WO1994000855A1 - Positive characteristic thermistor and method of its manufacture - Google Patents

Positive characteristic thermistor and method of its manufacture Download PDF

Info

Publication number
WO1994000855A1
WO1994000855A1 PCT/JP1993/000808 JP9300808W WO9400855A1 WO 1994000855 A1 WO1994000855 A1 WO 1994000855A1 JP 9300808 W JP9300808 W JP 9300808W WO 9400855 A1 WO9400855 A1 WO 9400855A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermistor
electrode
electrodes
positive
manufacturing
Prior art date
Application number
PCT/JP1993/000808
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Inagaki
Hiroshi Sasaki
Takuji Okumura
Masatoshi Tamura
Tadamasa Nishiyama
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Publication of WO1994000855A1 publication Critical patent/WO1994000855A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient

Definitions

  • the present invention relates to a positive temperature coefficient thermistor and a method of manufacturing the same, and more particularly, to a structure of the electrode and a method of forming the electrode. Background technology
  • PTC thermistor can adjust the area with a large positive temperature coefficient by adding Sr, Pb, etc. to measure the temperature, prevent overcurrent, start the motor, turn off the color TV. It is indispensable in a wide range of fields such as surface elements for magnets and low-temperature heaters.
  • such a PTC thermistor sinters oxides, carbonates, nitrates, or chlorides of metals such as Ba, Ti, d, etc. to form a thin circle.
  • the second electrode layers 23 a and 23 b mainly composed of Ag are provided.
  • the PTC thermistor is usually used by applying a voltage between the second electrode layers 23a and 23b. At this time, the Ag in the second electrode layer is moved in the direction of the electric field. So-called migration phenomenon (hereinafter referred to as migration) occurs.
  • migration occurs.
  • the outer peripheral edge of the second electrode layers 23a and 23b is configured to reach the outer peripheral end of the thermistor main body 21, the electric field is generated at the outer peripheral end of the thermistor main body 21.
  • the outer diameter (W) of the second electrode layers 23a and 23b is formed smaller than the outer diameter (V) of the first electrode layers 22a and 22b.
  • PTC thermistors have been proposed.
  • the outer diameter of the second electrode layers 23a and 23b is smaller than the outer diameter of the first electrode layers 22a and 22b.
  • the portions of a and 22b directly exposed to the atmosphere are easily oxidized, and the contact resistance gradually increases.
  • the migration of Ag is a phenomenon that moves along the direction of the electric field, and although a little, Ag diffuses through the first electrode layers 2a and 22b. The problem of short-circuiting is mitigated but cannot be completely prevented.
  • electrodes are formed by using a Ni plating method. When performing this Ni plating, the plating solution may penetrate into the sintered body and change the characteristics of the sintered body, such as a decrease in the resistance value.
  • a method has been proposed in which a low-melting-point metal layer such as A1 is formed by a metal spraying method and used as an electrode.
  • this method also involves a rapid temperature change at the time of electrode formation, so that the problem that cracks occur in the thermistor body or the electrode itself cannot be avoided.
  • the present invention focuses on such conventional problems, and can prevent a short-circuit accident due to migration of Ag, and can control high-precision resistance value control with little change with time of the initial resistance value and large inrush power.
  • the first aspect of the present invention is a thermistor main body composed of a semiconductor having a positive characteristic and a first electrode formed by A1 printing mainly composed of A1.
  • the second electrode is to provide a thermistor body made of a semiconductor having a positive characteristic, and an electron beam evaporation of one of A 1, Ni, Cu, Cr, Ti or an alloy thereof. (Hereinafter, referred to as EB deposition).
  • a third aspect of the present invention there is provided a method for manufacturing a thermistor from a thermistor main body and an electrode, the second electrode being formed by A1 printing containing A1 as a main component in addition to the above-described configuration.
  • a fourth aspect of the present invention is to print an AI paste containing A1 as a main component on the upper and lower surfaces of a thermistor body made of a semiconductor having a positive characteristic, and then sinter the A1 paste to form a second paste.
  • the first electrode or the second electrode is formed.
  • a fifth aspect of the present invention is to provide any one of Al, Ni, C ⁇ , Cr, Ti or an alloy thereof on the upper and lower surfaces of a thermistor body made of a semiconductor having positive characteristics.
  • the first electrode is formed by EB evaporation.
  • an A paste containing A 1 as a main component is printed, and after printing, the A paste is baked to form a second electrode.
  • the present inventors have confirmed that in a PTC thermistor provided with an electrode made of A1, no migration occurs even when a voltage is applied. Therefore, in the present invention, A] is used for the first electrode or the second electrode to prevent a short circuit accident of the positive temperature coefficient thermistor.
  • the first electrode or the second electrode uses AI printing or an EB vapor-deposited film, the thermistor body does not crack or crack, so that the durability is improved more than five times.
  • the initial resistance value does not change with time, high-precision resistance value control is possible.
  • the electrode structure in which A 1 is printed on the A 1 EB deposited film has a high withstand voltage against a large inrush power. Therefore, by using the first electrode when the applied voltage is low, and further using the second electrode when the applied voltage is high, migration can be completely prevented and a highly durable positive characteristic thermistor can be obtained. You can get a star.
  • the first electrode is formed so as to be located at the same position as the outer periphery of the second electrode, oxidation of the first electrode can be prevented.
  • the first electrode or the second electrode having good adhesion and low contact resistance can be formed by printing A 1 or employing the EB vapor deposition method.
  • FIG. 1 is an overall configuration diagram showing an embodiment of a positive temperature coefficient thermistor of the present invention
  • FIGS. 2A, 2B, and 2A are diagrams showing a manufacturing process of the positive temperature coefficient thermistor of the present invention
  • FIG. FIG. 4 is a diagram showing the appearance of a conventional PTC thermistor element
  • FIG. 4 is a view showing the appearance of another conventional PTC thermistor element.
  • FIG. 1 is an overall configuration diagram of a positive characteristic thermostat showing an example of a case where the device is used when an applied electric field is high.
  • This positive temperature coefficient thermistor is composed of a first thermistor body 11 mainly composed of barium titanate, and a first body in which Ni, Cu, or A1 is formed on the upper and lower surfaces by EB evaporation. Electrodes 1 2a, 1 2b and A on the first electrode The second electrodes 13 a and 13 b each having 1 as a main component.
  • FIG. 2A to 2C are process diagrams showing the steps of manufacturing the thermistor according to the embodiment of the present invention.
  • the surface roughness of the upper surface and lower surface (electrode formation surface) of the thermistor body 11 is measured using a surface roughness meter.
  • the surface roughness is 6.3 to 1.6 s (JIS standard triangle symbol ⁇ ) and when the surface roughness is 0.8 s (JIS standard triangle symbol ⁇ ) It is divided into the above cases.
  • a first electrode 12 a composed of a thin film of Ni, Cu, or A] having a thickness of 0.1 to 10 m is formed on the upper and lower surfaces by EB vapor deposition. , Forming 1 2b.
  • the film forming conditions may be as follows.
  • a second electrode 13a containing A1 as a main component (A1 contains about 50% by volume ratio) is formed on the upper layer of the first electrodes 12a and 12b. > 1 3b.
  • A1 paste mainly composed of A1 is printed.
  • drying and baking were performed after printing c.
  • the film thickness was 10 m, and the drying was baking at 12 O'C for 5 minutes.
  • Formation temperature The temperature was raised to 640 in 30 minutes, kept at 640 ° C for 5 minutes, and then carried out by natural cooling. In this step, the following should be performed.
  • the resistance ( ⁇ cm) of the thin film after EB deposition was measured for each of seven positive characteristic thermistors of No. 1 to 4. Table 1 shows the obtained results. table 1
  • Inrush current value (A pp) Ampere peak for each of 7 positive characteristic thermistors N 0.1 to 4 by the measurement circuit (voltage: 220 V rms, frequency: 50 Hz, resistance: 12 ⁇ ) The to peak was measured and was as follows.
  • the minimum value is 22.3 to the maximum value of 24.8, and in the case of Ni of A No. 2 — A 1, the minimum value is 2. 0 to the maximum value 23.7, and the Cu of No. 3 is the minimum value for AI 18.5 to the maximum value 20.8, and the Ni of the No. 4 is Ni—Ag In the case, the minimum value was 22.1 to the maximum value 23.0. From this result, it can be seen that a high inrush current value was obtained in the case of A 1 —A I of No. 1.
  • No. 1 to 3 can obtain the current displacement point (3.30 mA, 3.32 mA, 3.44 mA) at a voltage of 450 V to 500 V, and all of them have the same values as the conventional No. 4 (3.15 mA). It can be seen that almost the same performance was obtained.
  • a confirmation test was performed by an intermittent energization test of the migration.
  • an operation of applying a voltage of 220 V for one minute and then spraying water for five minutes was defined as one cycle, and this operation was repeated to confirm the number of cycles at which migration occurred.
  • a 1 —A 1 of No 1, no short circuit occurred even in 1000 cycles.
  • Ni, Ag of No, 4 a short circuit occurred in 100000 to 2000 cycles. From these results, it can be seen that the positive characteristic thermistor of A 1 —A 1 of N 0,1 can prevent short circuit accident.
  • the first electrodes 12a, 12b or the second electrodes 13a, 13b are fully covered up to the end surface of the thermistor body 11, but the first electrodes 12a, The 12b or the second electrodes 13a and 13b may be located inside the outer peripheral end of the thermistor body 11 and the outer circumferences thereof may be aligned and coated at the same position.
  • the first electrodes 12a and 12b or the second electrodes 13a and 13b may be coated inside the outer peripheral end of the thermistor body 11 and by shifting their outer peripheral edges. it can.
  • Al, Ni, Cu, as the first electrodes 12a, 12b are shown, Cr, Ti, which can be EB deposited and have good compatibility with A1, are shown. Can also be used.
  • the present invention can prevent short-circuit accidents due to migration of Ag, minimize changes in the initial resistance with time, and achieve high-precision resistance control and high withstand voltage against large inrush power.
  • it is useful as a highly durable positive temperature coefficient thermistor.
  • an electrode having high adhesion and low contact resistance can be formed, which is useful as a method for manufacturing a PTC thermistor with high productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermistors And Varistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

A thermistor such that a short circuit failure due to Ag migration is prevented, the resistance can be precisely controlled, and its durability is high. A method of manufacturing highly reliably such a thermistor with a high productivity. This thermistor is provided with a thermistor main body (11) made of a semiconductor having a positive temperature coefficient of resistance, and first electrodes (12a and 12b) or second electrodes (13a and 13b) formed by Al printing using a material containing Al as its main component. Also, on the top face and bottom face of the thermistor main body (11), an Al paste containing Al as its main component is printed, and then, the paste is burned to form the first electrodes (12a and 12b) or the second electrodes (13a and 13b).

Description

明 細 書 正特性サー ミ スタおよびその製造方法 技 術 分 野  Description Positive characteristic thermistor and method of manufacturing the same Technical field
本発明は、 正特性サーミ スタおよびその製造方法に係り、 特にその電極の構造 およびその形成方法に関する。 背 景 技 術  The present invention relates to a positive temperature coefficient thermistor and a method of manufacturing the same, and more particularly, to a structure of the electrode and a method of forming the electrode. Background technology
B a T i 03 に Y、 N d等を 0. 1〜 0. 3 atom % (以下 at %と記す) 添 加した酸化物半導体は大きな正の温度係数を有するこ とから、 PT Cサ一 ミ スタ (Positive Temperature Coefficient Thermistor ) と呼ばれている。 PT Cサ —ミ スタは、 大きな正の温度係数を有する領域を S r , P b等の添加で調整する こ とができるから、 温度の測定、 および過電流防止、 モータ起動、 カ ラー TV消 磁用等の面路素子、 および低温発熱ヒータ等の広い分野で、 な くてはならないも のとなつている。 B a T i 0 3 to Y, from the N d 0. 1~ 0. 3 atom% etc. (hereinafter referred to as at%) oxide semiconductor to which added pressure and this has a large positive temperature coefficient, PT C Sa It is called a positive temperature coefficient (Positive Temperature Coefficient Thermistor). The PTC thermistor can adjust the area with a large positive temperature coefficient by adding Sr, Pb, etc. to measure the temperature, prevent overcurrent, start the motor, turn off the color TV. It is indispensable in a wide range of fields such as surface elements for magnets and low-temperature heaters.
このよう な PT Cサー ミ スタ は、 その一例を図 3に示すよ う に B a , T i , d , などの金属の酸化物、 炭酸塩、 硝酸塩、 または塩化物を焼結し、 薄い円柱状 に成形されたサ一 ミ スタ本体 2 1 と、 その上面と下面に形成された N iメ ッキ層 からなる第 1電極層 2 2 a , 2 2 bと、 これらの上層に形成された A gを主成分 とする第 2電極層 2 3 a , 2 3 bとから構成されている。  As shown in Fig. 3, such a PTC thermistor sinters oxides, carbonates, nitrates, or chlorides of metals such as Ba, Ti, d, etc. to form a thin circle. A pillar-shaped thermistor body 21, first electrode layers 22 a and 22 b composed of Ni-mec layers formed on the upper and lower surfaces thereof, and formed on these upper layers The second electrode layers 23 a and 23 b mainly composed of Ag are provided.
ところで、 PT Cサー ミ スタは、 通常第 2電極層 2 3 a , 2 3 b間に電圧を印 加して使用されるが、 このとき電界の方向に向かって第 2電極層内の A gが移動 析出する、 いわゆる Migration 現象 (以下マイ グレーショ ンと記す) が生ずる。 特に、 第 2電極層 2 3 a , 2 3 bの外周縁がサーミ スタ本体 2 1の外周端まで達 するように構成されている場合、 このサー ミ スタ本体 2 1 の外周端では電界の方 向に向かって A gが移動析出し、 ついには短絡を生じるという問題がある。 この ために、 図 3に示すように第 2電極層 2 3 a , 2 3 bの外径 (W) は第 1電極層 2 2 a , 2 2 bの外径 ( V ) より も小さ く形成された PTCサーミ スタが提案さ れている。 By the way, the PTC thermistor is usually used by applying a voltage between the second electrode layers 23a and 23b. At this time, the Ag in the second electrode layer is moved in the direction of the electric field. So-called migration phenomenon (hereinafter referred to as migration) occurs. In particular, when the outer peripheral edge of the second electrode layers 23a and 23b is configured to reach the outer peripheral end of the thermistor main body 21, the electric field is generated at the outer peripheral end of the thermistor main body 21. There is a problem that Ag precipitates and migrates in the direction, eventually causing a short circuit. this Therefore, as shown in FIG. 3, the outer diameter (W) of the second electrode layers 23a and 23b is formed smaller than the outer diameter (V) of the first electrode layers 22a and 22b. PTC thermistors have been proposed.
しかし、 この構造では第 2電極層 2 3 a, 2 3 bの外径が第 1電極層 2 2 a , 2 2 bの外径より も小さ く設けられているため、 第 1電極層 2 2 a , 2 2 bの直 接大気に曝されている部分が酸化されやすく、 次第にコ ンタク ト抵抗が上昇する という問題がある。 また、 A gのマイグレー シ ョ ンは電界の方向にそって移動す る現象であるから、 僅かではあるが第 1電極層 2 a , 2 2 bの中を A gが拡散 していく ため、 短絡の問題は緩和されるが完全に防止することはできない。 また、 従来の P T Cサ一ミ スタでは N iめつき法を用いて電極が形成されてい る。 この N i めっきを行う際に、 めっき溶液が焼結体内部に浸透し、 抵抗値が減 少する等焼結体の特性を変化させることがある。 この特性変化は、 電極形成後た だちに表れることもあれば、 時間とともに徐々に表れるこ ともある。 ところで、 P T Cサーミ スタの用途は前述したように温度の測定および制御等の高精度の抵 抗値制御が必要なものばかりであり、 R ± or% (こ こで、 R = 3〜3 0 , or- 1 0 , 2 0, 3 0 %) の範囲内にあるものを用いる必要がある。 したがって、 こ のめつき液の浸透による抵抗値変化の問題は深刻化している。  However, in this structure, the outer diameter of the second electrode layers 23a and 23b is smaller than the outer diameter of the first electrode layers 22a and 22b. There is a problem that the portions of a and 22b directly exposed to the atmosphere are easily oxidized, and the contact resistance gradually increases. Also, the migration of Ag is a phenomenon that moves along the direction of the electric field, and although a little, Ag diffuses through the first electrode layers 2a and 22b. The problem of short-circuiting is mitigated but cannot be completely prevented. In a conventional PTC thermistor, electrodes are formed by using a Ni plating method. When performing this Ni plating, the plating solution may penetrate into the sintered body and change the characteristics of the sintered body, such as a decrease in the resistance value. This characteristic change may appear immediately after the electrode is formed, or may gradually appear over time. By the way, the applications of PTC thermistors are those that require high-precision resistance value control such as temperature measurement and control, as described above, and R ± or% (where R = 3 to 30, or- 10, 20, 30%). Therefore, the problem of resistance change due to penetration of the plating solution has become more serious.
このようなめつき液の浸透を避けるため、 メ タル溶射法により A 1等の低融点 金属層を形成し、 これを電極と して用いる方法が提案されている。 しかし、 この 方法も電極形成時に急激な温度変化を伴うため、 サーミ スタ本体あるいは電極自 体に割れが発生するという問題を避けることができない。  In order to avoid such penetration of the plating solution, a method has been proposed in which a low-melting-point metal layer such as A1 is formed by a metal spraying method and used as an electrode. However, this method also involves a rapid temperature change at the time of electrode formation, so that the problem that cracks occur in the thermistor body or the electrode itself cannot be avoided.
かかる問題点を解決するために、 本発明者等は、 図 4に示すように第 1電極 3 In order to solve such a problem, the present inventors, as shown in FIG.
2 a , 3 2 bと第 2電極 3 3 a , 3 3 bとをサーミ スタ本体 3 1の外周端より内 側で、 且つ同一位置で重合わせたものを提案している (特開平 4 - 1 1 8 9 0 1 参照) 。 2a, 32b and the second electrode 33a, 33b are overlapped at the same position inside the outer peripheral end of the thermistor body 31 and at the same position (Japanese Patent Laid-Open No. Hei 4- See 1 189 01).
しかしながら、 このように提案された PT Cサー ミ スタでも第 2電極 3 3 a , However, even with the PTC thermistor thus proposed, the second electrode 33a,
3 3 bとして A gを用いるため、 電界を印加したときに A gのマイグレーシ ョ ン は電界の方向にそって移動するから、 わずかではあるが A gが拡散してい く。 従 つて、 短絡の問題については緩和されるが、 なお完全には防止できない。 発 明 の 開 示 3 Because Ag is used as 3b, migration of Ag when an electric field is applied Moves along the direction of the electric field, and although a little, Ag diffuses. Thus, the problem of short circuits is mitigated but cannot be completely prevented. Disclosure of the invention
本発明はかかる従来の問題点に着目し、 A gのマイ グレーショ ンによる短絡事 故が防止でき、 また初期抵抗値の経時変化が少なく て高精度の抵抗値制御と、 大 きな突入電力に対しての高い耐電圧が得られ、 加えて割れ、 ひびが発生しないの で耐久性も高い正特性サーミ スタを提供し、 且つ信頼性が高くて生産性も髙いそ の製造方法を提供するこ とを目的としている。  The present invention focuses on such conventional problems, and can prevent a short-circuit accident due to migration of Ag, and can control high-precision resistance value control with little change with time of the initial resistance value and large inrush power. To provide a positive temperature coefficient thermistor with high durability, since it has a high withstand voltage and no cracks or cracks, and to provide a method of manufacturing with high reliability and high productivity. And for the purpose.
サ一ミ スタ本体と電極からなるサーミ スタにおいて、 本発明の第 1 は正特性を 持つ半導体からなるサーミ スタ本体と、 A 1 を主成分とする A 1 印刷により形成 された第 1電極も し く は第 2電極とから構成している。 本発明の第 2 は、 正特性 を持つ半導体からなるサ一ミスタ本体と、 A 1 , N i , C u , C r , T i のいず れか一つもしく はこれらの合金の電子ビーム蒸着 (以下 E B蒸着と記す) の蘀膜 により形成された第 1電極とから構成している。 本発明の第 3 は、 前記構成に加 えて A 1 を主成分とする A 1 印刷により形成された第 2電極とから構成している サー ミ スタ本体と電極からサーミ スタを製造する方法おいて、 本発明の第 4は 正特性を持つ半導体からなるサ一ミ スタ本体の上面および下面に、 A 1 を主成分 とする A I ペース トを印刷し、 その後この A 1 ペース トを焼成して第 1電極もし く は第 2電極を形成している。 本発明の第 5 は、 正特性を持つ半導体からなるサ ―ミ スタ本体の上面および下面に、 A l , N i , C υ , C r , T i のいずれか一 つもしく はこれらの合金を E B蒸着して第 1電極を形成している。 本発明の第 6 は、 前記方法に加えて A 1 を主成分とする A 】 ペース トを印刷し、 印刷後に A 】 ペース トを焼成して第 2電極を形成している。  In a thermistor composed of a thermistor main body and an electrode, the first aspect of the present invention is a thermistor main body composed of a semiconductor having a positive characteristic and a first electrode formed by A1 printing mainly composed of A1. Or the second electrode. The second aspect of the present invention is to provide a thermistor body made of a semiconductor having a positive characteristic, and an electron beam evaporation of one of A 1, Ni, Cu, Cr, Ti or an alloy thereof. (Hereinafter, referred to as EB deposition). According to a third aspect of the present invention, there is provided a method for manufacturing a thermistor from a thermistor main body and an electrode, the second electrode being formed by A1 printing containing A1 as a main component in addition to the above-described configuration. A fourth aspect of the present invention is to print an AI paste containing A1 as a main component on the upper and lower surfaces of a thermistor body made of a semiconductor having a positive characteristic, and then sinter the A1 paste to form a second paste. The first electrode or the second electrode is formed. A fifth aspect of the present invention is to provide any one of Al, Ni, Cυ, Cr, Ti or an alloy thereof on the upper and lower surfaces of a thermistor body made of a semiconductor having positive characteristics. The first electrode is formed by EB evaporation. In a sixth aspect of the present invention, in addition to the above method, an A paste containing A 1 as a main component is printed, and after printing, the A paste is baked to form a second electrode.
本発明者等は、 A 1 による電極を備えた正特性サー ミ スタでは、 電圧を印加し ても、 マイ グレー シ ョ ンは全く生じないことを確認した。 そこで本発明では、 第 1電極も し く は第 2電極に A 】 を採用し、 正特性サー ミ スタの短絡事故を防止し ている。 また、 第 1電極も しく は第 2電極に A I印刷あるいは E B蒸着膜を用い るために、 サーミ スタ本体の割れ、 ひびが生じないため、 耐久性は 5倍以上に向 上する。 さ らに、 初期抵抗値の経時変化が少ないので、 高精度の抵抗値制御が可 能である。 特に、 A 1 の E B蒸着膜の上に A 1 印刷した電極構造では大きな突入 電力に対しての耐電圧も高い。 従って、 印加する電圧が低いときには第 1電極を 用い、 印加する電圧が高いときには更に第 2電極を用いるこ とにより、 マイ グレ —シ ョ ンは完全に防止できるとともに、 耐久性の高い正特性サーミ スタを得るこ とができる。 The present inventors have confirmed that in a PTC thermistor provided with an electrode made of A1, no migration occurs even when a voltage is applied. Therefore, in the present invention, A] is used for the first electrode or the second electrode to prevent a short circuit accident of the positive temperature coefficient thermistor. In addition, since the first electrode or the second electrode uses AI printing or an EB vapor-deposited film, the thermistor body does not crack or crack, so that the durability is improved more than five times. Furthermore, since the initial resistance value does not change with time, high-precision resistance value control is possible. In particular, the electrode structure in which A 1 is printed on the A 1 EB deposited film has a high withstand voltage against a large inrush power. Therefore, by using the first electrode when the applied voltage is low, and further using the second electrode when the applied voltage is high, migration can be completely prevented and a highly durable positive characteristic thermistor can be obtained. You can get a star.
加えて、 第 1電極は第 2電極の外周緣と同等に位置するように形成されている ので、 第 1電極の酸化を防止でき る。 また、 A 1 の印刷あるいは E B蒸着法の採 用により、 密着性が髙くて接触抵抗の小さい第 1電極もしく は第 2電極を形成す るこ とができる。 図面の簡単な説明  In addition, since the first electrode is formed so as to be located at the same position as the outer periphery of the second electrode, oxidation of the first electrode can be prevented. Further, the first electrode or the second electrode having good adhesion and low contact resistance can be formed by printing A 1 or employing the EB vapor deposition method. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明の正特性サ—ミ スタの実施例を示す全体構成図、 図 2 A , 図 2 B , 図 2 Aは本発明の正特性サーミ スタの製造工程を示す図、 図 3は従来の正特性 サ一ミ スタ素子の外観形状を示す図、 図 4は従来の他の正特性サーミ スタ素子の 外観形状を示す図である。 発明を実施するための最良の形態  FIG. 1 is an overall configuration diagram showing an embodiment of a positive temperature coefficient thermistor of the present invention, FIGS. 2A, 2B, and 2A are diagrams showing a manufacturing process of the positive temperature coefficient thermistor of the present invention, and FIG. FIG. 4 is a diagram showing the appearance of a conventional PTC thermistor element, and FIG. 4 is a view showing the appearance of another conventional PTC thermistor element. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る正特性サーミ スタの実施例につき、 図面を参照して詳細に説明す る。  An embodiment of a positive temperature coefficient thermistor according to the present invention will be described in detail with reference to the drawings.
図 1 は、 印加する電界が高いときに使用する場合の一例を示す正特性サ一ミ ス タの全体構成図である。 この正特性サーミ スタは、 チタ ン酸バリ ウムを主成分と するサ一ミ スタ本体 1 1 と、 その上面と下面に N i 、 あるいは C u、 あるいは A 1 を E B蒸着法により形成した第 1電極 1 2 a , 1 2 bと、 第 1電極の上層に A 1 を主成分とする第 2電極 1 3 a , 1 3 bとからなる。 FIG. 1 is an overall configuration diagram of a positive characteristic thermostat showing an example of a case where the device is used when an applied electric field is high. This positive temperature coefficient thermistor is composed of a first thermistor body 11 mainly composed of barium titanate, and a first body in which Ni, Cu, or A1 is formed on the upper and lower surfaces by EB evaporation. Electrodes 1 2a, 1 2b and A on the first electrode The second electrodes 13 a and 13 b each having 1 as a main component.
図 2 A乃至図 2 Cは本発明実施例のサーミ スタの製造工程を示す工程図である 。 まず、 図 2 Aに示すよう に、 T i 02 , B a C 03 , N d ζ 03 , の粉末を所 定の割合で混合し、 冷却プレス法によってディ スク状に加圧成形した後、 1 3 0 0 tで焼結して、 直径 . 4 7 mmのデイ スク状のサーミ スタ本体 1 1を形成す る。 2A to 2C are process diagrams showing the steps of manufacturing the thermistor according to the embodiment of the present invention. First, as shown in FIG. 2 A, and mixed T i 0 2, B a C 0 3, N d ζ 0 3, the powder at the rate of Jo Tokoro was pressed into disks shape by cooling press method Thereafter, sintering is performed at 130 tons to form a disk-shaped thermistor body 11 having a diameter of .47 mm.
そして、 サ一ミ スタ本体 1 1の上面と下面 (電極形成面) の表面粗さを表面粗 さ計を用いて測定する。 そして、 この表面粗さが 6. 3〜1. 6 s ( J I S規格 の三角記号で▽▽▽) の場合と、 表面粗さが 0. 8 s (J I S規格の三角記号で ▽▽▽▽) 以上の場合とに分ける。  Then, the surface roughness of the upper surface and lower surface (electrode formation surface) of the thermistor body 11 is measured using a surface roughness meter. When the surface roughness is 6.3 to 1.6 s (JIS standard triangle symbol ▽▽▽) and when the surface roughness is 0.8 s (JIS standard triangle symbol ▽▽▽▽) It is divided into the above cases.
次いで、 図 2 Bに示すように、 この上面および下面に EB蒸着法により、 膜厚 0. 1〜1 0 mの N i、 あるいは C u、 あるいは A 】 の薄膜からなる第 1電極 1 2 a、 1 2 bを形成する。 本実施例では、 成膜条件 : 1 5 0 'C、 真空度 : 5 x 1 0— 4 t 0 r r、 膜厚さ : 5 0 0 0 Aで実施した。 Next, as shown in FIG. 2B, a first electrode 12 a composed of a thin film of Ni, Cu, or A] having a thickness of 0.1 to 10 m is formed on the upper and lower surfaces by EB vapor deposition. , Forming 1 2b. In this embodiment, the film formation conditions: 1 5 0 'C, vacuum degree: 5 x 1 0- 4 t 0 rr, film thickness: was carried out at 5 0 0 0 A.
このときメ タルマスクを介して蒸着を行うように して、 本体 1 1の端面 1 1 a に N i、 あるいは C u、 あるいは A 1が形成されないようにしておく。 こ こで、 成膜条件は次のようにすると良い。  At this time, vapor deposition is performed through a metal mask so that Ni, Cu, or A1 is not formed on the end face 11a of the main body 11. Here, the film forming conditions may be as follows.
' 表面粗さが 6. 3〜 1. 6 s の場合 :  '' When the surface roughness is 6.3 to 1.6 s:
真空度 : 1 X 1 0 4 t 0 r r〜 1 X 1 0 6 t 0 r r Vacuum: 1 X 1 0 4 t 0 rr~ 1 X 1 0 6 t 0 rr
成膜条件 :室温〜 2 5 0 °C  Film formation conditions: room temperature to 250 ° C
- 表面粗さが 0. 8 s以上の場合 :  -When the surface roughness is 0.8 s or more:
真空度 : 5 > 1 0 -4 t o r r〜l X l O— 6 t o r r Degree of vacuum: 5> 1 0 - 4 torr~l X l O- 6 torr
成膜条件 : 1 0 0 〜 2 5 0 'C  Film formation conditions: 100 to 250'C
次に、 図 2 Cに示すように第 1電極 1 2 a , 1 2 bの上層に A 1を主成分 (A 1 が容積比で約 5 0 %を含む) とする第 2電極 1 3 a > 1 3 bを形成する。 この ために、 A 1 を主成分とする A 1 ペース トを印刷する。 そして、 印刷後に乾燥、 焼成を実施した c 本実施例では、 膜厚 : 1 0 m、. 乾燥 : 1 2 O 'Cで 5分間、 焼 成温度 : 3 0分で 6 4 0てまで昇温し、 6 4 0 °Cで 5分間保持、 その後に自然冷 却にて実施した。 なお、 この工程では、 次のようにすると良い。 Next, as shown in FIG. 2C, a second electrode 13a containing A1 as a main component (A1 contains about 50% by volume ratio) is formed on the upper layer of the first electrodes 12a and 12b. > 1 3b. For this purpose, an A1 paste mainly composed of A1 is printed. Then, drying and baking were performed after printing c. In this example, the film thickness was 10 m, and the drying was baking at 12 O'C for 5 minutes. Formation temperature: The temperature was raised to 640 in 30 minutes, kept at 640 ° C for 5 minutes, and then carried out by natural cooling. In this step, the following should be performed.
• A 1 ペース トの印刷の膜厚 : 0. l um〜 1 0 / m  • Printing thickness of A1 paste: 0. lum to 10 / m
• 焼成温度 : 6 0 0て〜 7 5 0 °C 次に、 本実施例と従来例の比較テス ト結果について説明する。  • Firing temperature: 600 to 75 ° C. Next, the results of comparative tests between the present embodiment and the conventional example will be described.
( 1 ) 比較テス ト結果 1  (1) Comparison test result 1
前記製造方法で、 N i、 あるいは C u、 あるいは A 1よりなる薄膜で形成した 第 1電極 1 2 a, 1 2 bと、 A 1を主成分とする第 2電極 1 3 a , 1 3 とから なる 3種類 ( N 0. 1〜 3 ) と、 従来の N i よりなる第 1電極 2 2 a , 2 2 bと A gよりなる第 2電極 2 3 a , 2 3 a との組合せの 1種類 (N 0. 4 ) を各 7個 作成するこ ととする。 先ず、 N o . 1〜 4の正特性サ一ミ スタ各 7個について薄 膜の E B蒸着後の抵抗値 (Ω c m) を測定した。 得られた結果を表 1 に示す。 表 1  In the manufacturing method, Ni, or Cu, or a first electrode 12 a, 12 b formed of a thin film made of A 1 and second electrodes 13 a, 13 mainly composed of A 1 1 (N0.1-3) and the combination of the first electrodes 22a, 22b of the conventional Ni and the second electrodes 23a, 23a of Ag Seven types (N 0.4) shall be created for each. First, the resistance (Ω cm) of the thin film after EB deposition was measured for each of seven positive characteristic thermistors of No. 1 to 4. Table 1 shows the obtained results. table 1
N 0 電極 E B蒸着後の抵抗値  N 0 electrode E B Resistance after deposition
! —— i i ! —— i i
E B蒸着 ( Ω c m ) E B evaporation (Ω cm)
(第 1 )  (First)
1 A 1 18.6 16.4 16.3 18.5 17. 8 16. 8 16.6! 1 A 1 18.6 16.4 16.3 18.5 17. 8 16.8 16.6!
2 N i 18.5 17.8 15.6 18.0 17. 4 16. 9 18.32 Ni 18.5 17.8 15.6 18.0 17.4 16.9 18.3
3 C u 17.6 17.8 14.2 19.8 17. 6 17. 5 16.53 Cu 17.6 17.8 14.2 19.8 17.6 17.5 16.5
4 16.9 18.7 17.7 17.4 17. 2 17. 9 17.0 4 16.9 18.7 17.7 17.4 17. 2 17. 9 17.0
E B蒸着後の抵抗値は、 いずれも従来の N o . 4 と同等の結果が得られた。 ( 2 ) 比較テス ト結果 2 The resistance values after the EB deposition were all the same as the conventional No. 4. (2) Comparison test result 2
N o . 1〜 4の正特性サ一ミ スタ各 7個についてペース ト焼成後の抵抗値 (Ω c m) を測定した。 得られた結果を表 2に示す。 表 2 The resistance value (Ωcm) after firing the paste was measured for each of seven positive characteristic thermistors with No. 1 to 4. Table 2 shows the obtained results. Table 2
Figure imgf000009_0001
ペース ト焼成後の抵抗値は N 0. 3を除き、 N o. 1, N o . 2のいずれの正 特性サーミ スタも、 従来の N 0. と同等の良好な結果が得られた。
Figure imgf000009_0001
Except for the resistance value of the paste after firing, the positive temperature coefficient thermistors No. 1 and No. 2 showed good results equivalent to the conventional N 0.
( 3 ) 比較テス ト結果 3  (3) Comparison test result 3
N 0. 1〜 4の正特性サーミ スタ各 7個について、 測定回路 (電圧 : 2 2 0 V r m s、 周波数 : 5 0 H z、 抵抗 : 1 2 Ω) により突入電流値 (A p p ) Ampere peak to peakを測定したところ、 次の通りであった。  Inrush current value (A pp) Ampere peak for each of 7 positive characteristic thermistors N 0.1 to 4 by the measurement circuit (voltage: 220 V rms, frequency: 50 Hz, resistance: 12 Ω) The to peak was measured and was as follows.
N o . 1 の A 1 — A 1 の場合には、 最小値 2 2. 3〜最大値 2 4. 8であり、 N o . 2の N i — A 1の場合には最小値 2 2. 0〜最大値 2 3. 7であり、 N o . 3の C u— A I の場合は最小値 1 8. 5〜最大値 2 0. 8であり、 N o . 4の N i — A gの場合には最小値 2 2. 1〜最大値 2 3. 0であった。 この結果より 、 N o . 1 の A 1 — A I の場合に高い突入電流値が得られたこ とが判る。  In the case of A 1 — A 1 of No. 1, the minimum value is 22.3 to the maximum value of 24.8, and in the case of Ni of A No. 2 — A 1, the minimum value is 2. 0 to the maximum value 23.7, and the Cu of No. 3 is the minimum value for AI 18.5 to the maximum value 20.8, and the Ni of the No. 4 is Ni—Ag In the case, the minimum value was 22.1 to the maximum value 23.0. From this result, it can be seen that a high inrush current value was obtained in the case of A 1 —A I of No. 1.
( ) 比較テス ト結果 4  () Comparison test result 4
正特性サーミ スタについて、 電圧値 (V) を変化させて、 電流値 (ιηΑ) の変化 を測定した。 得られた結果を表 3に示す。 表 3 For the positive temperature coefficient thermistor, the voltage value (V) was varied and the current value (ιηΑ) was measured. Table 3 shows the obtained results. Table 3
Figure imgf000010_0001
Figure imgf000010_0001
N o . 1 〜 3 は電圧 4 5 0 V〜 5 0 0 Vにおいて電流の変位点 (3.30mA, 3.32m A, 3.44mA) が得られ、 いずれも従来の N o . 4 (3.15mA)とほぼ同一の性能が得ら れたことが判る。 No. 1 to 3 can obtain the current displacement point (3.30 mA, 3.32 mA, 3.44 mA) at a voltage of 450 V to 500 V, and all of them have the same values as the conventional No. 4 (3.15 mA). It can be seen that almost the same performance was obtained.
( 5 ) 比較テス ト結果 5  (5) Comparison test result 5
電流に対する強度の比較を行った。 この結果、 N o . 1 の A 1 — A 1 の場合は 電流値 2 0 A〜 3 O Aになってサーミ スタ本体 1 1 が割れた。 他方、 N o . 4の N i - A gの場合には電流値 1 0 Aでサーミ スタ本体 2 2が割れた。 この結果よ り、 N o , 1 の A l — A 1 の正特性サーミ スタ強度は高いこ とが判る。  The intensity was compared with the current. As a result, in the case of A 1 —A 1 of No. 1, the current value became 20 A to 3 O A, and the thermistor body 11 was broken. On the other hand, in the case of Ni-Ag of No. 4, the thermistor body 22 was broken at a current value of 10 A. From this result, it can be seen that the positive characteristic thermistor strength of Al — A 1 of No, 1 is high.
( 6 ) 比較テス ト結果 6  (6) Comparison test result 6
マイ グレー ショ ンの断続通電試験による確認テス トを実施した。 テス ト方法は 、 2 2 0 Vの電圧を 1分間加えた後に水を 5分間噴霧する操作を 1 サイ クルとし て、 これを繰り返しで行ってマイ グレーショ ンが発生するサイ クル数を確認した 。 この結果、 N o , 1 の A 1 — A 1 の場合には 1 0 0 0 0サイ クルでも短絡が発 生しなかった。 他方、 N o , 4の N i — A gの場合には 1 0 0 0〜 2 0 0 0サイ クルで短絡が発生した。 この結果より、 N 0 , 1 の A 1 — A 1 の正特性サー ミ ス タは短絡事故を防止できることが判る。 本実施例では、 第 1電極 1 2 a , 1 2 b、 あるいは第 2電極 1 3 a , 1 3 bは サー ミ スタ本体 1 1 の端面まで一杯に被覆したが、 第 1電極 1 2 a , 1 2 b、 あ るいは第 2電極 1 3 a , 1 3 bをサーミ スタ本体 1 1 の外周端より も内側に位置 し、 且つこれらの外周緣を同一位置に揃えて被覆することもできる。 また、 第 1 電極 1 2 a , 1 2 b、 あるいは第 2電極 1 3 a, 1 3 bをサーミ スタ本体 1 1 の 外周端より も内側で、 且つこれらの外周縁をずらして被覆することもできる。 加えて、 第 1電極 1 2 a , 1 2 b と して A l, N i , C u , の例を示したが、 E B蒸着が可能で且つ A 1 との相性も良い C r , T i を利用するこ ともできる。 A confirmation test was performed by an intermittent energization test of the migration. As a test method, an operation of applying a voltage of 220 V for one minute and then spraying water for five minutes was defined as one cycle, and this operation was repeated to confirm the number of cycles at which migration occurred. As a result, in the case of A 1 —A 1 of No, 1, no short circuit occurred even in 1000 cycles. On the other hand, in the case of Ni, Ag of No, 4, a short circuit occurred in 100000 to 2000 cycles. From these results, it can be seen that the positive characteristic thermistor of A 1 —A 1 of N 0,1 can prevent short circuit accident. In the present embodiment, the first electrodes 12a, 12b or the second electrodes 13a, 13b are fully covered up to the end surface of the thermistor body 11, but the first electrodes 12a, The 12b or the second electrodes 13a and 13b may be located inside the outer peripheral end of the thermistor body 11 and the outer circumferences thereof may be aligned and coated at the same position. In addition, the first electrodes 12a and 12b or the second electrodes 13a and 13b may be coated inside the outer peripheral end of the thermistor body 11 and by shifting their outer peripheral edges. it can. In addition, although the examples of Al, Ni, Cu, as the first electrodes 12a, 12b are shown, Cr, Ti, which can be EB deposited and have good compatibility with A1, are shown. Can also be used.
産業上の利用可能性 Industrial applicability
本発明は、 A g のマイ グレーシ ョ ンによる短絡事故を防止でき、 また初期抵抗 値の経時変化が少なく、 加えて高精度の抵抗値制御と、 大きな突入電力に対して の高い耐電圧が得られ、 加えて耐久性の高い正特性サーミ スタ と して有用である 。 また、 密着性が髙くて接触抵抗の小さい電極を形成するこ とができ、 生産性も 高い正特性サーミ スタの製造方法として有用である。 '  The present invention can prevent short-circuit accidents due to migration of Ag, minimize changes in the initial resistance with time, and achieve high-precision resistance control and high withstand voltage against large inrush power. In addition, it is useful as a highly durable positive temperature coefficient thermistor. In addition, an electrode having high adhesion and low contact resistance can be formed, which is useful as a method for manufacturing a PTC thermistor with high productivity. '

Claims

請求の範囲 The scope of the claims
1 . サーミ スタ本体と電極からなるサーミ スタにおいて、 正特性を持つ半導体か らなるサ一ミ スタ本体と、 A 1 を主成分とする A 1 印刷により形成された第 1電 極もし く は第 2電極とからなるこ とを特徴とする正特性サ一ミ スタ。 1. A thermistor consisting of a thermistor body and electrodes; a thermistor body made of a semiconductor having positive characteristics; and a first electrode or a first electrode formed by A1 printing mainly composed of A1. Positive characteristic thermistor characterized by comprising two electrodes.
2 . サーミ スタ本体と電極からなるサーミ スタにおいて、 正特性を持つ半導体か らなるサーミ スタ本体と、 A し i , C u , C r , T i のいずれか一つも しく はこれらの合金の電子ビーム蒸着薄膜により形成された第 1電極とからなること を特徴とする正特性サ一ミ スタ。 2. In the thermistor consisting of the thermistor body and the electrodes, the thermistor body consisting of a semiconductor having positive characteristics and the electron of one of A, i, Cu, Cr, Ti or an alloy of these. A positive characteristic thermistor comprising a first electrode formed by a beam-deposited thin film.
3 . 前記正特性サーミ スタは、 前記サーミ スタ本体と、 前記第 1電極と、 A 1 を 主成分とする A 1 印刷により形成された第 2電極とからなるこ とを特徴とする請 求の範囲 2記載の正特性サーミ スタ。 3. The positive temperature coefficient thermistor comprises the thermistor main body, the first electrode, and a second electrode formed by A1 printing with A1 as a main component. PTC thermistor according to range 2.
4 . サーミ スタ本体と電極からサーミ スタを製造する方法おいて、 正特性を持つ 半導体からなるサーミ スタ本体の上面および下面に、 A 1 を主成分とする A 〗 ぺ ース トを印刷し、 その後こ の A 1 ペース トを焼成して第 1電極もし く は第 2電極 を形成することを特徴とする正特性サー ミスタの製造方法。 4. In the method of manufacturing a thermistor from a thermistor body and electrodes, an A A paste containing A 1 as a main component is printed on the upper and lower surfaces of a thermistor body made of a semiconductor having positive characteristics. Thereafter, the A1 paste is fired to form the first electrode or the second electrode, and a method for manufacturing a positive temperature coefficient thermistor.
5 . サーミ スタ本体と電極からサーミ スタを製造する方法おいて、 正特性を持つ 半導体からなるサーミ スタ本体の上面および下面に、 A 1 , N i , C u , C r , T i のいずれか一つもしく はこれらの合金を電子ビーム蒸着して第 1電極を形成 するこ とを特徴とする正特性サ一 ミ スタの製造方法。 5. In the method of manufacturing a thermistor from the thermistor body and the electrode, any one of A 1, Ni, Cu, Cr, and Ti is placed on the upper and lower surfaces of the thermistor body made of a semiconductor having positive characteristics. A method for manufacturing a positive characteristic thermistor, comprising forming one or more of these alloys by electron beam evaporation to form a first electrode.
6 . 前記正特性サーミ スタの製造方法は、 前記サー ミ スタ本体に形成された前記 第 1電極の上面および下面に、 A 1 を主成分とする A 1 ペース トを印刷し、 印刷 後に A 1 ペース トを焼成して第 2電極を形成構成することを特徴とする請求の範 囲 5記載の正特性サーミ スタの製造方法。 6. The method of manufacturing the positive temperature coefficient thermistor includes printing an A1 paste containing A1 as a main component on the upper and lower surfaces of the first electrode formed on the thermistor body, and printing the A1 paste after the printing. 6. The method for manufacturing a positive temperature coefficient thermistor according to claim 5, wherein the paste is baked to form the second electrode.
PCT/JP1993/000808 1992-06-23 1993-06-16 Positive characteristic thermistor and method of its manufacture WO1994000855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4/188673 1992-06-23
JP4188673A JPH065403A (en) 1992-06-23 1992-06-23 Positive temperature coefficient thermistor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO1994000855A1 true WO1994000855A1 (en) 1994-01-06

Family

ID=16227850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000808 WO1994000855A1 (en) 1992-06-23 1993-06-16 Positive characteristic thermistor and method of its manufacture

Country Status (2)

Country Link
JP (1) JPH065403A (en)
WO (1) WO1994000855A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749132A1 (en) * 1994-03-04 1996-12-18 Komatsu Ltd. Positive temperature coefficient thermistor and thermistor device using it

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115422A1 (en) * 2014-01-28 2015-08-06 日立金属株式会社 Ptc element and heating module
CN106205911B (en) * 2016-08-30 2020-01-21 肇庆鼎晟电子科技有限公司 Short-circuit-proof thermosensitive chip and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110201A (en) * 1980-02-05 1981-09-01 Nippon Denso Co Method of forming positive temperature coefficient porcelain semiconductor
JPS59220901A (en) * 1983-05-31 1984-12-12 株式会社村田製作所 Method of forming electrode of ceramic electronic part
JPS6395605A (en) * 1986-10-13 1988-04-26 松下電器産業株式会社 Manufacture of temperature sensitive resistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110201A (en) * 1980-02-05 1981-09-01 Nippon Denso Co Method of forming positive temperature coefficient porcelain semiconductor
JPS59220901A (en) * 1983-05-31 1984-12-12 株式会社村田製作所 Method of forming electrode of ceramic electronic part
JPS6395605A (en) * 1986-10-13 1988-04-26 松下電器産業株式会社 Manufacture of temperature sensitive resistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749132A1 (en) * 1994-03-04 1996-12-18 Komatsu Ltd. Positive temperature coefficient thermistor and thermistor device using it
EP0749132A4 (en) * 1994-03-04 1997-05-14 Komatsu Mfg Co Ltd Positive temperature coefficient thermistor and thermistor device using it

Also Published As

Publication number Publication date
JPH065403A (en) 1994-01-14

Similar Documents

Publication Publication Date Title
EP0784859B1 (en) Multiplet ptc resistor
US5289155A (en) Positive temperature characteristic thermistor and manufacturing method therefor
JPH04333295A (en) Electrostrictive effect element and manufacture thereof
JP2000150204A (en) Ntc thermistor and chip ntc thermistor
JP3359522B2 (en) Manufacturing method of multilayer ceramic capacitor
WO1994000855A1 (en) Positive characteristic thermistor and method of its manufacture
JPH06151103A (en) Laminated semiconductor porcelain composition
JP2001189229A (en) Capacitor
JPH02110903A (en) Manufacture of resistor
JPH07297008A (en) Positive temperature coefficient thermistor and thermistor device using the same
JP2727789B2 (en) Positive characteristic thermistor and manufacturing method thereof
JP3580391B2 (en) Method for manufacturing conductive chip type ceramic element
JPH0722268A (en) Chip device
JPH0547508A (en) Laminated semiconductor porcelain and manufacture thereof
JPH0714702A (en) Multilayer semiconductor ceramic having positive temperature-resistance characteristics
JP3289354B2 (en) Laminated semiconductor porcelain with positive resistance temperature characteristics
WO1992009993A1 (en) Method for manufacturing thermistor of positive characteristic
JP3524298B2 (en) Method of forming external electrodes of multilayer ceramic capacitor
JP2001291604A (en) Chip-type laminated thermistor and its manufacturing method
EP0749132A1 (en) Positive temperature coefficient thermistor and thermistor device using it
JP3240689B2 (en) Laminated semiconductor porcelain composition
JPS61105804A (en) Thermistor element and manufacuture thereof
JP2960099B2 (en) Lead wire for tantalum capacitor
WO1995024046A1 (en) Positive temperature coefficient thermistor and thermistor device using it
JP2003217905A (en) Chip-type thermistor and method for manufacturing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB NL US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642