JPH0553284B2 - - Google Patents

Info

Publication number
JPH0553284B2
JPH0553284B2 JP1225535A JP22553589A JPH0553284B2 JP H0553284 B2 JPH0553284 B2 JP H0553284B2 JP 1225535 A JP1225535 A JP 1225535A JP 22553589 A JP22553589 A JP 22553589A JP H0553284 B2 JPH0553284 B2 JP H0553284B2
Authority
JP
Japan
Prior art keywords
resistive film
resistor
paste
heat
baked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1225535A
Other languages
Japanese (ja)
Other versions
JPH02110903A (en
Inventor
Tooru Kasatsugu
Koji Tani
Akyoshi Moryasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1225535A priority Critical patent/JPH02110903A/en
Publication of JPH02110903A publication Critical patent/JPH02110903A/en
Publication of JPH0553284B2 publication Critical patent/JPH0553284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は半田耐熱性を改善した抵抗体の製造
方法に関する。 (従来の技術) 基板の上に抵抗体を形成する方法としては、た
とえば特開昭57−96589号公報に記載されたもの
がある。この方法によれば、まず基板の上に銅ペ
ーストを所定形状に印刷し、約150℃の温度で約
15分間加熱して硬化させ、銅の配線パターンを形
成する。次にポリマーレンジ抵抗体ペーストを所
定形状、所定厚さに印刷し、約85℃の温度で約15
分間加熱し、抵抗ペースト中の有機溶媒を除去す
るとともに仮硬化させる。さらに仮硬化状態の抵
抗体ペーストをチツ素、アルゴン等の不活性ガス
中で約170〜200℃の温度で約1〜3時間焼成して
硬化させて抵抗体を形成する。そののち保護膜と
なるレジストを印刷し、約150℃の温度で約15分
間加熱硬化させることにより、保護膜を形成す
る。 ここに開示の技術によれば、抵抗ペーストを不
活性雰囲気ガス中で焼成しているため、銅の配線
パターンの酸化膜がほとんど生ぜず、高温で短時
間の処理を行うことができるとしている。 また、卑金属の引出電極からなる抵抗体の製造
方法として、特開昭58−10886号公報に記載され
たものがある。 この公報の方法によれば、表面に下地用アンダ
ーコートを塗布した絶縁基板の上に、カーボン抵
抗などの抵抗体を加熱硬化させて抵抗回路を形成
し、この抵抗回路の一部に導電性の良好な銅導電
ペーストを重ね塗布して加熱硬化させ、さらにこ
の銅導電ペーストの要半田付け箇所に半田付け性
の良好な銅導電ペーストを重ね塗布して加熱硬化
させるというものである。 (発明が解決しようとする技術的課題) しかしながら、前者の方法では、銅の配線パタ
ーンを先に形成するため、抵抗体を形成するとき
に銅の配線パターンの酸化を避ける工夫が必要で
ある。このために、まず抵抗体に含有されている
有機溶剤を除去するために空気中で低温で焼成
し、次いで抵抗体を硬化させるために不活性ガス
雰囲気中で焼成して硬化させるという工程を設け
ており、製造工程が複雑になる。また、このよう
な工程を採用しても、銅の配線パターンの表面に
は酸化膜が形成されることは避けられず、この酸
化膜の厚みが厚くならないように焼付け温度のコ
ントロールを厳密に行わなければならないという
問題を有している。 また、後者の方法では、引出電極を銅で構成す
るものであるが、この銅からなる引出電極の形成
が可能となつたのは、特殊な銅ペーストの使用を
前提としたものであつて、汎用性に乏しく、焼付
けタイプの抵抗体の引出電極には使用できないも
のである。したがつて、焼付けタイプの抵抗体の
引出電極を卑金属で構成するためには他の技術的
解決手段が必要となる。 そこで、発明者等は第1図に示す構造からなる
焼付けタイプの新規な抵抗体を検討した。この第
1図の抵抗体は、たとえばアルミナなどのセラミ
ツクからなる耐熱性を有する絶縁基板1の上に、
たとえばRuO2からなる抵抗ペーストをスクリー
ン印刷し、空気中で焼付けて抵抗膜2を形成し、
さらにこの抵抗膜2の端部の上に一部重なるよう
に卑金属、たとえば銅ペーストをスクリーン印刷
し、窒素雰囲気中で焼付けて電極3,4を形成し
た。 このような抵抗体によれば、先に抵抗膜を焼付
け、そののちにCu系の卑金属からなる引出電極
を焼付けており、この卑金属からなる引出電極は
抵抗膜の焼付け温度より低い温度で焼付けること
ができるため、引出電極を酸化させたり、劣化さ
せたりするという問題がなくなる。また抵抗膜と
卑金属からなる引出電極との間に酸化膜が形成さ
れないため、良好な接触状態が得られることにな
る。 しかしながら、この抵抗体を溶融している半田
槽に浸漬し、電極3,4の上に接続用の半田槽を
形成すると、抵抗値が初期値にくらべて10%も変
化することが確認された。その原因はまだ判明し
ていないが、半田浸漬時に熱の影響によつて抵抗
膜と電極との界面で接触抵抗に変化が生じるもの
と考えられる。 したがつて、この発明は引出電極に卑金属の使
用が可能となる抵抗体の製造方法を提供するとと
もに、半田耐熱性を改善した抵抗体の製造方法を
提供すること目的とする。 (技術的課題を解決するための手段) すなわち、この発明の要旨とするところは、絶
縁基板の上に、抵抗膜を空気中で焼付け、この抵
抗膜の端部の上に一部重ねて銅ペーストを塗布
し、この銅ペーストを抵抗膜の焼付け温度より低
い500〜650℃の温度で窒素雰囲気で焼付けて、抵
抗膜の端部に一部重なる引出電極を形成し、さら
に抵抗膜と引出電極の重なり部分の上に耐熱性樹
脂を被覆したことを特徴とする抵抗体の製造方法
である。 (実施例) 以下、この発明を図示した一実施例に従つて詳
細に説明する。 第2図はこの発明方法により得られる抵抗体の
一例を示したものである。図において、11はア
ルミナなどの耐熱性の絶縁基板、12は絶縁基板
の上に焼付けた抵抗膜、13,14は抵抗膜12
の端部の上に一部重なるように焼付けた引出電
極、15は耐熱性樹脂で、抵抗膜12と電極1
3,14の重なり部分を含めて被覆している。 抵抗膜としては、RuO2系、Bi2Ru2O7系などの
材料が用いられる。また引出電極としてはCu系
の電極が用いられる。Cu電極は窒素雰囲気で500
〜650℃の温度で焼付けられる。ここで、Cuの焼
付けを窒素雰囲気で500〜650℃で行なうのは、こ
の温度範囲から外れると、良好な導電性を示す引
出電極が得られないからである。また耐熱性樹脂
としてはフエノール樹脂、エポキシ樹脂などが用
いられ、実際には無機質フイラー、溶剤とともに
混合してペースト状とし、たとえばスクリーン印
刷後硬化する。 次に、具体的な製造方法にしたがつて説明す
る。 抵抗膜の材料としてRuO2ペーストを用い、こ
れをスクリーン印刷して空気中800℃で焼付けて
抵抗膜を作成した。こののちCuペーストを抵抗
膜の端部に一部重なるように塗布し、窒素雰囲気
中600℃で焼付けた。さらに第2図に示すように、
抵抗膜とCuの引出電極とを含めてフエノール樹
脂ペーストをスクリーン印刷し、200℃で硬化し
て耐熱性樹脂を被覆した。 得られた抵抗体をSn60%、Pb40%の比率から
なる230℃の半田槽に5秒間浸漬し、そののち抵
抗値を測定し、初期抵抗値と比較してその変化率
を求めた。なおフラツクスとしてはロジン系のも
のを用いた。 下表は種々の面積抵抗値を有する抵抗体につい
て、抵抗変化率を示したものである。比較例とし
て耐熱性樹脂を被覆していないものの測定結果も
合わせて示した。
(Industrial Application Field) The present invention relates to a method for manufacturing a resistor with improved solder heat resistance. (Prior Art) As a method of forming a resistor on a substrate, there is a method described in, for example, Japanese Patent Laid-Open No. 57-96589. According to this method, copper paste is first printed in a predetermined shape on the board, and then heated to approximately 150°C.
Heat for 15 minutes to harden and form a copper wiring pattern. Next, print the polymer range resistor paste in a predetermined shape and thickness, and heat it at a temperature of about 85℃ for about 15 minutes.
Heating is performed for a minute to remove the organic solvent in the resistance paste and temporarily harden it. Further, the temporarily hardened resistor paste is fired and hardened in an inert gas such as nitrogen or argon at a temperature of about 170 to 200° C. for about 1 to 3 hours to form a resistor. Thereafter, a resist that will become a protective film is printed and cured by heating at a temperature of approximately 150°C for approximately 15 minutes to form a protective film. According to the technique disclosed herein, since the resistance paste is fired in an inert gas atmosphere, almost no oxide film is formed on the copper wiring pattern, and the process can be carried out at high temperatures for a short time. Further, as a method for manufacturing a resistor made of base metal lead electrodes, there is a method described in JP-A-58-10886. According to the method disclosed in this publication, a resistor such as a carbon resistor is heat-cured on an insulating substrate whose surface is coated with a base undercoat to form a resistor circuit, and a part of this resistor circuit is conductive. Copper conductive paste with good solderability is overcoated and cured by heating, and then a copper conductive paste with good solderability is overcoated at the soldering points of the copper conductive paste and cured by heating. (Technical Problem to be Solved by the Invention) However, in the former method, since the copper wiring pattern is formed first, it is necessary to take measures to avoid oxidation of the copper wiring pattern when forming the resistor. For this purpose, a process of first firing the resistor at a low temperature in the air to remove the organic solvent contained in the resistor, and then firing and hardening it in an inert gas atmosphere to harden the resistor is used. This complicates the manufacturing process. Furthermore, even if such a process is adopted, it is unavoidable that an oxide film will form on the surface of the copper wiring pattern, and the baking temperature must be strictly controlled to prevent this oxide film from becoming thick. The problem is that it has to be done. In addition, in the latter method, the extraction electrode is made of copper, but the formation of the extraction electrode made of copper was made possible on the premise of the use of a special copper paste. It lacks versatility and cannot be used as a lead electrode for a baked-on type resistor. Therefore, other technical solutions are required in order to construct the extraction electrodes of baked-on resistors from base metals. Therefore, the inventors investigated a new baked-on type resistor having the structure shown in FIG. The resistor shown in FIG. 1 is mounted on a heat-resistant insulating substrate 1 made of ceramic such as alumina.
For example, a resistive paste made of RuO 2 is screen printed and baked in air to form a resistive film 2.
Furthermore, a base metal such as copper paste was screen printed so as to partially overlap the end of this resistive film 2, and was baked in a nitrogen atmosphere to form electrodes 3 and 4. According to such a resistor, the resistive film is baked first, and then the lead electrode made of a Cu-based base metal is baked, and the lead electrode made of the base metal is baked at a temperature lower than the baking temperature of the resistive film. This eliminates the problem of oxidizing or deteriorating the extraction electrode. Further, since no oxide film is formed between the resistive film and the extraction electrode made of base metal, a good contact state can be obtained. However, when this resistor was immersed in a molten solder bath and a solder bath for connection was formed on top of electrodes 3 and 4, it was confirmed that the resistance value changed by as much as 10% compared to the initial value. . Although the cause is not yet clear, it is thought that the contact resistance changes at the interface between the resistive film and the electrode due to the influence of heat during solder immersion. Therefore, an object of the present invention is to provide a method for manufacturing a resistor that allows the use of base metals for lead electrodes, as well as a method for manufacturing a resistor that has improved solder heat resistance. (Means for Solving Technical Problems) That is, the gist of the present invention is to bake a resistive film in air on an insulating substrate, and to partially overlay the ends of this resistive film and deposit copper. A paste is applied, and this copper paste is baked in a nitrogen atmosphere at a temperature of 500 to 650°C, lower than the baking temperature of the resistive film, to form a lead electrode that partially overlaps the end of the resistive film, and then to form a lead electrode that partially overlaps the end of the resistive film. This method of manufacturing a resistor is characterized in that the overlapping portion of the resistor is coated with a heat-resistant resin. (Example) Hereinafter, the present invention will be described in detail according to an illustrated example. FIG. 2 shows an example of a resistor obtained by the method of this invention. In the figure, 11 is a heat-resistant insulating substrate such as alumina, 12 is a resistive film baked on the insulating substrate, and 13 and 14 are resistive films 12.
An extraction electrode 15 is made of heat-resistant resin and is baked so as to partially overlap the end of the resistive film 12 and the electrode 1.
The overlapping portions of Nos. 3 and 14 are covered. As the resistive film, materials such as RuO 2 type, Bi 2 Ru 2 O 7 type, etc. are used. Further, a Cu-based electrode is used as the extraction electrode. Cu electrode is 500°C in nitrogen atmosphere.
Baked at temperatures of ~650℃. Here, the reason why Cu is baked at 500 to 650° C. in a nitrogen atmosphere is that outside this temperature range, an extraction electrode exhibiting good conductivity cannot be obtained. Phenol resin, epoxy resin, etc. are used as the heat-resistant resin, and in practice, they are mixed together with an inorganic filler and a solvent to form a paste, which is then hardened after, for example, screen printing. Next, a specific manufacturing method will be explained. RuO 2 paste was used as the material for the resistive film, and this was screen printed and baked in air at 800°C to create the resistive film. Thereafter, Cu paste was applied to the edges of the resistive film so as to partially overlap it, and baked at 600°C in a nitrogen atmosphere. Furthermore, as shown in Figure 2,
A phenolic resin paste was screen printed including the resistive film and the Cu lead electrode, and was cured at 200°C to cover it with a heat-resistant resin. The obtained resistor was immersed for 5 seconds in a 230° C. solder bath containing 60% Sn and 40% Pb, and the resistance value was then measured and compared with the initial resistance value to determine the rate of change. Note that a rosin-based flux was used as the flux. The table below shows the resistance change rate for resistors having various sheet resistance values. As a comparative example, measurement results for a sample not coated with a heat-resistant resin are also shown.

【表】 上表から明らかなようにこの発明方法によれ
ば、抵抗体の半田耐熱性を向上させることができ
るとともに、抵抗値の変化を小さくすることがで
きるという効果が得られている。 上記した実施例では、抵抗膜と引出電極の重な
り部分の上のみならず、抵抗膜の上に耐熱性樹脂
を被覆したが、この発明の目的を達成するために
抵抗膜と引出電極の重なり部分の上にのみ耐熱性
樹脂を被覆しても、十分目的を達成することがで
きる。 (発明の効果) この発明方法によれば、絶縁基板の上に、抵抗
膜を空気中で焼付け、この抵抗膜の端部の上に一
部重ねてCuペーストを塗布し、このCuペースト
を抵抗膜の焼付け温度より低い500〜650℃の温度
で窒素雰囲気で焼付けて、抵抗膜の端部に一部重
なる引出電極を形成し、さらに抵抗膜と引出電極
の重なり部分の上を耐熱性樹脂で被覆することに
より、抵抗体の半田耐熱性を向上させることがで
きるとともに、抵抗値の変化を小さくすることが
できるという効果を有する。
[Table] As is clear from the above table, according to the method of the present invention, it is possible to improve the soldering heat resistance of the resistor and to reduce the change in resistance value. In the above embodiment, the heat-resistant resin is coated not only on the overlapping part of the resistive film and the extraction electrode, but also on the resistive film. Even if the heat-resistant resin is coated only on the surface, the purpose can be sufficiently achieved. (Effects of the Invention) According to the method of the invention, a resistive film is baked in air on an insulating substrate, a Cu paste is applied partially overlapping the ends of the resistive film, and the Cu paste is applied to the resistive film. Baking is performed in a nitrogen atmosphere at a temperature of 500 to 650°C, lower than the baking temperature of the film, to form an extraction electrode that partially overlaps the end of the resistive film, and then a heat-resistant resin is applied over the overlap between the resistive film and the extraction electrode. The coating has the effect of improving the soldering heat resistance of the resistor and reducing changes in resistance value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の背景となつた抵抗体の断面
図、第2図はこの発明の製造方法により得られた
抵抗体の一実施例を示す断面図である。 11……絶縁基板、12……抵抗膜、13,1
4……引出電極、15……耐熱性樹脂。
FIG. 1 is a cross-sectional view of a resistor which is the background of the present invention, and FIG. 2 is a cross-sectional view showing an example of a resistor obtained by the manufacturing method of the present invention. 11...Insulating substrate, 12...Resistive film, 13,1
4... Extraction electrode, 15... Heat resistant resin.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板の上に、抵抗膜を空気中で焼付け、
この抵抗膜の端部の上に一部重ねてCuペースト
を塗布し、このCuペーストを抵抗膜の焼付け温
度より低い500〜650℃の温度で窒素雰囲気で焼付
けて、抵抗膜の端部に一部重なる引出電極を形成
し、さらに抵抗膜と引出電極の重なり部分の上に
耐熱性樹脂を被覆したことを特徴とする抵抗体の
製造方法。
1. Baking a resistive film in air on an insulating substrate,
Apply Cu paste partially overlapping the edges of this resistive film, and bake this Cu paste in a nitrogen atmosphere at a temperature of 500 to 650°C, lower than the baking temperature of the resistive film, so that it overlaps the edges of the resistive film. 1. A method for manufacturing a resistor, comprising forming partially overlapping extraction electrodes, and further covering the overlapping portion of the resistive film and the extraction electrode with a heat-resistant resin.
JP1225535A 1989-08-31 1989-08-31 Manufacture of resistor Granted JPH02110903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1225535A JPH02110903A (en) 1989-08-31 1989-08-31 Manufacture of resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1225535A JPH02110903A (en) 1989-08-31 1989-08-31 Manufacture of resistor

Publications (2)

Publication Number Publication Date
JPH02110903A JPH02110903A (en) 1990-04-24
JPH0553284B2 true JPH0553284B2 (en) 1993-08-09

Family

ID=16830818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1225535A Granted JPH02110903A (en) 1989-08-31 1989-08-31 Manufacture of resistor

Country Status (1)

Country Link
JP (1) JPH02110903A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355112A (en) * 1992-02-07 1994-10-11 Murata Mfg., Co., Ltd. Fixed resistor
JPH11204301A (en) * 1998-01-20 1999-07-30 Matsushita Electric Ind Co Ltd Resistor
KR100365692B1 (en) 2000-02-24 2002-12-26 삼성전자 주식회사 Directly Heating Roller For Fixing a Toner Image And Manufacturing Method thereof
JP3840921B2 (en) 2001-06-13 2006-11-01 株式会社デンソー Printed circuit board and manufacturing method thereof
WO2003046934A1 (en) * 2001-11-28 2003-06-05 Rohm Co.,Ltd. Chip resistor and method for producing the same
EP4280232A3 (en) 2009-09-04 2024-06-05 Vishay Dale Electronics, LLC Resistor with temperature coefficient of resistance (tcr) compensation
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
CN116420197A (en) 2020-08-20 2023-07-11 韦沙戴尔电子有限公司 Resistor, current sensing resistor, battery shunt, shunt resistor and manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508493A (en) * 1973-05-19 1975-01-28
JPS5595302A (en) * 1979-01-12 1980-07-19 Matsushita Electric Ind Co Ltd Chip resistor and method of fabricating same
JPS57145358A (en) * 1981-03-03 1982-09-08 Nec Corp Preparation of thin-film resistor
JPS57197802A (en) * 1981-05-29 1982-12-04 Rohm Kk Chip-shaped electronic part
JPS5810886A (en) * 1981-07-11 1983-01-21 株式会社アサヒ化学研究所 Method of fomring conductor circuit on insulating board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615761Y2 (en) * 1976-11-12 1981-04-14
JPS57191001U (en) * 1981-05-29 1982-12-03

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508493A (en) * 1973-05-19 1975-01-28
JPS5595302A (en) * 1979-01-12 1980-07-19 Matsushita Electric Ind Co Ltd Chip resistor and method of fabricating same
JPS57145358A (en) * 1981-03-03 1982-09-08 Nec Corp Preparation of thin-film resistor
JPS57197802A (en) * 1981-05-29 1982-12-04 Rohm Kk Chip-shaped electronic part
JPS5810886A (en) * 1981-07-11 1983-01-21 株式会社アサヒ化学研究所 Method of fomring conductor circuit on insulating board

Also Published As

Publication number Publication date
JPH02110903A (en) 1990-04-24

Similar Documents

Publication Publication Date Title
KR900008274B1 (en) Thick film resistor circuits
JPH0553284B2 (en)
JPH01220402A (en) Resistor, manufacture thereof and thermal head using same
JPH0312789B2 (en)
JPS61185995A (en) Making of circuit board with resistor
JP3092451B2 (en) Rectangular thin film chip resistor and method of manufacturing the same
JPH0373503A (en) Formation of circuit
JP4395980B2 (en) Method for manufacturing thick film resistor printed circuit board
JPH0680880B2 (en) Manufacturing method of ceramic circuit board with resistor
JP2718178B2 (en) Manufacturing method of square plate type thin film chip resistor
JP2718232B2 (en) Manufacturing method of square plate type thin film chip resistor
JP2931910B2 (en) Circuit board
JPS6318356B2 (en)
JPS6263488A (en) Manufacturing thick film substrate
JPH0362033B2 (en)
JP2718196B2 (en) Manufacturing method of square plate type thin film chip resistor
JPS6019680B2 (en) How to solder to an insulation board
JPS6231190A (en) Electronic circuit board and manufacture thereof
KR900006976B1 (en) Electrically condcutive circuit board and method of producing the same
JP2546929B2 (en) Method for forming conductive layer stack
JPS5873185A (en) Method of producing thick film circuit board
JPH073662Y2 (en) Electric circuit board
JPS60246602A (en) Resistance part and method of producing same
JPH0334676B2 (en)
JPH0722737A (en) Method for forming wiring pattern