JP3363103B2 - Appearance inspection device - Google Patents
Appearance inspection deviceInfo
- Publication number
- JP3363103B2 JP3363103B2 JP32552398A JP32552398A JP3363103B2 JP 3363103 B2 JP3363103 B2 JP 3363103B2 JP 32552398 A JP32552398 A JP 32552398A JP 32552398 A JP32552398 A JP 32552398A JP 3363103 B2 JP3363103 B2 JP 3363103B2
- Authority
- JP
- Japan
- Prior art keywords
- divided
- value
- pass
- pixel
- determined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Supply And Installment Of Electrical Components (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、例えばプリント基
板上に実装された実装部品等の被検体を撮像し、この撮
像した画像情報に基づいて被検体が正常に構成されてい
るか否か等を含む被検体の外観を検査する外観検査装置
に関する。
【0002】
【従来の技術】この種の従来の外観検査装置は、被検体
を人間の目で直接観察して被検体が正常に構成されてい
るか否かを判定する目視検査に頼っていたが、目視検査
は作業環境、作業効率等の点から多くの問題があり、被
検体の外観検査を完全に行うことができないため、微細
な不良部分を含み、不良品と判定されなければならない
ものにも関わらず、良品として市場に流出し、結果とし
て修理や返品等の問題を起こしている。
【0003】このような問題を解決するために、目視検
査によらずに、自動的に外観検査を行う装置が開発され
ているが、従来の外観検査装置は例えばプリント基板上
で実装部品を半田付けしている半田部である一対または
複数対のランドにプローブピンを接触させ、その間のイ
ンピーダンスを測定したり、またはその間の導通状態を
検出し、このインピーダンスの有無や導通状態により部
品の実装状態、定数、半田付け状態等を検査している。
【0004】また、従来の外観検査装置として、プリン
ト基板上に実装された回路部品等の被検体をテレビカメ
ラ等からなる撮像装置で撮像し、この撮像した被検体の
画像情報に対して2値化等により画像処理を施し、この
画像処理された情報に基づいて被検体の外観を検査する
ものも開発されている。
【0005】
【発明が解決しようとする課題】上述した従来の外観検
査装置のうち、プローブピンをプリント基板のランドに
接触させて被検体の外観を検査する従来の外観検査装置
では、近年電子機器の小型化、軽量化による内部構成部
品の小型化によりプリント基板に搭載される部品も小型
化され、高密度化されているため、プローブピンを接触
させるスペースが無かったり、またはプリント基板の厚
さが例えば0.4mmのように薄くなっているため、プ
ローブピンでプリント基板に穴があいたり、貫通したり
して、プローブピンを接触させる検査が困難になってい
る。
【0006】また、画像処理を用いて被検体の外観を検
査する従来の外観検査装置では、2値化による画像処理
であるため、被検体の微妙な色の識別が困難であり、被
検体の合否を決めるしきい値の設定作業が一定せず、誤
判定が多いという問題がある。
【0007】本発明は、上記に鑑みてなされたもので、
その目的とするところは、部品のばらつきを吸収し、少
ない誤判定で被検体の外観検査を適確に行い得る外観検
査装置を提供することにある。
【0008】
【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の本発明は、被検体を撮像手段にて撮
像し、この撮像した画像情報に基づいて被検体の外観を
検査する外観検査装置であって、前記撮像手段による被
検体の撮像領域の所定の検査領域を複数の分割格子に分
割する分割手段と、前記分割格子の各々を構成する複数
の画素の各画素についてそのR,G,B値から各画素の
輝度値、色相値、彩度値を算出する算出手段と、この算
出した各画素の輝度値、色相値、彩度値をそれぞれ基準
輝度値、基準色相値、基準彩度値と比較し、各画素毎の
良否を判定する画素判定手段と、複数の分割格子の各々
を構成する複数の画素のそれぞれについて前記画素判定
手段で判定された該複数の画素の良否に基づき該複数の
画素で構成される各分割格子を合格、準合格または不合
格と判定する分割格子判定手段と、該分割格子判定手段
で準合格と判定された分割格子のうち、所定の容認比率
で決定される数の準合格分割格子を合格分割格子に繰り
上げる繰上げ手段と、前記分割格子判定手段で合格と判
定された合格分割格子の数および前記繰上げ手段で合格
分割格子に繰り上げられた合格分割格子の数の和の検査
領域内における全分割格子に対する比率に基づき各検査
領域内の被検体部分の外観の良否を判定する検査領域内
外観判定手段とを有することを要旨とする。
【0009】請求項1記載の本発明にあっては、各分割
格子を構成する複数の画素の各々についてそのR,G,
B値から輝度値、色相値、彩度値を算出し、この各画素
の輝度値、色相値、彩度値をそれぞれ基準輝度値、基準
色相値、基準彩度値と比較し、各画素毎の良否を判定
し、各分割格子を構成する複数の画素のそれぞれについ
て前記各画素の良否に基づき各分割格子を合格、準合格
または不合格と判定し、準合格と判定された分割格子を
所定の容認比率だけ合格分割格子に繰り上げ、合格分割
格子の検査領域内における全分割格子に対する比率に基
づき各検査領域内の被検体部分の外観の良否を判定する
ため、被検体に無接触で外観検査を行うことができ、労
力を大幅に低減でき、効率化を図ることができるととも
に、また画素、分割格子、検査領域の段階と3段階の判
定により誤判定を大幅に低減することができる。また、
検査領域内の被検体部分の内容に応じて検査領域毎に判
定基準を可変できるように構成することができるため、
種々の被検体に対応して適切な外観検査を行うことがで
きる。
【0010】
【発明の実施の形態】以下、図面を用いて本発明の実施
の形態について説明する。図1は、本発明の一実施形態
に係る外観検査装置の構成を示すブロック図である。同
図に示す外観検査装置は、例えばプリント基板上に実装
されたIC,LSI等の実装部品等からなる被検体1を
照明するRGB3原色LEDからなるLED照明手段3
およびこのLED照明手段3で照明された被検体1を撮
像する撮像手段であるカラーカメラ5を有する。
【0011】カメラ5で撮像された被検体1の画像情報
は、ビデオキャプチャ部7に供給され、該ビデオキャプ
チャ部7で画像情報を構成している各画素のRGB信号
に分割されてCPU9内の色処理部91に入力される。
色処理部91は、これらのRGB信号を演算部93に供
給し、演算部93は、これらのRGB信号から各画素毎
の輝度値、色相値、彩度値を算出する。この演算部93
で算出された各画素毎の輝度値、色相値、彩度値は、比
較部95に供給され、それぞれ基準輝度値、基準色相
値、基準彩度値と比較され、この比較結果は判定部97
に供給される。判定部97は、該比較結果に基づいて被
検体の外観の良否を判定し、この判定結果を表示部11
に出力して表示する。
【0012】図2は、図1に示す外観検査装置の構成を
更に詳しく示した詳細構成図である。図2に示すよう
に、被検体1は、被検体搭載部13上に搭載されるとと
もに、該被検体搭載部13の下側に取り付けられたY軸
駆動部15およびY軸モータ17によってY軸方向に移
動し得るように構成され、これにより被検体1のY軸方
向の任意の部分をカメラ5で撮像し得るようになってい
る。
【0013】また、カメラ5は、X軸駆動部19に取り
付けられ、該X軸駆動部19はX軸モータ21によって
駆動されるように構成されている。この結果、カメラ5
はX軸方向の任意の位置に移動することができ、これに
より被検体1のX軸方向の任意の部分を撮像し得るよう
になっている。このように被検体1をY軸駆動部15お
よびY軸モータ17によりY軸方向の任意の位置に移動
し、またカメラ5をX軸駆動部19およびX軸モータ2
1によりX軸方向の任意の位置に移動するように構成す
ることにより、カメラ5は被検体1の任意の部分を撮像
し得るように構成されている。更に、被検体1を照明す
るLED照明手段3は照明電源33から電力を供給さ
れ、カメラ5はカメラ電源23から電力を供給されるよ
うになっている。なお、カメラ5およびLED照明手段
3は撮像部43を構成している。
【0014】図1で説明したビデオキャプチャ部7、C
PU9、表示部11は、図2では処理部25内に設けら
れている。この処理部25は、これらの構成要素に加え
て、前記X軸モータ21およびY軸モータ17をそれぞ
れ駆動するX軸ドライバ27およびY軸ドライバ29を
制御するXY軸制御部31、前記照明電源33を制御す
る入出力部35、カメラ5で撮像した被検体1の画像情
報等を登録するメモリ37、基準情報、指令を含む各種
情報を入力するキーボード39およびマウス41を有し
ている。
【0015】以上のように構成される本実施形態の外観
検査装置は、カメラ5で撮像した被検体1の画像情報を
構成している各入力画素毎のR値、G値、B値から下記
に示す式を用いて、各入力画素毎の輝度値、色相値、彩
度値をCPU9内の演算部93で算出する。
【0016】
【数1】
輝度値 Y=0.3R+0.59G+0.11B
色差信号1 C1=0.7R−0.59G−0.11B
色差信号2 C2=−0.3R−0.59G+0.89B
そして、このように求めた色差信号C1,C2から次式
により彩度値Sおよび色相値Hを算出する。
【0017】C1=彩度値S×sin (色相値H)
C2=彩度値S×cos (色相値H)
上述した計算により各入力画素毎の輝度値、色相値、彩
度値を算出すると、この算出した各入力画素毎の輝度
値、色相値、彩度値をそれぞれ基準輝度値、基準色相
値、基準彩度値と比較部95で比較し、次式で示すよう
に輝度値、色相値、彩度値のそれぞれの値がそれぞれの
基準値に対して所定の許容差以内にあるか否かについて
の良否を判定部97で判定する。
【0018】
【数2】(基準輝度値−許容差)≦入力画素の輝度値≦
(基準輝度値+許容差)
(基準色相値−許容差)≦入力画素の色相値≦(基準色
相値+許容差)
(基準彩度値−許容差)≦入力画素の彩度値≦(基準彩
度値+許容差)
そして、この判定結果により、入力画素の輝度値、色相
値、彩度値のすべてがそれぞれの基準値に対して所定の
許容差以内にある場合には、その画素は基準画素に一致
している一致優良画素と判定され、そうでない場合、す
なわち輝度、色相、彩度の各値がそれぞれの基準値に対
して所定の許容差以内にない場合には、一致していない
不一致画素と判定される。
【0019】上述した各画素についての良否判定は、被
検体1を複数の検査領域である検査枠に分割し、この複
数の検査枠の各々を更に分割して構成される複数の分割
格子の各々について行われる。この分割処理について
は、図3を参照して更に詳細に説明する。
【0020】図3(a)に示すように、被検体1は、カ
メラ5によって撮像される領域500の内の所望の検査
枠51毎に検査される。なお、この検査枠は、必ずしも
同じ大きさである必要はなく、被検体毎に検査位置に応
じて大きさが可変されてもよいものである。
【0021】各検査枠51は、更に図3(a)の中程に
示すように、複数の分割格子53に分割され、この複数
の分割格子53の各々は更に複数の画素55に分割され
ている。
【0022】上述した各画素についての良否判定は、こ
のように分割された複数の分割格子53の各々を構成し
ている複数の画素について行われる。図3の例では、各
分割格子53は、4×4の16画素から構成されている
が、この16画素の各々について上述した良否判定を行
う。図3(b)は、このような良否判定を16画素の各
々について行った結果を示しているものであり、同図に
おいて「○」印は良否判定の結果、一致優良画素と判定
された画素を示し、「×」印は不一致画素と判定された
結果である。
【0023】このように分割格子53を構成している複
数の画素のそれぞれについての良否判定を行うと、この
各画素についての良否判定結果から分割格子53の良否
判定を行う。
【0024】分割格子53の良否判定は、分割格子53
を構成している全複数の画素における一致優良画素の占
有比率を計算し、この占有比率を所定の分割格子合格率
と比較し、一致優良画素の占有比率が分割格子合格率以
上の場合に、分割格子53を合格と判定する。また、分
割格子53における一致優良画素の占有比率が所定の分
割格子合格率から所定の許容範囲を引いた範囲にある場
合には、分割格子53を準合格と判定し、それ以下の場
合は不合格と判定する。
【0025】例えば、図3(b)に示す分割格子53に
おいては、全体の画素数は16であり、「○」印で示す
一致優良画素の数は13であるので、一致優良画素の占
有比率は13/16×100≒81%となるので、分割
格子合格率が例えば60%である場合には、この分割格
子53は合格と判定される。
【0026】このような分割格子53についての良否判
定を、図3(a)の中程に示すように検査枠51を構成
している複数の分割格子53の各々について行うと、例
えば図3(c)に示すように検査枠51を構成している
複数の分割格子53の各々について合格、準合格、不合
格の判定が下される。なお、図3(c)において、丸で
囲まれた「合」の字は合格を示し、「準」の字は準合格
を示し、「×」は不合格を示している。
【0027】このように検査枠51を構成する分割格子
53のそれぞれについて合格、準合格、不合格の判定が
下されると、このうちの「準合格」と判定された分割格
子53のうち、所定の容認数で設定された比率分、すな
わち容認数比率分が合格に繰り上げられ、それ以外は不
合格に振り分けられる。
【0028】具体的に説明すると、図3(c)に示す検
査枠51の例では、合格と判定された分割格子53の数
は13であり、準合格と判定された分割格子53の数は
5であり、不合格と判定された分割格子53の数は2個
であるが、準合格と判定された5個の分割格子53のう
ち、所定の容認数比率分の分割格子53が合格に繰り上
げられる。この所定の容認数比率を例えば60%とすれ
ば、準合格と判定された5個の分割格子53のうち、5
×60/100=3個の分割格子53が合格に繰り上げ
られ、残りの2個は不合格に振り分けられる。
【0029】上述したように、検査枠51を構成する複
数の分割格子53の各々について合格、不合格の良否判
定を行った後、この検査枠51の全体についての良否の
判定を行う。
【0030】この検査枠51の全体についての良否判定
は、検査枠51を構成している複数の分割格子53のそ
れぞれの合格分割格子および不合格分割格子の数を計算
し、この合格分割格子の数の全体に対する合格格子数比
率を算出する。そして、この合格格子数比率を所定の検
査枠合格率と比較し、合格格子数比率が所定の検査枠合
格率よりも大きい場合、この検査枠51は該検査枠51
内の基準画像に一致していると判定し、そうでない場合
は不一致と判定する。
【0031】具体的に図3(c)に示す検査枠51の例
で説明すると、この例では、合格の分割格子53は13
個であり、準合格の分割格子53bから合格の分割格子
53aに繰り上げられた分割格子53bの数は例えば容
認数が60%とした場合3であったので、合格と判定さ
れた分割格子53aの全体の数は16(13+3)とな
り、検査枠51全体を構成する分割格子53の全数の2
0で16を割って、この検査枠51の合格格子数比率は
16/20×100=80%となる。この検査枠51の
合格格子数比率80%は、検査枠51の検査枠合格率を
例えば70%とすれば、この検査枠合格率よりも大きい
ので、一致していると判定されることになる。
【0032】上述した検査枠51の全体についての良否
判定を、被検体1の全体の検査枠51について、すなわ
ち被検体1をカメラ5で撮像される領域500内の所望
の検査枠51について行うことにより、被検体1の所定
の部分の外観検査を完了することができる。
【0033】次に、上述した処理を踏まえて、本実施形
態の外観検査装置の全体の動作について図4〜図6に示
すフローチャートを参照して説明する。
【0034】まず、図4に示すフローチャートを参照し
て、各画素についての良否判定処理について説明する。
図4の処理においては、まず、基準画像が入力され(ス
テップS11)、それから被検体1が被検体搭載部13
上に設定されて、検査が開始される(ステップS1
3)。そして、この被検体搭載部13上に設定された被
検体1をカメラ5で撮像した被検体1の画像情報が処理
部25のビデオキャプチャ部7を介してCPU9に入力
される(ステップS15)。
【0035】CPU9に入力された被検体1の画像情報
は、色処理部91を介して演算部93に入力され、ここ
で各画素のR値、G値、B値から上述した計算式に基づ
いて輝度値、色相値、彩度値が算出される(ステップS
17)。この算出された画素の輝度値、色相値、彩度値
は、それぞれ基準輝度値、基準色相値、基準彩度値と比
較部95で比較され、輝度値、色相値、彩度値のそれぞ
れの値がそれぞれの基準値に対して所定の許容差以内に
あるか否かについての良否判定が判定部97で行われる
(ステップS19)。
【0036】この画素についての判定結果により、入力
画素の輝度値、色相値、彩度値のすべてがそれぞれの基
準値に対して所定の許容差以内にある場合には、その画
素は基準画素に一致している一致優良画素、すなわちド
ットOKと判定され(ステップS21)、そうでない場
合、すなわち輝度、色相、彩度の各値の1つでもがそれ
ぞれの基準値に対して所定の許容差以内にない場合に
は、一致していない不一致画素、すなわちドットNGと
判定される(ステップS23)。
【0037】このような画素単位の良否判定を分割格子
53内のすべての画素(ドット)について繰り返し行い
(ステップS25)、分割格子53内のすべての画素に
ついての良否判定を終了すると、次に分割格子53の良
否判定に進む(ステップS27)。
【0038】次に、図5に示すフローチャートを参照し
て、分割格子53の良否判定処理について説明する。図
5では、まず、分割格子53内の一致優良画素の数(O
Kドット数)と不一致画素の数(NGドットの数)を計
算する(ステップS35,S37,S39)。そして、
この計算した分割格子53内の一致優良画素の比率(O
Kドットの数)が前記所定の分割格子合格率と比較され
(ステップS41)、一致優良画素の比率が分割格子合
格率以上である場合、この分割格子53は合格(OK)
と判定される(ステップS43)。
【0039】また、分割格子53内の一致優良画素の数
が分割格子合格率以上でない場合には、分割格子53に
おける一致優良画素の占有比率を算出し、この占有比率
が前記所定の分割格子合格率から所定の許容範囲を引い
た範囲にあるか否かをチェックし(ステップS45)、
この範囲内にある場合には、この分割格子53を準合格
(準OK)と判定し、この範囲内にも無い場合には、不
合格(NG)と判定する(ステップS51)。
【0040】更に、上述したように、準合格(準OK)
と判定された分割格子53のうち、前記容認数の比率分
に相当する分割格子を合格に繰り上げるために、容認数
との比率が上述したように計算され(ステップS4
9)、この容認数比率分の分割格子53が合格(OK)
に繰り上げられる(ステップS43)。上述した分割格
子53についての良否判定を検査枠51内のすべての分
割格子53について繰り返し行い(ステップS53,S
55)、検査枠51内のすべての分割格子53について
の良否判定を終了すると、次に検査枠51の良否判定に
進む(ステップS57)。
【0041】次に、図6に示すフローチャートを参照し
て、検査枠51の良否判定処理について説明する。図6
では、まず検査枠51内において合格と判定された分割
格子(OK格子)の数と不合格と判定された分割格子
(NG格子)の数を計算し、合格分割格子の数の全体に
対する合格格子数比率を算出する(ステップS61)。
そして、この算出した合格格子数比率を所定の検査枠合
格率と比較し、合格格子数比率が検査枠合格率以上か否
かをチェックする(ステップS63)。
【0042】合格格子数比率が検査枠合格率以上の場
合、この検査枠51内の画像はその基準画像に一致して
いると判定し(ステップS65)、そうでない場合は不
一致と判定する(ステップS67)。そして、このよう
な検査枠51の良否判定処理を被検体1のすべての検査
枠51について繰り返し行い(ステップS59,S7
1)、検査枠51内のすべての検査枠51について完了
すると、検査終了となる。
【0043】
【発明の効果】以上説明したように、本発明によれば、
各分割格子を構成する複数の画素の各々についてのR,
G,B値から輝度値、色相値、彩度値を算出し、この各
画素の輝度値、色相値、彩度値をそれぞれの基準値と比
較し、各画素毎の良非を判定し、各分割格子を構成する
各画素の良否に基づき各分割格子を合格、準合格または
不合格と判定し、準合格と判定された分割格子を所定の
容認比率だけ合格分割格子に繰り上げ、合格分割格子の
検査領域内における比率に基づき各検査領域の良否を判
定するので、被検体に無接触で外観検査を行うことがで
き、労力を大幅に低減でき、効率化を図ることができる
とともに、また画素、分割格子、検査領域の段階と3段
階の判定により誤判定を大幅に低減することができる。
また、検査領域内の被検体部分の内容に応じて検査領域
毎に判定基準を可変できるように構成することができる
ため、種々の被検体に対応して適切な外観検査を行うこ
とができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup apparatus, for example, a mounted component mounted on a printed circuit board. The present invention relates to a visual inspection apparatus for inspecting the external appearance of a subject including whether or not the configuration is normal. 2. Description of the Related Art A conventional visual inspection apparatus of this type relies on a visual inspection for directly observing a subject with human eyes to determine whether or not the subject is normally constructed. However, visual inspection has many problems in terms of work environment, work efficiency, etc., and it is not possible to completely perform the visual inspection of the subject, so it includes fine defective parts and must be judged as defective. Nevertheless, it is leaked to the market as a good product, resulting in problems such as repairs and returns. In order to solve such a problem, an apparatus for automatically performing an appearance inspection without visual inspection has been developed. However, a conventional appearance inspection apparatus, for example, solders a mounted component on a printed circuit board. The probe pins are brought into contact with one or more pairs of lands that are the solder parts attached, and the impedance between them is measured, or the conduction state between them is detected, and the mounting state of the component is determined based on the presence or absence of this impedance and the conduction state. , Constants, soldering conditions, etc. are inspected. Further, as a conventional visual inspection device, an object such as a circuit component mounted on a printed circuit board is imaged by an image pickup device such as a television camera, and binary image information of the imaged object is taken. There has also been developed an image processing apparatus that performs image processing by image processing or the like and inspects the appearance of a subject based on the information obtained by the image processing. [0005] Among the above-mentioned conventional visual inspection apparatuses, the conventional visual inspection apparatus for inspecting the appearance of a subject by bringing a probe pin into contact with a land of a printed circuit board has recently been used in electronic equipment. The components mounted on the printed circuit board are also downsized due to the miniaturization of the internal components due to the miniaturization and weight reduction, and the density is increased, so there is no space for contacting the probe pins, or the thickness of the printed circuit board However, since it is thin, for example, 0.4 mm, the printed circuit board is pierced or penetrated by the probe pins, and it is difficult to make an inspection for contacting the probe pins. Further, in a conventional visual inspection apparatus for inspecting the appearance of a subject using image processing, since image processing is performed by binarization, it is difficult to discriminate a subtle color of the subject, and the There is a problem that the work of setting the threshold value for determining pass / fail is not constant, and there are many erroneous determinations. [0007] The present invention has been made in view of the above,
It is an object of the present invention to provide a visual inspection apparatus capable of absorbing variations in components and accurately performing a visual inspection of a subject with a small number of erroneous determinations. [0008] In order to achieve the above object, according to the present invention, an object is imaged by an imaging means, and the appearance of the object is determined based on the image information. A division unit that divides a predetermined inspection region of an imaging region of a subject by the imaging unit into a plurality of division lattices, and each of a plurality of pixels constituting each of the division lattices Calculating means for calculating a luminance value, a hue value, and a saturation value of each pixel from the R, G, and B values, and calculating the calculated luminance value, hue value, and saturation value of each pixel as a reference luminance value, a reference luminance value, and a reference luminance value, respectively. A hue value, a comparison with a reference saturation value, pixel determination means for determining pass / fail of each pixel, and the plurality of pixels determined by the pixel determination means for each of a plurality of pixels constituting each of a plurality of divided grids. Based on the quality of the pixel, Divided grids that are configured as pass, quasi-pass, or reject, and the number of grids that are determined by the predetermined acceptance ratio among the split grids that are determined to be quasi-passed by the split grid determiner. Carrying means for raising the quasi-accepted divided grid to a passed divided grid, and the sum of the number of passed divided grids determined to be passed by the divided grid determining means and the number of passed divided grids raised to the passed divided grid by the raised means The gist of the present invention is to have an in-examination-area appearance determining unit that determines the quality of the appearance of the subject portion in each inspection area based on a ratio of the entire divided grid in the inspection area. According to the first aspect of the present invention, for each of a plurality of pixels constituting each divided grid, the R, G,
The brightness value, hue value, and saturation value are calculated from the B value, and the brightness value, hue value, and saturation value of each pixel are compared with the reference brightness value, the reference hue value, and the reference saturation value, respectively. The pass / fail of each of the plurality of pixels constituting each divided grid is determined as pass, quasi-pass, or reject based on the pass / fail of each of the pixels, and the divided grid determined as quasi-pass is determined. The acceptance ratio is raised to the acceptable division grid, and the appearance of the subject part in each inspection area is judged based on the ratio of the acceptance division grid to the entire division grid in the inspection area, so that the appearance inspection is performed without contacting the specimen. Can be performed, labor can be greatly reduced, efficiency can be improved, and erroneous determination can be greatly reduced by three-stage determination of pixels, divided grids, and inspection areas. Also,
Because it can be configured to be able to change the criterion for each test area according to the contents of the subject portion in the test area,
Appropriate appearance inspection can be performed for various subjects. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of a visual inspection apparatus according to an embodiment of the present invention. The appearance inspection apparatus shown in FIG. 1 is an LED illuminating means 3 composed of RGB primary color LEDs for illuminating a subject 1 composed of mounted components such as ICs and LSIs mounted on a printed circuit board, for example.
And a color camera 5 serving as an imaging unit for imaging the subject 1 illuminated by the LED illumination unit 3. [0011] Image information of the subject 1 captured by the camera 5 is supplied to a video capture unit 7, which divides the image information into RGB signals of respective pixels constituting the image information. The data is input to the color processing unit 91.
The color processing unit 91 supplies these RGB signals to the calculation unit 93, and the calculation unit 93 calculates a luminance value, a hue value, and a saturation value for each pixel from these RGB signals. This operation unit 93
The luminance value, hue value, and saturation value of each pixel calculated by the above are supplied to the comparison unit 95, and are compared with the reference luminance value, the reference hue value, and the reference saturation value, respectively.
Supplied to The determination unit 97 determines the quality of the appearance of the subject based on the comparison result, and displays the determination result on the display unit 11.
Output to and display. FIG. 2 is a detailed configuration diagram showing the configuration of the appearance inspection apparatus shown in FIG. 1 in more detail. As shown in FIG. 2, the subject 1 is mounted on the subject mounting unit 13, and the Y-axis driving unit 15 and the Y-axis motor 17 mounted on the lower side of the subject mounting unit 13 The camera 5 can move in any direction in the Y-axis direction. The camera 5 is mounted on an X-axis drive unit 19, which is configured to be driven by an X-axis motor 21. As a result, the camera 5
Can be moved to any position in the X-axis direction, so that any part of the subject 1 in the X-axis direction can be imaged. Thus, the subject 1 is moved to an arbitrary position in the Y-axis direction by the Y-axis drive unit 15 and the Y-axis motor 17, and the camera 5 is moved to the X-axis drive unit 19 and the X-axis motor 2.
By configuring the camera 5 to move to an arbitrary position in the X-axis direction by using the camera 1, the camera 5 is configured to be able to image an arbitrary portion of the subject 1. Further, the LED illuminating means 3 for illuminating the subject 1 is supplied with power from the illumination power supply 33, and the camera 5 is supplied with power from the camera power supply 23. Note that the camera 5 and the LED illuminating means 3 constitute an imaging unit 43. The video capture unit 7, C described with reference to FIG.
The PU 9 and the display unit 11 are provided in the processing unit 25 in FIG. The processing unit 25 includes, in addition to these components, an XY-axis control unit 31 that controls an X-axis driver 27 and a Y-axis driver 29 that drive the X-axis motor 21 and the Y-axis motor 17, respectively; , A memory 37 for registering image information of the subject 1 captured by the camera 5 and the like, a keyboard 39 for inputting various information including reference information and instructions, and a mouse 41. The appearance inspection apparatus of the present embodiment configured as described above uses the R value, G value, and B value of each input pixel constituting the image information of the subject 1 captured by the camera 5 as follows. The calculation unit 93 in the CPU 9 calculates a luminance value, a hue value, and a saturation value for each input pixel by using the following formula. ## EQU1 ## Luminance value Y = 0.3R + 0.59G + 0.11B Color difference signal 1 C1 = 0.7R−0.59G−0.11B Color difference signal 2 C2 = −0.3R−0.59G + 0.89B and The saturation value S and the hue value H are calculated from the color difference signals C1 and C2 thus obtained by the following equations. C1 = Saturation value S × sin (hue value H) C2 = Saturation value S × cos (hue value H) By calculating the luminance value, hue value, and saturation value for each input pixel by the above calculation, The calculated luminance value, hue value, and saturation value of each input pixel are compared with the reference luminance value, the reference hue value, and the reference saturation value by the comparator 95, and the luminance value, the hue value, The determination unit 97 determines whether each of the value and the saturation value is within a predetermined tolerance with respect to each of the reference values. (Reference luminance value−tolerance) ≦ luminance value of input pixel ≦
(Reference luminance value + tolerance) (reference hue value-tolerance) ≤ input pixel hue value ≤ (reference hue value + tolerance) (reference saturation value-tolerance) ≤ input pixel saturation value ≤ (reference (Saturation value + tolerance) Then, according to the determination result, if all of the luminance value, hue value, and saturation value of the input pixel are within a predetermined tolerance with respect to the respective reference values, the pixel is determined as follows. It is determined that the pixel is a good pixel that matches the reference pixel, and if not, that is, if the respective values of luminance, hue, and saturation are not within a predetermined tolerance with respect to the respective reference values, there is no match. It is determined that there is no mismatch pixel. The above-described pass / fail judgment for each pixel is performed by dividing the subject 1 into a plurality of inspection frames, which are inspection areas, and further dividing each of the plurality of inspection frames into a plurality of divided grids. It is done about. This division processing will be described in more detail with reference to FIG. As shown in FIG. 3A, the subject 1 is inspected for each desired inspection frame 51 in an area 500 imaged by the camera 5. Note that the inspection frames do not necessarily have to have the same size, and the size may be changed according to the inspection position for each subject. Each inspection frame 51 is further divided into a plurality of divided grids 53 as shown in the middle of FIG. 3A, and each of the plurality of divided grids 53 is further divided into a plurality of pixels 55. I have. The above-mentioned pass / fail judgment for each pixel is performed for a plurality of pixels constituting each of the plurality of divided grids 53 thus divided. In the example of FIG. 3, each division grid 53 is composed of 4 × 4 16 pixels, and the above-described pass / fail determination is performed for each of the 16 pixels. FIG. 3B shows the result of performing such a pass / fail determination for each of the 16 pixels. In FIG. 3B, a mark “○” indicates a pixel determined to be a good match pixel as a result of the pass / fail determination. , And the mark “x” indicates the result determined to be a mismatched pixel. When the quality of each of the plurality of pixels constituting the divided grid 53 is determined in this manner, the quality of the divided grid 53 is determined from the quality determination result of each of the pixels. The pass / fail judgment of the divided grid 53
Calculate the occupancy ratio of the coincidence excellent pixels in all the plurality of pixels constituting the above, compare this occupancy ratio with a predetermined divided grid pass rate, and when the occupancy ratio of the coincidence excellent pixels is equal to or greater than the divided grid pass rate, The divided grating 53 is determined to be acceptable. If the occupation ratio of the matching good pixels in the divided grid 53 is within a range obtained by subtracting a predetermined allowable range from a predetermined divided grid pass rate, the divided grid 53 is determined to be quasi-pass. Judge as pass. For example, in the divisional grid 53 shown in FIG. 3B, the total number of pixels is 16 and the number of matching good pixels indicated by "O" is 13, so the occupation ratio of matching good pixels Is 13/16 × 100 ≒ 81%, so if the passing rate of the divided grid is, for example, 60%, the divided grid 53 is determined to be passed. If such pass / fail judgment on the divided grid 53 is performed for each of the plurality of divided grids 53 constituting the inspection frame 51 as shown in the middle of FIG. 3A, for example, FIG. As shown in c), each of the plurality of divided gratings 53 constituting the inspection frame 51 is determined to be passed, semi-passed, or failed. In FIG. 3 (c), the characters "go" surrounded by circles indicate pass, the characters "quasi" indicate quasi-pass, and "x" indicate reject. As described above, when each of the divided grids 53 constituting the inspection frame 51 is determined as pass, quasi-pass, or reject, of the divided grids 53 determined to be “quasi-passed”, The ratio set by the predetermined allowable number, that is, the allowable number ratio is advanced to pass, and the others are rejected. More specifically, in the example of the inspection frame 51 shown in FIG. 3C, the number of divided grids 53 determined to be passed is thirteen, and the number of divided grids 53 determined to be quasi-passed is determined. 5, and the number of the divided grids 53 determined to be rejected is two, but among the five divided grids 53 determined to be quasi-passed, the divided grids 53 for a predetermined acceptable number ratio pass. It is moved up. If the predetermined acceptable number ratio is, for example, 60%, out of the five divided grids 53 determined to be quasi-pass, 5
× 60/100 = 3 divided gratings 53 are carried over to pass, and the remaining two are passed as failed. As described above, the pass / fail judgment of each of the plurality of divided gratings 53 constituting the inspection frame 51 is made, and then the judgment of the entire inspection frame 51 is made. The pass / fail judgment for the entire inspection frame 51 is made by calculating the number of acceptable divided grids and the number of failed divided lattices of the plurality of divided lattices 53 constituting the inspection frame 51, and The ratio of the number of accepted lattices to the total number is calculated. Then, the passed lattice number ratio is compared with a predetermined inspection frame pass rate. If the passed lattice number ratio is larger than the predetermined inspection frame pass rate, the inspection frame 51
It is determined that they match with the reference image in, and otherwise, it is determined that they do not match. To be more specific, an example of the inspection frame 51 shown in FIG. 3C will be described.
Since the number of divided grids 53b carried up from the quasi-passed divided grid 53b to the acceptable divided grid 53a is, for example, 3 when the allowable number is 60%, the number of divided grids 53a determined to be acceptable is 3 The total number is 16 (13 + 3), which is 2 of the total number of the divided grids 53 constituting the entire inspection frame 51.
By dividing 16 by 0, the acceptable lattice number ratio of the inspection frame 51 is 16/20 × 100 = 80%. If the inspection frame pass rate of the inspection frame 51 is, for example, 70%, the passing lattice number ratio 80% of the inspection frame 51 is larger than the inspection frame pass rate, so that it is determined that they match. . The above-described pass / fail judgment for the entire inspection frame 51 is performed for the entire inspection frame 51 of the subject 1, that is, for a desired inspection frame 51 in an area 500 where the subject 1 is imaged by the camera 5. Thereby, the appearance inspection of the predetermined portion of the subject 1 can be completed. Next, the overall operation of the visual inspection apparatus of the present embodiment will be described with reference to the flowcharts shown in FIGS. First, the pass / fail judgment processing for each pixel will be described with reference to the flowchart shown in FIG.
In the process of FIG. 4, first, a reference image is input (step S11), and then the subject 1 is
The inspection is started by setting the above (step S1
3). Then, image information of the subject 1 obtained by imaging the subject 1 set on the subject mounting unit 13 with the camera 5 is input to the CPU 9 via the video capture unit 7 of the processing unit 25 (step S15). The image information of the subject 1 input to the CPU 9 is input to a calculation unit 93 via a color processing unit 91, where the R information, the G value, and the B value of each pixel are calculated based on the above-described formula. To calculate a luminance value, a hue value, and a saturation value (step S
17). The calculated luminance value, hue value, and saturation value of the pixel are compared with a reference luminance value, a reference hue value, and a reference saturation value, respectively, by the comparing unit 95, and each of the luminance value, the hue value, and the saturation value is calculated. The determination unit 97 determines whether the value is within a predetermined tolerance with respect to each reference value (step S19). According to the determination result of this pixel, if all of the luminance value, hue value, and saturation value of the input pixel are within a predetermined tolerance with respect to the respective reference values, the pixel is determined as a reference pixel. It is determined that the matching excellent pixel, that is, the dot is OK (step S21). If not, that is, at least one of the luminance, hue, and saturation values is within a predetermined tolerance with respect to each reference value. If not, it is determined that the pixel does not match, that is, a dot NG (step S23). The above-described pass / fail judgment of each pixel is repeatedly performed for all the pixels (dots) in the divided grid 53 (step S25). The process proceeds to the quality judgment of the lattice 53 (step S27). Next, with reference to the flow chart shown in FIG. In FIG. 5, first, the number of matching good pixels (O
The number of unmatched pixels (the number of K dots) and the number of mismatched pixels (the number of NG dots) are calculated (steps S35, S37, S39). And
The calculated ratio of good pixels in the divisional grid 53 (O
(The number of K dots) is compared with the predetermined pass rate of the divided grid (step S41), and if the ratio of matching good pixels is equal to or higher than the pass rate of the divided grid, the divided grid 53 is passed (OK).
Is determined (step S43). If the number of matching good pixels in the divided grid 53 is not equal to or greater than the pass rate of the divided grid, the occupation ratio of the matched good pixels in the divided grid 53 is calculated. It is checked whether the ratio is within a range obtained by subtracting a predetermined allowable range from the ratio (step S45),
If it is within this range, the divided grid 53 is determined to be quasi-pass (quasi-OK), and if it is not within this range, it is determined to be reject (NG) (step S51). Further, as described above, semi-pass (quasi-OK)
Of the divided grids 53 determined as above, the ratio with the accepted number is calculated as described above in order to pass the divided grid corresponding to the accepted number ratio to pass (step S4).
9), the divided grids 53 of the accepted number ratio pass (OK)
(Step S43). The above-described pass / fail determination for the divided grid 53 is repeatedly performed for all the divided grids 53 in the inspection frame 51 (steps S53 and S53).
55) When the pass / fail determination for all the divided grids 53 in the inspection frame 51 is completed, the process proceeds to pass / fail determination of the inspection frame 51 (step S57). Next, with reference to the flow chart shown in FIG. 6, the process of judging the quality of the inspection frame 51 will be described. FIG.
First, the number of divided lattices (OK lattices) determined to be acceptable and the number of divided lattices (NG lattices) determined to be unacceptable in the inspection frame 51 are calculated. The number ratio is calculated (step S61).
Then, the calculated acceptable lattice number ratio is compared with a predetermined inspection frame acceptance ratio, and it is checked whether the accepted lattice ratio is equal to or more than the inspection frame acceptance ratio (step S63). When the ratio of the number of accepted lattices is equal to or greater than the pass rate of the inspection frame, it is determined that the image in the inspection frame 51 matches the reference image (step S65), otherwise, it is determined that the image does not match (step S65). S67). Then, such a pass / fail judgment process of the inspection frame 51 is repeatedly performed for all the inspection frames 51 of the subject 1 (steps S59 and S7).
1) When all the inspection frames 51 in the inspection frame 51 are completed, the inspection ends. As described above, according to the present invention,
R for each of a plurality of pixels constituting each divided grid,
A luminance value, a hue value, and a saturation value are calculated from the G and B values, and the luminance value, the hue value, and the saturation value of each pixel are compared with respective reference values to determine whether each pixel is good or bad. Based on the quality of each pixel constituting each divided grid, each divided grid is determined as pass, quasi-pass, or reject, and the divided grid determined as quasi-passed is raised to a passed divided grid by a predetermined acceptance ratio, and a passed divided grid is passed. Since the quality of each inspection area is determined based on the ratio in the inspection area, the appearance inspection can be performed without contacting the subject, the labor can be greatly reduced, the efficiency can be improved, and the pixel can be improved. The erroneous determination can be greatly reduced by the determination of the three stages, that is, the divided grid and the inspection area.
Further, since the determination criterion can be changed for each test area according to the content of the subject portion in the test area, an appropriate appearance test can be performed corresponding to various test subjects.
【図面の簡単な説明】
【図1】本発明の一実施形態に係る外観検査装置の構成
を示すブロック図である。
【図2】図1に示す外観検査装置の構成を更に詳しく示
した詳細構成図である。
【図3】被検体を検査する場合の分割構成を示す図であ
る。
【図4】図1に示す外観検査装置における各画素につい
ての良否判定処理を示すフローチャートである。
【図5】図1に示す外観検査装置における各分割格子に
ついての良否判定処理を示すフローチャートである。
【図6】図1に示す外観検査装置における各検査枠につ
いての良否判定処理を示すフローチャートである。
【符号の説明】
1 被検体
5 カメラ
7 ビデオキャプチャ部
9 CPU
91 色処理部
93 演算部
95 比較部
97 判定部BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of a visual inspection device according to an embodiment of the present invention. FIG. 2 is a detailed configuration diagram showing the configuration of the appearance inspection apparatus shown in FIG. 1 in further detail. FIG. 3 is a diagram showing a divided configuration when a subject is inspected. FIG. 4 is a flowchart showing pass / fail determination processing for each pixel in the visual inspection device shown in FIG. 1; FIG. 5 is a flowchart showing pass / fail judgment processing for each divided grid in the visual inspection device shown in FIG. 1; FIG. 6 is a flowchart showing pass / fail determination processing for each inspection frame in the visual inspection device shown in FIG. 1; [Description of Signs] 1 Subject 5 Camera 7 Video capture unit 9 CPU 91 Color processing unit 93 Operation unit 95 Comparison unit 97 Judgment unit
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−150299(JP,A) 特開 平2−41578(JP,A) 特開 平7−63686(JP,A) 特開 昭60−142482(JP,A) 特開 平10−4296(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05K 13/08 H05K 13/00 H05K 13/04 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-10-150299 (JP, A) JP-A-2-41578 (JP, A) JP-A-7-63686 (JP, A) JP-A-60-1985 142482 (JP, A) JP-A-10-4296 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H05K 13/08 H05K 13/00 H05K 13/04
Claims (1)
した画像情報に基づいて被検体の外観を検査する外観検
査装置であって、 前記撮像手段による被検体の撮像領域の所定の検査領域
を複数の分割格子に分割する分割手段と、 前記分割格子の各々を構成する複数の画素の各画素につ
いてそのR,G,B値から各画素の輝度値、色相値、彩
度値を算出する算出手段と、 この算出した各画素の輝度値、色相値、彩度値をそれぞ
れ基準輝度値、基準色相値、基準彩度値と比較し、各画
素毎の良否を判定する画素判定手段と、 複数の分割格子の各々を構成する複数の画素のそれぞれ
について前記画素判定手段で判定された該複数の画素の
良否に基づき該複数の画素で構成される各分割格子を合
格、準合格または不合格と判定する分割格子判定手段
と、 該分割格子判定手段で準合格と判定された分割格子のう
ち、所定の容認比率で決定される数の準合格分割格子を
合格分割格子に繰り上げる繰上げ手段と、 前記分割格子判定手段で合格と判定された合格分割格子
の数および前記繰上げ手段で合格分割格子に繰り上げら
れた合格分割格子の数の和の検査領域内における全分割
格子に対する比率に基づき各検査領域内の被検体部分の
外観の良否を判定する検査領域内外観判定手段と、 を有することを特徴とする外観検査装置。(57) [Claim 1] An appearance inspection apparatus which images an object by an imaging means and inspects the appearance of the object based on the imaged image information. Dividing means for dividing a predetermined examination region of the imaging region of the subject into a plurality of divided grids; and a luminance value of each pixel from the R, G, and B values of each of the plurality of pixels constituting each of the divided lattices. Calculating means for calculating the hue value and the saturation value, and comparing the calculated brightness value, hue value and saturation value of each pixel with a reference brightness value, a reference hue value and a reference saturation value, respectively. Pixel determining means for determining the quality of each of the plurality of pixels constituting each of the plurality of divided grids, each of the plurality of pixels constituting each of the plurality of divided grids based on the quality of the plurality of pixels determined by the pixel determining means Pass grid is judged as pass, quasi pass or reject Dividing grid determining means to perform, among the divided grids determined to be quasi-passed by the dividing grid determining means, carry-up means for raising the number of quasi-passing divided grids determined by a predetermined acceptance ratio to a accepted divided grid; Based on the ratio of the sum of the number of accepted divided grids determined to be passed by the lattice determination unit and the number of accepted divided lattices carried up to the accepted divided lattice by the carry-up unit to the total divided lattices in the examination region, An external appearance determining device for determining the external appearance of the subject portion in an inspection area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32552398A JP3363103B2 (en) | 1998-11-16 | 1998-11-16 | Appearance inspection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32552398A JP3363103B2 (en) | 1998-11-16 | 1998-11-16 | Appearance inspection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000151198A JP2000151198A (en) | 2000-05-30 |
JP3363103B2 true JP3363103B2 (en) | 2003-01-08 |
Family
ID=18177836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32552398A Expired - Fee Related JP3363103B2 (en) | 1998-11-16 | 1998-11-16 | Appearance inspection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3363103B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3866688B2 (en) * | 2003-06-13 | 2007-01-10 | 三井金属鉱業株式会社 | Inspection device for film carrier tape for mounting electronic components and method for checking pattern defects |
ES2229927B1 (en) * | 2003-10-02 | 2006-03-16 | Sony España, S.A. | PROCEDURE AND EQUIPMENT FOR INSPECTION OF WELDING OF SURFACE MOUNTING DEVICES. |
JP5832167B2 (en) * | 2010-07-13 | 2015-12-16 | 富士機械製造株式会社 | Component presence / absence determination apparatus and component presence / absence determination method |
CN114399506B (en) * | 2022-03-25 | 2022-07-26 | 北京中科慧眼科技有限公司 | Image detection method and system for rainbow printed matter |
-
1998
- 1998-11-16 JP JP32552398A patent/JP3363103B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000151198A (en) | 2000-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7978903B2 (en) | Defect detecting method and defect detecting device | |
DE102010030859B4 (en) | A method of inspecting a target mounted on a substrate | |
KR100597833B1 (en) | Base testing device and method | |
TW201531180A (en) | Detecting device and detecting method of appearance of printed circuit board | |
US20050196996A1 (en) | Component mounting board inspecting apparatus | |
EP1105716B1 (en) | Inspection of printed circuit boards using color | |
JP3363103B2 (en) | Appearance inspection device | |
US6675120B2 (en) | Color optical inspection system | |
JPH0658731A (en) | Pattern inspecting apparatus | |
JP2000004079A (en) | Solder inspection equipment | |
KR101126759B1 (en) | Method of teaching for electronic parts information in chip mounter | |
JPH1086322A (en) | Method and apparatus for inspecting cream solder print | |
JP2006284543A (en) | Method and device for inspecting mounted circuit board | |
JP4386326B2 (en) | Printed circuit board inspection method and apparatus used therefor | |
JP3280720B2 (en) | Substrate inspection device and substrate inspection method | |
JPH10150299A (en) | Method and equipment for inspecting mounted component | |
JP2000097882A (en) | Method and device for x-ray inspection | |
JPH11281334A (en) | Device for inspecting part | |
JP3038718B2 (en) | Method and apparatus for inspecting solder bridge of lead component | |
JPH06204700A (en) | Chip component mount inspecting apparatus | |
JPH06258244A (en) | Instruction method of mounting part inspection data | |
JPH06174444A (en) | Soldered state inspection method for discrete type electronic component | |
JPH0241578A (en) | Chip parts check device | |
JPH1089933A (en) | Method and device for inspecting board and manufacture of lsi mounted board | |
JPH06243235A (en) | Checking device for mounted board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071025 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121025 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |