WO1995032231A1 - Polyuretedione cristalline lineaire - Google Patents

Polyuretedione cristalline lineaire Download PDF

Info

Publication number
WO1995032231A1
WO1995032231A1 PCT/JP1995/000797 JP9500797W WO9532231A1 WO 1995032231 A1 WO1995032231 A1 WO 1995032231A1 JP 9500797 W JP9500797 W JP 9500797W WO 9532231 A1 WO9532231 A1 WO 9532231A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
coating composition
powder coating
linear crystalline
parts
Prior art date
Application number
PCT/JP1995/000797
Other languages
English (en)
French (fr)
Inventor
Kenshi Sugimoto
Shinji Suzuki
Ichiro Ibuki
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to KR1019960706555A priority Critical patent/KR100214243B1/ko
Priority to US08/737,772 priority patent/US5795950A/en
Priority to EP95916036A priority patent/EP0760380B1/en
Priority to JP53018695A priority patent/JP3616099B2/ja
Publication of WO1995032231A1 publication Critical patent/WO1995032231A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/798Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing urethdione groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/20Compositions for powder coatings

Definitions

  • the present invention relates to a linear crystalline polyurethane dione mainly used as a curing agent for powder coatings, and a coating containing the linear crystalline polyurethane dione, which has excellent surface smoothness, weather resistance, and mechanical properties. It relates to a powder coating composition that gives a film. Background art
  • Organic solvent-based paints have problems in safety and hygiene due to the use of large amounts of organic solvents. Also, recently, due to the regulation of volatile organic compounds, the use of organic solvent-based paints in the coatings and coatings industry is gradually decreasing. On the other hand, powder coatings have a low risk of fire and can be collected and reused, so there is little environmental pollution, and a thick film can be formed, and improvement in coating properties can be expected. Therefore, the demand for powdering polyurethane paints is increasing.
  • the current polyurethane powder coatings include polyester polyol as the base material and polyisocyane obtained from isophorone diisocyanate (hereinafter abbreviated as IPDI) as disclosed in US Pat. No. 4,246,380.
  • Polyurethane powder coatings are mainly used to melt the NCO groups of ⁇ -blocks with a blocking agent such as ⁇ -force prolactam, melt and mix the extruder at a temperature at which the blocking agent does not dissociate. Used in When this polyurethane powder coating is used, the blocking agent is dissociated during baking and a crosslinking reaction occurs with the polyol, so that the released blocking agent may have an adverse effect on the environment and sanitation.
  • those coated with powder coating using epoxy resin as a curing agent for polyols have the problem that the weather resistance is significantly deteriorated and the range of use is limited. is there. Also, if a block-type isocyanate is used as a curing agent to improve weather resistance, the blocking agent is scattered at the time of baking, which has an adverse effect on the environment at the time of coating like a solvent-type coating.
  • An object of the present invention is to provide a powder coating composition which provides a coating film having excellent surface smoothness, weather resistance, and mechanical properties using a novel curing agent for powder coating. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by adopting a novel polyetdione in which a hexamethylene group is introduced into a polyurethanedione structural unit as a curing agent for powder coating, it has improved weather resistance. This led to the completion of a powder coating composition having excellent surface smoothness and mechanical properties.
  • the present invention has a structure represented by the following formula (1),
  • R 2 is a residue other than the active hydrogen of the compound having one active hydrogen
  • R 4 is a residue other than the two NC0 groups of the diisocyanate
  • n is 1 That is all.
  • Y in the expression is in the range of 0 to 15%.
  • a potential NCO group content of 12 to 21% by weight, a weight average molecular weight of 2000 to 2000, Provided is a linear crystalline polyesterdione having a melting point of 60 to 140 ° C. and not blocking at 40 ° C. or lower.
  • the present invention uses the above-mentioned linear crystalline polyurethane dione as a curing agent for powder coating, and (A) a hydroxyl value of 20 to 250 mg K OHZg and a solid at 30 ° C. And (B) a powder coating composition comprising the above-mentioned linear crystalline polyuretdione.
  • the linear crystalline polyurethane dione of the present invention has a structure represented by the following formula (1).
  • the structure of formula (1) can be confirmed by an infrared spectrophotometer (FT-IR) with absorption peaks specific to uretdione rings, urethane bonds, and hexamethylene groups.
  • FT-IR infrared spectrophotometer
  • a part of the uretdione ring of Y represented by the following formula (2) may be replaced by a triazine ring of the following formula (3), and the portion exists as a polymer branch. I do.
  • the proportion of the triazine ring contained in the linear crystalline polyuretdione is 0 to 15%, preferably 0 to 10%, based on the total of the triazine ring and the uretdione ring.
  • the proportion of the triazine ring exceeds 15%, it becomes difficult to form polymer crystals, which causes a decrease in the melting point.
  • the branching ratio is high, the number of cross-linking points increases, so that the bridging speed at the time of forming the coating film becomes high, and it becomes difficult to produce a smooth coating film surface.
  • the triazine ring in the linear crystalline polyurethanedione as referred to in the present invention The proportion can be easily determined by 13 C-NMR method. According to measurement by 13 C-NMR (FT-NMR AC-30000 QNP probe, manufactured by Bruker), the chemical shift peculiar to carbon forming the uretdione ring of the formula (2) is 157 The chemical shift peculiar to carbon forming the triazine ring of the formula (3) appears at around ppm to 158 ppm, and appears around 148 to 149 ppm.
  • the proportion of the triazine ring in the linear crystalline polyurethane dione according to the present invention can be calculated from the respective integrated intensity values.
  • R (1) wherein in the present invention, is the use of a compound residues other than two ⁇ _H groups of the diol represented by R 2 may properly is that Jie Soshiane Doo 2 moles of diol and 1 mol are reacted It is a residue other than the terminal two OH groups.
  • R 4 is represented by a residue other than the two NCO groups of the diisocyanate. In the case of hexamethylene diisocyanate, it is represented by — (CH 2 ) 6 —.
  • R 3 is a residue of the compound having one active hydrogen, which is mentioned as a specific example in the present invention, excluding the active hydrogen; in the case of ethanol, one OC 2 H 5 ; in the case of ⁇ -force prolactam, , C 5 H ioC (0) N—.
  • the linear crystalline borouretdione has a content of latent NCO groups of 12 to 21% by weight, preferably 14 to 21% by weight.
  • the content of latent NCO groups is less than 12% by weight, the gel fraction does not increase when forming a coating film, and the coating film has poor mechanical properties such as weather resistance and impact resistance. I don't. The production of polyurethane dione exceeding 21% by weight is theoretically difficult.
  • the content of the latent NC0 group referred to in the present invention is a value obtained by converting the uretdione ring in the formula (2) into 2 moles of the NC0 group,
  • the content of the latent NC 0 group can be calculated from the pentadione ring content.
  • the weight average molecular weight of the linear crystalline polyurethanedione is from 2000 to 2000, preferably from 2000 to 1500. If the weight average molecular weight is less than 2000, an increase in the number of end groups causes a decrease in the content of latent NC0 groups involved in crosslinking.
  • the melting point of the linear crystalline polyurethane dione is from 60 to 140, preferably from 70 to 120 ° C. If the melting point is less than 60 ° C, when the powder is melt-mixed with the polyol and then pulverized into powder, the powder may cause blocking (agglomeration), which is not preferable. If the temperature exceeds 140 ° C, a higher heat-melting temperature is required. When kneading with a polyol using an extruder or a kneader, the uretdione ring opens and the reaction between the NCO group and the OH group occurs. As a result, crosslinking occurs, and the torque of the extruder or the like increases remarkably, and operation becomes difficult, which is not preferable.
  • the linear crystalline polyurethane dione does not block at 40 ° C or lower. This is because when powder is melt-mixed with a polyol and pulverized into powder, in the summer, the powders cause blocking during storage. In order to prevent blocking, it is necessary that the melting point of the polyurethanedione be 60 or higher as described above. For this purpose, it is necessary to use a linear polymer having few side chains.
  • Linear crystalline polyurethane dione is obtained from HDI It can be obtained by subjecting a mixture of a diol containing a dione ring alone or a polyisocyanate containing a uretdione ring and a triazine ring and a diol to a urethane reaction at 40 to 120 ° C.
  • a compound having one active hydrogen and / or a diisocyanate may be added to a mixture of the polyisocyanate and the diol.
  • the polyisocyanate used as a raw material of the linear crystalline polyuretdione is a polyisocyanate containing only the uretdione ring of the above formula (2), or a polyisocyanate containing the uretdione ring of the above formula (3).
  • a polyisocyanate containing a small amount of a triazine ring structure may be used. Their content is at least 80% by weight of uretdione ring and at most 20% by weight of triazine ring.
  • the proportion of triazine rings in the linear crystalline polyurethane dione is uniquely determined by the polyisocyanate used, so that the proportion of triazine rings in the linear crystalline polyurethane dione is 0 to 15%.
  • polyuretdione In order to produce the polyuretdione, it is necessary to use a polyisocyanate having a uretdione ring content of 80% by weight or more and a triazine ring content of 20% by weight or less.
  • the fundamental difference between the linear crystalline polyuretdione of the present invention and the polyuretdione used in U.S. Pat. No. 4,044,171 is that the uretdione content of this polyisocyanate, the triazine ring Content rate.
  • the content of triazine rings in the polyisocyanate used in US Pat. No. 4,044,171 exceeds 20% by weight.
  • the content of the uretdione ring and triazine ring is determined by the infrared absorption spectrum (IR) (Fourier transform infrared spectrophotometer FT-IR-5M type, manufactured by JASCO Corporation). It can be obtained from the calibration curve from the height ratio of the specific absorption peak (1767 cm- 1 ) and the triazine ring specific absorption peak (16888 cm- 1 ).
  • IR infrared absorption spectrum
  • Polyisomers used as raw materials for linear crystalline polyuretdione The synthesis of cyanate is shown below in a solvent or non-solvent that has no reaction activity for the isocyanate group, in a content of 0.01 to 1.0% by weight based on HDI in a solvent or non-solvent. Reacting HDI for several hours at a temperature in the range of 10 to 120 ° C in the presence of at least one of the reaction catalysts represented by the structures of (a), (b) and (c). It is performed by At least one of the isocyanate groups of HD I is dimerized, and when a predetermined conversion is reached, the reaction is stopped by adding a catalyst poison that deactivates the reactivity of the catalyst. For example, a polyisocyanate can be obtained by removing the acid with a thin film distillation machine or the like. It is necessary to remove and purify HD I sufficiently.
  • L is one OR or R, R is ⁇ ⁇ to ( 8 alkyl group and phenyl group, ⁇ is an integer of 0 to 2, ⁇ is C! CA alkylene group, vinylene group and phenylene group. is there.
  • (a) of the above reaction catalyst include trisdimethylamino phosphine, trisethylaminophosphine, trispropylaminophosphine, trisdibutylaminophosphine, trispentylaminophosphine, and trispentylaminophosphine.
  • Tris (dialkylamino) phosphines such as trisdihexylaminophosphine
  • (b) include tetraalkylbiphosphine, tetraalkyl and hexyl whose alkyl groups are methyl, ethyl, propyl, pentyl, and hexyl.
  • Toluenebiphosphine and (c) include methylene, ethylene, propylene and butylene as alkylene groups, and 1.2-bis (dialkyl phosphine) having alkyl groups of methyl, ethyl, propyl, butyl, pentyl and hexyl.
  • tris-jetylamino phosphine, 1,2-bis (dimethyl phosphine) ethane, and tetrafenerubiphosphine are preferred because they have high reactivity and are industrially available.
  • the catalyst poison refers to a compound that deactivates the reactivity of the reaction catalyst (a), (b), or (c) used.
  • alkylating agents, acylating agents, sulfur, or atmospheric oxygen, compounds that release oxygen, sulfuric acid, phosphoric acid, alcohols and the like can be mentioned.
  • At least one of these catalyst poisons can be used in a range of 1.0 to 10.0 moles per mole of the remaining catalyst when the reaction is stopped.
  • These catalyst poisons are added when the desired composition and viscosity of the polyisocyanate are obtained. As a guide for the timing of the addition, it is preferable that the conversion rate is 60% or less, so that unreacted HDI can be easily treated.
  • the content of the uretdione ring in the production raw material that is, the polysodium in the present invention, is important.
  • a tertiary phosphine having an aliphatic substituent such as triethyl phosphine, tributyl phosphine, or phenyl dimethyl phosphine is used as a uretionation catalyst.
  • a uretdione ring-containing polyisocyanate (expressed as a dimer in US Pat. No. 4,044,171) has been obtained.
  • IPDI indione
  • the two moles of isocyanate groups in IPDI are asymmetric in chemical structure, so the amount added can control the crystal structure of the polyurethanedione, and the melting point does not fall below 60 ° C It can be added as follows. The amount of addition must be 20% by weight or less in HDI.
  • the diol used as a raw material of the linear crystalline polyurethane dione is used as a chain extender.
  • examples thereof are aliphatic, alicyclic, and aromatic diols, and aliphatic and alicyclic groups are particularly better in terms of weather resistance.
  • the compound having one active hydrogen used as a raw material of the linear crystalline polyurethane dione is used as a molecular weight modifier.
  • examples are aliphatic, alicyclic, and aromatic monols, monoamines, lactones, and oximes, and aliphatics and alicyclics are particularly better in terms of weather resistance.
  • methanol, ethanol, propanol, bushanol Amyl alcohol, Pennol, Hexanol, Hepanol, Nonyl alcohol, Cyclobutanol, Cyclohexanol, Phenyl, Benzyl alcohol, Aminoprono.
  • Diisocyanate used as a raw material for linear crystalline polyurethane dione is used as a chain extender for adjusting the content of latent NCO groups.
  • examples thereof are aliphatic, alicyclic and aromatic diisocyanates, especially hexamethylenediisocyanate, isophoronediisocyanate, and 4,4'-methylenebiscyclohexyldiisocyanate are better in terms of weatherability. It is.
  • the ratio of the polyisocyanate, diol, and the compound having one active hydrogen to the diisonate used as the raw material of the linear crystalline polyurethane dione is such that the molar ratio of the NC 0 group active hydrogen group is 0.8. Adjust to ⁇ 1.2. When the ratio of the number of moles is less than 0.8, the content of latent ⁇ C 0 groups becomes low, and the weather resistance and mechanical properties cannot be satisfied. On the other hand, if the ratio exceeds 1.2, a large amount of NC0 groups are attached to the terminal group of the polyurethanedione. Since a crosslinking reaction occurs, the melt fluidity during baking deteriorates, and the surface smoothness of the coating film is poor.
  • the diol, the compound having one active hydrogen and the diisocyanate are added to the polyisocyanate, they may be added alone or in a mixture thereof.
  • the addition method is preferably to add the mixture little by little continuously or in order to prevent a rapid rise in the heat of reaction.
  • the reaction temperature is 40 to 120 ° C.
  • the reaction is mainly based on the urethane reaction Occur. If the temperature is lower than 40 ° C, the urethane reaction is slow. If the temperature is higher than 120 ° C, a reaction other than the urethane reaction occurs, and gelation may occur.
  • a urethanization catalyst for promoting a urethane reaction such as an organotin-based catalyst may be used in combination.
  • Examples of the (A) polyol contained in the powder coating composition of the present invention include polyester polyol, acryl polyol, fluorine polyol, polycarbonate polyol, epoxy polyol, and urethane polyol.
  • polyester polyol examples include, for example, at least one of dibasic carboxylic acids such as succinic acid, adipic acid, sebacic acid, dimer acid, maleic anhydride, fumaric anhydride, isophthalic acid, and terephthalic acid.
  • a polyester polyol obtained by a condensation reaction with at least one polyhydric alcohol such as ethylene glycol, propylene glycol, dimethylene glycol, butylene glycol, neopentyl glycol, trimethylolpropane, and glycerin.
  • Polycaprolactones obtained by ring-opening polymerization of resins and e-caprolactones with polyhydric alcohols, and aliphatic and polyhydric alcohols having hydroxyl groups such as castor oil And the like
  • Acrylpolyol can be obtained by copolymerizing a polymerizable monomer having one or more active hydrogens in the molecule and a copolymerizable monomer. These include, for example, acrylic acid
  • Acrylic acid 2 Hydroxityl, acrylic acid 2 — Hydroxypropyl, acrylic acid-2 — acrylic acid ester with active hydrogen such as hydroxybutyl: methacrylic acid 1-2 — Hydroxylethyl, methacrylic acid 1 2 — Hydroxypropyl, methacrylic acid 1 2 — Methacrylic acid ester with active hydrogen such as hydroxybutyl: glycerin
  • Acrylic acid monoester is a (meth) acrylic acid having a polyvalent active hydrogen such as methacrylic acid monoester, acrylic acid monoester of trimethylolpronone or methacrylic acid monoester.
  • Esters at least one and methyl acrylate, ethyl acrylate.
  • Isopropyl acrylate, acrylyl-n-butyl, acetyl acrylate, etc. Acrylates, methyl methacrylate, methyl methacrylate, isopropyl methacrylate, mono-n-butyl methacrylate, isobutyl methacrylate, methacrylic acid-n — At least one methacrylate, such as hexyl, and, if necessary, an unsaturated carboxylic acid, such as acrylic, methacrylic, or itaconic acid Unsaturated amides such as acrylamide, N-methylol acrylamide, diaceton acrylamide, and other polymerizable monomers such as styrene, vinyl toluene, vinyl acetate and acrylonitrile And an acrylic polyol resin obtained by polymerizing at least one of them.
  • the fluorine polyol is obtained by copolymerizing a fluoromonomer or a fluorine-containing vinyl monomer and a hydroxyl-containing vinyl monomer as essential components with a vinyl monomer copolymerizable therewith. Nitrogen polyol.
  • Epoxy polyols include, for example, novolak type, ⁇ -tilepiclorhydrin type, cyclic oxylan type, glycidyl ether type, glycidyl ester type, glycol ether type, epoxidized type of aliphatic unsaturated compounds, Epoxy resins such as an epoxidized aliphatic ester type, a polyvalent carboxylic acid ester type, an aminoglycidyl type, and a resorcinol type are exemplified.
  • Polycarbonate polyols include aromatic polyhydric alcohols such as bisphenol II and aliphatic polyols such as 1,6-hexanediol. • Some can be obtained by a conventional method using alicyclic polyhydric alcohol as a raw material.
  • urethane polyols are polymers formed by repeating the addition reaction of aromatic, aliphatic, or alicyclic diisocyanates with a compound having active hydrogen, and have a urethane bond in the polymer and a polymer side chain. And those having an OH group at the end.
  • the hydroxyl value of the polyol used in the present invention is from 20 to 250 mgK ⁇ HZg, preferably from 20 to 20OmgKOH / g. If the hydroxyl value is less than 2 Omg KOHZg, the stain resistance is poor, and if it exceeds 250 mgKOHZg, the weather resistance is poor.
  • Preferred polyols used in the present invention have an acid value of 1 Omg KOH / g or less, a glass transition temperature of 40 to 80 ° C, and a weight average molecular weight of 50,000 to 300,000.
  • the above-mentioned polyols can be appropriately mixed and used.
  • the amount of the (B) linear crystalline polyurethanedione contained in the powder coating composition of the present invention is (A) 100 parts by weight of the polyol. Is preferably 5 to 100 parts by weight, more preferably 7 to 80 parts by weight. If the amount of the polyuretdione is less than 5 parts by weight, the crosslinking reaction is not sufficient, and the weather resistance and mechanical properties of the coating film are inferior. If the amount exceeds 100 parts by weight, an excessive crosslinking agent remains. The mechanical properties and the like of the coating film are reduced.
  • the powder coating composition of the present invention may contain (C) a urethane curing acceleration catalyst. The amount preferably comprises up to 5 parts by weight, more preferably 0.1 to 2 parts by weight. If the amount exceeds 5 parts by weight, a large amount of catalyst residue will remain after the reaction, adversely affecting the weather resistance of the coating film.
  • the urethane curing acceleration catalyst used is used to adjust the gel fraction of the coating film formed by baking.
  • Urethane curing accelerators include organotin-based, organic zinc-based, organic zirconium-based, and organic It is commonly used in solvent-based polyurethane paints such as dominium-based and organic vacuum-based. Of these, organotins are preferred, and organotins having a melting point of 100 ° C. or less are more preferred. When the melting point is 100 ° C. or less, a plasticizing effect on the paint can be imparted at the time of baking, and the surface smoothness of the coating film is further improved.
  • butyltin maleate butyltin laurate
  • dibutyltin maleate dibutyltin laurate
  • dibutyltin acetate dibutyltin distearate, and the like.
  • the powder coating composition of the present invention may further comprise, in addition to (A) the polyol, (B) the linear crystalline polyurethane dione, and (C) the urethane curing accelerator catalyst described above, a pigment, a coloring agent, Agents, surface smoothing agents, anti-cissing agents-Contains various additives used in the technical field, such as anti-foaming agents, photo-deterioration inhibitors, UV inhibitors, plasticizers, antioxidants and salt damage inhibitors. Can be.
  • the general coating method for powder coating is electrostatic coating using a spray gun, but coating is also performed using a fluid immersion tank, spray coating, roll coating, force coating, or the like.
  • a uniform coating film is formed on the object to be coated, generally by heating and baking at a temperature of 160 ° C. or higher.
  • the powder coating composition of the present invention is adhered to the molding die, the object to be coated is filled, and the die is removed.
  • An in-mold molding method in which a coating film is formed on an object to be coated by heating can also be used.
  • Shet Mold Compound (SM C) Shet Mold Compound
  • BMC bulk metal compound
  • Examples of the object to be coated include a metal plate, a plastic plate, a concrete plate, a wood plate, and a molded product thereof.
  • Metal sheets include stainless steel, aluminum, titanium, cold-rolled steel, zinc plated steel, chrome plated steel, aluminum plated steel, nickel plated steel, etc. The surface is cleaned by degreasing, etc., and the metal surface is chemically treated to improve the adhesion to the coating.
  • the metal plate may be a metal molded product that has been subjected to predetermined molding in advance. If necessary, the metal surface may be primed in advance.
  • the thickness of the undercoat film is preferably 10 m or less.
  • the plastic plate examples include thermosetting resins such as phenol resin and FRP, and thermoplastic resins such as polyamide and polycarbonate.
  • the obtained pre-coated material does not have a bad smell of a blocking agent at the time of baking, and the obtained coating film has excellent weather resistance, impact resistance, chemical resistance, surface strength, surface gloss, corrosion resistance and the like. Therefore, the pre-coated material of the present invention can be used for household appliances, as outer boxes and doors for refrigerators, washing machines, air conditioners, microwave ovens, etc., and as other components.
  • FIG. 1 is a FI-IR chart of the polyurethane dione obtained in Example 1.
  • the structural units of the polyuretdione were confirmed by infrared spectrophotometry (FT-IR) based on the absorption of the uretdione ring, urethane bond, and methylene group.
  • FT-IR infrared spectrophotometry
  • the proportion of triazine ring in the polyurethane dione was determined by 13 C-NMR (FT-NMR AC-30000 QNP probe, manufactured by Bruker) under the following measurement conditions.
  • the solvent is deuterated dimethyl sulfoxide, the measurement temperature is 40, the standard of chemical shift is 0 ppm of tetramethylsilane, and the measurement frequency is obtained at the measurement frequency of 75.4 MHz. It was calculated from the integrated intensity of the chemical shift around 580 ppm and the integrated intensity of the chemical shift around 148 ppm to 149 ppm.
  • the content of latent NCO in the polyurethane dione was determined from a calibration curve prepared with an infrared spectrophotometer (FT-IR).
  • the melting point of polyurethanedione was measured with a differential scanning calorimeter (DSC). (Blocking properties of polyurethane dione)
  • the blocking property of polyurethane dione is as follows:
  • the weight-average molecular weight of polyurethanedione was determined by dissolving it in tetrahydrofuran and measuring by gel permeation chromatography (GPC-RI detector).
  • the content of NC 0 groups in the polyisocyanate is determined by adding an excess of di-n-butylamine and reacting with the isocyanate group, and then titrating the unreacted: It was determined by weight%.
  • the content of the uretdione ring-containing polyisocyanate and the triazine ring-containing polyisocyanate in the polyisocyanate was determined by the uretdione ring peak (1767 cm- 1 ) and the triazine ring peak (obtained by FT-IR). It was determined from the ratio of the height of 1688 cm- 1 ) by the calibration curve.
  • the coating properties were determined by grinding the obtained coating composition with a hammer mill for fine grinding, sieving with a 100 mesh, and electrostatically coating the steel sheet treated with zinc phosphate at 180 ° C. What was baked for 20 minutes was measured.
  • the surface smoothness of the coating film is the value of 20 ° gloss measured with a gonio-gloss meter. It was expressed.
  • the impact resistance of the coating film was measured with a DuPont impact tester under the conditions of a weight of 1 kg and a die diameter of 1 Z2 inch ⁇ . The maximum height (cm) at which the coating film was not torn was shown.
  • the gel fraction was determined by immersing the baked coated plate in acetone at 20 ° C, removing it after 24 hours, and drying it at 100 ° C for 1 hour to calculate the weight of the oxidized titanium pigment.
  • the reduced value was divided by the value obtained by subtracting the weight of titanium oxide from the original weight, and the result was calculated as a percentage (%).
  • the product obtained is a pale yellow, clear liquid with a viscosity of 52 mPa s at 25 ° C, and the content of isocyanate groups was 24%.
  • the polyisocyanate produced had a uretdione ring content of 96% by weight and a triazine ring content of 4% by weight.
  • the obtained product was a pale yellow, transparent liquid, had a viscosity of 52 mPa ⁇ s 25 ° C, and had an isocyanate group content of 24%.
  • the content of retdione ring was 91% by weight, and the content of triazine ring was 9% by weight.
  • the obtained product was a pale yellow, transparent liquid, had a viscosity of 53 mPa ⁇ s / 25 ° C., and had an isocyanate group content of 24%.
  • the content of the retdione ring was 91% by weight and the content of the triazine ring was 9% by weight.
  • Example 2 The same apparatus as in Example 1 was charged with 500 g of HDI, and 2.7 g of tributylphosphine was added under stirring at 60 ° C. The reaction was allowed to proceed at 60 ° C, and after 4 hours, 0.3 g of sulfuric acid was added when the conversion to polyisocynate was 17% based on the measurement of the isocyanate content and the refractive index of the reaction solution. The reaction was stopped by addition. Thereafter, heating was further continued at 80 ° C. for 1 hour and cooled to room temperature. Then, purification was performed in the same manner as in Synthesis Example 1.
  • the product obtained was a pale yellow, clear liquid with an NCO% content of 24.5%. Further, the content of uretdione rings in the formed polyisocyanate was 75% by weight, and the content of triazine rings was 25% by weight.
  • FIG. 1 shows the FT-IR chart.
  • the proportion of the triazine ring in the polyurethane dione obtained by NMR analysis of the resulting polyurethane dione was 6%, the content of latent NCO groups was 18.3%, the weight average molecular weight was 210, the melting point was 89 and The blocking ability is ⁇ Was.
  • Hydroxyl value 53 mg KOHZg, glass transition temperature 73 To 100 parts by weight of the C-acrylic polyol, 121 parts by weight of the above-obtained polyurethane dione, 36 parts by weight of titanium oxide, 0.5 part of Modaf mouth powder (manufactured by Monsanto), 0.5 part of dibutyltin dilaurate 0.3 parts was mixed. This mixture was once mixed with a Henschel mixer, then melt-mixed at 120 ° C with a twin screw extruder, and the melt that came out was cooled with a pinch roller at 10 ° C, and powdered. A coating composition was obtained.
  • the obtained powder coating composition was pulverized by a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh was applied to a zinc phosphate-treated steel sheet by a spray gun type electrostatic coating machine.
  • the properties of the baked coating film were measured.
  • the resulting coating film had a 20 ° gloss value of 80, an impact resistance of 50 cm, a gloss retention of 85%, and a gel fraction of 91%, and was very good.
  • the obtained powder coating composition was pulverized by a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh was applied to a zinc phosphate-treated steel sheet by a spray-gun electrostatic coating machine.
  • the properties of the baked coating film were measured.
  • the resulting coating had a 20 ° gloss value of 80, an impact resistance of 50 cm, a gloss retention of 83%, and a gel fraction of 90%, and was very good.
  • the obtained powder coating composition is pulverized with a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh is applied to a zinc phosphate-treated steel sheet by a spray gun type electrostatic coating machine, and baked.
  • the physical properties of the applied coating film were measured.
  • the resulting coating film was very good, having a 20 ° gloss value of 81, an impact resistance of 50 cm, a gloss retention of 85%, and a gel fraction of 90%.
  • the obtained urethane dione by NMR method had a triazine ring ratio of 3%, a potential NCO group content of 16.7%, a weight average molecular weight of 600, a melting point of 105 ° C.
  • the blocking property was poor.
  • the obtained powder coating composition is pulverized by a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh is applied to a zinc phosphate-treated steel sheet by a spray gun type electrostatic coating machine and baked.
  • the physical properties of the coated film were measured.
  • the coating film obtained is 20.
  • the gloss value was 82, the impact resistance was 50 cm, the gloss retention was 88%, and the gel fraction was 90%, which was very good.
  • the obtained powder coating composition is pulverized by a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh is applied to a zinc phosphate-treated steel sheet by a spray gun type electrostatic coating machine and baked. The physical properties of the coated film were measured.
  • the resulting coating film 2 0 0 gloss values 8 2, anti ⁇ 5 0 cm, gloss retention 8 5%, a gel fraction 90%, was very good.
  • the obtained polyuretdione had a triazine ring content of 6%, a potential NCO group content of 18.3%, a weight average molecular weight of 210, a melting point of 87 and a melting point of 87% in the polyurethane by NMR.
  • the blocking ability was as follows: c The hydroxyl value was 40 mg KO HZg, the glass transition temperature was 59 ° C, and the polyester polyol having a glass transition temperature of 100 parts by weight was mixed with 16 parts by weight of the polyurethanedione obtained above and 35 parts by weight of titanium oxide. Part by weight, 0.5 * R of Modaflow powder and 0.3 part of dibutyltin dilaurate were blended.
  • the mixture was once mixed with a helical mixer, then melt-mixed at 130 ° C with a twin screw extruder, and the resulting melt was cooled with a pinch roller at 10 ° C to obtain powder.
  • a coating composition was obtained.
  • the obtained powder coating composition is pulverized by a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh is applied to a zinc phosphate-treated steel sheet by a spray gun type electrostatic coating machine and baked.
  • the physical properties of the coated film were measured.
  • the obtained coating film had a 20 ° gloss value of 80, an impact resistance of 50 cm, a gloss retention of 82% and a gel fraction of 90%, and was very good.
  • Polyuretdione was synthesized using the polyisocyanate obtained in Synthesis Example 1 with the composition shown in Table 1 in the same manner as in Example 4.o The structure of each obtained polymer was confirmed by FT-IR. The absorption characteristic of polyuretdione was confirmed.
  • Polyurethane todione obtained Table 1 shows the proportion of triazine rings, the content of latent NCO groups, the weight average molecular weight, the melting point, and the blocking property of the polyurethane dione by NMR method.
  • the obtained powder coating composition is pulverized with a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh is applied to a zinc phosphate-treated steel sheet by a spray gun type electrostatic coating machine and baked.
  • the physical properties of the coated film were measured.
  • the results of the obtained coating film are shown in Table 1. c The obtained coating film was very good.
  • the product obtained is a pale yellow, clear liquid with a viscosity of 52 mPa s at 25 ° C, and the content of isocyanate groups was 24%.
  • the polyisocyanate produced had an uretdione ring content of 91% by weight and a triazine ring content of 9% by weight.
  • the content ratio of HD IZIPDI in the polyisocyanate was measured by FT-IR, the weight ratio was 9/1.
  • 100 parts by weight of the acrylic polyol having a hydroxyl value of 53 mgKOH / g and a glass transition temperature of 73 ° C were mixed with 1 part by weight of the polyurethanedione obtained above, 36 parts by weight of titanium oxide, and one powder of moduff. 0.5 parts and 0.3 parts of dibutyltin dilaurate were blended. This mixture was once mixed with a helical mixer, then melt-mixed at 12 G ° C with a twin screw extruder, and the resulting melt was cooled with a pinch roller at 10 ° C, and the powder was cooled. A coating composition was obtained.
  • the obtained powder coating composition is pulverized by a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh is applied to a zinc phosphate-treated steel sheet by a spray gun type electrostatic coating machine and baked.
  • the physical properties of the coated film were measured.
  • the resulting coating has a 20 ° gloss value of 82 and an impact resistance of 50 cm, gloss retention: 85%, gel fraction: 91%, which were very good.
  • the obtained powder coating composition was pulverized by a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh was applied to a zinc phosphate-treated steel sheet by a spray gun type electrostatic coating machine.
  • the properties of the baked coating film were measured.
  • the obtained coating film had a 20 ° gloss value of 78, an impact resistance of 50 cm, a gloss retention of 85%, and a gel fraction of 91%, and was very good.
  • Example 2 To 100 parts by weight of a polyurethane polyol having a hydroxyl value of 42 mg K 0 H / g, 18 parts by weight of the polyurethanedione obtained in Example 1, 35 parts by weight of titanium oxide, and 0.5 part by weight of modaflow powder were added. And 0.3 parts of dibutyltin dilaurate. This mixture was mixed once with a Hensile mixer, then melt-mixed at 120 ° C with a twin screw extruder, and the resulting melt was cooled with a pinch at 10 ° C, and powdered. A coating composition was obtained.
  • the obtained powder coating composition was pulverized by a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh was applied to a zinc phosphate-treated steel sheet by a spray gun type electrostatic coating machine.
  • the properties of the baked coating film were measured.
  • the resulting coating film had a 20 ° gloss value of 81, an impact resistance of 50 cm, a gloss retention of 88%, and a gel fraction of 93%, and was very good.
  • Example 16 To 100 parts by weight of a polyester polyol having a hydroxyl value of 40 mg K 0 HZ g, 16 parts by weight of the polyurethanedione obtained in Example 1, 35 parts by weight of titanium oxide, and 0.5 part by weight of Modaflow powder were added. And 0.3 parts of dibutyltin dilaurate. After the composition was mixed once with a Hensile mixer, the mixture was melted and mixed at 120 ° C by a kneader, and the extracted melt was cooled with a pinch roller at 10 ° C, and the powder coating composition was cooled. Obtained.
  • the obtained powder coating composition is pulverized by a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh is filled in a fluidized immersion tank to bring the powder into a fluidized state.
  • the FRP molded sheet preheated in a preliminary furnace was passed through a fluidized immersion tank to coat the surface, and the physical properties of the baked coating film were measured.
  • the resulting coating film had a 20 ° gloss value of 83 and a gloss retention of 85%, and was very good.
  • a polyuretdione was obtained in the same manner as in Example 4 using the polyisocyanate obtained in Comparative Synthesis Example 1.
  • the ratio of the triazine ring in the resulting polyuretdione was 18%, the content of latent NC 0 groups was 13.2%, and the weight average molecular weight could not be measured because it was insoluble in tetrahydrofuran. There was no melting point peak and the blocking property was X.
  • the obtained powder coating composition is pulverized with a coarse pulverizer and a fine pulverizer, and the powder sieved with a 100 mesh is removed.
  • a spray gun type electrostatic coating machine the steel sheet treated with zinc phosphate was applied and baked, and the physical properties of the coated film were measured.
  • the resulting coating film had a 20 ° gloss value of 24, an impact resistance of 30 cm, a gloss retention of 62%, and a gel fraction of 80%.
  • the linear crystalline polyurethane of the present invention can be used as a curing agent for powder coatings, and does not give off a bad smell of the blocking agent during baking.
  • the coating film obtained from the powder coating composition containing the linear crystalline polyurethanedione of the present invention has excellent surface smoothness, weather resistance, and mechanical properties. Therefore, it is useful as a coating for home appliances, building materials, automotive parts, office furniture, and electrical equipment parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Description

明 細 書
直鎖状結晶性ポリウレ トジオン 技術分野
本発明は、 主に粉体塗料用の硬化剤として使用される直鎖状結晶 性ポリ ウレ トジオン及びその直鎖状結晶性ポリウレ トジオンを含む 表面平滑性、 耐候性、 機械的物性に優れた塗膜を与える粉体塗料組 成物に関する。 背景技術
有機溶剤型塗料は、 大量の有機溶媒を使用するために安全性およ び衛生性において問題を有している。 また、 最近、 揮発性有機化合 物の規制のために、 塗料および塗装産業においては、 しだいに有機 溶剤型塗料が使用されなくなりつつある。 一方、 粉体塗料は、 火災 の危険性が少なく、 塗料を回収して再使用できるので環境汚染も少 なく、 また厚膜形成が可能であり、 塗料物性の向上が期待できる。 そのため、 ポリウレタン塗料の粉体化の要求が高まつている。
現在のポリ ウレタン粉体塗料としては、 主剤のポリエステルポリ オールと米国特許 4, 2 4 6 , 3 8 0に開示されているようなイソ ホロ ンジイ ソシァネー ト (以下 I P D I と略) より得られるポリイ ソシァネー トの N C O基を ε —力プロラクタムのようなブロッ ク剤 でプロッ クした硬化剤を押し出し機でプロック剤が解離しない温度 で溶融混合し、 その後粉砕して塗料とするポリウレタン粉体塗料が 主に使用されている。 このポリウレタン粉体塗料を用いる場合、 塗 装焼き付け時にプロッ ク剤が解離し、 ポリオールと架橋反応がおこ るので、 放出されるブロッ ク剤が環境および衛生に悪影響をおよぼ す可能性がある。 この欠点を解決するには米国特許 4, 4 1 3 , 0 7 9、 米国特許 4 , 4 6 3 , 1 5 4 に I P D I、 米国特許 4 , 0 4 4 , 1 7 1 に ト リ レンジイソシァネー トあるいはへキサメチレンジ イ ソシァネー ト (以下 H D I と略) を用いてブロッ ク剤を使用しな いポリウレ トジオン型硬化剤が開示されている。 この場合、 2モル の N C O基同士でできるウレ トジオン環が塗装焼き付け時に再び 2 モルの N C O基に解離し、 ポリオールと反応するので、 粉体塗料用 硬化剤として使用することができる。 しかし、 I P D I は脂環族で あるため耐候性は芳香族ィソシァネー トより良好だが、 十分でなく 、 表面平滑性にも問題がある。 また化学構造上 N C 0基が非対称で あるため解離温度が高く、 ゲル分率が上がらず、 耐衝撃性等の機械 的物性にも欠点がある。
米国特許 4 , 0 4 4 , 1 7 1 では、 実施例に H D I のポリウレ ト ジオンの製造.方法が開示されているが、 溶剤型塗料用の硬化剤とし て用いている。 これを粉体塗料用硬化剤として用いても、 潜在 N C 0基の含有率が低いために、 ゲル分率が上がらず、 耐衝撃性等の機 械的物性が低下すると推測され、 粉体塗料用の硬化剤として使用で きるための要件を満たすものではない。
粉体塗料を焼き付けしたプレコ一ト材料の中で、 エポキシ系樹脂 をポリオールの硬化剤とした粉体塗料を塗装したプレコ一ト材料は、 耐候性が著しく悪くなり使用範囲が限られるという問題がある。 ま た、 耐候性を改善するために、 硬化剤としてブロック型のイソシァ ネー トを使用すると、 焼き付け時にブロッ ク剤が飛散し、 溶剤型塗 料と同様に塗装時の環境に悪影響を及ぼす。
本発明の課題は、 新規な粉体塗料用硬化剤を使用して表面平滑性、 耐候性、 機械的物性に優れた塗膜を与える粉体塗料組成物を提供す る と あ 。 発明の開示
上記課題を解決するために本発明者らは鋭意検討した結果、 ポリ ウレ トジオン構造単位にへキサメチレン基を導入した新規なポリゥ レ トジオンを粉体塗料用硬化剤として採用することにより、 耐候性. 表面平滑性、 機械的物性に優れた粉体塗料組成物を完成するに至つ た。
即ち本発明は、 下記 ( 1 ) 式で表される構造を有し、
X-(CH2) 6-[-Y-(CH2)
Figure imgf000005_0001
(CH2)6]„ -Y-(CH2)6- X
ここで Yは で
あり、 は R2
Figure imgf000005_0002
ル 以外の残基であり、 R3は活性水素 1個をもつ化合物の活性水素を 除いた残基であり、 R4はジイソシァネー トの 2個の NC0 基以外の 残基であり、 nは 1以上である。
( 1 ) 式中の Yは 0〜 1 5 %の範囲で
Figure imgf000005_0003
で表される ト リアジン環で置き変わっており、 潜在 N C O基の含有 率が 1 2〜2 1重量%、 重量平均分子量が 2 0 0 0〜2 0 0 0 0、 融点が 6 0〜 1 4 0 °Cでかつ 4 0 °C以下でブロッキングしない直鎖 状結晶性ポリ ゥレ トジオンを提供する。
また、 本発明を上記の直鎖状結晶性ポリ ウレ トジオンを粉体塗料 用硬化剤として使用する、 (A) 水酸基価が 2 0〜 2 5 0 m g K OHZgであって 3 0 °Cで固体のポリオールと (B) 上記の直鎖 状結晶性ポリ ウレ トジオンを含む粉体塗料組成物を提供する。
本発明の直鎖状結晶性ポリ ウレ トジオンは、 ( 1 ) 式で表される 構造を有する。 ( 1 ) 式の構造は、 赤外分光光度計 (FT - I R) により、 ウレ トジオン環、 ウレタン結合、 へキサメチレン基特有の 吸収ピークで確認することができる。
( 1 ) 式中の下記 ( 2 ) 式で表される Yであるウレ トジオン環の 一部は下記 ( 3 ) 式の ト リアジン環に置き換えられていてもよく、 その部分はポリマーの分岐として存在する。
( 3 )
Figure imgf000006_0001
直鎖状結晶性ポリウレ トジオンに含まれる ト リアジン環の割合は ト リアジン環とウレ トジオン環の合計に対して 0〜 1 5 %、 好ま し く は 0〜 1 0 %である。 ト リアジン環の割合が、 1 5 %を越えると ポリマーの結晶が生成しにく くなり、 融点の低下を引き起こす。 ま た、 分岐率が高いと架橋点が増えるために、 塗膜を形成する際の架 橋速度が早くなり平滑な塗膜表面を生成するのが困難になる。
本発明でいう直鎖状結晶性ポリウレ トジオン中のト リアジン環の 割合は、 13C— NMR法によって容易に測定できる。 13C— NMR (B r u k e r社製、 F T - NMR AC - 3 0 0 0 QNPプロ —ブ) による測定において、 ( 2 ) 式のウレ トジオン環を形成する 炭素特有の化学シフ トは、 1 5 7 p pm〜 1 5 8 p pm付近に現れ 、 ( 3 ) 式の ト リアジン環を形成する炭素特有の化学シフ トは、 1 4 8〜 1 4 9 p pm付近に現れる。 本発明でいう直鎖状結晶性ポリ ウレ トジオン中の ト リアジン環の割合は、 それぞれの積分強度値よ り計算することができる。
本発明における ( 1 ) 式中の R , は、 R 2で表されるジオールの 2個の〇H基以外の残基もしく は 2モルのジオールと 1モルのジィ ソシァネー トが反応した化合物の末端の 2個の 0 H基以外の残基で ある。 R2 の具体例としては、 エチレングリ コールの場合、 一 CH 2 — CH2 ―、 ジエチレングリ コールの場合は、 一 CH2 — CH2 - 0 - C H2 一 CH2 —で表される。 R 4はジイソシァネー トの 2 個の NC O基以外の残基で表され、 へキサメチレンジイソシァネ一 トの場合、 ― (CH2) 6—で表される。 R3 は、 本発明に具体例と してあげられる活性水素一個を持つ化合物の活性水素を除いた残基 であり、 エタノールの場合は、 一 O C2H5、 ε—力プロラクタムの 場合は、 C5 H ioC (0) N—で表される。
直鎖状結晶性ボリウ レ トジオンの潜在 N C 0基の含有率は、 1 2 〜2 1重量%で好ましく は 1 4〜2 1重量%である。 潜在' N C O基 の含有率が 1 2重量%未満だと、 塗膜を形成する際、 ゲル分率が上 がらず、 塗膜の耐候性および耐衝撃性等の機械的物性が劣るので好 ましくない。 2 1重量%を越えるポリ ウレ トジオンの製造は理論的 に困難である。
本発明で言う潜在 NC 0基の含有率とは、 ( 2) 式のウレ トジォ ン環を 2モルの NC 0基に換算した値であり、 ポリウレ トジオン中 の潜在 N C 0基の含有率はゥレ トジオン環含有量から計算できる。 直鎖状結晶性ポリウレ トジオンの重量平均分子量は、 2 0 0 0〜 2 0 0 0 0で、 好ましく は 2 0 0 0〜 1 5 0 0 0以下である。 重量平 均分子量は、 2 0 0 0未満だと末端基の増加により、 架橋に関与す る潜在 N C 0基の含有率の低下が起こる。 架橋に関与するためには ウレ トジオン環が、 開環したときに、 両末端が N C 0基となること が必要であるが、 O H基と反応しない末端基が多量になりすぎると ゲル分率が上昇しないことになる。 また 2 0 0 0 0を越えると、 ポ リオールと溶融混合、 粉砕して塗料とした場合、 塗装焼き付け時の 溶融拈度が高くなり、 塗膜の表面平滑性が劣るようになるので好ま しくない。
直鎖状結晶性ポリ ウレ トジオンの融点は、 6 0〜 1 4 0でで、 好 ましく は、 7 0〜 1 2 0 °Cである。 融点が 6 0 °C未満だと、 ポリォ ールと溶融混合後に粉砕して粉体とした場合、 粉体同士がブロッキ ング (塊状化) を引き起こすことがあるので好ましくない。 また 1 4 0 °Cを越えるとこれ以上の熱溶融加工温度が必要であり、 ポリオ ールと押出し機やニーダ一で混練する場合、 ウレ トジオン環の開環 が起こり N C O基と O H基の反応により架橋が起こり、 著しく押出 し機や二一ダ一の トルクが上昇し、 運転が困難になるので好ましく ない。
直鎖状結晶性ポリ ウレ トジオンは、 4 0 °C以下でブロッキングし ないことが必要である。 ポリオールと溶融混合、 粉砕して粉体とし た場合、 夏期には保存中に粉体同士がプロッキングを引き起こすた めである。 ブロッキングしないためには、 上述したようにポリウレ トジオンの融点を 6 0で以上にする必要があり、 そのためには側鎖 が少なく、 直鎖状のポリマーにする必要がある。
直鎖状結晶性ポリウレ トジオンは、 H D I より得られる、 ウレ ト ジオン環単独もしく はウレ トジオン環およびト リァジン環を含有す るポリイソシァネー トとジオールの混合物を 4 0〜 1 2 0 °Cでウレ タン反応させることにより得ることができる。 ポリイソシァネー ト とジオールの混合物に活性水素一個を持つ化合物及び 又はジィソ シァネ一 トを添.加してもよい。
直鎖状結晶性ポリ ウレ トジオンの原料として用いられるポリイソ シァネー トは、 前記 ( 2 ) 式のウレ トジオン環単独を含有したポリ イソシァネー トであり、 もしく はウレ トジオン環と前記 ( 3 ) 式の ト リアジン環構造を少量含むポリイソシァネー トでもよい。 それら の含有率は、 ウレ トジオン環含有率 8 0重量%以上、 ト リアジン環 含有率 2 0重量%以下である。 直鎖状結晶性ポリウレ トジオン中の ト リアジン環の割合は、 使用するポリイソシァネー トによって一義 的に決定されるので、 直鎖状結晶性ポリウレ トジオン中のト リアジ ン環の割合が 0〜 1 5 %のポリ ウレ トジオンを生成するためには、 ウレ トジオン環含有率 8 0重量%以上、 ト リアジン環含有率 2 0重 量%以下のポリイソシァネー トを使用する必要がある。 本発明の直 鎖状結晶性ポリウレ トジオンと米国特許 4, 0 4 4 , 1 7 1 で使用 されているポリウレ トジオンとの根本的な違いは、 このポリイソシ ァネー トのウレ トジオン含有率、 ト リアジン環含有率にある。 米国 特許 4, 0 4 4 , 1 7 1 で使用されているポリイソシァネー ト中の ト リアジン環の含有率が 2 0重量%を越えている。 ウレ トジオン環 及びト リァジン環の含有率は、 赤外吸収スペク トル ( I R ) (日本 分光 (株) 製フー リエ変換赤外分光光度計 F T - I R - 5 M型) に よって得られるウレ トジオン環特有の吸収ピーク ( 1 7 6 7 c m一1 ) と ト リアジン環特有の吸収ピーク ( 1 6 8 8 c m— 1 ) の高さ比か ら検量線により求めることができる。
直鎖状結晶性ポリ ウレ トジオンの原料として用いられるポリイソ シァネー トの合成は、 イ ソシァネ一 ト基に対して反応活性を持たな い溶剤中も しく は非溶媒中で、 HD I に対し、 0. 0 1〜 1 . 0重 量%の以下に示す ( a ) 、 ( b ) および ( c ) の構造で示される反 応触媒の少なく とも 1つの存在下、 — 1 0〜 1 2 0 °Cの範囲の温度 で数時間 HD I を反応させるこ とにより行われる。 HD I のイ ソシ ァネー ト基の少なく ともひとつを二量化させ、 所定の転化率になつ たら触媒の反応性を失活させる触媒毒を添加して反応を停止したあ とに、 未反応 HD I を例えば薄膜蒸留機等で除去するとポリイ ソシ ァネー トを得るこ とができる。 この HD I の除去精製は充分に行う 必要がある。
( a ) : (R 2N) 3-n P L„
(b ) : R 2P - P R2
( c ) : R 2P— A - P R2
Lは一 O Rも しく は R、 Rは〇 Ϊ〜( 8のアルキル基およびフエ二 ル基、 ηは 0〜 2の整数、 Αは C ! C Aのアルキレン基、 ビニレン 基およびフエ二レン基である。
上記の反応触媒の ( a ) の具体例としては、 ト リスジメチルア ミ ノ ホスフィ ン、 ト リスジェチルァ ミ ノホスフィ ン、 ト リスジプロ ピ ルァ ミ ノ ホスフィ ン、 ト リスジブチルァ ミ ノホスフィ ン、 ト リスジ ペンチルア ミ ノ ホスフィ ンおよびト リスジへキシルア ミ ノホスフィ ン等の ト リス (ジアルキルァ ミ ノ) ホスフィ ン、 (b ) としては、 アルキル基がメチル、 ェチル、 プロ ピル、 プチル、 ペンチルおよび へキシルのテ トラアルキルビホスフィ ン、 テ トラフエ二ルビホスフ イ ンや、 ( c ) としては、 アルキレン基としてメチレン、 エチレン 、 プロ ピレンおよびブチレン、 アルキル基がメチル、 ェチル、 プロ ピル、 プチル、 ペンチル及びへキシルの 1. 2— ビス (ジアルキル ホスフィ ン) アルキレン、 1 . 2 — ビス (ジフエニルホスフィ ン) アルキレン、 1 . 2一ビス (ジアルキルホスフィ ン) フエ二レンお よび 1 . 2 — ビス (ジフエニルホスフィ ン) フエ二レン等があげら れる。 特に ト リ スジェチルァ ミ ノ ホスフィ ン、 1, 2 — ビス (ジメ チルホスフィ ン) ェタ ン、 テ トラフエ二ルビホスフィ ンは高い反応 性を有し、 工業的に入手しやすいので好ま しい。
触媒毒とは、 使用する反応触媒 ( a ) 、 ( b ) 、 ( c ) の反応性 を失活させる化合物のことをいう。 例えば、 アルキル化剤、 ァシル 化剤、 硫黄、 あるいは、 大気酸素、 酸素を放出する化合物、 硫酸、 リ ン酸、 アルコール等が挙げられる。 これらの触媒毒の小なく とも 1 つを、 反応を止める際に残存している触媒量に対して 1 . 0倍〜 1 0 . 0倍モルの範囲で用いることができる。 これらの触媒毒は、 目的とするポリイソシァネー トの組成、 粘度が得られた時点で添加 される。 添加時期の目安としては、 転化率 6 0 %以下の時が好まし く、 未反応の H D I を処理しやすい。
前述したようにポリウレ トジオンが粉体塗料用の硬化剤として使 用できるためには、 製造原料つまり本発明中で言うポリィソシァネ ー ト中のウレ トジオン環含有率が重要である。 米国特許 4 , 0 4 4 , 1 7 1 では、 ウ レ トジオン化触媒として ト リェチルホスフィ ン、 ト リブチルホスフィ ン、 フエニルジメチルホスフィ ンのような脂肪 族性置換基を有する第三級ホスフィ ンを用いてウレ トジオン環含有 のポリイソシァネー ト (米国特許 4 , 0 4 4, 1 7 1 では二量体と 表現) を得ている。 これら触媒を用いた場合、 ウレ トジオン化と同 時に、 多量の ト リアジン化が併発する。 前述したように、 ト リアジ ン環まで反応が進めば分子構造が非直鎖状となるため塗膜表面平滑 性が発現せず、 更に焼き付け塗装時に再び N C 0基に解離するのは 不可能となり、 また潜在 N C O基の含有率の低下が起こるため、 塗 膜の耐候性や機械的物性が劣る。 従って、 米国特許 4 , 0 4 4 , 1 7 1 に記載されているゥ レ トジオン化触媒より得られたポリィ ソシ ァネー トでは、 粉体塗料として商品価値のあるポリ ウレ トジオンを 得られない。
使用する H D I 中に少量の I P D I を混合させてポリイ ソシァネ 一トを生成させてもかまわない。 I P D I 中の 2モルのイソシァネ — ト基は、 化学構造的に非対称になっているため、 添加量によって ポリ ウ レ トジオンの結晶構造を制御するこ とができ、 融点が 6 0 °C 未満にならないように添加するこ とができる。 添加量としては、 H D I 中に 2 0重量%以下の必要がある。
直鎖状結晶性ポリ ウ レ トジオンの原料として用いられるジオール は、 鎖伸長剤として用いられる。 その例としては、 脂肪族、 脂環族 、 芳香族のジオールであり、 特に脂肪族、 脂環族が耐候性の面より 良好である。 例えばエチレングリ コール、 1, 3—プロパンジォ一 ル、 し 2—プロパンジオール、 2—メチル 1, 3—プロパンジォ —ル、 1 , 4一ブタンジオール、 1 , 3—ブタンジオール、 し 4 —ペンタ ンジオール、 1, 5—ペンタンジオール、 1 , 6—へキサ ンジオール、 1, 5—へキサンジオール、 1 . 2—へキサンジォ一 ル、 2 , 5—へキサンジオール、 オクタンジオール、 ノナンジォー ル、 デカ ンジオール、 ジエチレングリ コール、 ト リエチレングリ コ 一ル、 ジプロ ピレングリ コール、 シクロへキサンジオール、 水素化 ビスフヱノール A、 シクロへキサンジメタノール、 フエニルハイ ド ロキノ ン、 ジヒ ドロキシナフ夕 レン、 ハイ ドロキノ ン等である。 直鎖状結晶性ポリ ウ レ トジオンの原料として用いられる活性水素 一個を持つ化合物は、 分子量調整剤として用いられる。 その例とし ては、 脂肪族、 脂環族、 芳香族のモノオール、 モノア ミ ン、 ラク夕 ム、 ォキシムであり、 特に脂肪族、 脂環族が耐候性の面より良好で ある。 例えばメタノール、 エタノール、 プロパノール、 ブ夕ノール 、 ァ ミ ルアルコール、 ペン夕ノール、 へキサノール、 ヘプ夕ノール 、 ノニルアルコール、 シクロブ夕ノ ール、 シクロへキサノール、 フ ェノ ール、 ベンジルアルコール、 ア ミ ノプロ ノ、。ン、 ア ミ ノブタン、 ァ ミ ノペンタン、 ァ ミ ノへキサン、 ァ ミ ノオクタン、 ε —力プロラ クタ厶、 ά一ノく レロラ クタム、 ホルムアル ドォキシム、 メチルェチ ルケ トォキシム、 シクロへキサノ ンォキシム等である。
直鎖状結晶性ポリウレ トジオンの原料として用いられるジイソシ ァネー トは、 鎖伸長剤として、 潜在 N C 0基の含有率の調整のため に用いられる。 その例として脂肪族、 脂環族、 芳香族ジイソシァネ ー トであり、 特にへキサメチレ ンジイ ソシァネー ト、 イ ソホロンジ イ ソシァネー ト、 4 , 4 ' —メチレ ンビスシクロへキシルジイ ソシ ァネー トが耐候性の面より良好である。
直鎖状結晶性ポリウレ トジオンの原料として用いられる、 ポリイ ソシァネー ト、 ジオール、 活性水素一個を持つ化合物とジイ ソシァ ネー トの割合は、 N C 0基 活性水素基のモル数の比が、 0 . 8〜 1 . 2になるように調整する。 モル数の比が 0 . 8未満だと潜在 Ν C 0基の含有率が低くなり、 耐候性や機械的物性を満足できない。 また 1 . 2を越えるとポリウレ トジオンの末端基には多量の N C 0 基が付いていることになり、 押し出し機および二一ダ一等でポリォ ールと溶融混合する際に、 Ο Η基と架橋反応が起こるため、 焼き付 け時の溶融流動性が悪くなり、 塗膜表面平滑性が良くない。
ポリィソシァネー ト中へジオール、 活性水素一個を持つ化合物お よびジィソシァネー トを添加する場合、 単独かまたはそれらの混合 物を添加してもよい。 添加方法は反応熱の急激な上昇を防ぐために 少しずつ連続的または分割添加するのが好ましい。 なおそれぞれ単 独で添加する場合の順序はどちらが先でも構わない。 反応温度は、 4 0 〜 1 2 0 °Cである。 反応は、' 主にウレタン反応により鎖伸長が 起こる。 4 0 °C未満だとウ レタ ン反応が遅く、 1 2 0 °Cを越えると ウ レタ ン反応以外の反応が起こ り、 ゲル化する場合があるので好ま しく ない。 なお反応に際し、 例えば有機スズ系等のウ レタン反応を 促進するウ レタ ン化触媒を併用しても良い。
本発明の粉体塗料組成物に含まれる (A ) ポリオ一ルとしては、 ポリエステルポリオール、 アク リ ルポリオ一ル、 フ ッ素ポリオール 、 ポリ カーボネー トポリオール、 エポキシポリオール、 ウレタンボ リオールがある。
ポリエステルポリオ一ルとしては、 例えば、 コハク酸、 アジピン 酸、 セバチン酸、 ダイマー酸、 無水マ レイ ン酸、 無水フマル酸、 ィ ソフタル酸、 テレフタル酸などの二塩基性のカルボン酸の少なく と も 1 つと、 エチレングリ コール、 プロ ピレングリ コール、 ジェチレ ングリ コ一ル.、 ブチレングリ コール、 ネオペンチルグリ コール、 ト リ メチロールプロパン、 グリセリ ンなどの多価アルコールの少なく とも 1 つとの縮合反応によって得られるポリエステルポリオール樹 脂類、 および e —力プロラク ト ンを多価アルコールを用いて開環重 合して得られるポリ力プロラク ト ン、 さらには、 ヒマシ油のような、 水酸基を有する脂肪族と多価アルコールとのエステル等があげられ る
ァク リルポリオ一ルは、 分子中に 1 個以上の活性水素をもつ重合 性モノマーと、 これに共重合可能なモノマーを共重合させるこ とに よって得られる。 このようなものとしては、 例えば、 アク リル酸—
2 — ヒ ドロキシェチル、 アク リ ル酸一 2 — ヒ ドロキシプロピル、 ァ ク リル酸ー 2 — ヒ ドロキシブチルなどの活性水素をもつァク リル酸 エステル : メタアク リル酸一 2 — ヒ ドロキシェチル、 メタアク リル 酸一 2 — ヒ ドロキシプロ ピル、 メタアク リル酸一 2 — ヒ ドロキシブ チルなどの活性水素をもつメ夕アク リル酸エステル : グリセリ ンの ァク リ ル酸モノエステルあるレ、はメタク リル酸モノエステル、 ト リ メチロールプロノ ンのァク リル酸モノエステルあるいはメタァク リ ル酸モノエステル等の多価活性水素を有する (メタ) アク リル酸ェ ステル : の少な く とも 1 つとァク リル酸メチル、 ァク リル酸ェチル. アク リ ル酸イ ソプロ ピル、 アク リ ル酸— n —プチル、 アク リル酸一 2 一ェチルへキシルなどのァク リ ル酸エステル類、 メタァク リ ル酸 メチル、 メタアク リル酸ェチル、 メタアク リ ル酸イ ソプロ ピル、 メ 夕アク リル酸一 n—ブチル、 メ タアク リ ル酸イ ソプチル、 メタァク リル酸— n —へキシルなどのメタァク リル酸エステルの少なく とも 1 つと、 必要であるならアク リ ル酸、 メタアク リル酸、 ィタコン酸 などの不飽和カルボン酸、 アク リ ルア ミ ド、 N—メチロールァク リ ルア ミ ド、 ジアセ ト ンアク リルア ミ ドなどの不飽和ア ミ ド、 および スチレン、 ビニル トルエン、 酢酸ビニル、 アク リル二 ト リ ルなどの その他の重合性モノマーの少なく とも 1 つとを重合させて得られる ァク リ ルポリオール樹脂があげられる。
フ ッ素ポリオールとしては、 フルォロォレフィ ンまたはフ ッ素含 有ビニル単量体と水酸基含有ビニル単量体を必須成分として、 これ らと共重合可能なビニル単量体と共重合させて得られるフ ッ素ポリ ォ一ルがあげられる。
エポキシ系ポリオールとしては、 例えば、 ノボラ ッ ク型、 β チルェピクロルヒ ドリ ン型、 環状ォキシラ ン型、 グリ シジルエーテ ル型、 グリ シジルエステル型、 グリ コールエーテル型、 脂肪族不飽 和化合物のエポキシ化型、 エポキシ化脂肪族エステル型、 多価カル ボン酸エステル型、 ア ミ ノ グリ シジル型、 レゾルシン型などのェポ キシ樹脂があげられる。
ポリ カーボネー トポリオールとしては、 ビスフエノ ール Α等のよ うな芳香族多価アルコールや 1 , 6 —へキサンジオール等の脂肪族 •脂環族多価アルコールを原料として常法により得られるものがあ げられる。
また、 ウレタンポリオールとしては、 芳香族、 脂肪族、 脂環族の ジイソシァネー トと活性水素を持つ化合物との付加反応の繰り返し で生成するポリマーであり、 ポリマー中にウレタン結合を持ち、 ポ リマー側鎖や末端に OH基を持つものをあげることができる。
本発明で使用されるポリオールの水酸基価は 2 0〜 2 5 0 m g K 〇 HZg、 好ましく は 2 0〜 2 0 O m g K O H/gである。 水酸基 価が 2 O m g K O HZg未満であると耐汚染性が悪く、 2 5 0 m g K O HZgを超えると耐侯性が悪くなる。
本発明で使用される好ま しいポリオールは、 酸価が 1 O m g K O H/g以下、 ガラス転移温度 4 0〜 8 0 °C、 重量平均分子量 5 0 0 0〜 3 0 0 0 0である。
上記に示したポリオールは適宜混合して用いることも可能である, 本発明の粉体塗料組成物に含まれる (B) 直鎖状結晶性ポリウレ トジオンの量は ( A) ポリオール 1 0 0重量部に対して、 5〜 1 0 0重量部が好ましく、 さらに好ましく は 7〜 8 0重量部である。 ポ リウレ トジオンの量が 5重量部未満であると架橋反応が十分でなく 、 塗膜の耐候性、 機械的物性が劣り、 1 0 0重量部を越えると余剰 の架橋剤が残存することになり、 塗膜の機械的物性等が低下する。 本発明の粉体塗料組成物は ( C) ウレタン硬化促進触媒を含んで もよい。 その量は好ましく は 5重量部まで、 さらに好ま しく は 0. 1〜 2重量部を含む。 5重量部を越えると反応後に触媒残差が多量 残存することになり、 塗膜の耐候性に悪影響を及ぼす。
使用するウレタン硬化促進触媒は、 塗装焼き付けにより生成する 塗膜のゲル分率を調整するために使用する。 ウレタン硬化促進触媒 としては、 有機スズ系、 有機亜鉛系、 有機ジルコニウム系、 有機力 ドミニゥム系、 有機バリ ゥム系等の溶剤型のゥレタン塗料に一般的 に使用されているものである。 なかでも有機スズ系が良好であり、 融点が 1 0 0 °C以下の有機スズ系が更に好ましい。 融点が 1 0 0 °c 以下であると塗装焼き付け時に塗料への可塑化効果も付与すること ができ、 塗膜の表面平滑性は更に良好になる。 例としては、 ブチル スズマレエー ト系、 ブチルスズラウ レー ト系、 ジブチルスズマレエ ー ト系、 ジブチルスズラウレー ト系、 ジブチルスズアセテー ト、 ジ プチルスズジステアレー ト等をあげることができる。
本発明の粉体塗料組成物には、 上記に示した (A ) ポリオールと ( B ) 直鎖状結晶性ポリウレ トジオンと ( C ) ウレタン硬化促進触 媒の他に用途に応じて、 顔料、 着色剤、 表面平滑剤、 ハジキ防止剤- 発泡防止剤、 光劣化防止剤、 紫外線防止剤、 可塑剤、 酸化防止剤、 塩害防止剤等の当該技術分野で使用されている各種添加剤を含むこ とができる。
本発明の粉体塗料組成物の調整方法と塗装方法の一例を述べる。 まず、 上記に示したポリオールと、 ( 1 ) 式であらわされる直鎖 状結晶性ポリウレ トジオンをウレタン硬化促進触媒、 顔料等の上記 に示した添加剤とともにヘンシェルミキサー等で混合し、 押し出し 機および二一ダ一等で 8 0〜 1 4 0 °Cの温度範囲で溶融混合させる c 溶融混合された粉体塗料原料は、 冷却後、 粗粉砕機と微粉砕機によ り、 粒径が約 2 0 0 m以下の粉体にする。
粉体塗料の一般的な塗装方法はスプレーガンによる静電塗装であ るが、 流動浸漬漕、 スプレーコー ト、 ロールコー ト、 力一テンフロ ーコー ト等による塗装もなされる。 粉体塗料組成物を被塗装体に付 着させた後、 一般的に 1 6 0 °C以上の温度による加熱焼き付けによ り、 均一な塗膜を被塗装上に形成させる。 また、 成形金型内に本発 明の粉体塗料組成物を付着させた後、 被塗装体を充塡して、 金型を 加熱することにより被塗装体上に塗膜を生成させるィンモールド成 形法も使用することができる。 また、 Shee t Mo l di ng Compound (SM C)や
Bu l k Mo l d i ng Compound (BMC) の原料としても使用できる。
上記の被塗装体としては、 金属板、 プラスチッ ク板、 コンク リー ト扳、 木材板またはそれらの成形製品をあげることができる。 金属 板と.しては、 ステン レス板、 アルミニウム板、 チタン板、 冷延鋼板、 亜鉛メ ツキ鋼板、 ク ロムメ ツキ鋼板、 アルミニウムメ ツキ鋼板、 二 ッケルメ ツキ鋼板等があり、 必要に応じて金属表面をアル力 リ脱脂 等による洗浄や、 塗膜との密着性を上げるために金属表面を化成処 理する。 また、 上記の金属板はあらかじめ所定の成形がなされた金 属成形物でもよい。 必要に応じてあらかじめ金属表面に下塗りを行 つていてもよい。 その下塗りの塗膜厚みとしては 1 0 m以下が好 ましい。
プラスチッ ク板としては、 フヱノール樹脂、 F R P等の熱硬化性 樹脂ゃポリアミ ド、 ポリカーボネー ト等の熱可塑性樹脂等である。 得られたプレコー ト材料は、 塗装焼き付け時にプロック剤の悪臭 がなく、 また得られる塗膜は、 耐候性、 耐衝撃性、 耐薬品性、 表面 強度、 表面光沢、 防食性等に優れている。 従って、 本発明のプレコ ー ト材料は、 家庭電気製品用として、 冷蔵庫、 洗濯機、 エアコン、 電子レンジ等の外箱や扉およびその他部品として、 ネッ トフエンス
、 パイプフヱンス等の建材やガー ドレール等の道路資材として、 ヮ ィパー、 コイルスプリ ング、 バンパー等の自動車部品および自動車 本体として、 土木機器、 耕運機等の特殊機器の部品、 本体として、 スチール家具、 スチール棚等の事務家具として、 分電盤、 配電盤、 ラジェ一ター、 トランス等の電機機器部品として使用できる。 応用 範囲が広いため、 上記に挙げたものには限られない。 図面の簡単な説明
図 1は、 実施例 1で得られたポリウレ トジオンの F I 一 I Rのチ ヤー トである。 発明を実施するための最良の形態
以下、 実施例によりさらに具体的に説明するが、 本発明はこれら により限定されるものではない。
(ポリウレ トジオンの構造単位)
ポリウレ トジオンの構造単位は、 赤外分光光度計 (FT - I R) により、 ウレ トジオン環、 ウレタン結合、 メチレン基の吸収で確認 した。
(ポリ ウレ トジオン中の ト リァジン環の割合)
ポリウレ トジオン中の ト リアジン環の割合は、 13C—NMR ( B r u k e r社製、 FT— NMR AC— 3 0 0 0 QNPプローブ ) により次の測定条件で求めた。 溶媒は、 重水素化ジメチルスルホ キシド、 測定温度 4 0で、 化学シフ トの基準はテトラメチルシラン を 0 p p mとし、 観測周波数 7 5. 4 MHzによる測定により得ら れる 1 5 7 p pm〜 1 5 8 p pm付近の化学シフ トの積分強度と 1 4 8 p pm〜 1 4 9 p pm付近の化学シフ トの積分強度より計算し た。
(ボリウレ トジオン中の潜在 NC 0基の含有率)
ポリウレ トジオン中の潜在 N C 0の含有率は、 赤外分光光度計 ( FT— I R) にて検量線を作成して、 それより求めた。
(ポリウレ トジオンの融点)
ポリウレ トジオンの融点は、 示差走査熱量計 (D S C) で測定し た。 (ポリ ウレ トジオンのブロッキング性)
ポリウレ トジオンのブロッキング性は、 試料を粉砕機 '粉砕し、
8 メ ッシュで篩ったものを、 4 O mm0の試験管中に 1 5 gとり、 2 0 g Z c m 2 の荷重をかけ、 4 0 で 2 4 0時間放^^、 試料を 取り出した時、 もとの紛末状に戻るものを〇、 戻りにく いものを X とした。
(ポリ ウレ トジオンの重量平均分子量)
ポリウレ トジオンの重量平均分子量は、 テトラヒ ドロフランに溶 解してゲル浸透クロマ トグラフ (G P C— R I検出器) で測定して 永めた。
(ポリイソシァネー ト中の N C 0基の含有量)
ポリイソシァネー ト中の N C 0基の含有量は、 過剰のジー n—ブ チルァミ ンを添加して、 イソシァネー ト基と反応させた後、 未反 : のァミ ンの量を塩酸で逆滴定し、 重量%で求めた。
(ポリイソシァネー ト中のウレ トジオン環含有ポリイソシァネー ト と ト リアジン環含有ポリィソシァネー トの含有量)
ポリイソシァネ一 ト中のウレ トジォン環含有ポリイソシァネー ト と ト リアジン環含有ポリィソシァネー トの含有量は、 F T— I Rに よって得られるウレ トジオン環ピーク ( 1 7 6 7 cm-1) 、 ト リア ジン環ピーク ( 1 6 8 8 c m— 1) の高さの比から検量線により求め た。
(塗膜物性)
塗膜物性は、 得られた塗料組成物を微粉砕用ハンマーミルで粉砕 し、 1 0 0メ ッシュで篩ったものを、 燐酸亜鉛処理した鋼板に静電 塗装し、 1 8 0 °C、 2 0分間焼き付けたものを測定した。
(塗膜の表面平滑性)
塗膜の表面平滑性は、 変角光沢計により測定した 2 0 ° 光沢の値 であらわした。
(塗膜の耐衝撃性)
塗膜の耐衝撃性は 1 k gの重り と 1 Z2インチ øの打ち型の径の 条件下でデュポン式衝撃試験器で測定した。 塗膜に破れが生じない 最高の高さ ( c m) であらわした。
(耐候性試験)
耐候性試験は、 サンシャイ ンゥヱザ一メータ一にて行い、 2 5 0 時藺後の 6 00 光沢値を試験開始前の 6 0 ° 光沢値で除し、 光沢保 持率 (%) であらわした。
(ゲル分率)
ゲル分率は、 焼き付けた塗板を 2 0 °Cのアセ ト ンに浸し、 2 4時 間後に取り出して、 1 0 0 °Cで 1時間乾燥した後の重量から酸化チ 夕ン顔料の重量を減じた値を元の重量から酸化チタンの重量を減じ た値で除し、 百分率 (%) で求めた。
(合成例 1 )
撹拌機、 温度計、 冷却管を取り付けた四ッ口フラスコに HD Iを 5 0 0 g仕込み、 6 0 °C、 撹拌下、 ト リスジェチルァ ミ ノ ホスフィ ン 5. 0 gを加えた。 6 0でで反応を進行させ、 4時間後反応液の イソシァネー ト含有率および屈折率測定により、 ポリイソシァネー トへの転化率が 1 8 %になった時点で、 リ ン酸 4. 0 gを添加し反 応を停止した。 リ ン酸添加後、 数分で失活触媒が結晶として析出し た。 その後、 さらに 6 0でで 1時間加熱を続け、 常温に冷却した。 析出物を濾過により除去した後、 流下式薄膜蒸発装置を用いて、 1回目 0. 3 t o r . Z l 5 5 °C、 2回目 0. 2 t o r . Z l 4 5 °Cで未反応の HD Iを除去した。
得られた生成物は、 微黄色、 透明の液体で、 粘度は 5 2mP a · s 2 5 °C、 イソシァネー ト基含有率は 2 4 %であった。 また、 生 成したボリイソシァネー ト中にはウレ トジオン環含有率が 9 6重量 %、 'ト リアジン環含有率が 4重量 であつた。
(合成例 2 )
合成例 1 と同様の装置に HD I を 5 0 0 g仕込み、 8 0 eC、 撹拌 下、 ト リ スジメチルァ ミ ノホスフィ ン 1 . l gとテ トラフエ二ルビ フ ォスフィ ン 0. 2 gを加えた。 8 0 °Cで反応を進行させ、 4時間 後反応液のイソシァネー ト含有率および屈折率測定により、 ポリィ ソシァネー トへの転化率が 1 5 %になった時点で、 リ ン酸 1 . 5 g を添加し反応を停止した。 その後、 さらに 8 0 で 1 時間加熱を続 け、 常温に冷却した。 ついで、 合成例 1 と同様に精製を行った。 得られた生成物は、 微黄色、 透明の液体で、 粘度は 5 2 m P a · s 2 5 °C、 イソシァネー ト基含有率は 2 4 %であった。 また、 ゥ レ トジオン環含有率が 9 1 重量%、 ト リアジン環含有率が 9重量% であった。
(合成例 3 )
合成例 1 と同様の装置に HD I を 5 0 0 g仕込み、 2 5で、 撹拌 下、 1. 2 -ビス (ジメチルホスフィ ン) ェタン 0. 8 gを加えた c 2 5でで反応を進行させ、 3時間後反応液のイソシァネー ト含有率 および屈折率測定により、 ポリィリ シ了ネー トへの転化率が 2 1 % になつた時点で、 酢酸クロ リ ド 0. 6 gとリ ン酸 2. 4 gを添加し 反応を停止した。 その後、 さらに 8 0でで 1 時間加熱を続け、 常温 に冷却した。 ついで、 合成例 1 と同様に精製を行った。
得られた生成物は、 微黄色、 透明の液体で、 粘度は 5 3 m P a · s / 2 5 °C, イソシァネ一 ト基含有率は 2 4 %であった。 また、 ゥ レ トジオン環含有率が 9 1重量%、 ト リアジン環含有率が 9重量% 、のった。 (比較合成例 1 )
実施例 1 と同様の装置に HD I を 5 0 0 g仕込み、 6 0 °C、 撹拌 下、 ト リブチルホスフィ ン 2. 7 gを加えた。 6 0 °Cで反応を進行 させ、 4時間後反応液のィソシァネー ト含有率および屈折率測定に より、 ポリイソシァネー トへの転化率が 1 7 %になった時点で、 硫 黄 0. 3 gを添加し反応を停止した。 その後、 さらに 8 0 °Cで 1 時 間加熱を続け、 常温に冷却した。 ついで、 合成例 1 と同様に精製を 行った。
得られた生成物は、 微黄色、 透明の液体で、 N C O%含有量は 2 4. 5 %であった。 また、 生成したポリイソシァネー ト中のウレ ト ジオン環含有率は、 7 5重量%、 ト リアジン環含有率は 2 5重量% であった。
(実施例 1 )
合成例 2で得たポリイソシァネー ト 5. 0モルを撹拌翼を取り付 けた四つ口フラスコに入れ、 温度を 8 0 °Cに保ち、 N C O基 ZO H 基のモル比が 1 . 0になるように ( 1 モルのポリイソシァネー トは 2モルの N C O基を有するとした) エチレングリ コール 4. 0モル を温度が 1 0 0 °Cを越えないように分割添加して、 その後にェタノ —ル 2. 0モルを同様に分割添加した。 そのまま 1 時間撹拌を続け、 降温せずにそのままポリプロピレン製ビ一力一に移し、 室温まで冷 却した。 得られたポリマ一を粉砕し、 F T— I Rにより構造確認を 行ったところ、 1 7 6 0 c m—1にウレ トジオン環、 1 7 0 0 c m一1 にウ レタ ン結合、 2 8 5 0 c m— 1にメチレン基のポリ ウ レ トジオン 特有の吸収を確認した。 図 1 に F T— I Rのチヤ一 トを示す。 得ら れたポリ ウレ トジオンの NMR法によるポリウレ トジオン中の ト リ ァジン環の割合は 6 %、 潜在 N C O基の含有率は 1 8. 3 %、 重量 平均分子量 2 1 0 0、 融点 8 9 およびプロッキング性は〇であつ た。
水酸基価 5 3 m g K O H Z g、 ガラス転移温度 7 3。Cのアク リル ポリオール 1 0 0重量部に上記で得られたポリウレ トジオン 2 1重 量部と酸化チタン 3 6重量部、 モダフ口一パウダー (モンサン ト社 製) を 0 . 5部、 ジブチル錫ジラウレー ト 0 . 3部を配合した。 こ の配合物をヘンシェルミキサーで一旦混合した後に、 二軸押し出し 機で 1 2 0 °Cにおいて溶融混合し、 出てきた溶融物を 1 0 °Cのピン チ ψ—ラーで冷却し、 粉体塗料組成物を得た。 得られた粉体塗料組 成物を粗粉砕機と微粉砕機により粉砕し、 1 0 0 メ ッシュで篩った 粉体をスプレーガン式静電塗装機で燐酸亜鉛処理した鋼板に塗装し 、 焼き付けた塗膜物性を測定した。 得られた塗膜は、 2 0 ° 光沢値 8 0、 耐衝擊性 5 0 c m、 光沢保持率 8 5 %、 ゲル分率 9 1 %であ り、 非常に良好なものであった。
(実施例 2 )
水酸基価 2 3 m g K 0 H / g . ガラス転移温度 5 4 °Cのポリエス テルポリオール 1 0 0重量部に実施例 1 で得られたポリウレ トジォ ン 9重量部と酸化チタン 3 3重量部、 モダフローパウダーを 0 . 5 部、 ジブチル錫ジラウレー ト 0 . 3部を配合した。 この配合物をへ ンシェルミキサ一で一旦混合した後に、 二軸押し出し機で 1 0 0 °C において溶融混合し、 出てきた溶融物を 1 0 °Cのピンチローラーで 冷却し、 粉体塗料組成物を得た。 得られた粉体塗料組成物を粗粉砕 機と微粉砕機により粉砕し、 1 0 0 メ ッシュで篩った粉体をスプレ —ガン式静電塗装機で燐酸亜鉛処理した鋼板に塗装し、 焼き付けた 塗膜物性を測定した。 得られた塗^は、 2 0 ° 光沢値 8 0、 耐衝撃 性 5 0 c m、 光沢保持率 8 3 %、 ゲル分率 9 0 %であり、 非常に良 好なものであつた。
(実施例 3 ) —
95/32231
2 3 水酸基価 1 8 e m g K O H/g. ガラス転移温度 5 4 °Cのポリエ ステルポリオール 1 0 0重量部に実施例 1 で得られたポリウレ トジ オン 7 2重量部と酸化チタン 5 2重量部、 モダフローパウダーを 0 . 5部、 ジブチル錫ジラウレー ト 0. 3部を配合した。 この配合物 をヘンシェルミキサーで一旦混合した後に、 二軸押し出し機で 1 2 0 °Cにおいて溶融混合し、 出てきた溶融物を 1 0でのピンチローラ 一で冷却し、 粉体塗料組成物を得た。 得られた粉体塗料組成物を粗 粉砕機と微粉砕機により粉砕し、 1 0 0 メ ッシュで篩った粉体をス プレーガン式静電塗装機で燐酸亜鉛処理した鋼板に塗装し、 焼き付 けた塗膜物性を測定した。 得られた塗膜は、 2 0 ° 光沢値 8 1、 耐 衝撃性 5 0 c m、 光沢保持率 8 5 %、 ゲル分率 9 0 %であり、 非常 に良好なものであった。
(実施例 4 )
合成例 1 で得たポリイソシァネー ト 5. 0モルを撹拌翼を取り付 けた四つ口フラスコに入れ、 温度を 8 0 °Cに保ち、 1^〇 0基/0 ?1 基のモル比が 1 . 0になるように ( 1 モルのポリイ ソシァネー トは 2モルの N C O基を有するとした) シクロへキサンジメタノール 4 . 0モルを温度が 1 0 0 °Cを越えないように分割添加して、 その後 にエタノール 2. 0モルを同様に分割添加した。 そのまま 1 時間撹 拌を続け、 降温せずにそのままポリプロピレン製ビーカーに移し、 室温まで冷却した。 得られたポリマーを粉碎し、 F T— I Rにより 構造確認を行ったところ、 ポリウレ トジオン特有の吸収を確認した。 得られたポリウレ トジオンの N M R法によるポリウレ トジオン中の ト リアジン環の割合は 3 %、 潜在 N C O基の含有率は 1 6. 7 %、 重量平均分子量 6 6 0 0、 融点 1 0 5 °Cおよびブロッキング性は〇 であつた。
水酸基価 5 3mgK0HZg、 ガラス転移温度 7 4 °Cのアク リル ポリオール 1 0 0重量部に上記で得られたポリウレ トジオン 3 1重 量部と酸化チタン 3 9重量部、 モダフローパウダーを 0 . 5部、 ジ プチル錫ジラウレー ト 0 . 3部を配合した。 この配合物をへンシェ ルミキサ一で一旦混合した後に、 二軸押し出し機で 1 2 0 °Cにおい て溶融混合し、 出てきた溶融物を 1 0でのピンチ口一ラーで冷却し 、 粉体塗料組成物を得た。 得られた粉体塗料組成物を粗粉砕機と微 粉砕機により粉砕し、 1 0 0 メ ッシュで篩った粉体をスプレーガン 式静電塗装機で燐酸亜鉛処理した鋼板に塗装し、 焼き付けた塗膜物 性を測定した。 得られた塗膜は、 2 0。 光沢値 8 2、 耐衝撃性 5 0 c m、 光沢保持率 8 8 %、 ゲル分率 9 0 %であり、 非常に良好なも のであった。
(実施例 5 )
水酸基価 4 0 m g K 0 H / g , ガラス転移温度 5 9 °Cのポリエス テルポリオール 1 0 0重量部に実施例 4で得られたポリウレ トジォ ン 2 4重量部と酸化チタン 3 7重量部、 モダフローパウダーを 0 .
5部、 ジブチル錫ジラウレー ト 0 . 3部を配合した。 この配合物を ヘンシェルミキサ一で一旦混合した後に、 二軸押し出し機で 1 2 0 °Cにおいて溶融混合し、 出てきた溶融物を 1 0 °Cのピンチ口一ラー で冷却し、 粉体塗料組成物を得た。 得られた粉体塗料組成物を粗粉 砕機と微粉砕機により粉砕し、 1 0 0 メ ッシュで篩った粉体をスプ レーガン式静電塗装機で燐酸亜鉛処理した鋼板に塗装し、 焼き付け た塗膜物性を測定した。 得られた塗膜は、 2 0 0 光沢値 8 2、 耐 撃性 5 0 c m、 光沢保持率 8 5 %、 ゲル分率 9 0 %であり、 非常に 良好なものであった。
(実施例 6 )
合成例 3で得たボリイソシァネ一 ト 5 . 0モルを撹拌翼を取り付 けた四つ口フラスコに入れ、 温度を 8 0 °Cに保ち、 N C O基/ O H 基のモル比が 1 . 0になるように ( 1 モルのポリイソシァネー トは 2モルの N C O基を有するとした) エチレングリ コール 4. 0モル を温度が 1 0 0 °Cを越えないように分割添加して、 その後にェタノ —ル 2. 0モルを同様に分割添加した。 そのまま 1 時間撹拌を続け 、 降温せずにそのままポリプロピレン製ビーカーに移し、 室温まで 冷却した。 得られたポリマーを粉砕し、 FT— I Rにより構造確認 を行ったところ、 ポリウレ トジオン特有の吸収を確認した。 得られ たポリウレ トジオンの N M R法によるポリウレ ジオン中の ト リア ジン環の割合は 6 %、 潜在 N C O基の含有率は 1 8. 3 %、 重量平 均分子量 2 1 0 0、 融点 8 7でおよびプロッキング性は〇であつた c 水酸基価 4 0 m g K O HZg、 ガラス転移温度 5 9 °Cのポリエス テルポリオール 1 0 0重量部に上記で得られたポリウレ トジオン 1 6重量部と酸化チタン 3 5重量部、 モダフローパウダーを 0. 5 *R、 ジブチル錫ジラウレー ト 0. 3部を配合した。 この配合物をへンシ ェルミキサ一で一旦混合した後に、 二軸押し出し機て 1 3 0 °Cにお いて溶融混合し、 出てきた溶融物を 1 0 °Cのピンチローラーで冷却 し、 粉体塗料組成物を得た。 得られた粉体塗料組成物を粗粉砕機と 微粉砕機により粉砕し、 1 0 0 メ ッシュで篩った粉体をスプレーガ ン式静電塗装機で燐酸亜鉛処理した鋼板に塗装し、 焼き付けた塗膜 物性を測定した。 得られた塗膜は、 2 0 ° 光沢値 8 0、 耐衝撃性 5 0 c m. 光沢保持率 8 2 %、 ゲル分率 9 0 %であり、 非常に良好な ものであった。
(実施例 7〜 1 2 )
合成例 1 で得たポリィソシァネー トを用いて表 1 に示す組成によ りポリウレ トジオンの合成を実施例 4 と同様に行った o FT— I R によりそれぞれの得られたポリマーの構造確認を行ったところ、 ポ リウレ トジオン特有の吸収を確認した。 得られたポリウレ トジオン の NMR法によるポリ ウレ トジオン中の ト リアジン環の割合、 潜在 NC O基の含有率、 重量平均分子量、 融点およびブロッキング性を 表 1 に示す。
水酸基価 4 O m g KOH/g, ガラス転移温度 5 9 °Cのポリエス テルポリオール 1 0 0重量部に上記 7〜 1 0で得られたポリウレ ト ジオン 1 6重量部と酸化チタンを 3 5重量部、 モダフローパウダー を 0. 5部、 ジブチル錫ジステアレー ト 0. 3部を配合した。 この 配合物をヘンシェルミキサ一で一旦混合した後に、 二軸押し出し機 で 1 2 0 °Cにおいて溶融混合し、 出てきた溶融物を 1 0 °Cのピンチ ローラーで冷却し、 粉体塗料組成物を得た。 得られた粉体塗料組成 物を粗粉砕機と微粉砕機により粉砕し、 1 0 0メ ッシュで篩った粉 体をスプレーガン式静電塗装機で燐酸亜鉛処理した鋼板に塗装し、 焼き付けた塗膜物性を測定した。 得られた塗膜の結果を表 1 に示す c 得られた塗膜は非常に良好なものであった。
(実施例 1 3 )
撹拌機、 温度計、 冷却管を取り付けた四ッロフラスコに HD I / I PD I = 8ノ2重量比を 5 0 0 g仕込み、 6 0 °C、 撹拌下、 ト リ スジェチルァミ ノホスフィ ン 5. 0 gを加えた。 6 0でで反応を進 行させ、 4時間後反応液のィソシァネー ト含有率および屈折率測定 により、 ポリイソシァネ一 トへの転化率が 1 8 %になつた時点で、 リ ン酸 4. 0 gを添加し反応を停止した。 リ ン酸添加後、 数分で失 活触媒が結晶として析出した。 その後、 さらに 6 0 で 1時間加熱 を続け、 常温に冷却した。
析出物を濾過により除去した後、 ·流下式薄膜蒸発装置を用いて、 1回目 0. S t o r . Z l S S ^ 2回目 0. 2 t o r . / 1 4 5 °Cで未反応の HD Iを除去した。
得られた生成物は、 微黄色、 透明の液体で、 粘度は 5 2 m P a · s 2 5 °C、 イソシァネー ト基含有率は 2 4 %であった。 また、 生 成したポリイソシァネー ト中にはウレ トジォン環含有率が 9 1重量 %、 ト リアジン環含有率が 9重量 であった。 ポリイソシァネー ト 中の HD I Z I P D Iの含有比率を FT— I Rで測定したところ 9 / 1 の重量比であつた。
上記合成で得たポリイソシァネー ト 3. 0モルを撹拌翼を取り付 けた四つ口フラスコに入れ、 温度を 8 0 °Cに保ち、 NC O基 ZOH 基のモル比が 1. 0になるように ( 1モルのポリイソシァネー トは 2モルの NC O基を有するとした) エチレングリ コール 2. 8モル を温度が 1 0 0 °Cを越えないように分割添加して、 その後にェタノ ール 0. 4モルを同様に分割添加した。 そのまま 1時間撹拌を続け- 降温せずにそのままポリプロピレン製ビーカーに移し、 室温まで冷 却した。 得られたポリマーを粉砕し、 FT— I Rにより構造確認を 行ったところポリウレ トジオン特有の吸収を確認した。 得られたポ リ ウレ トジオンの NMR法によるポリ ウレ トジオン中の ト リアジン 環の割合は 6 %、 潜在 NC O基の含有率は 1 7. 8 %、 重量平均分 子量 4 5 0 0、 融点 7 8 °Cおよびブロッキング性は〇であつた。
水酸基価 5 3 mgKOH/g, ガラス転移温度 7 3 °Cのアク リル ポリオール 1 0 0重量部に上記で得られたポリウレ トジオン 2 1重 量部と酸化チタン 3 6重量部、 モダフ口一パウダーを 0. 5部、 ジ プチル錫ジラウレー ト 0. 3部を配合した。 この配合物をへンシェ ルミキサ一で一旦混合した後に、 二軸押し出し機で 1 2 G °Cにおい て溶融混合し、 出てきた溶融物を 1 0 °Cのピンチローラ一で冷却し 、 粉体塗料組成物を得た。 得られた粉体塗料組成物を粗粉砕機と微 粉砕機により粉砕し、 1 0 0 メ ッシュで篩った粉体をスプレーガン 式静電塗装機で燐酸亜鉛処理した鋼板に塗装し、 焼き付けた塗膜物 性を測定した。 得られた塗膜は、 2 0 ° 光沢値 8 2、 耐衝撃性 5 0 c m、 光沢保持率 8 5 %、 ゲル分率 9 1 %であり、 非常に良好なも のであった。
(実施例 1 4 )
水酸基価 4 O m g K O HZgのフッ素ポリオール 1 0 0重量部に 実施例 4で得られたポリ ウレ トジオン 2 4重量部と酸化チタン 3 7 重量部、 モダフローパウダーを 0. 5部、 ジブチル錫ジラウレー ト 0. 3部を配合した。 この配合物をヘンシヱルミキサーで一旦混合 した後に、 二軸押し出し機で 1 2 0 °Cにおいて溶融混合し、 出てき た溶融物を 1 0 °Cのピンチローラーで冷却し、 粉体塗料組成物を得 た。 得られた粉体塗料組成物を粗粉砕機と微粉砕機により粉砕し、 1 0 0 メ ッシュで篩った粉体をスプレーガン式静電塗装機で燐酸亜 鉛処理した鋼板に塗装し、 焼き付けた塗膜物性を測定した。 得られ た塗膜は、 2 0 ° 光沢値 7 8、 耐衝撃性 5 0 c m、 光沢保持率 8 5 %、 ゲル分率 9 1 %であり、 非常に良好なものであった。
(実施例 1 5 )
水酸基価 4 2 m g K 0 H/gのポリウレタンポリオール 1 0 0重 量部に実施例 1 で得られたポリウレ トジオン 1 8重量部と酸化チタ ン 3 5重量部、 モダフローパウダーを 0. 5部、 ジブチル錫ジラウ レー ト 0. 3部を配合した。 この配合物をヘンシヱルミキサーで一 旦混合した後に、 二軸押し出し機で 1 2 0 °Cにおいて溶融混合し、 出てきた溶融物を 1 0 °Cのピンチ口一ラーで冷却し、 粉体塗料組成 物を得た。 得られた粉体塗料組成物を粗粉砕機と微粉砕機により粉 砕し、 1 0 0 メ ッシュで篩った粉体をスプレーガン式静電塗装機で 燐酸亜鉛処理した鋼板に塗装し、 焼き付けた塗膜物性を測定した。 得られた塗膜は、 2 0 ° 光沢値 8 1、 耐衝撃性 5 0 c m、 光沢保持 率 8 8 %、 ゲル分率 9 3 %であり、 非常に良好なものであった。 (実施例 1 6 ) 水酸基価 4 0 m g K 0 H Z gのポリエステルポリオール 1 0 0重 量部に実施例 1 で得られたポリ ウレ トジオン 1 6重量部と酸化チタ ン 3 5重量部、 モダフローパウダーを 0 . 5部、 ジブチル錫ジラウ レー ト 0 . 3部を配合した。 この配合物をヘンシヱルミキサーで一 旦混合した後に、 ニーダーにより 1 2 0 °Cにおいて溶融混合し、 取 り出した溶融物を 1 0 °Cのピンチローラーで冷却し、 粉体塗料組成 物を得た。 得られた粉体塗料組成物を粗粉砕機と微粉砕機により粉 砕し、 1 0 0 メ ッシュで篩った粉体を流動浸漬漕内に充塡し、 粉体 を流動状態にする。 あらかじめ予備炉で予備加熱された F R P成形 シー トを流動浸漬漕内に通して表面を塗装し、 焼き付けた塗膜物性 を測定した。 得られた塗膜は、 2 0 ° 光沢値 8 3、 光沢保持率 8 5 %であり、 非常に良好なものであった。
(比較例 1 )
比較合成例 1 で得られたポリイソシァネー トを用いて、 実施例 4 と同様にしてポリウレ トジオンを得た。 得られたポリウレ トジオン のポリウレ トジオン中の ト リァジン環の割合は 1 8 %、 潜在 N C 0 基の含有率は 1 3 . 2 %、 テトラヒ ドロフランに不溶のため重量平 均分子量は測定不能であり、 融点ピークもなくおよびプロッキング 性は Xであつた。
水酸基価 4 0 m g K O H / g , ガラス転移温度 5 9 °Cのポリエス テルポリオール 1 0 0重量部に比較合成例 1 で得られたポリウレ ト ジオン 1 9重量部と酸化チタン 3 6重量部、 モダフローパウダーを 0 . 5部、 ジブチル錫ジラウレー ト 0 . 3部を配合した。 この配合 物をへンシヱルミキサ一で一旦混合した後に、 二軸押し出し機で 1 2 0 °Cにおいて溶融混合し、 出てきた溶融物を 1 0 °Cのピンチ口一 ラーで冷却し、 粉体塗料組成物を得た。 得られた粉体塗料組成物を 粗粉砕機と微粉砕機により粉砕し、 1 0 0 メ ッシュで篩った粉体を スプレーガン式静電塗装機で燐酸亜鉛処理した鋼板に塗装し、 焼き 付けた塗膜物性を測定した。 得られた塗膜は、 2 0 ° 光沢値 2 4、 耐衝撃性 3 0 c m、 光沢保持率 6 2 %、 ゲル分率 8 0 %であった。 産業上の利用可能性
本発明の直鎖状結晶性ポリ ウレ トジオンは、 粉体塗料用の硬化剤 として使用でき、 塗装焼き付け時にブロック剤の悪臭がしない。 本 発明の直鎖状結晶性ポリウレ トジオンを含む粉体塗料組成物から得 られた塗膜は、 表面平滑性、 耐候性、 機械的物性に優れている。 従 つて、 家電製品、 建材、 自動車部品、 事務家具、 電機機器部品の塗 料として有用である。
表 1
Figure imgf000033_0001
P Iじ=ポリイソシァネ一ト U d =ウレトジオン T a =トリアジン
EG=エチレングリコール 1. 4— BD=1. 4—ブタンジオール
DEG=ジエチレングリコール EtOH=エタノール CHOH シクロへキサノール
I PD 1=イソホロンジイソシァネート PUd=ポリウレトジオン

Claims

請求の範囲
1 . 下記 ( 1 ) 式で表される構造を有し、
X-(CH2) 6-[-Y-(CH2)
Figure imgf000034_0001
6 ]„ - Y -(CH2)6- X
Figure imgf000034_0002
ル 以外の残基であり、 R3は活性水素 1個をもつ化合物の活性水素を 除いた残基であり、 R4はジイソシァネー トの 2個の NC0 基以外の 残基であり、 nは 1以上である。
( 1 ) 式中の Yは 0〜 1 5 %の範囲で
Figure imgf000034_0003
で表される ト リアジン環で置き変わっており、 潜在 N C 0基の含有 率が 1 2〜 2 1重量%、 重量平均分子量が 2 0 0 0〜 2 0 0 0 0、 融点が 6 0〜 1 4 0 °Cでかつ 4 0 °C以下でプロッキングしない直鎖 状結晶性ポリウレ トジオン。
2. ト リアジン環の割合が 1〜 1 0 %である請求の範囲第 1項の直 鎖状結晶性ポリウレ トジオン。
3. 潜在 N C O基の含有率が 1 4〜 2 1重量 である請求の範囲第 1項の直鎖状結晶性ポリ ウレ トジオン。
4. 重量平均分子量が 2 0 0 0〜 1 5 0 0 0である請求の範囲第 1 項の直鎖状結晶性ポリ ウレ トジオン。
5. 融点が 7 0〜 1 2 0 °Cである請求の範囲第 1項の直鎖状結晶性 ポリウレ トジオン。
6. へキサメチレンジイソシァネー トより得られる、 ウレ トジオン 環含有率が 8 0重量%以上、 ト リアジン環含有率が 2 0重量 以下 であるポリィソシァネ一 トを N C 0基 活性水素基のモル比が 0. 8〜 1 . 2になるように、 ジオールまたはジオールと活性水素一個 を持つ化合物の混合物またはジオールとジイソシァネ一 トの混合物 またはジオールと活性水素一個を持つ化合物とジィソシァネー トの 混合物を 4 0〜 1 2 0 °Cの条件下でゥレタン反応により得られる直 鎖状結晶性ポリウレ トジオンの製造方法。
7. 以下に示す ( a ) 、 ( b ) および ( c ) の構造で示される反応 触媒の少なく とも 1 つの存在下で、 反応温度一 1 0〜 1 2 0 °Cの条 件下により、 へキサメチレンジイソシァネー トのイソシァネー ト基 の少なく ともひとつを二量化させた後、 触媒毒により反応を停止さ せ、 蒸留により未反応のへキサメチレンジイソシァネー トを除去す ることにより得られるポリイソシァネー トである請求の範囲第 6項 の直鎖状結晶性ポリウレ トジオンの製造方法。
( a ) : (R 2N) 3-n P L„
( b ) : R 2P - P R 2 訂正された用紙 0¾M91) ( c ) : R 2 P - A - P R 2
ここで、 Lは一〇 Rもしく は R、 Rは C ,〜C 8のアルキル基およ びフエニル基、 nは 0〜 2の整数、 Aは C!〜じ 4のアルキレン基、 ビニレン基およびフエ二レ ン基である。
8 . ジオールが脂肪族系、 脂環族系のジオールである請求の範囲第 6項の直鎖状結晶性ポリ ウレ トジオンの製造方法。
9 . 活性水素一個を持つ化合物が脂肪族、 脂環族のモノオール、 モ ノアミ ン、 ラクタ厶又はォキシムである請求の範囲第 6項の直鎖状 結晶性ポリ ウ レ ト ジオンの製造方法。
1 0 . ジイ ソシァネー トがへキサメチレンジイ ソシァネー ト、 イ ソ ホロンジイ ソシァネー ト又は 4, 4 ' ーメチレンビスシクロへキシ ルイソシァネ一 トである請求の範囲第 6項の直鎖状結晶性ポリ ウレ トジオンの製造方法。
1 1 . 反応触媒がト リスジェチルァ ミ ノ ホスフィ ン、 1 , 2 — ビス (ジメチルホスフィ ン) ェタン、 テ トラフエ二ルビホスフィ ンから なる群より選ばれた少なく とも 1 つである請求の範囲第 7項の直鎖 状結晶性ポリ ウレ トジオンの製造方法。
1 2 . ( A ) 水酸基価が 2 0〜 2 5 0 m g K 0 H Z gであって 3
0 °Cで固体のポリオールと
( B ) 下記 ( 1 ) 式で表される構造を有し、
Figure imgf000037_0001
( 1 ) -R3又は- NCOで
Figure imgf000037_0002
R2はジォ一ル 以外の残基で ^あり、 R3は活性水素 1個をもつ化合物の活性水素を 除いた残基であり、 R4はジイソシァネー トの 2個の NC0 基以外の 残基であり、 nは 1以上である。
( 1 ) 式中の Yは 0〜 1 5 の範囲で
Figure imgf000037_0003
で表される ト リアジン環で置き変わっており、 潜在 N C O基の含有 率が 1 2〜 2 1 重量%、 重量平均分子量が 2 0 0 0〜 2 0 0 0 0、 融点が 6 0〜 1 4 0ででかつ 4 0 °C以下でプロッキングしない直鎖 状結晶性ポリウレ トジオンを含む粉体塗料組成物。
1 3. (A) ポリオール 1 0 0重量に対して (B) 直鎖状結晶性ポ リウレ トジオン 5〜 1 0 0重量部である請求の範囲第 1 2項の粉体 塗料組成物。
1 4. (A) ポリオール 1 0 0重量に対して ( B) 直鎖状結晶性ポ リ ウレ トジオン 7〜 8 0重量部である請求の範囲第 1 2項の粉体塗 料組成物。
1 5. ( C ) ウレタン硬化促進触媒を ( A) ポリオール 1 0 0重量 に対して 5重量部まで含む請求の範囲第 1 3項の粉体塗料組成物
1 6. (C) ウレタン硬化促進触媒を ( A) ポリオール 1 0 0重量 に対して 0. 1〜 2重量部含む請求の範囲第 1 4項の粉体塗料組成 物。
1 7. 粒径 2 0 0 zm以下の粉体塗料組成物である請求の範囲第 1 2項の粉体塗料組成物。
1 8. ( A ) ポリオールが、 ポリエステルポリオール、 アク リルポ リオ一ル、 フッ素ポリオール、 ポリカーボネー トポリオール、 ェポ キシポリオール、 ウレタンポリオールの群から選ばれた少なく とも 1 つである請求の範囲第 1 2項又は第 1 6項の粉体塗料組成物。
1 9. ウレタン硬化促進触媒が、 融点 1 0 0 °C以下の有機スズ系触 媒である請求の範囲第 1 6項の粉体塗料組成物。
2 0. ( A) ポリオールの酸価が 1 0 m g K〇 H/g以下、 ガラス 転移温度 4 0〜 8 0 °C、 重量平均分子量 5 0 0 0〜 3 0 0 0 0であ る請求の範囲第 1 2項又は第 1 6項の粉体塗料組成物。
PCT/JP1995/000797 1994-05-20 1995-04-21 Polyuretedione cristalline lineaire WO1995032231A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019960706555A KR100214243B1 (ko) 1994-05-20 1995-04-21 직쇄상 결정성 폴리우레트디온
US08/737,772 US5795950A (en) 1994-05-20 1995-04-21 Straight chain crystalline polyuretdione
EP95916036A EP0760380B1 (en) 1994-05-20 1995-04-21 Linear crystalline polyuretedione
JP53018695A JP3616099B2 (ja) 1994-05-20 1995-04-21 直鎖状結晶性ポリウレトジオン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10658894 1994-05-20
JP6/106588 1994-05-20

Publications (1)

Publication Number Publication Date
WO1995032231A1 true WO1995032231A1 (fr) 1995-11-30

Family

ID=14437359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000797 WO1995032231A1 (fr) 1994-05-20 1995-04-21 Polyuretedione cristalline lineaire

Country Status (4)

Country Link
EP (1) EP0760380B1 (ja)
JP (1) JP3616099B2 (ja)
CN (1) CN1075524C (ja)
WO (1) WO1995032231A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031961A1 (fr) * 1996-02-28 1997-09-04 Asahi Kasei Kogyo Kabushiki Kaisha Nouveau polyisocyanate sequence et utilisations de celui-ci
JP2001114855A (ja) * 1999-09-09 2001-04-24 Bayer Ag ウレトジオン基および遊離イソシアネート基を含有する高官能性粉末コーティング用架橋剤
JP2003105269A (ja) * 2001-09-27 2003-04-09 Asahi Glass Co Ltd 含フッ素粉体塗料組成物
JP2004331952A (ja) * 2003-05-03 2004-11-25 Degussa Ag 高反応性ポリウレタン粉末塗料組成物、その製造方法、該組成物のための効果触媒、粉末塗料被覆層の製造のための粉末塗料硬化剤、ポリマー及び触媒の使用並びに被覆組成物
JP2006199965A (ja) * 2005-01-21 2006-08-03 Bayer Materialscience Ag 溶液中のウレトジオン形成
JP2012532941A (ja) * 2009-07-10 2012-12-20 ビーエーエスエフ ソシエタス・ヨーロピア 電子コピー目的のためのトナー樹脂

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638924A1 (de) * 1995-09-28 1997-04-03 Sandoz Ag Phosphorverbindungen
CN110528293B (zh) * 2019-07-16 2022-01-18 武汉天鸣集团有限公司 一种阻燃防污合成革及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502793A (ja) * 1973-03-13 1975-01-13
JPS50149793A (ja) * 1974-04-27 1975-12-01
JPS5198220A (ja) * 1975-01-24 1976-08-30
JPS5323397A (en) * 1976-08-17 1978-03-03 Asahi Chem Ind Co Ltd Self-curing liquid adducts of polyisocyanates
JPS6176467A (ja) * 1984-08-31 1986-04-18 バイエル・アクチエンゲゼルシヤフト ポリイソシアネートオリゴマーの製造方法およびポリウレタンプラスチツクの製造におけるそれの使用
JPH02228317A (ja) * 1989-01-03 1990-09-11 Bayer Ag ウレツトジオン基及びイソシアヌレート基を含有する変性ポリイソシアネート並びに二成分系ポリウレタン被覆用組成物
JPH04305566A (ja) * 1990-10-19 1992-10-28 Bayer Ag ウレットジオン基及び/又はイソシアヌレート基を含有するポリイソシアネート並びにそれらの製造方法
JPH0688043A (ja) * 1992-02-11 1994-03-29 Bayer Ag 粉末被覆組成物、その製造方法および耐熱性支持体を被覆するためのその使用
JPH06179840A (ja) * 1991-09-12 1994-06-28 Bayer Ag 粉末被覆組成物、その製造方法および耐熱性支持体を被覆するためのその使用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502793A (ja) * 1973-03-13 1975-01-13
JPS50149793A (ja) * 1974-04-27 1975-12-01
JPS5198220A (ja) * 1975-01-24 1976-08-30
JPS5323397A (en) * 1976-08-17 1978-03-03 Asahi Chem Ind Co Ltd Self-curing liquid adducts of polyisocyanates
JPS6176467A (ja) * 1984-08-31 1986-04-18 バイエル・アクチエンゲゼルシヤフト ポリイソシアネートオリゴマーの製造方法およびポリウレタンプラスチツクの製造におけるそれの使用
JPH02228317A (ja) * 1989-01-03 1990-09-11 Bayer Ag ウレツトジオン基及びイソシアヌレート基を含有する変性ポリイソシアネート並びに二成分系ポリウレタン被覆用組成物
JPH04305566A (ja) * 1990-10-19 1992-10-28 Bayer Ag ウレットジオン基及び/又はイソシアヌレート基を含有するポリイソシアネート並びにそれらの製造方法
JPH06179840A (ja) * 1991-09-12 1994-06-28 Bayer Ag 粉末被覆組成物、その製造方法および耐熱性支持体を被覆するためのその使用
JPH0688043A (ja) * 1992-02-11 1994-03-29 Bayer Ag 粉末被覆組成物、その製造方法および耐熱性支持体を被覆するためのその使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0760380A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031961A1 (fr) * 1996-02-28 1997-09-04 Asahi Kasei Kogyo Kabushiki Kaisha Nouveau polyisocyanate sequence et utilisations de celui-ci
JP2001114855A (ja) * 1999-09-09 2001-04-24 Bayer Ag ウレトジオン基および遊離イソシアネート基を含有する高官能性粉末コーティング用架橋剤
JP2003105269A (ja) * 2001-09-27 2003-04-09 Asahi Glass Co Ltd 含フッ素粉体塗料組成物
JP2004331952A (ja) * 2003-05-03 2004-11-25 Degussa Ag 高反応性ポリウレタン粉末塗料組成物、その製造方法、該組成物のための効果触媒、粉末塗料被覆層の製造のための粉末塗料硬化剤、ポリマー及び触媒の使用並びに被覆組成物
JP2006199965A (ja) * 2005-01-21 2006-08-03 Bayer Materialscience Ag 溶液中のウレトジオン形成
JP2012532941A (ja) * 2009-07-10 2012-12-20 ビーエーエスエフ ソシエタス・ヨーロピア 電子コピー目的のためのトナー樹脂

Also Published As

Publication number Publication date
EP0760380B1 (en) 2004-02-11
EP0760380A1 (en) 1997-03-05
EP0760380A4 (en) 1997-10-22
CN1169154A (zh) 1997-12-31
JP3616099B2 (ja) 2005-02-02
CN1075524C (zh) 2001-11-28

Similar Documents

Publication Publication Date Title
KR102182370B1 (ko) 모노블록 에어로졸 튜브 또는 캔, 및 상기 튜브 및 캔을 제공하는 방법
US3991034A (en) Polyester resin composition
CN101072806B (zh) 封闭的异氰酸酯和它们在涂料组合物中的用途
EP1937739B1 (en) Non-aqueous, liquid coating compositions
JP2006111878A (ja) 柔軟性超耐久性粉末被覆組成物
KR20080068933A (ko) 글리시딜 에스테르 및/또는 에테르와 폴리올의반응으로부터 제조된 공중합체, 및 코팅 조성물에서 상기공중합체의 용도
MX2007015938A (es) Procedimiento para la preparacion de formulaciones curables a la radiacion con control intensificado de corrosion en sustratos de metal, y las formulaciones correspondientes.
EP1002000A1 (en) Sprayable coating compositions comprising an oxazolidine, an isocyanate, and a compound selected from a mercapto and a sulfonic acid functional compound
WO2018056845A1 (en) Blocked polyisocyanates, a process for the manufacture thereof and use thereof
WO1995032231A1 (fr) Polyuretedione cristalline lineaire
US5795950A (en) Straight chain crystalline polyuretdione
US7001931B2 (en) Blends of crystalline and amorphous compounds which can be activated by actinic radiation, method for the production and use thereof
JPWO2002077054A1 (ja) オキサジアジン環を有する末端封止イソシアネートプレポリマー、その製造方法、および表面被覆材用組成物
JP4143825B2 (ja) ポリイソシアネート化合物、その製造方法、重付加組成物、および粉体塗料
EP1971626B1 (en) Non-aqueous, liquid coating compositions
JP2019023291A (ja) イソシアネート組成物、塗料組成物、塗膜及び塗装物品
US6566481B2 (en) Polyisocyanates with allophanate groups derived from alicyclic alkanediols
CA1267152A (en) Polyisocyanates and resin compositions thereof
JP3594332B2 (ja) 粉体塗料組成物の製造方法
AU2007338831B2 (en) Thermal curable powder coating composition
CA2192736A1 (en) Polyaddition products containing uretdione groups, and their use
Allauddin et al. Synthesis & characterization of benzaldehyde modified acetoacetylated polyesters for polyurethane/urea coatings
JP2002348530A (ja) 熱硬化型塗料用硬化剤及び塗料組成物
KR100214243B1 (ko) 직쇄상 결정성 폴리우레트디온
JP4253441B2 (ja) 脂環式アルコールから誘導されるアロファネート基を有するジイソシアネート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95193185.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995916036

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08737772

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995916036

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995916036

Country of ref document: EP