WO1995024046A1 - Thermistor a coefficient positif de temperature - Google Patents

Thermistor a coefficient positif de temperature Download PDF

Info

Publication number
WO1995024046A1
WO1995024046A1 PCT/JP1995/000334 JP9500334W WO9524046A1 WO 1995024046 A1 WO1995024046 A1 WO 1995024046A1 JP 9500334 W JP9500334 W JP 9500334W WO 9524046 A1 WO9524046 A1 WO 9524046A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
aluminum
positive
thermistor
Prior art date
Application number
PCT/JP1995/000334
Other languages
English (en)
French (fr)
Inventor
Hiroshi Sasaki
Shu-Ichi Takeda
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to EP95910727A priority Critical patent/EP0749132A4/en
Publication of WO1995024046A1 publication Critical patent/WO1995024046A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient

Definitions

  • the present invention relates to a positive temperature coefficient thermistor and a thermistor device using the same, and more particularly to a structure of an electrode thereof.
  • This PTC thermistor can adjust the temperature range with a large positive temperature coefficient by adding Sr, Pb, etc., so that it can measure temperature and prevent overcurrent, It is indispensable in a wide variety of fields, such as circuit elements such as and low-temperature heaters.
  • this type of thermal sintering sinters oxides, carbonates, nitrates, and chlorides of metals such as Ba, Ti, and Nd.
  • a thin silicon body 11 formed into a thin cylindrical shape or the like, and first electrode layers 12a and 12b formed of N i -metal layers formed on the upper and lower surfaces thereof, Second electrode layers 13a and 13b mainly formed of silver and formed in the upper layer.
  • Such a positive characteristic thermistor is usually used by applying a voltage between the second electrode layers 13a and 13b.
  • a so-called migration phenomenon occurs in which silver migrates and precipitates.
  • silver moves in the direction of the electric field on the outer peripheral surface of the positive temperature coefficient thermistor element 1
  • the outer shape of the second electrode layer is larger than the outer shape of the first electrode layer.
  • the first electrode layer which is not covered by the second electrode layer, is directly exposed to the atmosphere, so it is easily oxidized and gradually increases the connection resistance. There was a problem.
  • silver migration is a phenomenon that moves along the direction of the electric field, so even if only the second electrode layer is provided inside the outer periphery as in the conventional example, silver in the second electrode layer is exposed. As a result, migration occurred, albeit slightly, and the short-circuit problem was mitigated but could not be completely prevented.
  • the plating solution permeates into the sintered body when performing Ni plating when forming the electrodes,
  • the characteristics of the sintered body may change, such as a decrease in the resistance value.
  • C This may appear as a characteristic change immediately after formation, or may gradually appear over time.
  • the thermistor applications all require high-precision resistance control, such as temperature measurement and control, compensation, gain adjustment, power measurement, overcurrent prevention, motor startup, color TV degaussing, etc. It is necessary to use those that are within the range of R ⁇ ⁇ %. Therefore, the problem of the change in the resistance value due to the penetration of the plating liquid is becoming more serious.
  • a method has been proposed in which a low melting point metal such as aluminum is formed by metal spraying and used as an electrode.
  • this method also involves an abrupt temperature change at the time of electrode formation, and thus cannot avoid the problem that cracks occur in the thermistor body or the electrode itself.
  • the present inventors have proposed a thermistor electrode structure using a printed electrode or a vapor-deposited film containing aluminum as a main component in Japanese Patent Application Laid-Open No. 6-5403. I have. According to such a structure, since aluminum is a main component, migration is completely prevented. In addition, since a printed or vapor-deposited film is used, the element body does not crack and the durability is improved.
  • the first electrode is made of aluminum or the like, the resistance of the electrode itself becomes large, and there is a serious problem that it is not suitable for a circuit in which a relatively large current flows.
  • a nickel electrode is formed as the first electrode on both surfaces of the thermistor body. Then, a second electrode mainly composed of silver is formed around the gap region, and a third electrode made of aluminum-silicon is formed to cover the gap region.
  • An electrode structure for preventing the cross section has also been proposed (JP-A-5-109503). However, in this structure, unevenness is formed on the surface, and when two elements are used in an overlapping manner, sufficient thermal contact cannot be obtained, so that there is a problem that the residual current is large.
  • the present invention has been made in view of the above circumstances, and provides a positive-characteristic thermistor that has good assembling workability, is stable, has high reliability, can completely prevent migration, and is suitable for a circuit with a large current.
  • the purpose is to do.
  • a first feature of the present invention is that a first layer including a silver layer formed on both main surfaces of the positive temperature coefficient thermistor body so that an end thereof is formed inside the outer peripheral edge of the positive temperature coefficient thermistor body is provided. And a second electrode layer made of a layer mainly composed of aluminum and formed so as to cover the surface and side surfaces of the first electrode layer. Desirably, the second electrode layer is formed of a thick print layer containing conductive boron compound ceramic of 5 to 60 Vo 1% and aluminum.
  • T i B 2 as conductive boron compound used here, Z r B 2, H f B 2, V b B Q, T a B 2, C r B 2 , M o 2 borides such as B 2, T i B, Z r B, H f B, VBN b B, T a B, C r B, Mo B, WB, N i B 1-element boride or V 3 B 4 ,
  • a second feature of the present invention is that a single layer including a silver layer is formed on both main surfaces of the positive temperature coefficient thermistor body so as to have an end inside the outer peripheral edge of the positive temperature coefficient thermistor body. Or a plurality of first electrode layers, and a second electrode layer formed of aluminum as a main component and formed so as to cover a side surface from near an edge of the first electrode layer. That is.
  • a third feature of the present invention is that a single layer including a silver layer is formed on both main surfaces of the positive temperature coefficient thermistor body so that an end is formed inside an outer peripheral edge of the positive temperature coefficient thermistor body. Or a plurality of first electrode layers, a second electrode layer mainly composed of silver formed so as to cover a surface and side surfaces of the first electrode layer, and a second electrode layer. An aluminum layer formed so as to cover the side surface from the vicinity of the edge portion, or a third electrode layer made of a layer containing 5 to 6 Ovol% of a conductive boron compound and aluminum is provided.
  • a fourth feature of the present invention is that a first electrode layer formed on both main surfaces of the positive temperature coefficient thermistor body and an edge formed inside the edge of the first electrode layer are formed.
  • a fifth characteristic of the present invention is that a positive temperature coefficient thermistor and a positive temperature coefficient thermistor formed on both main surfaces of the thermistor body and composed of an electrode whose outermost layer is formed of an aluminum layer are provided. And a terminal that is in contact with the positive temperature coefficient thermistor and is formed of a material that does not form an alloy having a melting point of 300 ° C. or less with aluminum.
  • the material is nickel, silver, copper, aluminum, titanium, or an alloy thereof.
  • the electrodes are formed by a dry process such as a vapor deposition method or a thick film printing method. Therefore, it is possible to form an electrode having high adhesion and low contact resistance without causing a change in characteristics due to contamination of the exposed portions of the front and back surfaces of the thermistor body by a solution or the like at the time of electrode formation.
  • the first electrode layer including the silver layer formed so as to have an end inside the outer peripheral edge of the positive temperature coefficient thermistor element body is formed, and the first electrode layer is formed.
  • the second electrode layer made of the aluminum layer is formed so as to cover the surface and the side surfaces of the semiconductor device, it is possible to maintain good electric conductivity and completely prevent the occurrence of migration.
  • the second electrode layer is constituted by a thick film print layer containing a conductive boron compound of 5 to 60 Vo 1% and aluminum, the electrode firing step can be performed. Even if oxygen is trapped, the conductivity does not decrease, so that good electrical contact can be maintained even in a region where the second electrode directly contacts the thermistor body.
  • a contact can be formed on most of the surface of the thermistor body, so that the contact resistance can be further reduced.
  • the edges of the first and second electrode layers are covered with the third electrode layer, the occurrence of cracks and cracks in the phosphor body is further reduced.
  • the third electrode layer is formed so as to cover the edges and side surfaces except for a part of the second electrode layer but not the entire surface. As with the configuration, migration can be prevented.
  • the entire surface of the thermistor body is covered with the first electrode layer, and the second electrode layer is formed thereover.
  • the occurrence of cracks and cracks in the thermistor body is further reduced.
  • the elastic terminal uses, as a surface layer, any of nickel, silver, copper, aluminum, titanium, or an alloy thereof, which is a substance having a high melting point of an alloy with aluminum.
  • FIG. 1 is a diagram showing a thermistor according to the first embodiment of the present invention.
  • Figures 2 (a) and (b) show the manufacturing process of the same summit.
  • FIG. 3 is a diagram showing a thermistor according to the second embodiment of the present invention.
  • Fig. 4 shows a conventional thermistor (comparative example).
  • Fig. 5 shows a conventional example of a thermistor (comparative example).
  • Figure 6 shows the test equipment for the middaring test
  • Fig. 7 shows the results of a migration test performed using the device shown in Fig. 6.
  • Fig. 8 shows a test device for performing a low-temperature intermittent load test.
  • Fig. 9 is a diagram showing the results of a low-temperature intermittent load test performed using the device shown in Fig. 8.
  • Fig. 10 is a diagram showing a test device for performing a surge current test.
  • Fig. 11 shows the results of a surge current test performed using the device shown in Fig. 10.
  • Fig. 12 shows a test device for measuring the dependence of the low-temperature intermittent load test results on the terminal material.
  • Fig. 13 shows the results of a low-temperature intermittent load test performed using the device shown in Fig. 12
  • Fig. 14 shows the state of peeling by a low-temperature intermittent load test using the device shown in Fig. 12 Figure
  • Fig. 15 shows the melting point of the alloy of aluminum and nickel, silver, and tin.
  • Fig. 16 shows the relationship between the composition and melting point of the aluminum alloy tin base metal.
  • Figure 17 shows the relationship between the composition of silver-aluminum alloy and the melting point.
  • Fig. 18 shows the relationship between the composition of aluminum-nickel and the melting point.
  • Fig. 19 shows an example of the terminal structure.
  • FIG. 20 is a diagram showing the result of measuring the relationship between the element resistance and the maximum surge voltage.
  • FIG. 21 is a diagram showing the thermistor of the third embodiment of the present invention.
  • FIG. 22 is a diagram showing a thermistor according to the fourth embodiment of the present invention.
  • FIGS. 23 (a) and 23 (b) are diagrams showing a thermistor of a conventional example.
  • FIG. 1 is a diagram showing a PTC thermistor according to a first embodiment of the present invention.
  • This positive temperature coefficient thermistor is composed of a thermistor element body 1 mainly composed of barium titanate, and silver formed on the upper and lower surfaces by a printing method so that the edge is slightly intruded from the outer peripheral edge.
  • the first electrode layers 2a and 2b composed of a zinc (Ag—Zn) layer, and the silver layer (A) formed by printing to cover the first electrode layers 2a and 2b. g), and aluminum-titanium boride (A 1-) formed by a printing method so as to cover the second electrode layers 3 a and 3 b and the second electrode layers 3 a and 3 b. and a T i B 2) and the third electrode layer 4 a, 4 b made of layers.
  • the thickness of each electrode layer was about 1 °.
  • 2 (a) and 2 (b) are process diagrams showing the process of manufacturing a thermistor according to the embodiment of the present invention.
  • the powder is mixed at a specified ratio, calcined at a temperature in the range of 700 ° C to 10000 ° C, pulverized, pressed into a disk by cold pressing, and then pressurized to 130 CTC.
  • a disc-shaped thermistor body 1 having a diameter of 4.47 mm.
  • first to third electrode layers are sequentially applied to the end surface (electrode formation surface) of the thermistor body 1 by a screen printing method.
  • screen printing was first performed using an Ag-Zn paste, followed by a drying process at 18 CTC for 10 minutes, followed by screen printing using an Ag paste at 180 ° C for 10 minutes. Drying, and finally, screen printing using A 1 -TiB ⁇ paste, drying at 180 ° C for 10 minutes, and baking at 550 ° C for 10 minutes are performed.
  • a 1 — Ti B 2 paste is a mixture of aluminum powder having an average particle diameter of about 5 m and Ti B detergentceramic powder having an average particle diameter of 3 m in a mixing ratio of 7: 3. It is prepared by mixing a binder, forming a paste, and then adjusting the viscosity.
  • the thermistor obtained in this way can be used for a long time in a high-temperature and high-humidity environment because the electrode layer mainly composed of A1 that does not ionize in dew condensation water completely covers the electrode layer containing Ag. However, reliability can be maintained without silver migration. The electrical contact between the thermistor body and the electrode is good.
  • an electrode can be applied to the entire main surface of the element. Therefore, the flow of the rush current to the element becomes uniform, and it is less likely that a surge current or a voltage is applied when a voltage is applied than in the past.
  • FIG. 3 is a diagram showing a positive temperature coefficient thermistor according to a second embodiment of the present invention.
  • This positive temperature coefficient thermistor is composed of a thermistor body 1 mainly composed of titanium titanate and nickel (Ni) having a thickness of 0.3 to 2 formed by a vacuum evaporation method so as to cover the entire upper and lower surfaces thereof.
  • three electrode layers 4a and 4b The thickness of each of the second and third electrode layers was set to about 1 m.
  • the thermistor thus obtained also exhibits the above-mentioned effects, similarly to the first embodiment.
  • the same lamination as that used in the first and second embodiments of the present invention was successively laminated by a printing method such that the edge was slightly intruded from the outer peripheral edge of the phosphor body 1.
  • the electrode structure in which the first electrode layers 2a, b made of the silver-zinc layer and the second electrode layers 3a, b made of the silver layer were formed as Comparative Example 1 (FIG. 4).
  • the thermistor of Example 1 was mounted on a terminal 10 as shown in FIG. 12, and a low-temperature intermittent load test was performed to measure the terminal material.
  • the surface material of the terminal was composed of a nickel or silver plating layer
  • the electrode did not peel off after the test as shown in the table in FIG.
  • peeling occurred at the terminal contact part.
  • peeling means that peeling R occurs on an electrode surface corresponding to a contact portion with the terminal 10 as shown in FIG.
  • heat is generated due to the flow of a large current each time a voltage is applied, so there is a local temperature rise, and it is considered that aluminum and tin or solder were alloyed.
  • FIGS. 16 to 18 show the relationship between the composition and melting point of aluminum-tin alloy and the relationship between the composition and melting point of silver-aluminum alloy, respectively. And relationship.
  • the contact generates heat due to a large current every time the voltage is turned on, so the temperature locally rises and rises to about 200 ° C. Therefore, considering safety, aluminum and aluminum are required. It is desirable to use a material that does not form the following alloy.
  • the structure of the terminal is based on the whole plating method in which the entire surface of the elastic terminal or the central terminal is composed of a plating layer of nickel, copper, silver, aluminum, etc.
  • a partial plating method in which only the contact area is formed of a plating layer made of a metal as described above.
  • a terminal that is usually used and that is made of tin may be used, and at least a portion of the aluminum electrode layer that is in contact with the terminal may be further provided with a layer that is not metalized with tin.
  • this positive temperature coefficient thermistor has a thermistor body 1 mainly composed of barium titanate, and a top surface having an edge at a position slightly entering from the outer periphery.
  • a first electrode layer 2a, 2b composed of a silver-zinc (Ag-Zn) layer and a second electrode layer 3a composed of a silver layer (Ag) sequentially formed on the lower surface by a printing method.
  • 3b, and aluminum titanium boride (Al-TiB) formed by printing from the vicinity of the edge of the second electrode layer to cover the side surfaces of the first and second electrode layers.
  • the third electrode layers 4a and 4b are composed of layers. The thickness of each electrode layer is about 10 ⁇ .
  • both main surfaces of the positive temperature coefficient thermistor body can be brought into contact with the first electrode layer more. And the contact resistance is reduced.
  • the material can be reduced and the cost can be reduced.
  • this positive characteristic semiconductor is composed of a thermistor element 1 mainly composed of barium titanate and its upper surface so that the edge is slightly intruded from the outer peripheral edge. And on the lower surface, first electrode layers 2a and 2b made of a silver-zinc (Ag-Zn) layer formed by a printing method, and a printing method formed so as to cover the first electrode layer.
  • each electrode layer was about 10 ⁇ m.
  • the aluminum layer is not limited to pure aluminum but refers to a layer containing aluminum as a main component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermistors And Varistors (AREA)

Description

明 細 書 正特性サ一ミス夕およびこれを用いたサ一ミ ス夕装置 技術分野
本発明は、 正特性サ一ミスタおよびこれを用いたサーミス夕装置に係り、 特に その電極の構造に関する。
背景技術
B a T i 03 に Y, N d等を 0. 1 ~0. 3 at%添加した酸化物半導体は、 大 きな正の温度係数を有することから、 P T Cサーミス夕と呼ばれる。
この P T Cサーミ スタは、 大きな正の温度係数を有する温度領域を、 S r, P b等の添加で調整することができることから、 温度の測定および過電流防止、 モ 一夕起動、 カラー TV消磁用等の回路素子および低温発熱ヒータ等、 広く様々な 分野でなくてはならないものとなっている。
このようなサ一ミ ス夕は、 その一例を図 23 (a) に示すように、 B a、 T i、 N dなどの金属の酸化物、 炭酸塩、 硝酸塩、 塩化物等を焼結し、 薄い円柱状等に 成形せしめられたサ一ミ ス夕素体 1 1と、 その上面と下面に形成された N i メ ッ キ層からなる第 1の電極層 12 a、 12 bと、 この上層に形成された銀を主成分 とする第 2の電極層 13 a、 13 bとから構成されている。
ところでこのような正特性サ一ミ スタは、 通常、 第 2の電極層 13 a、 13 b 間に電圧を印加して使用されるが、 このとき電界の方向に向かって第 2電極層内 の銀が移動析出する、 いわゆるマイグレーショ ン現象が生じる。 特に第 2の電極 層の外周縁が正特性サーミ スタ素体 1の外周端まで達するように形成されている 場台、 正特性サーミスタ素体 1の外周面で電界の方向に向かって銀が移動析出し、 ついには短絡を生じるという問題があつた。
そこでこの問題を解決するため、 図 23 (b) に示すように、 第 2電極層の外径 を第 1電極層の外径よりも小さく形成した正特性サーミスタが提案されている。
しかしながら、 この構造では、 第 2の電極層の外形が第 1の電極層の外形より も小さく設けられているため、 第 1の電極層のうち第 2の電極層によって覆われ ていない部分は直接大気にさらされているため、 酸化されやすく、 次第にコン夕 ク ト抵抗が上昇するという問題があった。
また、 銀のマイグレーショ ンは電界の方向に沿って移動する現象であるため従 来例のように第 2電極層のみを外周より内側に設けたとしても第 2電極層中の銀 が露出しているため、 わずかではあるがマイグレーションが生じ、 短絡の問題は 緩和されるが完全に防止することはできなかった。
また、 従来の正特性サ一ミスタはめつき法を用いて電極形成がなされているた め、 この方法では、 電極形成に際して N iめっきをおこなう際にめつき溶液が焼 結体内部に浸透し、 抵抗値が減少する等、 焼結体の特性を変化させることがある c これは形成後ただちに特性変化として表れることもあれば、 時間と共に徐々に表 れることもある。 サーミス夕の用途は、 前述したように、 温度の測定および制御、 補償、 利得調整、 電力測定、 過電流防止、 モータ起動、 カラー T V消磁用等、 い ずれも高精度の抵抗値制御が必要なものばかりであり、 R ± α %の範囲内にある ものを用いる必要がある。 したがってこのめつき液の浸透による抵抗値変化の問 題は深刻化してきている。
また、 このようなめっき液の浸透を避けるため、 メタル溶射法によりアルミ二 ゥムなどの低融点金属を形成しこれを電極として用いる方法も提案されている。 しかし、 この方法も、 電極形成時に急激な温度変化を伴うため、 サーミス夕素 体あるいは電極自体にクラックが発生するという問題を避けることができない。 そこで、 この問題を解決するため、 本発明者らは特開平 6— 5 4 0 3号によつ て、 アルミニウムを主成分とする印刷電極あるいは蒸着膜を用いたサーミスタ電 極構造を提案している。 かかる構造によれば、 アルミニウムを主成分としている ため、 マイグレーショ ンを生じることが完全になくなる。 また、 印刷あるいは蒸 着膜を用いているため、 素子本体のわれひびが生じたりすることがなく、 耐久性 が向上する。 しかしながら、 第 1の電極がアルミニウムなどであるため電極自体 の抵抗が大きくなり、 比較的大電流が流れる回路には適さないという大きな問題 がある。
また、 サーミスタ素体の両主面の全面に第 1の電極としてニッケル電極を形成 し、 その周囲にギャップ領域を残して銀を主成分とする第 2の電極を形成し、 こ のギヤ ップ領域を覆うようにアルミニウム—シリ コンからなる第 3の電極を形成 し、 マイグレーショ ンを防止するようにした電極構造も提案されている (特開平 5— 1 0 9 5 0 3 ) 。 しかしながら、 この構造では表面に凹凸が形成され、 2素 子を重ねて使用する場合には十分な熱的接触を得ることができないので残留電流 が大きいという問題があった。
また残留電流を小さくするため 2素子タイプにし、 ヒータ用正特性サ一ミ ス夕 で、 コイル用正特性サーミ スタを加熱する方法も提案されているが、 この場合電 極表面に凹凸があると素子間の熱接触が悪くなり、 残留電流を小さくすることが できないという問題がある。
このように従来の電極構造では、 マイグレーションを防止すべく銀の使用を避 けアルミニウムを用いると、 接触抵抗が増大するという問題がある。
さらに、 外縁部にギャップ領域を残して銀を主成分とする電極を形成し、 この ギヤップ領域をアルミニゥムーシリコンからなる電極で覆う構造では、 銀が露出 している部分があるため、 マイグレーショ ンの防止が不十分であり、 また、 表面 に凹凸が形成され、 2素子を重ねて使用する場合には十分な熱的接触を得ること ができないので残留電流が大きいという問題があった。 発明の開示
本発明は、 前記実情に鑑みてなされたもので、 組み立て作業性が良好で安定で 信頼性が高くマイグレーションを完全に防止することができ、 大電流の回路に適 した正特性サ一ミスタを提供することを目的とする。
そこで本発明の第 1の特徴は、 正特性サーミ スタ素体の両主面に、 前記正特性 サーミスタ素体の外周縁よりも内側に端部がく るように形成された銀層を含む第 1の電極層と、 前記第 1の電極層の表面および側面を覆うように形成されたアル ミニゥムを主成分とする層からなる第 2の電極層とを具備したことにある。 望ましく はこの第 2の電極層は、 5〜6 0 V o 1 %の導電性ホウ素化合物セラ ミ ックとアルミニゥムとを含む厚膜印刷層で構成する。 なおここで用いられる導 電性ホウ素化合物としては T i B 2 のほか、 Z r B 2 、 H f B 2 、 V b B Q 、 T a B2 、 C r B 2 、 M o B 2 などの 2ホウ化物、 T i B、 Z r B、 H f B、 V B N b B、 T a B、 C r B、 Mo B、 WB、 N i Bの 1元ホウ化物または V 3 B 4
V3 B2 、 N b2 B3 、 N b3 B4 、 T a 3 B2 、 T a 3 B2 、 C r 3 B4 、 M o 3 B2 、 M o 2 B5 、 W2 B5 、 N i 4 B3 、 B4 C化合物のグループから選 ばれる少なく とも 1種以上あるいはそれらの化合物などがある。
本発明の第 2の特徴は、 正特性サーミスタ素体の両主表面に、 前記正特性サー ミスタ素体の外周縁よりも内側に端部がく るように形成され、 銀層を含む単層ま たは複数層の第 1の電極層と、 前記第 1の電極層の端縁部近傍から側面を覆うよ うに形成された主成分をアルミニゥムとする層からなる第 2の電極層とを具備し たことにある。
本発明の第 3の特徴は、 正特性サーミ スタ素体の両主表面に、 前記正特性サー ミスタ素体の外周縁よりも内側に端部がく るように形成され、 銀層を含む単層ま たは複数層の第 1の電極層と、 前記第 1の電極層の表面および側面を覆うように 形成された銀を主成分とする第 2の電極層と、 前記第 2の電極層の端縁部近傍か ら側面を覆うように形成されたアルミニウム層あるいは、 5〜6 Ovol%の導電性 ホウ素化合物とアルミニゥムとを含む層からなる第 3の電極層とを具備したこと にめ 。
本発明の第 4の特徴は、 正特性サーミスタ素体の両主面に形成された第 1の電 極層と、 第 1の電極層の端縁よりも内側に端縁がく るように形成された銀層から なる第 2の電極層と、 第 2の電極層を覆うように形成されたアルミニウム層から なる第 3の電極層とを具備したことにある。
本発明の第 5の特徴は、 サーミス夕素体の両主面に形成され、 最外層がアルミ ニゥム層で構成された電極とからなる正特性サーミ ス夕と、 正特性サ一ミ ス夕を 挟持する端子とから構成され、 この端子の少なく とも前記正特性サーミ ス夕と接 触する領域がアルミニウムに対し融点 300°C以下の合金を形成しない物質で構 成されていることにある。
望ましくはこの物質は、 ニッケル、 銀、 銅、 アルミニウム、 チタンのいずれか またはそれらの合金であることを特徴とする。
上記構成によれば、 電気伝導性の良好な銀電極を使用しかっこの銀電極はアル ミニゥム電極で完全に覆われているため、 マイグレーションによる短絡のおそれ もない。
なお、 上記構成において電極の形成は蒸.着法、 厚膜印刷法等のドライプロセス で形成される。 したがって、 電極形成時に溶液等によりサ一ミスタ素体の表面お よび裏面の露出部の汚染による特性変化を引き起こすことなく、 密着性が高く接 触抵抗の小さい電極を形成することが可能となる。
上記第 1の構成によれば、 正特性サーミスタ素体の外周縁よりも内側に端部が く るように形成された銀層を含む第 1の電極層が形成され、 前記第 1の電極層の 表面および側面を覆うようにアルミニウム層からなる第 2の電極層が形成されて いるため、 電気伝導性を良好に維持し、 かつ、 マイグレーショ ンの発生を完全に 防ぐことができる。 望ましくは、 第 2の電極層を、 5〜6 0 V o 1 %の導電性ホ ゥ素化合物とアルミ二ゥムとを含む厚膜印刷層で構成するようにすれば、 電極の 焼成工程において酸素がトラップされても導電性が低下しないため、 サーミ ス夕 素体に直接第 2の電極が接触する領域でも良好な電気的接触性を維持することが できる。
本発明の第 2の構成によれば、 サーミス夕素体の表面の大部分でコンタク 卜を 形成することができるため、 よりコンタク ト抵抗を小さくすることができる。 ま た第 1および第 2の電極層の端縁部を第 3の電極層で覆っているため、 サ一ミス 夕素体のわれやクラックの発生がより低減される。
本発明の第 3の構成によれば、 第 2の電極層全面ではなく一部を除いて端縁お よび側面を覆うように第 3の電極層が形成されており、 この構成でも第一の構成 と同様マイグレーショ ンを防止することができる。
本発明の第 4の構成によれば、 サ—ミスタ素体の表面全体が第 1の電極層で覆 われその上層に第 2の電極層が形成されているため、 第 1の構成と同様に、 サー ミスタ素体のわれやクラックの発生がより低減される。
本発明の第 5の構成によれば、 端子と電極とが接触する点すなわち接点では、 電圧がォンするたびに大電流による発熱があるため、 局所的に温度上昇があり、 2 0 0 °C程度まで上昇することになる力;'、 端子の少なく とも正特性サ一ミ スタと 接触する領域表面をアルミニゥムと 3 0 0 °C以下の合金を作らない材質で構成し ているため、 剥離もなく良好に維持することができる。 望ましく は、 この弾性端 子は、 アルミニウムとの合金の融点の高い物質である、 ニッケル、 銀、 銅、 アル ミニゥム、 チタンのいずれかまたはそれらの合金を表面層に用いる。 図面の簡単な説明
図 1は、 本発明の第 1の実施例のサーミス夕を示す図
図 2 ( a ) 、 ( b ) は、 同サ一ミ ス夕の製造工程図
図 3は、 本発明の第 2の実施例のサーミス夕を示す図
図 4は、 従来例のサーミ スタを示す図 (比較例)
図 5は、 従来例のサーミ ス夕を示す図 (比較例)
図 6は、 マイダレ一ション試験のためのテスト装置を示す図
図 7は、 図 6に示す装置を用いて行ったマイグレーション試験の結果を示す図 図 8は、 低温断続負荷試験を行うためのテス ト装置を示す図
図 9は、 図 8に示す装置を用いて行った低温断続負荷試験の結果を示す図 図 1 0は、 サージ電流テストを行うためのテスト装置を示す図
図 1 1は、 図 1 0に示す装置を用いて行ったサージ電流テストの結果を示す図 図 1 2は、 端子材質による低温断続負荷試験結果の依存性を測定するためのテ スト装置を示す図
図 1 3は、 図 1 2に示す装置を用いて行った低温断続負荷試験の結果を示す図 図 1 4は、 図 1 2に示す装置を用いた低温断続負荷試験による剥離の状態を示 す図
図 1 5は、 アルミニウムとニッケル、 銀、 錫との合金の融点を示す図 図 1 6は、 アルミニゥムー錫台金の組成と融点との関係を示す図
図 1 7は、 銀一アルミニゥム合金の組成と融点との関係を示す図
図 1 8は、 アルミニウム一ニッケルの組成と融点との関係とを示す図 図 1 9は、 端子構造の例を示す図
図 2 0は、 素子抵抗と最大サージ電圧との関係を測定した結果を示す図 図 2 1は、 本発明の第 3の実施例のサーミス夕を示す図
図 2 2は、 本発明の第 4の実施例のサーミ ス夕を示す図 図 23 (a) 、 (b) は、 従来例のサーミ ス夕を示す図 発明を実施するための最良の形態
以下、 本発明の実施例について図面を参照しつつ詳細に説明する。
実施例 1
図 1は本発明の第 1の実施例の正特性サ—ミスタを示す図である。
この正特性サーミ スタは、 チタン酸バリゥムを主成分とするサ一ミ スタ素体 1 と、 外周縁からやや入り込んだ位置に端縁がく るようにその上面と下面に印刷法 で形成された銀—亜鉛 (A g— Z n) 層からなる第 1の電極層 2 a、 2 bと、 こ の第 1の電極層 2 a, 2 bを覆うように印刷法で形成された銀層 (A g) からな る第 2の電極層 3 a、 3 bと、 この第 2の電極層 3 a, 3 bを覆うように印刷法 で形成されたアルミ二ゥム—ホウ化チタン (A 1 - T i B2 ) 層からなる第 3の 電極層 4 a、 4 bとから構成されている。 各電極層の膜厚は約 1 ◦ とした。 次に、 この正特性サ一ミスタの製造工程について説明する。
図 2 (a) および(b) は、 本発明実施例のサーミ ス夕の製造工程を示す工程図で あ o
まず、 図 2 (a) に示すように、 T i O。 、 B a C 03 、 N d 2 0。 の粉末を所 定の割合で混合し、 700°C〜1 000°Cの温度範囲にて、 仮焼後、 粉砕し、 冷 間プレス法によってディ スク状に加圧成形した後、 1 30 CTCで焼結し、 直径 4. 47 mmのディ スク状のサーミスタ素体 1を形成する。
続いて、 図 2 (b) に示すようにこのサーミスタ素体 1の端面 (電極形成面) に スクリーン印刷法により順次第 1〜第 3の電極層を塗布する。 ここではまず A g 一 Z nペーストを用いてスクリーン印刷を行い、 18 CTC 1 0分の乾燥工程の後、 続いて A gペーストを用いてスクリ―ン印刷を行い、 180°C 1 0分の乾燥、 最 後に A 1 - T i B„ ペーストを用いてスクリーン印刷を行い、 180 °C 1 0分の 乾燥後、 550°C 1 0分の焼成工程を経て形成する。
ここで A 1 — T i B2 ペース トは、 平均粒径約 5 m のアルミニゥム粉末と平 均粒径 3 m の T i B„ セラ ミ ッ ク粉末とを 7 : 3の混台比で混台し、 バイ ンダ を混ぜ、 ペース ト状にした後、 粘度を調整したものである。 この様にして得られたサーミス夕は、 露結水中でイオン化しない A 1を主成分 とする電極層が A gを含む電極層を完全に覆っているため、 高温多湿環境下で長 時間使用しても銀のマイグレーションを生じることなく、 信頼性を維持すること ができる。 そして、 サーミス夕素体と電極との電気的接触性が良好である。
またアルミニウムはマイグレーションを生じないため、 素子の主平面全面に電 極を塗布することができる。 したがって突入電流の素子への流れ方が均一となり、 従来に比べサージ電流または電圧印加時のわれ ·かけが発生しにくい。
実施例 2
図 3は本発明の第 2の実施例の正特性サーミスタを示す図である。
この正特性サーミスタは、 チタン酸バリゥムを主成分とするサーミスタ素体 1 と、 その上面と下面に全体を覆うように、 真空蒸着法で形成された膜厚 0 . 3〜 2 のニッケル (N i ) 層からなる第 1の電極層 2 m、 2 m ' と、 その外周縁 からやや入り込んだ位置に端縁がく るようにスクリ一ン印刷法で形成された銀層 ( A g ) からなる第 2の電極層 3 a、 3 bとこの第 2の電極層 3 a, 3 bを覆う ように印刷法で形成されたアルミニゥム—ホウ化チタン (A 1 — T i B 2 ) 層か らなる第 3の電極層 4 a、 4 bとから構成されている。 第 2および第 3の各電極 層の膜厚は約 1 ◦ m とした。
形成に際しては前記第 1の実施例と同様に形成する。
この様にして得られたサーミス夕も前記実施例 1と同様、 前述した効果を奏効 する。
比較のためにこの本発明の第 1および 2の実施例において用いたのと同様のサ 一ミス夕素体 1の外周縁からやや入り込んだ位置に端縁がく るように印刷法で順 次積層した銀一亜鉛層からなる第 1の電極層 2 a , bと、 銀層からなる第 2の電 極層 3 a , bを形成した電極構造を比較例 1として形成した (図 4 ) 。
また、 比較例 2として、 実施例 2のサ一ミス夕の第 3の電極層を省略し、 他は 同様に形成した。 (図 5 ) 。
次に、 マイグレーショ ン試験を行うべく、 図 6に説明図を示すようなテス ト装 置を用い、 環境温度 1 2 0て、 湿度 9 5 R H %中で、 2 5 0 Vの電圧を 3 0分ォ ン、 3 0分オフし、 1 0 0 0サイクル印加した。 そしてテス ト後素子側面を E P M A分析し、 銀のマイグレーショ ンを検出した。 その結果を図 7に表で示す。 こ の表からあきらかなように、 本発明の実施例 1および 2の構造の場合いずれもマ ィグレ一シヨンはみられなかったのに対し、 比蛟例 1および 2では僅かに側面に 銀が検出された。
次に、 低温断続負荷試験を行うべく、 図 8に説明図を示すようなテスト装置を 用い、 環境温度— 2 0 で、 2 5 0 Vの電圧を 1分オン、 5分オフし、 1 0 0 0 サイクル印加し、 テスト後の素子のわれ、 かけの有無および抵抗の変化率を測定 した。 この結果を図 9に表で示す。 この表から明らかなようにいずれの例もわれ やかけはなく、 抵抗変化率も一 2 . 6〜一 1 . 9 %程度であり、 いずれも判定は 〇であつた。
次に、 サージ電流テストを行うべく、 図 1 0に説明図を示すようなテスト装置 を用い、 環境温度— 2 0て中で電圧を 2 5 0 Vから 5 0 Vおきに順次大きく しな がら印加し、 テス ト後の素子のわれ、 かけの有無を調べたその結果を図 1 1に示 す。 この結果からわかるように、 テス ト終了後、 素子のわれ、 かけは皆無であつ た。
次に、 この実施例 1のサー ミ スタを図 1 2に示すような端子 1 0に実装し、 端 子材質を測定するために低温断続負荷試験を行った。 ここで端子の表面材質が二 ッケルや銀のめっき層で構成されている場合は図 1 3に表で示すように試験後電 極の剥離はなかった。 ただし半田や錫で端子が形成されている場合は端子接触部 に剥離が生じた。 ここで剥離とは、 図 1 4に示すように端子 1 0との接触部に相 当する電極面に剥離 Rが生じることをいう。 低温断続負荷試験では、 電圧が印加 されるたびに大電流が流れることによる発熱があるため、 局所的な温度上昇があ り、 アルミニウムと錫や半田が合金化したものと考えられる。 この結果からも、 端子表面に用いる材質としてはアルミニゥムと合金化しないニッケルや銀を用い るのが望ま しいことがわかる。
なおアルミ二ゥムとニッケル、 銀、 錫との合金の融点を図 1 5に表で示す。 ま た図 1 6乃至図 1 8にそれぞれアルミニウム一錫合金の組成と融点との関係、 銀 一アルミニゥム合金の組成と融点との関係を示す図および、 アルミニウム一二ッ ゲルの組成と融点との関係とを示す。 ところで、 接点では電圧がオンするたびに大電流による発熱があるため、 局所 的に温度上昇があり、 2 0 0 °C程度まで上昇するため、 安全をみこむと、 アルミ 二ゥムと 3 0 0て以下の合金を作らない材質を用いるようにするのが望ましい。 また端子の構造としては図 1 9に示すように弾性端子あるいは中央端子の表面 全体をニッケル、 銅、 銀、 アルミニウムなどのめっき層で構成する全面めつき法 と、 正特性サ一ミス夕との接触領域のみ上述したような金属からなるめっき層で 構成する部分めつき法とがある。 また、 通常用いられる錫からなる端子を用いァ ルミニゥム電極層の少なく とも端子と接する部分に錫と台金化しない層をさらに 設けてもよい。
次に、 前記第 1および第 2の実施例では、 A 1に T i B 2 を添加した例につい て説明したが、 T i B 2 の添加量を変化させ、 素子抵抗とわれかけを生じない、 最大サージ電圧との関係を測定した。 その結果を図 2 0に表で示す。
この結果から明らかなように添加量は 5 vo 1 ¾;以上で効果が現れるが 7 0 vo 1 %以 上では焼成が困難となる。 これは T i B 2 の添加によってサーミスタ素体とアル ミニゥムとのォーミ ック接触性が向上するため、 最大サージ電圧が向上すると考 えられる。 なお実施例 2で示した構造ではサーミスタ素体とのォ一ミ ック接触は ニッケル電極で得られるため、 T i B„ の添加による最大サージ電圧への効果は ほとんどみられなかった。
これらの比較からも本発明によれば比抵抗が安定で信頼性の高いサーミス夕を 得ることができる。
次に本発明の第 3の実施例について説明する。
この正特性サ一ミ スタは、 図 2 1に示すように、 チタン酸バリウムを主成分と するサーミ スタ素体 1と、 外周縁からやや入り込んだ位置に端縁がくるようにそ の上面と下面に順次、 印刷法で形成された銀—亜鉛 (A g— Z n ) 層からなる第 1の電極層 2 a、 2 bと、 銀層 (A g ) からなる第 2の電極層 3 a、 3 bと、 第 2の電極層の端縁部近傍からこれら第 1および第 2の電極層の側面を覆うように 印刷法で形成されたアルミニウム一ホウ化チタン (A l — T i B。 ) 層からなる 第 3の電極層 4 a、 4 bとから構成されている。 各電極層の膜厚は約 1 0 πι と し この構成によれば、 第 1および第 2の電極層は同じパターン形状で積層されて いるため、 正特性サーミスタ素体の両主表面をより多く第 ] の電極層と接触せし めることができ、 コンタク ト抵抗が低減される。 また、 第 2の電極層全体を覆う こと無く形成されるため、 材料が少なくてすみコス卜の低減をはかることができ o
次に本発明の第 4の実施例について説明する。
この正特性サ一ミス夕は、 図 2 2に示すように、 チタン酸バリウムを主成分と するサ一ミスタ素体 1と、 外周縁からやや入り込んだ位置に端縁がく るようにそ の上面と下面に、 印刷法で形成された銀一亜鉛 (A g— Z n ) 層からなる第 1の 電極層 2 a、 2 bと、 前記第 1の電極層を覆うように印刷法で形成された銀層
( A g ) からなる第 2の電極層 3 a、 3 bと、 第 2の電極層の端縁部近傍から側 面を覆うように印刷法で形成されたアルミニウム一ホウ化チタン (A 1 — T i B 9 ) 層からなる第 3の電極層 4 a、 4 bとから構成されている。 各電極層の膜厚 は約 1 0〃m とした。
この構成によっても、 安価で信頼性の高い正特性サ一ミ スタを得ることができ o
なお本発明においてアルミニゥム層とは、 純アルミ二ゥムに限定されること無 く、 アルミニウムを主成分とする層をいうものとする。 産業上の利用可能性
以上説明してきたように、 本発明によれば、 マイグレーショ ンによる短絡のお それもなく、 組み立てが容易で特性の安定な正特性サーミ スタを得ることができ

Claims

請 求 の 範 囲
( 1 ) 正特性サ一ミ ス夕素体と、
前記正特性サーミスタ素体の両主表面に、 前記正特性サーミ スタ素体の外周縁 よりも内側に端部がく るように形成され、 銀層を含む単層または複数層の第 1の 電極層と、
前記第 1の電極層の表面および側面を覆うように形成された主成分をアルミ二 ゥムとする層からなる第 2の電極層とを具備したことを特徴とする正特性サーミ ス夕。
( 2 ) 前記第 2の電極層は、 5 ~ 6 0 V o 1 %の導電性ホウ素化台物とアル ミニゥムとを含む厚膜印刷層で構成されていることを特徴とする請求の範囲 1に 記載の正特性サーミ スタ。
( 3 ) 正特性サ一ミ スタ素体と、
前記正特性サーミスタ素体の両主表面に、 前記正特性サーミスタ素体の外周縁 よりも内側に端部がく るように形成され、 銀層を含む単層または複数層の第 1の 電極層と、
前記第 1の電極層の端縁部近傍から側面を覆うように形成された主成分をアル ミニゥムとする層からなる第 2の電極層とを具備したことを特徴とする正特性サ 一ミ スタ。
( 4 ) 前記第 2の電極層は、 5〜6 0 V o 1 %の導電性ホウ素化合物とアル ミニゥムとを含む厚膜印刷層で構成されていることを特徴とする請求の範囲 3に 記載の正特性サーミ ス夕。
( 5 ) 正特性サーミスタ素体と、
前記正特性サーミスタ素体の両主表面に、 前記正特性サ—ミ スタ素体の外周縁 よりも内側に端部がく るように形成され、 銀層を含む単層または複数層の第 1の 電極層と、
前記第 1の電極層の表面および側面を覆うように形成された銀を主成分とする 第 2の電極層と、
前記第 2の電極層の端縁部近傍から側面を覆うように形成された主成分をアル ミニゥムとする層からなる第 3の電極層とを具備したことを特徴とする正特性サ 一ミ ス夕。
( 6 ) 前記第 3の電極層は、 5 ~ 6 0 V o 1 %の導電性ホウ素化合物とアル ミ二ゥムとを含む厚膜印刷層で構成されていることを特徴とする請求の範囲 5に 記載の正特性サーミス夕。
( 7 ) 正特性サ一ミ スタ素体と、
前記正特性サーミスタ素体の両主表面に形成された第 1の電極層と、 前記第 1の電極層の端縁よりも内側に端縁部がく るように形成された銀を主成 分とする第 2の電極層と、
前記第 2の電極層を覆うように形成された主成分をアルミニウムとする層から なる第 3の電極層とを具備したことを特徴とする正特性サーミスタ。
( 8 ) 前記第 3の電極層は、 5〜6 0 V o 1 %の導電性ホウ素化合物とアル ミ二ゥムとを含む厚膜印刷層で構成されていることを特徴とする請求の範囲 7に 記載の正特性サーミス夕。
( 9 ) 正特性サ一ミス夕素体と、
前記正特性サーミスタ素体の両主表面に形成され、 最外層がアルミニゥム層あ るいは、 5 ~ 6 O vol %の導電性ホウ素化合物とアルミニゥムとを含む層で構成さ れた電極とからなる正特性サ一ミ ス夕と
前記正特性サーミスタを挟持する端子とから構成され、
少なく とも前記端子の前記正特性サ一ミ ス夕と接触する領域がアルミニウムに 対し融点 3 0 0 °C以下の合金を形成しない物質で構成されていることを特徴とす るサ一ミ スタ装置。
( 1 0 ) 前記物質は、 ニッケル、 銀、 銅、 アルミニウム、 チタンまたはそれ らの 2つ以上の合金のいずれかであることを特徴とする請求の範囲 9記載のサー ミ ス夕装置。
PCT/JP1995/000334 1994-03-04 1995-03-02 Thermistor a coefficient positif de temperature WO1995024046A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95910727A EP0749132A4 (en) 1994-03-04 1995-03-02 THERMISTOR WITH POSITIVE TEMPERATURE COEFFICIENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3490394 1994-03-04
JP6/34903 1994-03-04

Publications (1)

Publication Number Publication Date
WO1995024046A1 true WO1995024046A1 (fr) 1995-09-08

Family

ID=12427153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000334 WO1995024046A1 (fr) 1994-03-04 1995-03-02 Thermistor a coefficient positif de temperature

Country Status (1)

Country Link
WO (1) WO1995024046A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724272A1 (en) * 1995-01-26 1996-07-31 Murata Manufacturing Co., Ltd. Thermistor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120337U (ja) * 1976-03-10 1977-09-12
JPS55118601A (en) * 1979-03-06 1980-09-11 Tdk Electronics Co Ltd Porcelain semiconductor element
JPH05275204A (ja) * 1992-03-25 1993-10-22 Murata Mfg Co Ltd 正特性サーミスタ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120337U (ja) * 1976-03-10 1977-09-12
JPS55118601A (en) * 1979-03-06 1980-09-11 Tdk Electronics Co Ltd Porcelain semiconductor element
JPH05275204A (ja) * 1992-03-25 1993-10-22 Murata Mfg Co Ltd 正特性サーミスタ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0749132A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724272A1 (en) * 1995-01-26 1996-07-31 Murata Manufacturing Co., Ltd. Thermistor device
US6177857B1 (en) 1995-01-26 2001-01-23 Murata Manufacturing Co., Ltd. Thermistor device

Similar Documents

Publication Publication Date Title
EP0235749B1 (en) Positive ceramic semiconductor device
JPH0475460B2 (ja)
CN101636798B (zh) 层叠正温度系数热敏电阻
US4053864A (en) Thermistor with leads and method of making
WO2012114874A1 (ja) 電子部品の実装構造
WO1995024046A1 (fr) Thermistor a coefficient positif de temperature
KR20080010894A (ko) 세라믹 부품 및 그 제조방법
JPH07297008A (ja) 正特性サーミスタおよびこれを用いたサーミスタ装置
EP0749132A1 (en) Positive temperature coefficient thermistor and thermistor device using it
JP2663935B2 (ja) 板状セラミックヒータ及びその製造方法
JP3310010B2 (ja) 正特性サーミスタ装置
JPH07105719A (ja) 導電性ペーストと抵抗体素子
JP2001242124A (ja) ガスセンサ素子及びこれを備えるガスセンサ
WO1994000855A1 (en) Positive characteristic thermistor and method of its manufacture
JP2967221B2 (ja) 正特性サーミスタ素子
JP2897486B2 (ja) 正特性サーミスタ素子
JPS6142406B2 (ja)
WO2015002197A1 (ja) Ptc素子および発熱モジュール
JP3019568B2 (ja) セラミック電子部品及びその製造方法
JPH04105303A (ja) 磁器半導体素子の電極形成方法
JPS6210002B2 (ja)
JP2829552B2 (ja) ガス検知素子
JPS6032722Y2 (ja) 厚膜サ−ミスタ
JPS6127084A (ja) セラミツクヒ−タ
JP2559524Y2 (ja) 正特性サーミスタ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95191941.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995910727

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995910727

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1996 702594

Country of ref document: US

Date of ref document: 19961227

Kind code of ref document: A

WWW Wipo information: withdrawn in national office

Ref document number: 1995910727

Country of ref document: EP