in FIG. Light source 2 is applied to this coating surface 1.
A linear (or spot-like) light is irradiated from the T-film surface to the camera view 1Ili' of the video camera 3, which will be described next.
Create a light-resolving area that is sufficiently smaller than F, and proceed from here]
It is conceivable that the device is a device in which the video camera 3 receives the t-light emitted from the irradiation area.

この装置では、ビデオカメラ3て作成される受光画像は
第8図のようになり、カメラ視野F(第7図参照)をカ
バーする全体として暗い受光画像5の中に、塗膜面1の
光照射領域か明るい線画像6となってとらえられる。そ
して、この光照射領域中に塗装の欠陥部7(第7図参照
)かあった場合、コノ塗装の欠陥部7において光の正反
射方向か変化し、上記欠陥部7かなければ正常に反射し
て上記カメラ視野Fに入るへきはずの光がカメラ視野F
に入らなくなる。このため、上記の明るい線画像6の中
に黒く欠陥部7(第8図参照)が写ることになる。
In this device, the light-receiving image created by the video camera 3 is as shown in FIG. The irradiated area is captured as a bright line image 6. If there is a paint defect 7 (see Figure 7) in this light irradiation area, the direction of specular reflection of the light changes at the defect 7 of the coating, and if there is no defect 7, the light will be reflected normally. The light that should have entered the camera field of view F is now in the camera field of view F.
I can't get into it. Therefore, a black defective portion 7 (see FIG. 8) appears in the bright line image 6 described above.

したがって、この黒く写る欠陥部7を画像処理技術によ
り識別することによって欠陥部7を検出することができ
る。また、この装置によれば、塗膜面1を線状に狭く照
射するので、照射光量か少なく、光照射領域に入射する
光か欠陥部7て正反射方向が変化して、ビデオカメラ3
に入る光量か欠陥部7とそうでない部分とで明瞭に差か
でき、微小な欠陥をも検出することかできるごとになる
Therefore, the defective portion 7 can be detected by identifying the defective portion 7 that appears black using image processing technology. Further, according to this device, since the coating surface 1 is irradiated narrowly in a linear manner, the amount of irradiated light is small, and the direction of specular reflection of the light incident on the light irradiation area changes due to the defect 7, and the video camera 3
The amount of light entering can be clearly differentiated between the defective portion 7 and the non-defected portion, making it possible to detect even minute defects.

しかし、上記装置のように、狭い光照射によれば、カメ
ラ視野Fに対して光照射領域か小さすぎ、一方、ビデオ
カメラ3がとらえることかできる欠陥部7は光照射領域
(すなわち、受光画像5中の線画像6)の内部か、近辺
でしかないので、常にカメラ視野Fの一部のみを使用し
た表面検査しができず、検査能率に欠けるという問題が
あった。
However, with narrow light irradiation as in the above device, the light irradiation area is too small with respect to the camera field of view F, and on the other hand, the defective part 7 that can be captured by the video camera 3 is the light irradiation area (i.e., the light reception image Since it is only inside or near the line image 6) in 5, it is not always possible to perform surface inspection using only a part of the camera field of view F, resulting in a problem of a lack of inspection efficiency.

また、被検査面が自動車等の車両の車体であるときには
、第7図の光源2ならびにビデオカメラ3をロボット装
置(図示せず。)で車体表面に沿って移動させながら検
査を行うことになる。
Furthermore, when the surface to be inspected is the body of a vehicle such as an automobile, the inspection is performed while moving the light source 2 and video camera 3 shown in FIG. 7 along the surface of the vehicle body using a robot device (not shown). .

しかし、この場合には、車体は多くの曲面からなるので
、これらの曲面部に検査箇所が移動すると、光源2によ
って車体表面にできている線状の照射形状が歪む。この
ため、ビデオカメラ3の受光画像5中の線画像6も第9
図のように歪み、甚だしい場合にはカメラ視野Fから逸
脱することになる。
However, in this case, since the vehicle body consists of many curved surfaces, if the inspection point moves to these curved surfaces, the linear irradiation shape formed on the vehicle body surface by the light source 2 will be distorted. Therefore, the line image 6 in the light-receiving image 5 of the video camera 3 is also
As shown in the figure, there will be distortion, and in extreme cases, the camera will deviate from the field of view F.

以上のような難点を解消するために、第10図に示すよ
うに、塗膜面1を光源2′によってカメラ視野Fと同等
もしくはそれ以上の範囲で広く照射するようにし、この
広い光照射領域をビデオカメラ3によってとらえること
か考えられる。
In order to solve the above-mentioned difficulties, as shown in Fig. 10, the coating surface 1 is illuminated widely by a light source 2' in an area equal to or larger than the camera field of view F, and this wide light irradiation area is It is conceivable to capture the image using video camera 3.

しかし、このように広く塗膜面1を照射すると照射光量
か大幅に増加するので、欠陥部7での光のハレー7ヨン
を生じてビデオカメラ3が微小な欠陥部7を明確にとら
えることかできなくなる。
However, when the coating surface 1 is irradiated widely in this way, the amount of irradiated light increases significantly, which causes a halo of light at the defective areas 7, making it difficult for the video camera 3 to clearly capture the minute defective areas 7. become unable.

たとえば光源2′からの光り、、L2は塗膜面1で反射
し、その反射光かビデオカメラ3の受光面に入るか、光
照射領域に欠陥部7かないとすると、受光面に入る光量
はとの部分でも同しであるから、受光画像は一面明るい
画像となっている。
For example, the light L2 from the light source 2' is reflected by the coating surface 1, and the reflected light enters the light receiving surface of the video camera 3. Assuming that there is no defect 7 in the light irradiation area, the amount of light entering the light receiving surface is The same is true for the portion , so the received light image is entirely bright.

これに対して、光照射領域に欠陥部7かあると、この欠
陥部7で上記光照射領域に入射する光の正反射方向が変
化し、欠陥部7に対応する受光面部分の入射光量か減っ
て黒い点として受光画像中に写るはずである。
On the other hand, if there is a defect 7 in the light irradiation area, the direction of specular reflection of the light incident on the light irradiation area changes at this defect 7, and the amount of incident light on the light receiving surface portion corresponding to the defect 7 changes. It should decrease and appear as a black dot in the received light image.

しかし、光源2′は、上記のように、広く塗膜面1を照
射しているので、光源2′の他の部分からの光L3.L
、か欠陥部7,7て反射して、光量か減少するはずの受
光面部分に入る。
However, since the light source 2' widely irradiates the coating surface 1 as described above, the light L3 from other parts of the light source 2'. L
, the light is reflected by the defective parts 7, 7 and enters the light-receiving surface where the amount of light is supposed to decrease.

したがって、受光画像中の明るさか大きくは低下せず、
このため、欠陥部7,7か微小であったときには、欠陥
部7,7とそうでない部分との明るさに差か生じにくく
なり、画像処理しても欠陥部7,7を識別することかで
きなくなる。
Therefore, the brightness in the received light image does not decrease significantly,
Therefore, when the defective parts 7, 7 are minute, it becomes difficult to see a difference in brightness between the defective parts 7, 7 and the other parts, and it is difficult to identify the defective parts 7, 7 even with image processing. become unable.

本発明の目的は、被検査面の光照射領域からのカメラ視
野の逸脱がなく、曲面を含む被検査面に存在する欠陥を
効率よく正確に検出することかできる表面欠陥検査装置
を提供することである。
An object of the present invention is to provide a surface defect inspection device that can efficiently and accurately detect defects existing on a surface to be inspected including a curved surface without deviation of the camera field of view from the light irradiation area of the surface to be inspected. It is.

(課題を解決するための手段) このため、本発明は、光照射手段から出射する光で被検
査面を照射し、この被検査面から反射する反射光をビデ
オ信号発生手段で受けて被検査面の光照射領域の受光画
像をビテオ信号に変換し、このビテオ信号から上記被検
査面に存在する欠陥を検出する表面欠陥検査装置におい
て、上記ビデオ信号発生手段か有しているカメラ視野よ
りも大きな光照射領域を有し、光の出射面に対して多数
の光源かマドlノックス状に配置されて被検査面を照射
する光照射手段と、外部から制御信号を受けて上記各光
源から出射する光の光度もしくは波長の少なくとも一方
を個々に変化させる光照射制御手段と、表面欠陥の検査
時に上記光照射手段の光の出射面に予め定められたXy
座漂の少なくとも2つの方向に上記光照射手段の光源か
ら出射する光の光度もしくは波長の少なくとも一方を漸
変させる制御信号を上記光照射制御手段に出力し、上記
2つの方向の各々について上記カメラ視野内において位
置か既知の少なくとも2つの異なる点に入射する光の明
るさもしくは波長の少なくとも一方を検出し、そのデー
タからこれらの点にそれぞれ対応する光源の上記xy座
標上での位置を検出し、これら光源の位置からカメラ視
野と合致する上記光照射手段の光源の領域を演算し、こ
の領域の光源を発光させて上記表面欠陥を検出する画像
情報処理手段とを備えたことを特徴としている。
(Means for Solving the Problems) Therefore, the present invention irradiates the surface to be inspected with light emitted from a light irradiation means, and receives the reflected light from the surface to be inspected by a video signal generating means. In a surface defect inspection apparatus that converts a light-receiving image of a light irradiated area of a surface into a video signal and detects defects existing on the surface to be inspected from the video signal, the video signal generating means has a camera field of view that is A light irradiation means having a large light irradiation area and irradiating the surface to be inspected with a large number of light sources arranged in a Mad Nox shape with respect to the light emitting surface, and a light irradiation means receiving a control signal from the outside and emitting light from each of the light sources. a light irradiation control means for individually changing at least one of the luminous intensity or wavelength of the light; and a predetermined
A control signal for gradually changing at least one of the luminous intensity or the wavelength of the light emitted from the light source of the light irradiation means in at least two directions of drifting is output to the light irradiation control means, and the camera is controlled in each of the two directions. Detecting at least one of the brightness or wavelength of light incident on at least two different points whose positions are known in the field of view, and detecting the position on the xy coordinates of the light source corresponding to each of these points from the data. , image information processing means for calculating the area of the light source of the light irradiation means that matches the camera field of view from the positions of these light sources, and detecting the surface defect by causing the light source in this area to emit light. .

(作用) 上記画像情報処理手段は、表面欠陥の検査時に、光照射
手段の光の出射面に予め設定されたxy座標上でのカメ
ラ視野内において位置か既知の少なくども2つの点に対
応する光照射手段の光源の位置を検出する。これら光源
のxy座標上での位置から、上記画像情報処理手段は、
カメラ視野と合致する領域の光源を検出し、この領域の
光源を発光させる制御信号を上記光照射制御手段に出力
する。したがって、上記ビデオ信号発生手段には、常に
、そのカメラ視野に対応する領域の光源の光の被検査面
からの反射光のみが入射することになる。
(Function) The image information processing means corresponds to at least two points whose positions are known within the field of view of the camera on the xy coordinates set in advance on the light exit surface of the light irradiation means when inspecting for surface defects. The position of the light source of the light irradiation means is detected. From the positions of these light sources on the xy coordinates, the image information processing means
A light source in an area that matches the camera field of view is detected, and a control signal for causing the light source in this area to emit light is output to the light irradiation control means. Therefore, only the light reflected from the surface to be inspected from the light source in the area corresponding to the field of view of the camera always enters the video signal generating means.

(発明の効果) 本発明によれば、ビデオ信号発生手段には、常に、その
カメラ視野に対応する領域の光照射手段の光源から出射
した光の被検査面からの反射光のみが入射するので、被
検査面の光照射領、域からのカメラ視野の逸脱かないう
えに、ビデオ信号発生手段にはほかからの光の入射かな
くなり、ノ\レーションのない受光画像により、曲面を
含む被検査面に存在する欠陥部をカメラ視野全体を使用
して、効率よく、しかも正確に検出することかできる。
(Effects of the Invention) According to the present invention, only the reflected light from the inspected surface of the light emitted from the light source of the light irradiation means in the area corresponding to the field of view of the camera always enters the video signal generation means. In addition, the camera field of view does not deviate from the light irradiation area of the surface to be inspected, and no light from other sources enters the video signal generation means, so that the surface to be inspected, including curved surfaces, is It is possible to efficiently and accurately detect defects existing in the camera using the entire field of view of the camera.

(以下、余白) (実施例) 以下に、添付の図面を参照して本発明の詳細な説明する
(Hereinafter, blank spaces) (Example) The present invention will be described in detail below with reference to the accompanying drawings.

まず、本発明に係る表面欠陥検査装置を自動車の車体の
塗装欠陥の検査に適用した一つの実施例の全体構成を第
1図に示す。
First, FIG. 1 shows the overall configuration of one embodiment in which the surface defect inspection apparatus according to the present invention is applied to inspection of paint defects on the body of an automobile.

第1図に示すように、車体の塗装検査ステージヨシ20
には、台座Bに乗ったロボット装置21か装備される。
As shown in Figure 1, the car body painting inspection stage 20
is equipped with a robot device 21 mounted on a pedestal B.

上記ロボット装置21には、その先端アーム22に光照
射手段23と、ビデオ信号発生手段としてのCCDカメ
ラ24とか支持金具25を介して取り付けられる。ロボ
ット装置21のこれら光照射手段23とCCDカメラ2
4とは、塗装検査ステー7ョン20に搬入された車体2
6の塗膜面27をトレースし、その際、光照射手段23
によって照射された光が、車体26の表面の塗膜面27
で反射してCCDカメラ24に入射する。
A light irradiation means 23, a CCD camera 24 as a video signal generation means, and a support metal fitting 25 are attached to the robot device 21 on its tip arm 22. These light irradiation means 23 and CCD camera 2 of the robot device 21
4 is the vehicle body 2 brought into the paint inspection station 720.
The coating surface 27 of No. 6 is traced, and at that time, the light irradiation means 23
The light irradiated by the coating film surface 27 on the surface of the vehicle body 26
The light is reflected by the beam and enters the CCD camera 24.

また、このような光照射手段23とCCDカメラ24に
よる塗装欠陥検査においては、ホストコンピュータ31
によって与えられる指令によって、ロホソトコントロー
ラ32か駆動される。そして、それによるロホノトコン
トローラ32の信号かロボット装置21に送られる。
In addition, in such a coating defect inspection using the light irradiation means 23 and the CCD camera 24, the host computer 31
The lohosoto controller 32 is driven by the command given by the controller. Then, the resulting signal from the Rohonoto controller 32 is sent to the robot device 21.

上記ロボット装置21は、内蔵されている図示しないア
クチュエータか作動し、これにより、ロボット装置21
は光照射手段23およびCCDカメラ24が車体26の
表面をなそるように、これら光照射手段23およびCC
Dカメラ24を移動させる。
The robot device 21 operates a built-in actuator (not shown), and thereby the robot device 21
The light irradiation means 23 and the CCD camera 24 are arranged so that the light irradiation means 23 and the CCD camera 24 trace the surface of the vehicle body 26.
Move the D camera 24.

上記光照射手段23は、第2図に示すように、ボックス
41の内部にタングステンランプ等の多数の光源42.
42.・・・かマトリックス状に装置されてなるもので
ある。この光照射手段23には、多数の光源42,42
.・・・が形成する光の出射面43に、たとえば第2図
に示すように、光源42゜42、・・・の配列の行およ
び列方向にy軸およびy軸を設定したxyX座標予め設
定されている。
As shown in FIG. 2, the light irradiation means 23 includes a large number of light sources 42 such as tungsten lamps inside a box 41.
42. ...or a matrix-like device. This light irradiation means 23 includes a large number of light sources 42, 42.
.. For example, as shown in FIG. 2, xyX coordinates are set in advance, with the y-axis and the y-axis set in the row and column directions of the array of light sources 42° 42, . . . has been done.

上記光照射手段23の各光源42から出射する光の光度
は、第1図のホストコンピュータ31からの制御信号を
受けて、光照射制御手段としての光照射手段]ントロー
ラ34により、上記xyX座標任意の方向に漸変するよ
うに制御可能となっている。
In response to a control signal from the host computer 31 shown in FIG. It can be controlled to gradually change in the direction of .

上記光照射手段23の全ての光源42,42.・・によ
り照射される車体26の塗膜面27の光照射領域S(第
3図(a)、第3図(b)参照)はCCDカメラ24の
カメラ視野Fよりも大きい。
All the light sources 42, 42 of the light irradiation means 23. The light irradiation area S (see FIGS. 3(a) and 3(b)) of the coating surface 27 of the vehicle body 26 that is irradiated by the light is larger than the camera field of view F of the CCD camera 24.

表面欠陥の検査時には、光照射手段]ントローラ34は
、ホストコンピュータ31から制御信号を受けて、たと
えば第3図(a)に示すように、上記光の出射面43上
に設定した上記xyX座標すべてのX座標に関して、同
一のX座標値を有する光源42.42.・・・の光度は
等しく、異なるX座標値を有する点での光度が漸変する
ように、光照射手段23の各光源42(第2図参照)の
光度を制御する。この状態で光照射領域Sの画像がCC
Dカメラ24で撮像される。
When inspecting surface defects, the light irradiation means] controller 34 receives a control signal from the host computer 31 and, as shown in FIG. 3(a), for example, as shown in FIG. With respect to the X-coordinate of the light sources 42.42., which have the same X-coordinate value. The luminous intensity of each light source 42 (see FIG. 2) of the light irradiation means 23 is controlled so that the luminous intensity at points having different X coordinate values gradually changes. In this state, the image of the light irradiation area S is CC
The image is captured by the D camera 24.

このときの第4図(a)に示すカメラ視野Fにおいて位
置が既知の少なくとも2つの点、たとえば片対角線りの
頂点P、およびP、の各輝度データか、第1図に示す画
像処理プロノセソサ33からホストコンピュータ31に
入力され、その位置にそれぞれ対応する光源42(第2
図参照)の各X座標(マトリックス状に配列された光源
42.42.・・・の行)が演算される。
At this time, each luminance data of at least two points whose positions are known in the camera field of view F shown in FIG. are input to the host computer 31 from the light sources 42 (second
(see figure) each X coordinate (row of light sources 42, 42, . . . arranged in a matrix) is calculated.

ついで、上記光照射手段]ントローラ34は、ホストコ
ンピュータ31からの制御信号により、第3図(b)に
示すように、その光源42,42.・の明暗方向を90
度位相回転させ、上記光の出射面43上に設定した上記
xyX座標すべてのX座標について同一のX座標値を有
する光源42,42゜・・・の光度は等しく、異なるX
座標値を有する点での光度が漸変するように、光照射手
段23の各光源42 (第2図参照)の光度を制御する
。この状態で光照射領域Sの画像がCCDカメラ24で
撮像される。
Then, the light irradiation means] controller 34, in response to a control signal from the host computer 31, activates its light sources 42, 42 .・The light and dark direction of 90
The light intensities of the light sources 42, 42°, etc., which have the same X coordinate value for all the X coordinates set on the light exit surface 43 by rotating the phase of the light source 42, 42°, etc.
The luminous intensity of each light source 42 (see FIG. 2) of the light irradiation means 23 is controlled so that the luminous intensity at a point having a coordinate value changes gradually. In this state, an image of the light irradiation area S is captured by the CCD camera 24.

このときの第4図(b)に示すカメラ視野Fの片対角線
りの上記頂点P1およびP、の各輝度データが、第1図
に示す画像処理プロッセッサ33からホストコンピュー
タ31に入力され、その位置にそれぞれ対応する光14
2(第2図参照)のX座標(マトリックス状に配列され
た光源42.42・・・の列)か演算される。
At this time, each luminance data of the vertices P1 and P on the semidiagonal line of the camera field of view F shown in FIG. 4(b) is inputted to the host computer 31 from the image processing processor 33 shown in FIG. Light 14 corresponding to
2 (see FIG. 2) (column of light sources 42, 42, . . . arranged in a matrix) is calculated.

これにより、カメラ視野F上において位置か既知の点で
ある、上記片対角線りの頂点P、、P、にそれぞれ対応
する光源42.42の上記Xl’座標上での位置か求ま
る。
As a result, the positions of the light sources 42 and 42 corresponding to the vertices P, , P, of the semi-diagonal line, which are known points on the camera field of view F, are determined on the Xl' coordinates.

上記ホストコンピュータ31は、この位置情報と、上記
片対角線りの頂点P、、P2のカメラ視野Fにおける既
知の位置情報に基ついて、上記光照射手段23により照
射される光照射領域S内のカメラ視野Fに合致する領域
の光源42.42.・・・の位置を演算する。
Based on this positional information and the known positional information in the camera field of view F of the vertices P, P2 of the semi-diagonal line, the host computer 31 selects a camera within the light irradiation area S to be irradiated by the light irradiation means 23. Light source 42 in the area matching field of view F. 42. Calculate the position of...

この演算により求められた光照射領域S内のカメラ視野
Fに合致する領域の第2図の光源4242、・・・によ
り、塗膜面27に存在する欠陥部が、以下に説明するよ
うにして検出される。
The light sources 4242, . Detected.

第5図(a)および第6図(a)は塗膜面27に凸状の
欠陥部11を有する場合を示し、第5図(b)および第
6図(b)は塗膜面27に凹状の欠陥部11を有する場
合を示す。
5(a) and 6(a) show the case where the coating surface 27 has a convex defect 11, and FIG. 5(b) and FIG. 6(b) show the case where the coating surface 27 has a convex defect 11. A case with a concave defect portion 11 is shown.

光照射手段23は、第1図の光照射手段]ントローラ3
4からの制御信号を受けて、上記光照射手段23の光の
出射面43から出射する光の光度(線mの長さで表され
ている。)か、この出射面43の矢印A、で示す一つの
方向に強から弱に変化させ、このときに上記CCDカメ
ラ24の四角形状のカメラ視野Fの一つの辺に沿う矢印
A2て示す方向に強から弱に光度か変化するように第1
図の光照射手段23の各光源42の光度が制御される。
The light irradiation means 23 is the light irradiation means shown in FIG.
4, the luminous intensity of the light emitted from the light emitting surface 43 of the light emitting means 23 (represented by the length of line m) or the arrow A of this emitting surface 43 is determined. At this time, the luminous intensity is changed from strong to weak in the direction indicated by arrow A2 along one side of the square camera field of view F of the CCD camera 24.
The luminous intensity of each light source 42 of the light irradiation means 23 shown in the figure is controlled.

これにより、塗膜面27には上記光度変化に対応した、
上記矢印A1に対応する方向に、照度の変化を有する光
照射領域Sか生じる。この光照射領域Sは、既に述べた
ように、CCDカメラ24のカメラ視野Fと合致する。
As a result, the coating surface 27 has a
A light irradiation area S having a change in illuminance is generated in the direction corresponding to the arrow A1. As already mentioned, this light irradiation area S matches the camera field of view F of the CCD camera 24.

このような状態において、塗膜面27に欠陥部11が生
じていると、この欠陥部11て光照射手段23からの光
の正反射方向か変化する。この光の正反射方向の変化に
より、CCDカメラ24の受光画像12は、照度が矢印
A、で示す方向に一様に変化する状態で、上記欠陥部1
1の明るさの変化状態かほかの部分とは異なり、−様に
変化しない画面となる。
In such a state, if a defective portion 11 occurs on the coating surface 27, the direction in which the light from the light irradiation means 23 is regularly reflected by the defective portion 11 changes. Due to the change in the direction of specular reflection of this light, the light reception image 12 of the CCD camera 24 shows the defective part 1 with the illuminance uniformly changing in the direction indicated by arrow A.
Unlike the other parts, the screen does not change as shown in the brightness change state of 1.

そして上記欠陥部11が、第5図(a)に示すように、
凸状のものである場合には、光照射手段23゛の上記出
射面43の光度の大きい位置13からの光が主として上
記出射面43と対向する欠陥部11の面11aに当たっ
て正反射方向か変化し、その一部かCCDカメラ24に
入射する。しかし、出射面43に関する上記欠陥部11
の背後側の面11bには、出射面43の光度が比較的小
さい位置14からの光しか入射せず、CCDカメラ24
には、欠陥部11の上記背後側の面11bからの反射光
は殆ど入射しない。
As shown in FIG. 5(a), the defective portion 11 is
In the case of a convex shape, the light from the position 13 of the output surface 43 of the light irradiation means 23' with high luminous intensity mainly hits the surface 11a of the defective part 11 facing the output surface 43, and the direction of regular reflection changes. Then, a part of it enters the CCD camera 24. However, the defective portion 11 regarding the exit surface 43
Only the light from the position 14 where the luminous intensity of the output surface 43 is relatively low enters the rear surface 11b of the CCD camera 24.
, almost no reflected light from the rear surface 11b of the defective portion 11 enters.

したがって、CCDカメラ24の受光画像12は、第6
図(a)に示すように、欠陥部11が凸状のものては、
CCDカメラ24の受光画像12の明るいところから暗
いところに向かう矢印A、で示す方向で、欠陥部11が
はじめに他の部分よりも明るくなり、この明るい部分を
過ぎると他の部分よりも暗くなる。
Therefore, the light-receiving image 12 of the CCD camera 24 is
As shown in Figure (a), if the defective part 11 is convex,
In the direction indicated by the arrow A from the bright part to the dark part of the received light image 12 of the CCD camera 24, the defective part 11 first becomes brighter than other parts, and after passing this bright part, it becomes darker than the other parts.

上記欠陥部11が凹状のものである場合には、光照射手
段23の上記出射面43の光度の大きい位置13からの
光か主として上記欠陥部11の出射面43と対向する側
の面11cに当たって正反射方向が変化し、その一部が
CCDカメラ24に入射する。しかし、欠陥部11の上
記面lieと反対側の面lidには、上記出射面43の
光度が比較的小さい位置14からの光しか入射せず、C
CDカメラ24には、欠陥部11の上記反対側の面11
dからは光か殆ど入射しない。
When the defective part 11 is concave, the light from the position 13 of the light emitting surface 43 of the light irradiating means 23 having a high luminous intensity mainly hits the surface 11c of the defective part 11 on the side opposite to the emitting surface 43. The direction of specular reflection changes, and a part of it enters the CCD camera 24. However, only the light from the position 14 where the luminous intensity of the exit surface 43 is relatively low enters the surface lid of the defective portion 11 opposite to the surface lie, and C
The CD camera 24 has the surface 11 on the opposite side of the defective part 11.
Almost no light enters from d.

したがって、CCDカメラ24の受光画像12は、第6
図(b)に示すように、欠陥部11が凹状のものでは、
CCDカメラ24の受光画像12の明るいところから暗
いところに向かう矢印A、で示す方向で、欠陥部11が
はじめに他の部分よりも暗くなり、この暗い部分を過ぎ
ると他の部分よりも明るくなる。
Therefore, the light-receiving image 12 of the CCD camera 24 is
As shown in Figure (b), if the defective part 11 is concave,
In the direction indicated by arrow A from a bright area to a dark area in the received light image 12 of the CCD camera 24, the defective part 11 first becomes darker than other parts, and after passing this dark part, it becomes brighter than other parts.

ビテオカメラ15はその上記受光画像12の明るさの変
化に応して変化するビデオ信号を第1図の画像処理プロ
、セッサ33に出力する。
The video camera 15 outputs a video signal that changes in accordance with changes in the brightness of the received light image 12 to the image processor 33 shown in FIG.

画像処理プロセッサ33にこのビデオ信号か入力すると
、画像処理プロセ、す33は欠陥部11の存在によるC
CDカメラ24から出力するビデオ信号を処理し、その
値、たとえばこのビデオ信号の微分信号が予め設定した
値を越えるビデオ信号の走査線、この走査線上で微分信
号か上記しきい値を越えるタイミング、およびこのタイ
ミング近傍での上記微分信号の符号の変化を検出する。
When this video signal is input to the image processing processor 33, the image processing processor 33 detects C due to the presence of the defective portion 11.
A scanning line of the video signal in which the video signal output from the CD camera 24 is processed and its value, for example, a differential signal of this video signal exceeds a preset value, a timing at which the differential signal exceeds the threshold value on this scanning line, Then, a change in the sign of the differential signal near this timing is detected.

これにより、受光画像12内での欠陥部11の位置およ
び欠陥部11の凹凸状態等を検出する。この検出テーク
とロボット装置21の先端アーム22の位置をメモリに
記憶する。
As a result, the position of the defective portion 11 within the light-receiving image 12 and the uneven state of the defective portion 11 are detected. This detection take and the position of the tip arm 22 of the robot device 21 are stored in a memory.

そして、補修時には、車体26の塗装面27に存在する
塗装の欠陥部11の凹凸に応じた補修が行われ、次に述
べるように、欠陥部11か凸状であるときは、その突出
部分は小さく削り取られ、上記欠陥部11が凹状である
ときは、この欠陥部器を含んで比較的広い範囲で塗膜か
削り取られる。
At the time of repair, the repair is carried out according to the unevenness of the paint defect 11 existing on the painted surface 27 of the vehicle body 26, and as described below, when the defect 11 is convex, the protruding portion is If the defective portion 11 is a concave shape, the paint film is scraped off over a relatively wide area including the defective portion.

この補修は、人手により行うこともてきるか、上記ロボ
ット装置21もしくはそれとは別に設けた図示しない補
修用のロボット装置により、自動的に行われる。
This repair can be performed manually or automatically by the robot device 21 or a repair robot device (not shown) provided separately.

上記から、塗膜面27を面的に照射しても、光のハレー
ションをなくして、欠陥部11を周囲とは明るさに差か
ある明瞭な画像としてとらえることができる。
From the above, even if the coating surface 27 is illuminated in a planar manner, it is possible to eliminate light halation and capture the defective portion 11 as a clear image with a difference in brightness from the surrounding area.

また、上記したように欠陥部11の存在によるCCDカ
メラ24から出力するビデオ信号を処理した値、たとえ
ばこのビデオ信号の微分信号が予め設定した値を越える
ビデオ信号の走査線、この走査線上で微分信号が上記し
きい値を越えるタイミング、およびこのタイミング近傍
での上記微分信号の符号の変化等を検出することにより
、受光画像12内での欠陥部11の位置および欠陥部1
1の凹凸状態等を検出することができ、欠陥部11か微
小であっても、確実に欠陥部11としてとらえることか
できる。
In addition, as described above, the value obtained by processing the video signal output from the CCD camera 24 due to the presence of the defective portion 11, for example, the scanning line of the video signal where the differential signal of this video signal exceeds a preset value, and the differential signal on this scanning line. By detecting the timing at which the signal exceeds the threshold value and the change in the sign of the differential signal near this timing, the position of the defective part 11 in the received light image 12 and the defective part 1 can be determined.
1 can be detected, and even if the defective part 11 is minute, it can be reliably recognized as the defective part 11.

以上では、光照射手段23は、その光源42゜42、・
・の光度を漸変させて欠陥部11を検出する場合の実施
例について説明したが、光源42゜42、・・の光度を
変化させるかわりに、光度もしくは波長の少なくとも一
方、たとえば同一行もしくは同一列の光源から出射する
光の色(波長)は同して、異なる行もしくは列の光源の
色(波長)が漸変するようにしても、欠陥部11での光
の色の順序の変化により、欠陥部11を検出することも
できる。
In the above, the light irradiation means 23 has its light sources 42°42, .
An embodiment has been described in which the defective portion 11 is detected by gradually changing the luminous intensity of the light sources 42, 42, . Even if the color (wavelength) of the light emitted from the light source in a column is the same, even if the color (wavelength) of the light source in a different row or column changes gradually, the color (wavelength) of the light emitted from the light source in the column will change due to the change in the order of the color of the light at the defective part 11. , the defective portion 11 can also be detected.

また、上記では、欠陥部11の検出を画像処理プロセッ
サ33により行う実施例について説明したが、上記CC
Dカメラ24からのビデオ信号を検査者がモニタテレビ
をモニタすることにより、欠陥部11の検出とその記録
装置への記録を行うようにすることもできる。
In addition, although the above example describes the embodiment in which the defective portion 11 is detected by the image processing processor 33, the CC
It is also possible to detect the defective portion 11 and record it in the recording device by having the inspector monitor the video signal from the D camera 24 on a monitor television.

本発明は、自動車の車体の塗装欠陥の検査装置に限らず
、表面欠陥検査装置に広く適用することかできる。
The present invention can be widely applied not only to an inspection device for coating defects on an automobile body but also to a surface defect inspection device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は表面欠陥検査装置の一実施例の全体構成図、 第2図は光照射手段の斜視図、 第3図(a)および第3図(b)はそれぞれカメラ視野
位置の検出の説明図、 第4図(a)および第4図(b)はそれぞれ第3図(a
)および第3図(b)のカメラ視野の説明図、第5図(
a)および第5図(b)はそれぞれ表面欠陥の検出の説
明図、 第6図(a)および第6図(b)はそれぞれ被検査面に
凸状および凹状の欠陥かあるときのカメラの画面の説明
図、 第7図は従来の表面欠陥検査装置の説明図、第8図は第
7図の表面欠陥検査装置のカメラにより得られる画像の
説明図、 第9図は被検査面が曲面のときにカメラにより得られる
画像の説明図、 第10図は従来のいま一つの表面欠陥検査装置の説明図
である。 S・・・光照射領域、F カメラ視野 11・・・欠陥部、12 ・受光画面 13・・光度の大きい位置。 14・・・光度の小さい位置。 20・・・塗装検査ステーション。 21・・ロボット装置、23・・・光照射手段。 24・・・CCDカメラ、25・・・支持金具、26・
・・車体。 27・・・を膜面、31・・・ホストコンピュータ。 32・ロボットコントローラ。 33・・・画像処理プロソセッサ。 34・・・光照射手段]ントローラ、42・・・光源。 43・・光の出射面。 特 許 出 願 人 マツダ株式会社 代理 人弁理士青 山 葆 はか1名 @2図 第3図 +al t’2 第4図 第5図 第6図 (al !3図 (bl 第41’!1 (bl 第5図 第6図 +bl ど −ロー 第8図 第7図 第9図 第10図
Fig. 1 is an overall configuration diagram of an embodiment of the surface defect inspection device, Fig. 2 is a perspective view of the light irradiation means, and Figs. 3(a) and 3(b) are explanations of detection of the camera field of view position, respectively. Figure 4(a) and Figure 4(b) are respectively similar to Figure 3(a).
) and an explanatory diagram of the camera field of view in Fig. 3(b), Fig. 5(
Figures a) and 5(b) are explanatory diagrams of surface defect detection, respectively, and Figures 6(a) and 6(b) are illustrations of the camera when there are convex and concave defects on the surface to be inspected, respectively. An explanatory diagram of the screen, Fig. 7 is an explanatory diagram of a conventional surface defect inspection device, Fig. 8 is an explanatory diagram of an image obtained by the camera of the surface defect inspection device of Fig. 7, and Fig. 9 is an explanatory diagram of the surface to be inspected which is a curved surface. FIG. 10 is an explanatory diagram of another conventional surface defect inspection device. S...Light irradiation area, F Camera field of view 11...Defect area, 12 - Light receiving screen 13...Position with high luminous intensity. 14...Position with low luminosity. 20...Paint inspection station. 21... Robot device, 23... Light irradiation means. 24... CCD camera, 25... Support metal fittings, 26.
...Vehicle body. 27... is a membrane surface, 31... is a host computer. 32. Robot controller. 33... Image processing processor. 34...Light irradiation means] controller, 42...Light source. 43...Light exit surface. Patent Applicant Mazda Motor Corporation Agent Patent Attorney Haka Aoyama 1 person @2 Figure 3 + al t'2 Figure 4 Figure 5 Figure 6 (al!3 (bl Figure 41'!1) (bl Figure 5 Figure 6 + bl Doro Figure 8 Figure 7 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] (1)光照射手段から出射する光で被検査面を照射し、
この被検査面から反射する反射光をビデオ信号発生手段
で受けて被検査面の光照射領域の受光画像をビデオ信号
に変換し、このビデオ信号から上記被検査面に存在する
欠陥を検出する表面欠陥検査装置において、 上記ビデオ信号発生手段が有しているカメラ視野よりも
大きな光照射領域を有し、光の出射面に対して多数の光
源がマトリックス状に配置されて被検査面を照射する光
照射手段と、外部から制御信号を受けて上記各光源から
出射する光の光度もしくは波長の少なくとも一方を個々
に変化させる光照射制御手段と、表面欠陥の検査時に上
記光照射手段の光の出射面に予め定められたxy座標の
少なくとも2つの方向に上記光照射手段の光源から出射
する光の光度もしくは波長の少なくとも一方を漸変させ
る制御信号を上記光照射制御手段に出力し、上記2つの
方向の各々について上記カメラ視野内において位置が既
知の少なくとも2つの異なる点に入射する光の明るさも
しくは波長の少なくとも一方を検出し、そのデータから
これらの点にそれぞれ対応する光源の上記xy座標上で
の位置を検出し、これら光源の位置からカメラ視野と合
致する上記光照射手段の光源の領域を演算し、この領域
の光源を発光させて上記表面欠陥を検出する画像情報処
理手段とを備えたことを特徴とする表面欠陥検査装置。
(1) Irradiating the surface to be inspected with light emitted from the light irradiation means,
The reflected light reflected from the surface to be inspected is received by a video signal generating means, the light-receiving image of the light irradiation area of the surface to be inspected is converted into a video signal, and the defects present on the surface to be inspected are detected from this video signal. The defect inspection device has a light irradiation area larger than the camera field of view of the video signal generating means, and a large number of light sources are arranged in a matrix on the light exit surface to illuminate the surface to be inspected. a light irradiation means; a light irradiation control means for individually changing at least one of the luminous intensity or wavelength of the light emitted from each of the light sources in response to a control signal from the outside; and light emission from the light irradiation means when inspecting a surface defect. outputting a control signal to the light irradiation control means to gradually change at least one of the luminous intensity or the wavelength of the light emitted from the light source of the light irradiation means in at least two directions of xy coordinates predetermined on the surface; detect at least one of the brightness or the wavelength of light incident on at least two different points whose positions are known within the field of view of the camera for each direction, and from the data, detect on the xy coordinates of the light source corresponding to each of these points; image information processing means for detecting the positions of the light sources, calculating from the positions of these light sources a region of the light source of the light irradiation means that matches the camera field of view, and detecting the surface defect by emitting light from the light source in this region. A surface defect inspection device characterized by:
JP22880390A 1990-08-29 1990-08-29 Surface defect inspection apparatus and surface defect inspection method Expired - Fee Related JP2892464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22880390A JP2892464B2 (en) 1990-08-29 1990-08-29 Surface defect inspection apparatus and surface defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22880390A JP2892464B2 (en) 1990-08-29 1990-08-29 Surface defect inspection apparatus and surface defect inspection method

Publications (2)

Publication Number Publication Date
JPH04109106A true JPH04109106A (en) 1992-04-10
JP2892464B2 JP2892464B2 (en) 1999-05-17

Family

ID=16882101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22880390A Expired - Fee Related JP2892464B2 (en) 1990-08-29 1990-08-29 Surface defect inspection apparatus and surface defect inspection method

Country Status (1)

Country Link
JP (1) JP2892464B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011377A1 (en) * 1994-10-06 1996-04-18 Advantest Corporation Illuminator for inspecting appearance of device and automatic apparatus for inspecting appearance of device using the illumination device
US5680215A (en) * 1995-02-27 1997-10-21 Lockheed Missiles & Space Company, Inc. Vision inspection system and method
CN111024005A (en) * 2019-12-31 2020-04-17 芜湖哈特机器人产业技术研究院有限公司 Furniture spraying quality detection method based on vision

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011377A1 (en) * 1994-10-06 1996-04-18 Advantest Corporation Illuminator for inspecting appearance of device and automatic apparatus for inspecting appearance of device using the illumination device
US5680215A (en) * 1995-02-27 1997-10-21 Lockheed Missiles & Space Company, Inc. Vision inspection system and method
CN111024005A (en) * 2019-12-31 2020-04-17 芜湖哈特机器人产业技术研究院有限公司 Furniture spraying quality detection method based on vision

Also Published As

Publication number Publication date
JP2892464B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
US5237404A (en) Inspection apparatus with improved detection of surface defects over large and curved surfaces
US5168322A (en) Surface inspection using retro-reflective light field
JP2008202949A (en) Method and device for inspecting defect
JP3204444B2 (en) Surface defect inspection equipment
JPH11271038A (en) Painting defect inspection device
JPS62502358A (en) Panel surface inspection method and device
JPH0979988A (en) Surface defect inspecting device
JPH04109106A (en) Surface defect inspecting device
JP2938948B2 (en) Surface defect inspection equipment
JP3017572B2 (en) Surface condition inspection method
JP2002131238A (en) Visual inspection apparatus
JP2926365B2 (en) Surface defect inspection equipment
JPH04106461A (en) Inspecting apparatus of surface defect
JP3062293B2 (en) Surface defect inspection equipment
JP2955686B2 (en) Surface defect inspection equipment
JP3339677B2 (en) Screen for surface condition inspection and inspection device using the screen
JP3206430B2 (en) Surface defect inspection equipment
JP2938953B2 (en) Surface defect inspection equipment
JP3054227B2 (en) Surface defect inspection equipment
JP3095820B2 (en) Surface condition detection device
JP3204443B2 (en) Surface defect inspection equipment
JP3278490B2 (en) Film inspection system
JP4014027B2 (en) Inspection system for minute defects on painted surfaces of vehicles
JP3273643B2 (en) Surface condition inspection device
JP3056552B2 (en) Surface condition inspection method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees