WO1995035597A1 - Modul zur potentialfreien ansteuerung von igbt's oder feldeffekttransistoren - Google Patents

Modul zur potentialfreien ansteuerung von igbt's oder feldeffekttransistoren Download PDF

Info

Publication number
WO1995035597A1
WO1995035597A1 PCT/EP1995/002421 EP9502421W WO9535597A1 WO 1995035597 A1 WO1995035597 A1 WO 1995035597A1 EP 9502421 W EP9502421 W EP 9502421W WO 9535597 A1 WO9535597 A1 WO 9535597A1
Authority
WO
WIPO (PCT)
Prior art keywords
optocoupler
module
module according
potential
output
Prior art date
Application number
PCT/EP1995/002421
Other languages
English (en)
French (fr)
Inventor
Michael Houben
Uwe Schuchmann
Original Assignee
Adl Analoge & Digitale Leistungselektronik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adl Analoge & Digitale Leistungselektronik Gmbh filed Critical Adl Analoge & Digitale Leistungselektronik Gmbh
Publication of WO1995035597A1 publication Critical patent/WO1995035597A1/de

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/0406Modifications for accelerating switching in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/605Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors with galvanic isolation between the control circuit and the output circuit
    • H03K17/61Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • H03K17/691Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/795Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors
    • H03K17/7955Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors using phototransistors

Definitions

  • the invention relates to a module for floating control of IGBTs or field effect transistors.
  • IGBTs insulated gate bipolar transistors
  • IGBTs insulated gate bipolar transistors
  • switching converters in large power supplies, uninterruptible power supplies, etc.
  • drivers that are galvanically isolated from the low-voltage electronics must be used to control the IGBTs, for safety reasons or for technical reasons.
  • High-performance IGBT modules have only been on the market for a few years. Special driver modules for the potential-free control of these power semiconductors are currently only offered by a few manufacturers.
  • control signal is transmitted either only with an optocoupler or only with a transformer.
  • the transmission of signals with any low frequency and static signal transmission is possible.
  • the maximum transmission frequency is limited by the inertia of the luminescent diode and the phototransistor or the photodiode.
  • the object of the invention is to create a module of the type mentioned above which avoids the disadvantages mentioned of the two known systems and has further advantageous properties.
  • the object is achieved by a module in which the control signal can be transmitted in parallel by a pulse transmitter and an optocoupler.
  • the new module enables signal transmission in a frequency range from 0 ... 500 kHz.
  • Conventional drivers can transmit a maximum of 0 ... 30 kHz with optocouplers and approx. 2 ... 100 kHz with transformers.
  • the new method manages with a standard coupler.
  • a diode network and at least one transistor switching stage are provided.
  • the transformer When a signal pulse is switched on, the transformer preferably sends a pulse to the base connection of the phototransistor in the optocoupler via a diode network.
  • This has the advantage that the phototransistor becomes low-frequency more quickly and the signal quality of the output signal is thereby improved.
  • the transformer controls a transistor which short-circuits the base of the phototransistor with the emitter in the event of a switch-off pulse. As a result, the photo transistor blocks very quickly.
  • FIG. 2 shows the signal curves within the module according to FIG. 1.
  • the module shown in Fig. 1 requires a DC voltage of 24V, +/- 10% on the input side.
  • An internal voltage stabilization 10 supplies an input amplifier 12 and an optocoupler 14 with a regulated DC voltage.
  • the input amplifier 12 serves as an impedance converter in order to make the control input of the module CMOS compatible.
  • the amplifier 12 controls the optocoupler 14 and, in parallel, a transformer 24 as a pulse transmitter.
  • the optocoupler 14 is required for static signal transmission and for low frequencies. In order to also to be able to transmit quent signals, the pulse transmitter 24 is used.
  • Evaluation electronics 26 combine the output signals of the two transmission systems 14, 24.
  • the push-pull output stage 32 can briefly switch a current of 3A.
  • a continuous current of maximum 100mA may be taken from the module.
  • the potential separation is indicated in FIG. 1 by a dashed line in the area of the transformer 18 of the operating voltage supply, the optocoupler 14 and the transformer 24.
  • An unregulated push-pull flow converter 16 in half-bridge circuit with capacitor coupling is used to transmit the operating voltage.
  • the switching stage is designed as a complementary emitter follower with bipolar transistors and is controlled by an oscillator with a fixed frequency (approx. 30 kHz) and a duty cycle of 0.5.
  • the transformer 18 connected to the push-pull flow converter 16 consists of a ferrite core with a primary winding and a secondary winding with center tap.
  • a rectifier 20 connected on the secondary side to the transformer 18 is provided as a full bridge in a center circuit.
  • the regulation of the output voltages is carried out by two fixed voltage regulators 22.
  • the signal transmission takes place in the following way:
  • the preamplifier 12 directly controls the light-emitting diode of an optocoupler 14 and, via a capacitor, the primary winding of the pulse transformer 24.
  • the optocoupler 14 can be a commercially available standard type with a light-emitting diode and a phototransistor with a base connection led out.
  • a small toroidal core (approx. 6 mm in diameter) with a few turns on the primary and secondary side is suitable as a pulse transformer.
  • the transmission frequency of the optocoupler 14 is limited by its delay time and its finite rise rate (slew rate).
  • the delay time of the pulse transmitter 24, on the other hand, is negligible and the rate of increase depends mainly on the switching speed and the output impedance of the preamplifier 12.
  • the transformer 24 is to be dimensioned such that its minimally transmissible pulse width corresponds to the delay time plus the switching time of the optocoupler 14.
  • FIG. 2 shows the output signal profiles of the optocoupler 14, the pulse transmitter 24 and the overall module.
  • a current correspondingly flows through the LED of the optocoupler 14, the phototransistor of which is to become low-resistance.
  • a positive pulse is transmitted from the transmitter 24 via a diode network (not shown) to the base connection of the phototransistor.
  • a negative pulse is switched to the collector in order to clear the base of the following amplifier stage (inverter) very quickly.
  • the control input is switched to Gnd, 'switches off the LED and the phototransistor is high impedance.
  • the pulse transmitter 24 simultaneously controls an additional transistor which short-circuits the base of the phototransistor with its emitter. The phototransistor blocks very quickly, so that the following amplifier stage can switch off the output with only a very slight delay.
  • the optocoupler 14 takes over the signal transmission, as a result of which the input signal can also be transmitted statically.
  • the pulse transmitter 24 takes over the main activity. From a frequency of approx. 100 kHz, the opto-coupler 14 is no longer actively involved in the signal transmission.
  • the phototransistor is integrated in the signal evaluation circuit, but in this case it is controlled exclusively by its base, like a "normal" transistor, by the pulse transformer 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)
  • Amplifiers (AREA)

Abstract

Das Modul dient zur potentialfreien Ansteuerung von IGBT's oder Feldeffekttransistoren. Mit einem Optokoppler lassen sich zwar statische Signale übertragen, jedoch ist die maximale Übertragungsfrequenz durch die Trägheit der Lumineszensdiode und des Fototransistors beschränkt. Um den Frequenzbereich der übertragbaren Signale zu erweitern, ist zu dem Optokoppler (14) ein Transformator (24) als Impulsübertrager parallel geschaltet. Das Modul ermöglicht damit die Signalübertragung in einem weiten Frequenzbereich und kommt dabei mit billigen Standard-Bauelementen aus.

Description

Modul zur potentialfreien Ansteueπinσ von IGBT's oder Feldeffekttransistoren
Die Erfindung befaßt sich mit einem Modul zur potentialfreien Ansteuerung von IGBT's oder Feldeffekttransistoren.
In der Leistungselektronik werden IGBT's (Insolated Gate Bi¬ polar Transistor) für Wechselrichter, Schaltwandler in großen Netzgeräten, unterbrechungsfreie Stromversorgungen usw. ein¬ gesetzt. In den meisten Fällen müssen zur Ansteuerung der IGBT's, aus Sicherheitsgründen oder technisch bedingt, gal¬ vanisch von der Niederspannungselektronik isolierte Treiber verwendet werden.
Hochleistungs-IGBT-Module sind erst seit einigen Jahren auf dem Markt. Spezielle Treibermodule zur potentialfreien An¬ steuerung dieser Leistungshalbleiter werden derzeit nur von wenigen Herstellern angeboten.
Es gibt Treiber mit und ohne integrierte potentialfreie Be¬ triebsspannungsversorgung. Das Steuersignal wird bei allen bekannten Verfahren entweder nur mit einem Optokoppler oder nur mit einem Transformator übertragen.
Bei Optokopplern ist die Übertragung von Signalen mit belie¬ big niedriger Frequenz sowie statische Signalübertragung mög¬ lich. Die maximale Übertragungsfreguenz ist durch die Träg¬ heit der Lumineszensdiode und des Fototransistors oder der Fotodiode eingeschränkt.
Mit induktiven Übertragern ist zwar die Übertragung von hoch¬ frequenten Signalen möglich, jedoch mit einer Einschränkung
ORIGINAL UNTERLAGEN der niedrigsten Übertragungsfre uenz. Eine statische Signal¬ übertragung ist nicht möglich.
Aufgabe der Erfindung ist es, ein Modul der oben genannten Art zu schaffen, das die genannten Nachteile der beiden be¬ kannten Systeme vermeidet und weitere vorteilhafte Eigen¬ schaften aufweist.
Erfindungsgemäß wird die Aufgabe durch ein Modul gelöst, bei dem das Steuersignal parallel von einem Impulsübertrager und einem Optokoppler übertragbar ist.
Das neue Modul ermöglicht die Signalübertragung in einem Fre¬ quenzbereich von 0....500 kHz. Herkömmliche Treiber können mit Optokoppler maximal 0....30 kHz und mit Transformatoren ca. 2....100 kHz übertragen.
Im Gegensatz zu der Übertragung mit nur einem Optokoppler, der ein sehr schneller und damit teurer Typ sein muß, kommt das neue Verfahren mit einem Standard-Koppler aus.
Treiber, die mit Transformatoren arbeiten, müssen Breitband¬ übertrager besitzen, die groß und teuer sind und dennoch ei¬ nen eingeschränkten Frequenzbereich haben. Der neue Treiber benötigt neben dem kostengünstigen Standard-Optokoppler le¬ diglich einen sehr kleinen Impulsübertrager, der wesentlich höhere Frequenzen übertragen kann als der Breitbandübertra¬ ger.
Um die Ausgangssignale des Optokopplers und des Transforma¬ tors als Impulsübertrager auszuwerten und zu synchronisieren, sind ein Diodennetzwerk und wenigstens eine Transistorschalt- stufe vorgesehen. Vorzugsweise gibt der Transformator beim Einschalten eines Signalimpulses über ein Diodennetzwerk einen Impuls auf den Basisanschluß des Fototransistors im Optokoppler. Dies hat den Vorteil, daß der Fototransistor schneller niederomig wird und sich dadurch die Signalqualität des Ausgangsignals ver¬ bessert. Um die Verzögerung beim Abschalten der Verstärker¬ stufe nach Beendigung des Signalimpulses möglichst gering zu halten, ist vorgesehen, daß der Transformator einen Transi¬ stor ansteuert, der bei einem Ausschaltimpuls die Basis des Fototransistors mit dem Emitter kurzschließt. Dadurch sperrt der Fototransistor sehr schnell.
Im folgenden wird anhand der beigefügten Zeichnungen näher auf ein Ausführungsbeispiel der Erfindung eingegangen. Es zeigen:
Fig. 1 ein Blockschaubild eines Moduls zur po¬ tentialfreien Signalübertragung;
Fig. 2 die Signalverläufe innerhalb des Moduls nach Fig. 1.
Das in Fig. 1 gezeigte Modul benötigt auf der Eingangsseite eine Gleichspannung von 24V, +/- 10%. Eine interne Spannungs¬ stabilisierung 10 versorgt einen Eingangsverstärker 12 und einen Optokoppler 14 mit einer geregelten Gleichspannung.
Der Eingangsverstärker 12 dient als Impedanzwandler, um den Steuereingang des Modules CMOS-kompatibel zu machen. Der Ver¬ stärker 12 steuert den Optokoppler 14 und parallel dazu ei¬ nen Transformator 24 als Impulsübertrager.
Für eine statische Signalübertragung und für niedrige Fre¬ quenzen wird der Optokoppler 14 benötigt. Um auch hochfre- quente Signale übertragen zu können, wird der Impulsübertra¬ ger 24 eingesetzt.
Eine Auswertelektronik 26 vereinigt die Ausgangssignale der beiden Übertragungssysteme 14, 24.
Ein Ausgangsverstärker 28 verfügt über einen Steuereingang 30, über den der Ausgang des Modules gesperrt werden kann. Er dient z.B. als Anschluß für eine Überstromabschaltung.
Die Gegentaktendstufe 32 kann kurzfristig einen Strom von 3A schalten. Dem Modul darf ein Dauerstrom von maximal 100mA entnommen werden.
Die Potentialtrennung ist in Fig. 1 durch eine gestrichelte Linie im Bereich des Transformators 18 der Betriebsspannungs- Versorgung, des Optokopplers 14 und des Übertragers 24 ange¬ deutet.
Zur Übertragung der Betriebsspannung dient ein ungeregelter Gegentakt-Durchflußwandler 16 in Halbbrückenschaltung mit Kondensatorkopplung. Die Schaltstufe ist als komplementärer Emitterfolger mit Bipolartransistoren ausgeführt und wird durch einen Oszillator mit fester Frequenz (ca. 30 kHz) und einem Tastverhältnis von 0,5 angesteuert.
Der an den Gegentakt-Durchflußwandler 16 angeschlossene Transformator 18 besteht aus einem Ferritkern mit einer Pri¬ märwicklung und einer Sekundärwicklung mit Mittenanzapfung.
Ein sekundärseitig an den Transformator 18 angeschlossener Gleichrichter 20 ist als Vollbrücke in einer Mittelpunkt- Schaltung vorgesehen. Die Regelung der Ausgangsspannungen übernehmen zwei Festspannungsregler 22. Die Signalübertragung geschieht in folgender Weise:
Der Vorverstärker 12 steuert direkt die Leuchtdiode eines Op¬ tokopplers 14 und über einen Kondensator die Primärwicklung des Impulsübertragers 24 an.
Der Optokoppler 14 kann ein handelsüblicher Standardtyp mit Leuchtdiode und Fototransistor mit herausgeführtem Basisan¬ schluß sein. Als Impulsübertrager eignet sich ein kleiner Ringkern (ca. 6 mm Durchmesser) mit wenigen Windungen auf der Primär- und der Sekundärseite.
Die Übertragungsfrequenz des Optokopplers 14 ist durch seine Verzugszeit (Delay) und seine endliche Anstiegsgeschwindig¬ keit (Slew-rate) begrenzt. Die Verzugszeit des Impulsübertra¬ gers 24 ist dagegen vernachlässigbar und die Anstiegsge¬ schwindigkeit hängt hauptsächlich von der Schaltgeschwindig¬ keit und der Ausgangsimpedanz des Vorverstärkers 12 ab. Der Übertrager 24 ist so zu dimensionieren, daß dessen minimal übertragbare Impulsbreite der Verzugszeit plus der Schaltzeit des Optokopplers 14 entspricht.
In Fig. 2 sind die Ausgangssignalverläufe des Optokopplers 14, des Impulsübertragers 24 und des Gesamtmoduls aufgezeigt. Mit einem positiven Eingangssignal fließt sinngemäß ein Strom durch die LED des Optokopplers 14, dessen Fototransistor nie- derohmig werden soll. Zur Beschleunigung des Vorganges wird ein positiver Impuls von dem Übertrager 24 über ein Dioden¬ netzwerk (nicht gezeigt) auf den Basisanschluß des Fototran¬ sistors geleitet. Gleichzeitig wird ein negativer Impuls auf den Kollektor geschaltet, um die Basis der folgenden Verstär¬ kerstufe (Inverter) sehr schnell auszuräumen. Wenn der Steuereingang auf Gnd geschaltet wird, schaltet' die LED ab und der Fototransistor wird hochohmig. Der Impulsüber¬ trager 24 steuert gleichzeitig einen zusätzlichen Transistor an, der die Basis des Fototransistors mit dessen Emitter kurzschließt. Der Fototransistor sperrt dadurch sehr schnell, so daß die folgende Verstärkerstufe den Ausgang mit einer nur sehr geringen Verzögerung ausschalten kann.
Wenn die dynamischen Schaltvorgänge abgeschlossen sind, über¬ nimmt der Optokoppler 14 die Signalübermittlung, wodurch das Eingangssignal auch statisch übertragen werden kann. Bei sehr hohen Frequenzen übernimmt der Impulsübertrager 24 die Haupt- tätigkeit. Ab einer Frequenz von ca. 100 kHz ist der Opto¬ koppler 14 an der Signalübertragung nicht mehr aktiv betei¬ ligt. Der Fototransistor ist zwar in die Signalauswert-Schal¬ tung mit eingebunden, er wird in dem Fall aber ausschließlich über seine Basis, wie ein "normaler" Transistor von dem Im- pulsübertrager 24 gesteuert.

Claims

Patentansprüche
1. Modul zur potentialfreien Ansteuerung von IGBT's oder Feldeffekttransistoren, dadurch gekennzeichnet, daß das Steuersignal parallel von einem Impulsübertrager (24) und einem Optokoppler (14) übertragbar ist.
2. Modul nach Anspruch 1, dadurch gekennzeichnet, daß die beiden Ausgangssignale des Impulsübertragers (24) und des Optokopplers (14) durch eine Auswertelektronik (26) zu einem dem Eingangssignal des Moduls entsprechenden Signal zusammenfügbar sind.
3. Modul nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Fototransistor des Optokopplers (14) unabhängig von seiner fotosensitiver Eigenschaft ein aktives Element in¬ nerhalb der Auswertelektronik (26) ist.
4. Modul nach Anspruch 3, dadurch gekennzeichnet, daß der Impulsübertrager (24) über ein Diodennetzwerk und eine Transistorschaltstufe die Ein- und Ausschaltvorgänge des Optokopplers (14) beschleunigt.
5. Modul nach Anspruch 1, dadurch gekennzeichnet, daß der Treiberverstärker (28) über einen Steueranschluß (30) verfügt, über den die Ausgangsamplitude begrenzt, die Schaltgeschwindigkeit eingestellt oder der Ausgang sperr¬ bar ist.
6. Modul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Modul über eine interne Span¬ nungsstabilisierung (10) des Eingangsverstärkers (12) verfügt.
7. Modul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die eingangsseitige Betriebsspan- lnungsversorgung (16 - 22) gleichzeitig einen Gegentakt- Durchflußwandler mit zwei spannungsstabilisierten, kurz¬ schlußfesten Ausgängen zur potentialfreien Betriebsspan¬ nungsversorgung der Ausgangsseite speist.
PCT/EP1995/002421 1994-06-22 1995-06-22 Modul zur potentialfreien ansteuerung von igbt's oder feldeffekttransistoren WO1995035597A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4421837A DE4421837C2 (de) 1994-06-22 1994-06-22 Treibermodul zur potentialfreien Signalübertragung
DEP4421837.0 1994-06-22

Publications (1)

Publication Number Publication Date
WO1995035597A1 true WO1995035597A1 (de) 1995-12-28

Family

ID=6521225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/002421 WO1995035597A1 (de) 1994-06-22 1995-06-22 Modul zur potentialfreien ansteuerung von igbt's oder feldeffekttransistoren

Country Status (2)

Country Link
DE (1) DE4421837C2 (de)
WO (1) WO1995035597A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9276456B2 (en) 2012-12-18 2016-03-01 Trumpf Huettinger Gmbh + Co. Kg Generating high-frequency power for a load
US10002749B2 (en) 2012-12-18 2018-06-19 Trumpf Huettinger Gmbh + Co. Kg Extinguishing arcs in a plasma chamber

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137696A (en) * 1999-04-12 2000-10-24 Semicondutor Components Industries, Llc Switching regulator for power converter with dual mode feedback input and method thereof
DE10206107B4 (de) * 2001-02-27 2020-08-13 Sew-Eurodrive Gmbh & Co Kg Umrichter und Verwendung
DE102006009506B4 (de) * 2006-02-27 2010-09-23 Phoenix Contact Gmbh & Co. Kg Bidirektionaler, galvanisch getrennter Übertragungskanal
DE102008024787A1 (de) 2008-05-23 2009-12-10 Converteam Technology Ltd., Rugby Elektrische Schaltung zur Ansteuerung eines Leistungshalbleiterschaltelements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4034718A1 (de) * 1990-11-01 1992-05-14 Luetze Gmbh Co F Schaltungsanordnung
US5182456A (en) * 1992-02-25 1993-01-26 The United States Of America As Represented By The Secretary Of The Navy Noise attenuating circuit for mechanical relay including optical isolation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3210509A1 (de) * 1982-03-23 1982-12-09 Gerd Dr.-Ing. 3167 Burgdorf Harms Schnelle elektronische koppeleinrichtung zur potentialfreien uebertragung digitaler elektrischer steuersignale
DE3804592C1 (en) * 1988-02-13 1989-08-03 Spanner-Pollux Gmbh, 6700 Ludwigshafen, De Remote read-out system for consumption meter (electricity meter, supply meter)
GB2271243A (en) * 1992-10-05 1994-04-06 Ads Environmental Serv Inc Collecting data from hazardous environments via telephone
DE4343540C2 (de) * 1993-12-14 1995-12-07 Mannesmann Ag Anordnung zur potentialgetrennten Übertragung von Gleich- und Wechselstromsignalen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4034718A1 (de) * 1990-11-01 1992-05-14 Luetze Gmbh Co F Schaltungsanordnung
US5182456A (en) * 1992-02-25 1993-01-26 The United States Of America As Represented By The Secretary Of The Navy Noise attenuating circuit for mechanical relay including optical isolation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9276456B2 (en) 2012-12-18 2016-03-01 Trumpf Huettinger Gmbh + Co. Kg Generating high-frequency power for a load
US10002749B2 (en) 2012-12-18 2018-06-19 Trumpf Huettinger Gmbh + Co. Kg Extinguishing arcs in a plasma chamber
US10312064B2 (en) 2012-12-18 2019-06-04 Trumpf Huettinger Gmbh + Co. Kg Extinguishing arcs in a plasma chamber

Also Published As

Publication number Publication date
DE4421837A1 (de) 1996-01-11
DE4421837C2 (de) 2003-04-17

Similar Documents

Publication Publication Date Title
DE19537896B4 (de) Kontroller für eine Schaltmodus-Leistungsversorgungseinrichtung und Schaltmodus-Leistungsversorgungseinrichtung unter Verwendung des Kontrollers
EP0830661A1 (de) Anordnung zur galvanisch getrennten übertragung von hilfsenergie (gleichspannung) und informationen zu einer elektronischen einheit
DE60117129T2 (de) Leistungsversorgung mit zweifachem eingangsbereich, welche zwei in reihe oder arallel geschaltete wandlerelemente mit automatischer leistungsverteilung verwendet
EP0396125A2 (de) Durchflusswandler
EP1257047A2 (de) Resonanter Konverter
DE202017007564U1 (de) Verstärkerschaltung
WO1995035597A1 (de) Modul zur potentialfreien ansteuerung von igbt's oder feldeffekttransistoren
DE3813672C2 (de) Wechselrichter für eine induktive Last
EP0099596B1 (de) Stromversorgungsschaltung
DE102011119355A1 (de) Bidirektionaler resonanter Wandler
DE3508267A1 (de) Ablenk-netzteil-konzept fuer fersehgeraete
DE60209534T2 (de) Trennwandler mit synchronisiertem schaltzweig
EP0230930B1 (de) Schaltnetzteil für ein fernbedienbares Gerät
DE19932711A1 (de) Schaltnetzteil
EP1729416B1 (de) Schaltungsanordnung mit Fehlerübermittlung und zugehöriges Verfahren zur Ansteuerung von Leistungshalbleiterschaltern
DE3206009C2 (de)
DE4316694C1 (de) Hilfsstromversorgung mit integrierter Statusmeldung für Leistungshalbleiteransteuerung mit Optokopplern
DE202017107741U1 (de) Dimmschaltung
DE3241821C2 (de)
DE10240425B4 (de) Schaltwandler mit einem separaten Transformator zur Sicherung des Standby-Betriebs
WO2008104253A1 (de) Schnittstelle für digitalsignale und netzspannungssignale, mit schaltbarer konstantstromquelle
DE1763778C3 (de) Elektronisches Mehrfach-Fernsteuenuigssystem
EP0228582B1 (de) Schaltungsanordnung zur Erzeugung einer Betriebsspannung und eines Horizontalablenkstromes
DE102006025608B4 (de) Vorrichtung zur Stromsignalübertragung
DE2020095A1 (de) Elektronisch geregelte Gleichspannungsteiler und -wandler

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase