JPH02110903A - Manufacture of resistor - Google Patents

Manufacture of resistor

Info

Publication number
JPH02110903A
JPH02110903A JP1225535A JP22553589A JPH02110903A JP H02110903 A JPH02110903 A JP H02110903A JP 1225535 A JP1225535 A JP 1225535A JP 22553589 A JP22553589 A JP 22553589A JP H02110903 A JPH02110903 A JP H02110903A
Authority
JP
Japan
Prior art keywords
resistor
paste
resistance film
lead
baked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1225535A
Other languages
Japanese (ja)
Other versions
JPH0553284B2 (en
Inventor
Toru Kasatsugu
笠次 徹
Koji Tani
広次 谷
Akiyoshi Moriyasu
明義 守安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1225535A priority Critical patent/JPH02110903A/en
Publication of JPH02110903A publication Critical patent/JPH02110903A/en
Publication of JPH0553284B2 publication Critical patent/JPH0553284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To make it possible to use a base metal for a lead-out electrode, and to obtain the manufacturing method for a resistor on which heat-resistivity to soldering is improved by a method wherein base metal paste is coated on a resistance film, which is baked in the air, partially overlapping the edge part, a lead-out electrode is formed by baking in a reducing atmosphere, and heat-resisting resin is coated on the overlapped part of the resisting film and the lead-out electrode. CONSTITUTION:A resistance film 12 is baked on an insulated substrate 11 in the air, base metal paste is coated partially overlapping the edge part of the resistance film 12, the base metal paste is baked in a reducing atmosphere at the temperature lower than the baking temperature, and lead-out electrodes 13 and 14, which are partially overlapping the edge part of the resistance film 12, are formed. Besides, a heat-resisting resin 15 is coated on the overlapped part of the resistance film 12 and the lead-out electrodes 13 and 14. For example, using RuO2 paste as the material of the resistance film 12, a resistance film 12 is formed by screen-printing said paste at 800 deg.C, it is baked at 600 deg.C in a nitrogen atmosphere using a Cu electrode as the lead-out electrodes 13 and 14. Besides, phenol resin paste is screen-printed on the resistance film 12 including the lead-out electrodes 13 and 14, and they are hardened at 200 deg.C and coated with heat-resisting resin 15.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半田耐熱性を改善した抵抗体の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a resistor with improved solder heat resistance.

(従来の技術) 基板の上に抵抗体を形成する方法としては、たとえば特
開昭57−96589号公報に記載されたものがある。
(Prior Art) As a method for forming a resistor on a substrate, there is a method described in, for example, Japanese Patent Laid-Open No. 57-96589.

この方法によれば、まず基板の上に銅ペーストを所定形
状に印刷し、約150℃の温度で約15分間加熱して硬
化させ、銅の配線パターンを形成する。次にポリマーレ
ジン抵抗体ペーストを所定形状、所定厚さに印刷し、約
85℃の温度で約15分間加熱し、抵抗ペースト中の有
機溶媒を除去するとともに仮硬化させる。さらに仮硬化
状態の抵抗体ペーストをチッ素、アルゴン等の不活性ガ
ス中で約170〜200℃の温度で約1〜3時間焼成し
て硬化させて抵抗体を形成する。そののち保護膜となる
レジストを印刷し、約150℃の温度で約15分間加熱
硬化させることにより、保護膜を形成する。
According to this method, copper paste is first printed in a predetermined shape on a substrate, and heated at a temperature of about 150° C. for about 15 minutes to harden it, thereby forming a copper wiring pattern. Next, a polymer resin resistor paste is printed in a predetermined shape and thickness, and heated at a temperature of about 85° C. for about 15 minutes to remove the organic solvent in the resistor paste and temporarily harden it. Further, the temporarily hardened resistor paste is fired and hardened in an inert gas such as nitrogen or argon at a temperature of about 170 to 200° C. for about 1 to 3 hours to form a resistor. Thereafter, a resist that will become a protective film is printed and cured by heating at a temperature of approximately 150° C. for approximately 15 minutes, thereby forming a protective film.

ここに開示の技術によれば、抵抗ペーストを不活性雰囲
気ガス中で焼成しているため、銅の配線パターンの酸化
膜がほとんど生ぜず、高温で短時間の処理を行うことが
できるとしている。
According to the technique disclosed herein, since the resistance paste is fired in an inert atmospheric gas, almost no oxide film is formed on the copper wiring pattern, and the process can be performed at high temperatures for a short time.

また、卑金属の引出電極からなる抵抗体の製造方法とし
て、特開昭58−10886号公報に記載されたものが
ある。
Further, as a method for manufacturing a resistor made of base metal lead electrodes, there is a method described in Japanese Patent Laid-Open No. 10886/1986.

この公報に記載の方法によれば、表面に下地用アンダー
コートを塗布した絶縁基板の上に、力一ボン抵抗などの
抵抗体を加熱硬化させて抵抗回路を形成し、この抵抗回
路の一部に導電性の良好な銅導電ペーストを重ね塗布し
て加熱硬化させ、さらにこの銅導電ペーストの要半田付
は箇所に半田付は性の良好な銅導電ペーストを重ね塗布
して加熱硬化させるというものである。
According to the method described in this publication, a resistance circuit is formed by heating and hardening a resistor such as a Rikibon resistor on an insulating substrate whose surface is coated with a base undercoat, and a part of this resistance circuit is Copper conductive paste with good conductivity is layered on the surface and cured by heating, and then copper conductive paste with good soldering properties is layered on the areas where soldering is required and the copper conductive paste is heated and cured. It is.

(発明が解決しようとする技術的課題)しかしながら、
前者の方法では、銅の配線パターンを先に形成するため
、抵抗体を形成するときに銅の配線パターンの酸化を避
ける工夫が必要である。このために、まず抵抗体に含有
されている有機溶剤を除去するために空気中で低温で焼
成し、次いで抵抗体を硬化させるために不活性ガス雰囲
気中で焼成して硬化させるという工程を設けており、製
造工程が複雑になる。また、このような工程を採用して
も、銅の配線パターンの表面には酸化膜が形成されるこ
とは避けられず、この酸化膜の厚みが厚くならないよう
に焼付は温度のコントロールを厳密に行わなければなら
ないという問題を有している。
(Technical problem to be solved by the invention) However,
In the former method, since the copper wiring pattern is formed first, it is necessary to take measures to avoid oxidation of the copper wiring pattern when forming the resistor. For this purpose, a process of first firing the resistor at a low temperature in the air to remove the organic solvent contained in the resistor, and then firing and hardening it in an inert gas atmosphere to harden the resistor is used. This complicates the manufacturing process. Furthermore, even if such a process is adopted, it is unavoidable that an oxide film will form on the surface of the copper wiring pattern, and the baking temperature must be strictly controlled to prevent the oxide film from becoming thick. There is a problem that has to be done.

また、後者の方法では、引出電極を銅で構成するもので
あるが、この銅からなる引出電極の形成が可能となった
のは、特殊な銅ペーストの使用を前提としたものであっ
て、汎用性に乏しく、焼付はタイプの抵抗体の引出電極
には使用できないものである。したがって、焼付はタイ
プの抵抗体の引出電極を卑金属で構成するには他の技術
的解決手段が必要となる。
In addition, in the latter method, the extraction electrode is made of copper, but the formation of the extraction electrode made of copper was made possible on the premise of the use of a special copper paste. It lacks versatility and cannot be used as a lead electrode for resistors of this type due to seizure. Therefore, other technical solutions are required to construct the extraction electrodes of resistors of the seizure type from base metals.

そこで、発明者等は第1図に示す構造からなる焼付はタ
イプの新規な抵抗体を検討した。この第1図の抵抗体は
、たとえばアルミナなどのセラミックからなる耐熱性を
有する絶縁基板1の上に、たとえばRub2からなる抵
抗ペーストをスクリーン印刷し、空気中で焼付けて抵抗
膜2を形成し、さらにこの抵抗膜2の端部の上に一部重
なるように卑金属、たとえば銅ペーストをスクリーン印
刷し、窒素雰囲気中で焼付けて電極3.4を形成した。
Therefore, the inventors investigated a new resistor of the seizure type having the structure shown in FIG. The resistor shown in FIG. 1 is made by screen-printing a resistance paste made of, for example, Rub2 on a heat-resistant insulating substrate 1 made of ceramic such as alumina, and baking it in air to form a resistance film 2. Further, a base metal such as copper paste was screen printed so as to partially overlap the end of this resistive film 2, and was baked in a nitrogen atmosphere to form electrodes 3.4.

このような抵抗体によれば、先に抵抗膜を焼付け、その
のちにCu、AI、Ni系の卑金属からなる引出電極を
焼付けており、この卑金属からなる引出電極は抵抗膜の
焼付は温度より低い温度で焼付けることができるため、
引出電極を酸化させたり、劣化させたりするという問題
がなくなる。また抵抗膜と卑金属からなる引出電極との
間に酸化膜が形成されないため、良好な接触状態が得ら
れることになる。
According to such a resistor, the resistive film is baked first, and then the lead electrode made of a base metal such as Cu, AI, or Ni is baked. Because it can be baked at low temperatures,
This eliminates the problem of oxidizing or deteriorating the extraction electrode. Further, since no oxide film is formed between the resistive film and the extraction electrode made of base metal, a good contact state can be obtained.

しかしながら、この抵抗体を溶融している半田槽に浸漬
し、電極3.4の上に接続用の半田槽を形成すると、抵
抗値が初期値にくらべて10%も変化することが確認さ
れた。その原因はまだ判明していないが、半田浸漬時に
熱の影響によって抵抗膜と電極との界面で接触抵抗に変
化が生じるものと考えられる。
However, when this resistor was immersed in a molten solder bath and a solder bath for connection was formed on top of the electrode 3.4, it was confirmed that the resistance value changed by as much as 10% compared to the initial value. . Although the cause is not yet clear, it is thought that the contact resistance changes at the interface between the resistive film and the electrode due to the influence of heat during solder immersion.

したがって、この発明は引出電極に卑金属の使用が可能
となる抵抗体の製造方法を提供するとともに、半田耐熱
性を改善した抵抗体の製造方法を1是イ共すること目的
とする。
Therefore, an object of the present invention is to provide a method for manufacturing a resistor that allows the use of base metals for lead electrodes, and also to provide a method for manufacturing a resistor with improved soldering heat resistance.

(技術的課題を解決するための手段) すなわち、この発明の要旨とするところは、絶縁基板の
上に、抵抗膜を空気中で焼付け、この抵抗膜の端部の上
に一部重ねて卑金属ペーストを塗布し、この卑金属ペー
ストを抵抗膜の焼付は温度より低い温度で還元雰囲気で
焼付けて、抵抗膜の端部に一部重なる引出電極を形成し
、さらに抵抗膜と引出電極の重なり部分の上に耐熱性樹
脂を被覆したことを特徴とする抵抗体の製造方法である
(Means for Solving the Technical Problems) That is, the gist of the present invention is to bake a resistive film in air on an insulating substrate, and to partially overlap the ends of the resistive film with base metal. Apply a paste, and bake this base metal paste in a reducing atmosphere at a temperature lower than the baking temperature of the resistive film to form an extraction electrode that partially overlaps the end of the resistive film. This is a method for manufacturing a resistor, characterized in that the resistor is coated with a heat-resistant resin.

(実施例) 以下、この発明を図示した一実施例に従って詳細に説明
する。
(Example) Hereinafter, the present invention will be described in detail according to an illustrated example.

第2図はこの発明方法により得られる抵抗体の一例を示
したものである。図において、11はアルミナなどの耐
熱性の絶縁基板、12は絶縁基板の上に焼付けた抵抗膜
、13.14は抵抗膜12の端部の上に一部重なるよう
に焼付けた引出電極、15は耐熱性樹脂で、抵抗膜12
と電極13.14の重なり部分を含めて被覆している。
FIG. 2 shows an example of a resistor obtained by the method of this invention. In the figure, 11 is a heat-resistant insulating substrate such as alumina, 12 is a resistive film baked on the insulating substrate, 13.14 is an extraction electrode baked so as to partially overlap the end of the resistive film 12, and 15 is a heat-resistant resin, and the resistive film 12
The overlapping portions of the electrodes 13 and 14 are covered.

抵抗膜としては、Rub、系、 BiJu20を系など
の材料が用いられる。また引出電極としてはたとえばC
u、 A1. Ni系の卑金属材料が用いられる。 C
u電極は、たとえば、窒素などの還元雰囲気で500〜
650℃の温度で焼付ける。また耐熱性樹脂としてはフ
ェノール樹脂、エポキシ樹脂などが用いられ、実際には
無機質フィラー、溶剤とともに混合してペースト状とし
、たとえばスクリーン印刷後硬化する。
As the resistive film, materials such as Rub, BiJu20, etc. are used. Also, as an extraction electrode, for example, C
u, A1. A Ni-based base metal material is used. C
The u electrode is, for example, 500 ~
Bake at a temperature of 650°C. Phenol resin, epoxy resin, etc. are used as the heat-resistant resin, and in practice, they are mixed together with an inorganic filler and a solvent to form a paste, which is then hardened after, for example, screen printing.

次に、具体的な製造方法にしたがって説明する。Next, a specific manufacturing method will be explained.

抵抗膜の材料としてRub、ペーストを用い、これをス
クリーン印刷して800℃で焼付けて抵抗膜を作成し、
引出電極としてCu電極を用い、さらに第2図に示すよ
うに、抵抗膜と引出電極とを含めてフェノール樹脂ペー
ストをスクリーン印刷し、200℃で硬化して耐熱性樹
脂で被覆した。このとき、Cu電極にらいては窒素雰囲
気中600℃で焼付した。
Rub and paste were used as the material for the resistive film, and this was screen printed and baked at 800°C to create the resistive film.
A Cu electrode was used as the extraction electrode, and as shown in FIG. 2, a phenol resin paste was screen printed on the resistive film and the extraction electrode, and the paste was cured at 200° C. and covered with a heat-resistant resin. At this time, the Cu electrode was baked at 600° C. in a nitrogen atmosphere.

得られた抵抗体を5n60%、Pb40%の比率からな
る230℃の半田槽に5秒間浸漬し、そののち抵抗値を
測定し、初期抵抗値と比較してその変化率を求めた。な
おフラックスとしてはロジン系のものを用いた。
The obtained resistor was immersed for 5 seconds in a 230° C. solder bath consisting of 60% 5N and 40% Pb, and then its resistance was measured and compared with the initial resistance to determine the rate of change. Note that a rosin-based flux was used as the flux.

下表は種々の面積抵抗値を有する抵抗体について、抵抗
変化率を示したものである。比較例として耐熱性樹脂を
被覆していないものの測定結果も合わせて示した。
The table below shows the resistance change rate for resistors having various sheet resistance values. As a comparative example, the measurement results of a sample not coated with a heat-resistant resin are also shown.

上表から明らかなようにこの発明方法によれば、抵抗体
の半田耐熱性を向上させることができるとともに、抵抗
値の変化を小さくすることができるという効果が得られ
ている。
As is clear from the table above, according to the method of the present invention, it is possible to improve the soldering heat resistance of the resistor and to reduce the change in resistance value.

上記した実施例では、抵抗膜と引出電極の重なり部分の
上のみならず、抵抗膜の上に耐熱性樹脂を被覆したが、
この発明の目的を達成するために抵抗膜と引出電極の重
なり部分の上にのみ耐熱性樹脂を被覆しても、十分目的
を達成することができる。
In the above embodiment, the heat-resistant resin was coated not only on the overlapping portion of the resistive film and the extraction electrode but also on the resistive film.
Even if the heat-resistant resin is coated only on the overlapping portion of the resistive film and the extraction electrode, the object of the present invention can be sufficiently achieved.

(発明の効果) この発明方法によれば、絶縁基板の上に、抵抗膜を空気
中で焼付け、この抵抗膜の端部の上に一部重ねて卑金属
ペーストを塗布し、この卑金属ペーストを抵抗膜の焼付
は温度より低い温度で還元雰囲気で焼付けて、抵抗膜の
端部に一部重なる引出電極を形成し、さらに抵抗膜と引
出電極の重なり部分の上を耐熱性樹脂で被覆することに
より、抵抗体の半田耐熱性を向上させることができると
ともに、抵抗値の変化を小さくすることができるという
効果を有する。
(Effects of the Invention) According to the method of the invention, a resistive film is baked in air on an insulating substrate, a base metal paste is applied partially overlapping the ends of the resistive film, and the base metal paste is applied to the resistor. The film is baked in a reducing atmosphere at a temperature lower than the normal temperature to form an extraction electrode that partially overlaps the end of the resistive film, and then coats the overlapping part of the resistive film and the extraction electrode with a heat-resistant resin. This has the effect of being able to improve the soldering heat resistance of the resistor and to reduce the change in resistance value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の背景となった抵抗体の断面図、第2
図はこの発明の製造方法により得られた抵抗体の一実施
例を示す断面図である。 11−絶縁基板、・12−抵抗膜、13.14−引出電
極、15−耐熱性樹脂
Figure 1 is a cross-sectional view of the resistor that forms the background of this invention, Figure 2
The figure is a sectional view showing an example of a resistor obtained by the manufacturing method of the present invention. 11-insulating substrate, 12-resistance film, 13.14-extracting electrode, 15-heat-resistant resin

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板の上に、抵抗膜を空気中で焼付け、この抵抗膜
の端部の上に一部重ねて卑金属ペーストを塗布し、この
卑金属ペーストを抵抗膜の焼付け温度より低い温度で還
元雰囲気で焼付けて、抵抗膜の端部に一部重なる引出電
極を形成し、さらに抵抗膜と引出電極の重なり部分の上
に耐熱性樹脂を被覆したことを特徴とする抵抗体の製造
方法。
A resistive film is baked in air on an insulating substrate, a base metal paste is applied partially overlapping the edges of the resistive film, and the base metal paste is baked in a reducing atmosphere at a temperature lower than the baking temperature of the resistive film. A method for manufacturing a resistor, comprising: forming an extraction electrode that partially overlaps an end of the resistance film, and further covering the overlapping portion of the resistance film and the extraction electrode with a heat-resistant resin.
JP1225535A 1989-08-31 1989-08-31 Manufacture of resistor Granted JPH02110903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1225535A JPH02110903A (en) 1989-08-31 1989-08-31 Manufacture of resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1225535A JPH02110903A (en) 1989-08-31 1989-08-31 Manufacture of resistor

Publications (2)

Publication Number Publication Date
JPH02110903A true JPH02110903A (en) 1990-04-24
JPH0553284B2 JPH0553284B2 (en) 1993-08-09

Family

ID=16830818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1225535A Granted JPH02110903A (en) 1989-08-31 1989-08-31 Manufacture of resistor

Country Status (1)

Country Link
JP (1) JPH02110903A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355112A (en) * 1992-02-07 1994-10-11 Murata Mfg., Co., Ltd. Fixed resistor
US6242999B1 (en) * 1998-01-20 2001-06-05 Matsushita Electric Industrial Co., Ltd. Resistor
US6470167B2 (en) 2000-02-24 2002-10-22 Samsung Electronics Co., Ltd. Heating roller for fixing a toner image and method of manufacturing the same
EP1460649A1 (en) * 2001-11-28 2004-09-22 Rohm Co., Ltd. Chip resistor and method for producing the same
US7240429B2 (en) 2001-06-13 2007-07-10 Denso Corporation Manufacturing method for a printed circuit board
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10217550B2 (en) 2009-09-04 2019-02-26 Vishay Dale Electronics, Llc Resistor with temperature coefficient of resistance (TCR) compensation
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
US11555831B2 (en) 2020-08-20 2023-01-17 Vishay Dale Electronics, Llc Resistors, current sense resistors, battery shunts, shunt resistors, and methods of making

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508493A (en) * 1973-05-19 1975-01-28
JPS5368943U (en) * 1976-11-12 1978-06-09
JPS5595302A (en) * 1979-01-12 1980-07-19 Matsushita Electric Ind Co Ltd Chip resistor and method of fabricating same
JPS57145358A (en) * 1981-03-03 1982-09-08 Nec Corp Preparation of thin-film resistor
JPS57191001U (en) * 1981-05-29 1982-12-03
JPS57197802A (en) * 1981-05-29 1982-12-04 Rohm Kk Chip-shaped electronic part
JPS5810886A (en) * 1981-07-11 1983-01-21 株式会社アサヒ化学研究所 Method of fomring conductor circuit on insulating board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508493A (en) * 1973-05-19 1975-01-28
JPS5368943U (en) * 1976-11-12 1978-06-09
JPS5595302A (en) * 1979-01-12 1980-07-19 Matsushita Electric Ind Co Ltd Chip resistor and method of fabricating same
JPS57145358A (en) * 1981-03-03 1982-09-08 Nec Corp Preparation of thin-film resistor
JPS57191001U (en) * 1981-05-29 1982-12-03
JPS57197802A (en) * 1981-05-29 1982-12-04 Rohm Kk Chip-shaped electronic part
JPS5810886A (en) * 1981-07-11 1983-01-21 株式会社アサヒ化学研究所 Method of fomring conductor circuit on insulating board

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355112A (en) * 1992-02-07 1994-10-11 Murata Mfg., Co., Ltd. Fixed resistor
US6242999B1 (en) * 1998-01-20 2001-06-05 Matsushita Electric Industrial Co., Ltd. Resistor
US6470167B2 (en) 2000-02-24 2002-10-22 Samsung Electronics Co., Ltd. Heating roller for fixing a toner image and method of manufacturing the same
US7240429B2 (en) 2001-06-13 2007-07-10 Denso Corporation Manufacturing method for a printed circuit board
EP1460649A1 (en) * 2001-11-28 2004-09-22 Rohm Co., Ltd. Chip resistor and method for producing the same
EP1460649A4 (en) * 2001-11-28 2008-10-01 Rohm Co Ltd Chip resistor and method for producing the same
US10796826B2 (en) 2009-09-04 2020-10-06 Vishay Dale Electronics, Llc Resistor with temperature coefficient of resistance (TCR) compensation
US10217550B2 (en) 2009-09-04 2019-02-26 Vishay Dale Electronics, Llc Resistor with temperature coefficient of resistance (TCR) compensation
US12009127B2 (en) 2009-09-04 2024-06-11 Vishay Dale Electronics, Llc Resistor with temperature coefficient of resistance (TCR) compensation
US11562838B2 (en) 2009-09-04 2023-01-24 Vishay Dale Electronics, Llc Resistor with temperature coefficient of resistance (TCR) compensation
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10418157B2 (en) 2015-10-30 2019-09-17 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
US11555831B2 (en) 2020-08-20 2023-01-17 Vishay Dale Electronics, Llc Resistors, current sense resistors, battery shunts, shunt resistors, and methods of making

Also Published As

Publication number Publication date
JPH0553284B2 (en) 1993-08-09

Similar Documents

Publication Publication Date Title
KR900008274B1 (en) Thick film resistor circuits
JP3532926B2 (en) Resistance wiring board and method of manufacturing the same
JPH02110903A (en) Manufacture of resistor
CN104835606A (en) Electronic component multilayer alloy electrode and production method thereof
JPH11204304A (en) Resistor and its manufacture
JPH01220402A (en) Resistor, manufacture thereof and thermal head using same
JPH0312789B2 (en)
JP3559090B2 (en) Thick film circuit board
JP3092451B2 (en) Rectangular thin film chip resistor and method of manufacturing the same
JPS63144554A (en) Manufacture of thick-film hybrid integrated circuit substrate
JP2641530B2 (en) Manufacturing method of chip-shaped electronic component
JP4395980B2 (en) Method for manufacturing thick film resistor printed circuit board
JPH06150802A (en) Chip type fuse resistor
CN204668039U (en) Electronic devices and components multilayer alloy electrode
JP2816742B2 (en) Circuit board
JP2931910B2 (en) Circuit board
JPS5918669A (en) Formation of thick film circuit
JPH0521935A (en) Circuit board
JPH01321692A (en) Manufacture of ceramic multilayer substrate
WO1994000855A1 (en) Positive characteristic thermistor and method of its manufacture
JPH02129997A (en) Manufacture of multilayer ceramic circuit substrate
JP2718178B2 (en) Manufacturing method of square plate type thin film chip resistor
KR900006976B1 (en) Electrically condcutive circuit board and method of producing the same
JPS5873185A (en) Method of producing thick film circuit board
JPS6263488A (en) Manufacturing thick film substrate