WO1995022758A1 - Röntgen-analysegerät - Google Patents

Röntgen-analysegerät Download PDF

Info

Publication number
WO1995022758A1
WO1995022758A1 PCT/DE1995/000282 DE9500282W WO9522758A1 WO 1995022758 A1 WO1995022758 A1 WO 1995022758A1 DE 9500282 W DE9500282 W DE 9500282W WO 9522758 A1 WO9522758 A1 WO 9522758A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
sample
ray analyzer
analyzer according
reflector
Prior art date
Application number
PCT/DE1995/000282
Other languages
English (en)
French (fr)
Inventor
Herbert GÖBEL
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1995022758A1 publication Critical patent/WO1995022758A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/061Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements characterised by a multilayer structure
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/064Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface

Definitions

  • Powder X-ray diffractometers are used for the non-destructive analysis of solid, powder and liquid samples. Powder X-ray diffractometers have become particularly important within this class of devices because they are of relatively simple construction and are versatile in use. So can be made with those
  • Diffraction diagrams recorded on diffractometers identify unknown substances, their lattice structure as well as statements about the state of crystallization (see for example /! /).
  • Predominantly focusing beam arrangements are implemented in powder diffractometers, which ensure high utilization of the X-ray beam illuminating the sample (see, for example, 121, pp. 43-54).
  • onochromators are often used on the primary or secondary side.
  • the secondary omochromators which mostly consist of curved graphite mosaic crystals, have the advantage that they deflect only the diffracted X-ray radiation but not the fluorescence radiation excited in the sample in the direction of the detector.
  • X-ray structural examination They deliver an intense, highly collin gated X-ray beam, which is brought to the respective experiment unit via evacuated beam guide tubes and coupled into a spectrometer adapted to the beam characteristics (see 121, pp. 54 - 57).
  • the divergent radiation generated by conventional x-ray sources could be bundled by means of total reflection on appropriately curved mirrors.
  • total reflection is not wavelength selective and takes place in the wavelength range required for most applications at extremely small angles. Diffraction from crystal monochromators is also ruled out, since this does not reduce beam divergence and the reflectivity is unsatisfactory.
  • GIXD G.razing-Incidence-. £ -ray- iffraction
  • the aim of the invention is to create a high-performance laboratory device for X-ray analysis, which can be used by the efficient use of conventional sources. Have the measuring procedure carried out.
  • This object is achieved according to the invention by an X-ray analyzer according to claim 1.
  • the advantage that can be achieved with the invention is, in particular, that significantly greater radiation intensities are achieved in the region of the sample, and the sensitivity of the respective measurement is thereby increased.
  • the sample geometry has no influence on the angular accuracy and angular resolution.
  • FIG. 2 shows the schematic structure of the multilayer mirror used for monochromatization and parallelization.
  • FIG. 3 shows the position of the multilayer mirror relative to the X-ray source and the location of its period
  • FIGS. 7 to 10 further exemplary embodiments of X-ray analysis devices according to the invention
  • FIG. 11 an intensity profile recorded with a reflectometer according to FIG. 10.
  • the thin-film diffractometer shown schematically in FIG. 1 comprises an X-ray tube 4 consisting of a hot cathode 1, a focusing electrode 2 and an anode 3, a parabolically curved Bragg reflector 5 for parallelization and deflection of the line-shaped electron focus 6 on the Anode 3 diverging x-rays 7 in the direction of the thin-layer sample 9 arranged on a glass substrate 8, a detector 10 (proportional counter, scanning distillation meter), and a detector 10 upstream collimator 11.
  • the lamellae of the collimator 11 is oriented parallel to and aligned with the rotatable and height-adjustably mounted in the center of the measuring circuit 12 sample 9 passes only the ge at a defined angle 2 ⁇ & Scattered X-rays 13 as an almost parallel beam to the detector 10.
  • the divergence of the radiation 13 detected by the detector 10 depends on the collimator used and is typically 0.1 to 0.4 °.
  • the diffractometer contains adjustable diaphragms 14, 15 which limit the cross section of the primary X-ray beam 7 and the parallel beam 7 'illuminating the sample 9 in the horizontal direction.
  • a multilayer mirror 5 is provided as the Bragg reflector for generating the parallel monochromatic beam 7 'in the diffractometer according to the invention.
  • This multilayer mirror 5 shown in section in FIG. 2 consists of a periodically repeating sequence of layers of materials A and B with refractive indices n ⁇ ⁇ n B , the number N of layers being sufficient within a period of the conditions N> 2.
  • the individual layers are preferably produced by sputtering, vapor deposition or growth of the corresponding materials A or B z. B. on a very smooth silicon substrate, wherein the layers can be amorphous or crystalline.
  • a mirror 5 consisting of a periodic sequence of two layers, for example the combination of the materials AB: Mo B4C Re / Si, Re / C, W / Si, W / C, Ta / Si, W / Be, Mo / Be, Mo / Si, Mo / C, Ni / C, Au / C, AuPd / C, ReW / B, ReW / C, Al / Be or V / C.
  • Select the ratio of the layer thicknesses dj_ and dg 1: 1, second order reflections are canceled.
  • FIG. 3 shows the geometric relationships in the beam-shaping area of the diffractometer.
  • a W / Si multilayer mirror 5 is arranged on a carrier body 16 made of stainless steel, glass or Zerodur. Since the upper side of the carrier body 16 forms a partial surface of the parabolic surface denoted by 17, the multilayer mirror 5 bonded to the carrier body 16 also assumes a parabolic shape.
  • the diffraction diagrams shown in FIGS. 4 and 5 were recorded with the diffractometer according to the invention using a W / Si multilayer mirror 5.
  • the intensity (counting rate per second) measured in the proportional counter 10 is plotted as a function of the diffraction angle 2>.
  • the detector 10 moved step by step (0.05 ° / step) at a speed of 3 ° / minute along the measuring circuit 12 around the sample 9.
  • the strongest reflex has an intensity of more than 30,000 counts / second. Its intensity decreases significantly if the divergence of the diffracted radiation 13 is limited to 0.15 ° with the aid of a finer collimator (see FIG. 5).
  • the loss in intensity is more than compensated for by the increase in resolution.
  • FIG. 6 shows the diffraction spectrum of the same sample recorded in a modern Bragg-Brentano diffractometer. The significantly lower intensity of the individual reflections and the higher background can be clearly seen.
  • the sample geometry has no influence on the angular accuracy and angular resolution of the respective measurement.
  • the diffractometer shown in FIG. 7 therefore, it is also possible, for example, to examine solid workpieces 18 of any shape (molded parts), fractured surfaces, corrosion surfaces and excavation objects that must not be changed.
  • the multilayer mirror 5 serving as a condenser is followed by a "channel-cut" monochromator 19 known, for example, from / 5 / or / 6 /, which deflects the parallel primary beam 7 'in the direction of the sample 20 arranged in the center of a high-resolution omega goniometer. Since a parallel beam enters the monochromator 19, almost the entire primary beam transmitted. In contrast, in the case of the divergent beam path realized in conventional spectrometers (see FIG. 8 above), more than 90% of the primary beam intensity is lost in the reflection on the third monochromator crystal 21.
  • Two-crystal diffractometers are suitable for high-precision investigations of the real structure of single crystals in comparison to an ideal reference crystal.
  • a multilayer mirror 5 which again acts as a condenser, is provided in
  • the beam path is arranged between the X-ray tube 4 and the high-purity reference crystal 22 (see FIG. 9).
  • the radiation 23 reflected by the Bragg reference crystal 22 then falls on the sample 24 as a parallel bundle, is diffracted there again and finally detected as a parallel bundle 25 in the detector 10.
  • the parallel beam reflectometer shown in FIG. 10 can be used in particular to examine thin layers 26 and smooth surfaces, the size of the area illuminated by the parallel primary beam 27 being able to be varied with the aid of the cutting diaphragm 28 which can be displaced in the direction of the arrow.
  • the plane monomromator 30 upstream of the scintillation counter 29 serves to suppress unwanted stray radiation. It is arranged immediately behind an aperture 31, the distance from which the sample 26 is approximately 50 cm.
  • FIG. 11 shows a measurement curve recorded with this reflectometer.
  • parallel-beam X-ray optics can also be implemented in other types of spectrometer, in particular in the GIXD spectrometer known from / 3 /, in microbeam diffractometers or in capillary X-ray diffractometers.
  • Other X-ray tubes, in particular rotating anode X-ray tubes, can also be used as the X-ray source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Konventionelle Röntgen-Analysegeräte arbeiten üblicherweise nach dem Prinzip der Guinier-, Seemann-Bohlin- oder Bragg-Brentano-Fokussierung. Hierbei muß die zu untersuchende Probe gewissen geometrischen Bedingungen genügen, was sich in der Praxis häufig nicht realisieren läßt. Gegenstand der Anmeldung ist ein mit einer konventionellen Röntgenröhre (4) ausgestattetes Analysegerät, in dem die Probe mit einem parallelen, monochromatischen Strahlenbündel (7') beleuchtet und die gebeugte Röntgenstrahlung (13) als paralleles Bündel nachgewiesen wird. Als Monochromator dient ein parabolisch gekrümmter Vielschichtspiegel ('Graded-Bragg'-Struktur (5)), dessen Periode sich über die Länge (1) des Reflektors (5) derart ändert, daß Strahlung einer bestimmten Wellenlänge unabhängig vom Einfallswinkel stets in dieselbe Richtung Bragg-reflektiert wird.

Description

Röntgen-Analysegerät
Röntgenspektrometer dienen der zerstörungsfreien Analyse von festen, pulverförmigen und flüssigen Proben. Innerhalb dieser Geräteklasse haben Pulver-Röntgendiffraktometer besondere Be¬ deutung erlangt, da sie relativ einfach aufgebaut und viel- seitig einsetzbar sind. So lassen sich aus den mit solchen
Diffraktometern aufgezeichneten Beugungsdiagrammen unbekannte Substanzen identifizieren, deren Gitterstruktur bestimmen so¬ wie Aussagen über den Kristallisationszustand machen (s. bei¬ spielsweise /!/ ) . In Pulverdiffraktometern sind vorwiegend fokusεierende Strahlanordnungen verwirklicht, die eine hohe Ausnutzung des die Probe beleuchtenden Röntgenstrahlbündels gewährleisten (s. beispielsweise 121 , S. 43 - 54) . Um ein günstiges Verhältnis von Beugungsmaxima und Untergrund zu er¬ zielen, werden vielfach primärseitige oder sekundärseitige onochromatoren eingesetzt. Die zumeist aus gebogenen Gra¬ phit-Mosaikkristallen bestehenden Sekundärmomochromatoren haben hierbei den Vorteil, daß sie nur die gebeugte Röntgen¬ strahlung aber nicht die in der Probe angeregte Fluoreszenz¬ strahlung in Richtung des Detektors umlenken.
In den nach dem Prinzip der Guinier-, Seemann-Bohlin- oder Bragg-Brentano-Fokussierung arbeitenden Röntgen-Spektrometern muß die Probenoberfläche bestimmten geometrischen Bedingungen genügen. Diese Bedingungen lassen sich in der Praxis aller- dings häufig nicht oder nur näherungsweise realisieren, so daß geometrieabhängige Meßfehler auftreten. Bei den sogenann¬ ten Parallelstrahl-Analyseverfahren hat die Probengeometrie hingegen keinen Einfluß auf die Winkelgenauigkeit und Winkel- auflösung der Messung, da man ein paralleles Strahlenbündel zur Beugung bringt und die gebeugte Strahlung mit Hilfe hochauflösender Kollimatoren als paralleles Bündel detektiert (s. beispielsweise 121 , S. 54 - 59) . Parallelstrahl-Analyseverfahren werden z. Z. fast ausschlie߬ lich an den mit Elektronenbeschleunigern ausgestatteten Gro߬ forschungseinrichtungen durchgeführt. Elektronen-Speicher- ringe und Synchrotrons sind ideale Strahlungsquellen für
Röntgen-Strukturuntersuchung. Sie liefern einen intensiven hochkollin erten Rόntgenstrahl, den man über evakuierte Strahlführungsrohre an die jeweilige Experimentiereinheit heranführt und dort in ein der Strahlcharakteristik angepaß- tes Spektrometer einkoppelt (s. 121 , S. 54 - 57) .
Die von konventionellen Röntgenquellen (abgeschmolzene Rönt¬ genröhren, Drehanoden-Röntgenröhren) erzeugte divergente Strahlung ließe sich durch Totalreflexion an entsprechend ge- krümmten Spiegeln bündeln. Die Totalreflexion ist jedoch nicht wellenlängenselektiv und findet in dem für die meisten Anwendungen erforderlichen Wellenlängenbereich bei extrem kleinen Winkeln statt. Die Beugung an Kristallmonochromatoren scheidet ebenfalls aus, da man hierdurch keine Verkleinerung der Strahldivergenz erreicht und die Reflektivität unbefrie¬ digend ist.
Aus /3/ ist ein sogenanntes GIXD (G.razing-Incidence-.£-ray- iffraction) -Spektrometer bekannt, bei dem man die in einer konventionellen Röntgenröhre erzeugte Strahlung mit Hilfe ei¬ nes gekrümmten Vielschichtspiegels bündelt und ohne größeren Intensitätsverlust in Richtung der zu untersuchenden Probe umlenkt. Da die Röntgenstrahlung streifend auf die ebene Probe einfällt (Θ < 0,5°) kann sie nur in oberflächennahe Schichten eindringen und dort Fluoreszenzstrahlung anregen. Das Spektrometer eignet sich daher insbesondere zur Bestim¬ mung der Zusammensetzung von Oberflächen und dünnen Schich¬ ten.
Ziel der Erfindung ist die Schaffung eines leistungsfähigen Laborgeräts für die Röntgenanalyse, mit dem sich durch die effiziente Nutzung konventioneller Quellen Parallelstrahl- Meßverfahren durchführen lassen. Diese Aufgabe wird erfin¬ dungsgemäß durch ein Röntgen-Analysegerät nach Patentanspruch 1 gelöst.
Der mit der Erfindung erzielbare Vorteil besteht insbesondere darin, daß man im Bereich der Probe deutlich größere Strah¬ lungsintensitäten erreicht und sich dadurch die Empfindlich¬ keit der jeweiligen Messung erhöht. Außerdem hat die Proben¬ geometrie keinen Einfluß auf die Winkelgenauigkeit und Win- kelauflösung.
Die abhängigen Ansprüche betreffen vorteilhafte Weiterbildun¬ gen und Ausgestaltungen der im folgenden anhand der Zeichnun¬ gen erläuterten Erfindung. Hierbei zeigt:
Fig. 1 ein Dünnschicht-Diffraktometer,
Fig.. 2 den schematischen Aufbau des der Monochromatisierung und Parallelisierung dienenden Vielschichtspiegels Fig. 3 die Lage des Vielschichtspiegels relativ zur Röntgen- quelle und die Ortsabhängigkeit seiner Periode
Fig. 4 bis 6 Beugungsspektren, die mit dem erfindungsgemäßen Diffraktometer (Fig. 4 und 5), bzw. einem Bragg-Bren- tano-Diffraktometer moderner Bauart aufgezeichnet wur¬ den Fig. 7 bis 10 weitere Ausführungsbeispiele erfindungsgemäßer Röntgen-Analysegeräte Fig. 11 ein mit einem Reflektometer gemäß Fig. 10 aufgezeich¬ netes Intensitätsprofil.
Das in Fig. 1 schematisch dargestellte Dünnschicht-Diffrakto¬ meter umfaßt eine aus einer Glühkathode 1, einer Fokussier elektrode 2 und eine Anode 3 bestehende Röntgenröhre 4, einen parabolisch gekrümmten Bragg-Reflektor 5 zur Parallelisierung und Umlenkung der von dem strichförmigen Elektronenfokus 6 auf der Anode 3 divergent austretenden Röntgenstrahlung 7 in Richtung der auf einem Glassubstrat 8 angeordneten Dünn¬ schichtprobe 9, einen Detektor 10 (Proportionalzähler, Szin- tillationszähler) sowie einen dem Detektor 10 vorgelagerten Kollimator 11. Da die Lamellen des Kollimators 11 parallel zueinander orientiert und auf die im Zentrum des Meßkreises 12 dreh- und höhenverstellbar gelagerte Probe 9 ausgerichtet sind, gelangt nur die unter einem definierten Winkel 2 & ge¬ streute Röntgenstrahlung 13 als nahezu paralleles Bündel zum Detektor 10. Die Divergenz der vom Detektor 10 erfaßten Strahlung 13 hängt hierbei vom verwendeten Kollimator ab und beträgt typischerweise 0,1 bis 0,4°. Weiterhin enthält das Diffraktometer justierbare Blenden 14, 15, die den Quer¬ schnitt des primären Röntgenstrahls 7 und des die Probe 9 beleuchtenden Parallelstrahls 7 ' in horizontaler Richtung begrenzen.
Als Bragg-Reflektor zur Erzeugung des parallelen monochroma¬ tischen Strahlenbündels 7 ' ist in dem erfindungsgemäßen Dif- fraktometer ein Vielsschichtspiegel 5 vorgesehen. Dieser in Fig. 2 im Schnitt dargestellte Vielschichtspiegel 5 besteht aus einer sich periodisch wiederholenden Folge von Schichten aus Materialien A und B mit Brechungsindizes n^ ≠ nB, wobei die Anzahl N der Schichten innerhalb einer Periode der Bedin¬ gungen N > 2 genügt. Die einzelnen Schichten erzeugt man vor¬ zugweise durch Aufsputtern, Aufdampfen oder Aufwachsen der entsprechenden Materialien A bzw. B z. B. auf einem sehr glatten Siliziumsubstrat, wobei die Schichten amorph oder kristallin sein können. Für einen aus einer periodischen Folge von zwei Schichten bestehenden Spiegel 5 kommt bei¬ spielsweise die Kombination der Materialien A B:Mo B4C Re/Si, Re/C, W/Si, W/C, Ta/Si, W/Be, Mo/Be, Mo/Si, Mo/C, Ni/C, Au/C, AuPd/C, ReW/B, ReW/C, Al/Be oder V/C in Betracht. Wählt man das Verhältnis der Schichtdicken dj_ und dg zu
Figure imgf000006_0001
= 1:1, so löschen sich Reflexe zweiter Ordnung aus.
Um den divergent auf den parabolisch gekrümmten Viel- schichtspiegel 5 einfallenden Primärstrahl 7 in ein mono¬ chromatisches paralleles Strahlenbündel 7' zu reflektieren, darf die durch die Periode d:= d^ + dg gegebene "Gitterkonstante" des Systems nicht konstant sein. Die Peri¬ ode d muß sich vielmehr über die Länge des Reflektors 5 der¬ art ändern, daß Röntgenstrahlung einer bestimmten Wellenlänge unabhängig vom Auftreffort bzw. Einfallswinkel stets die Bragg-Gleichung erfüllt. In Fig. 2 ist die Zunahme der Peri¬ ode d mit der Länge 1 stark überzeichnet dargestellt. In der Praxis beträgt die Periode d für einen W/Si-Reflektor und Cu- Kα-Strahlung am Punkt a (1 = 0 mm) beispielsweise da = 4 nm. Sie wächst dann linear mit der Länge 1 an, um am Punkt b (1 = 50 mm) schließlich den Wert djj = 5 nm anzunehmen (s. auch Fig. 3) . Die röntgenoptischen Eigenschaften solcher als "Graded-Bragg"-Struktur bezeichneten Vielschichtsyste e wer¬ den in /4/ näher beschrieben.
Der rechte Teil der Fig. 3 zeigt die geometrischen Verhält¬ nisse im strahlformenden Bereich des Diffraktometers. Ein W/Si-Vielschichtspiegel 5 ist in diesem Ausführungsbeispiel auf einem aus Edelstahl, Glas oder Zerodur bestehenden Trä¬ gerkörper 16 angeordnet. Da die Oberseite des Trägerkörpers 16 eine Teilfläche der mit 17 bezeichneten Parabelfläche bil¬ det, nimmt auch der mit dem Trägerkörper 16 verklebte Viel¬ schichtspiegel 5 eine parabolische Form an. Der in ca. 15 cm Entfernung vom Röhrenbrennfleck 6 angeordnete und etwa 60 mm lange Vielschichtspiegel 5 kann dann beispielsweise Cu-Kα- Strahlung mit einer Strahldivergenz von etwa 0,5° erfassen und sie mit annähernd 80% der Primärstrahlintensität in ein ca. 1 mm breites paralleles und monochromatisches Strahlen¬ bündel reflektieren. Für Cu-Kα-Strahlung muß die Periode d = + dsi ( w = dg-j_, 50 Perioden) zwischen den Punkten a und b des Reflektors 5 hierbei die im linken Teil der Fig. 3 gezeigte Abhängigkeit von der Länge 1 aufweisen. Dargestellt sind sowohl die berechnete Periode d = d^ + dsi (offene Krei¬ se) als auch die gemessenen Werte.
Die in den Fig. 4 und 5 dargestellten Beugungsdiagramme wur¬ den mit dem erfindungsgemäßen Diffraktometer unter Verwendung eines W/Si-Vielschichtspiegels 5 aufgenommen. Als Probe dien- te eine etwa 1 um dicke In-Cu-Ga-Dünnschicht 9, an der man Cu-Kα-Strahlung (λ = 1,54056 A) zur Beugung brachte. Aufge¬ tragen ist jeweils die im Proportionalzähler 10 gemessene In¬ tensität (Zählrate pro Sekunde) in Abhängigkeit vom Beugungε- winkel 2>. Während der Messung bewegte sich der Detektor 10 jeweils schrittweise (0, 05°/Schritt) mit einer Geschwindig¬ keit von 3°/Minute entlang des Meßkreises 12 um die Probe 9. Bei Verwendung eines vergleichsweise groben Kollimators 11 (0,4°) besitzt der stärkste Reflex eine Intensität von mehr als 30.000 Counts/Sekunde. Seine Intensität verringert sich deutlich, wenn man die Divergenz der gebeugten Strahlung 13 mit Hilfe eines feineren Kollimators auf 0,15° begrenzt (s. Fig. 5) . Der Verlust an Intensität wird aber durch den Gewinn an Auflösung mehr als kompensiert.
Die Fig. 6 zeigt das in einem Bragg-Brentano-Diffraktometer moderner Bauart aufgezeichnete Beugungsspektrum derselben Probe. Man erkennt deutlich die wesentlich geringere Intensi¬ tät der einzelnen Reflexe und den höheren Untergrund.
Aufgrund der in einem erfindungsgemäßen Analysegerät ver¬ wirklichten Parallelstrahl-Röntgenoptik hat die Probengeome¬ trie keinen Einfluß auf die Winkelgenauigkeit und Winkelauf¬ lösung der jeweiligen Messung. In dem in Fig. 7 dargestellten Diffraktometer lassen sich daher beispielsweise auch massive Werkstücke 18 beliebiger Form (Formteile) , Bruchflächen, Kor¬ rosionsflächen und Auεgrabungsgegenstände untersuchen, die nicht verändert werden dürfen.
Bei dem in Fig. 8 unten dargestellten Parallelstrahl-5-Kri- stall-Diffraktometer ist dem als Kondensor dienenden Viel¬ schichtspiegel 5 ein beispielsweise aus /5/ oder /6/ bekann¬ ter "Channel-Cut"-Monochromator 19 nachgeschaltet, der das parallele Primärstrahlbündel 7 ' in Richtung der im Zentrum eines hochauflösenden Omega-Goniometers angeordneten Probe 20 umlenkt. Da ein paralleles Strahlenbündel in den Monochro¬ mator 19 eintritt wird nahezu die gesamte Primärstrahlinten- sität transmittiert. Bei dem in konventionellen Spektrometern verwirklichten divergenten Strahlengang (s. Fig. 8 oben) geht hingegen mehr als 90% der Primärstrahlintensität bei der Re¬ flexion am dritten Monochromatorkristall 21 verloren.
Zwei-Kristall-Diffraktometer eignen sich für hochgenaue Un¬ tersuchungen der Realstruktur von Einkristallen im Vergleich zu einem idealen Referenzkristall. Um auch in solchen Geräten eine Parallelstrahl-Röntgenoptik zu verwirklichen, ist ein wiederum als Kondensor wirkender Vielschichtspiegel 5 im
Strahlengang zwischen der Röntgenröhre 4 und dem hochreinen Referenzkristall 22 angeordnet (s. Fig. 9) . Die am Referenz¬ kristall 22 Bragg-reflektierte Strahlung 23 fällt dann als paralleles Bündel auf die Probe 24, wird dort nochmals ge- beugt und schließlich als paralleles Bündel 25 im Detektor 10 nachgewiesen.
Mit dem in Fig. 10 dargestellten Parallelstrahl-Reflektometer lassen sich insbesondere dünne Schichten 26 und glatte Ober- flächen untersuchen, wobei man die Größe des vom parallelen Primärstrahlbündel 27 ausgeleuchteten Bereichs mit Hilfe der in Pfeilrichtung verschiebbaren Schneidenblende 28 variieren kann. Der dem Szintiallationszähler 29 vorgelagerte ebene Mo¬ nochromator 30 dient der Unterdrückung unerwünschter Stre - Strahlung. Er ist unmittelbar hinter einer Blende 31 ange¬ ordnet, deren Abstand zur Probe 26 etwa 50 cm beträgt.
Die Fig. 11 zeigt ein mit diesem Reflektometer aufgenommene Meßkurve. Aufgetragen ist die im Detektor 29 registrierte In- tensität (logarithmischer Maßstab) der an einer etwa 0,5 um dicken Goldschicht 26 reflektierten Röntgenstrahlung (λ = 1,54056 A) in Abhängigkeit vom Winkel 2 . Da der verwendete Detektor 23 nur etwa 10^ Ereignisse/Sekunde verarbeiten konn¬ te, wurde im Winkelbereich der Totalreflexion ein Absorber in den sekundärseitigen Strahlengang eingebracht und bei 2 τ = 1,3° wieder entfernt (linker Pfeil in Fig. 11) . Die Intensi¬ tät der reflektierten Strahlung nimmt sehr schnell weiter ab und läßt sich durch Öffnung der Schneidenblende 28 nochmals deutlich erhöhen (rechter Pfeil in Fig. 11) . In bekannten Ge¬ räten hätte diese Maßnahme aufgrund der Divergenz des die Probe beleuchtenden Strahlenbündels keinen Erfolg und man würde den in Fig. 11 gestrichelt dargestellen Intensitätsver¬ lauf nach dem Öffnen der Schneidenblende 28 beobachten.
Die Erfindung ist selbstverständlich nicht auf die beschrie¬ benen Ausführungsbeispiele beschränkt. So läßt sich eine Par- allelstrahl-Röntgenoptik auch in anderen Spektrometertypen, insbesondere in dem aus /3/ bekannten GIXD-Spektrometer, in Microbeam-Diffraktometern oder in Kapillar-Röntgendiffrakto- metern verwirklichen. Als Röntgenquelle lassen sich auch an¬ dere Röntgenröhren, insbesondere Drehanoden-Röntgenröhren einsetzen.
/l/ Siemens Forschungs- u. Entwicklungsberichte; Bd. 14 (1985) Nr. 4, S. 167 - 176
121 International Tables for Crystallography, Vol. C Mathema- tical, Physical and Chemical Tables Edited by A.J.C. Wil¬ son; Kluwer Academic Publishers (1992), S. 42 - 77
/3/ EP-A- 456 897
/4/ SPIE Vol. 563, Application of Thin-Film Multilayered
Structures to Figured X-Ray Optics (1985), S. 114 - 134
/5/ J. Phys. E: Sei. Instrum., Vol. 7 (1974), S. 823 - 829
/6/ US-A-4, 567, 605

Claims

Patentansprüche:
1. Röntgen-Analysegerät mit
- einer Röntgenstrahlung (7) emittierenden Quelle (6), - einer zu analysierenden Probe (9),
- einem auf Röntgenstrahlung ansprechenden Detektor (10) ,
- strahlformenden und/oder strahlbegrenzenden Mitteln (14, 15) und
- einem gekrümmten Reflektor (5), der im Strahlgang zwischen der Quelle (6) und der Probe (9) angeordnet ist und aus ei¬ ner sich periodisch sich wiederholten Folge von Schichten aus Materialien mit unterschiedlichem Brechungsindex be¬ steht, d a d u r c h g e k e n n z e i c h n e t , - daß die Summe d = d^ + dg der Dicken d^ und dg aufeinander¬ folgender, aus den Materialien A bzw. B bestehenden Schich¬ ten sich zumindest entlang einer ersten Richtung stetig än¬ dert und
- daß der Reflektor (5) derart gekrümmt ist, daß er eine Teilfläche eines Rotationsparaboloids (17) bildet, in des¬ sen Brennpunkt die Quelle (6) oder ein Bild der Quelle (6) . liegt.
2. Röntgen-Analysegerät nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t daß sich die Summe d = ^ + dg der Schichtdicken d^ und dg derart ändert, daß Röntgenstrahlung (7) einer bestimmten Wel¬ lenlänge unabhängig von der Auftreffstelle entlang der ersten Richtung stets Bragg-Reflektiert wird.
3. Röntgen-Analysegerät nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t , daß sich die Summe d = d^ + dg linear von einer in der ersten Richtung gemessenen Ortskoordinate (1) abhängt.
4. Röntgen-Analysegerät nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß dem Detektor (10) ein Kollimator (11) vorgelagert ist, wobei die Lamellen des Kollimators (11) parallel zueinander orientiert und auf die Probe (9) ausgerichtet sind.
5. Röntgen-Analysegerät nach einem der Ansprüche 1 bis 3, g e k e n n z e i c h n e t d u r c h einen im Strahlengang zwischen dem gekrümmten Reflektor (5) und der Probe (20) angeordneten ersten Monochromator (19) .
6. Röntgen-Analysegerät nach Anspruch 5, g e k e n n z e i c h n e t d u r c h einen Vierkristall-Monochromator (19) .
7. Röntgen-Analysegerät nach einem der Ansprüche 1 bis 3, g e k e n n z e i c h n e t d u r c h einen im Strahlengang zwischen dem gekrümmten Reflektor (5) und der Probe (24) angeordneten zweiten Bragg-Reflektor (22) .
8. Röntgen-Analysegerät nach einem der Ansprüche 1 bis 3, g e k e n n z e i c h n e t d u r c h einen im Strahlengang zwischen der Probe (26) und dem Detek¬ tor (29) angeordneten zweiten Monochromator (30) .
9. Röntgen-Analysegerät nach Anspruch 8, g e k e n n z e i c h n e t d u r c h einen ebenen zweiten Monochromator (30) .
10. Röntgen-Analysegerät nach einem der Ansprüche 1 bis 9. d a d u r c h g e k e n n z e i c h n e t , daß der Reflektor (5) auf einem eine parabolische Oberfläche aufweisenden Grundkörper (16) angeordnet ist.
PCT/DE1995/000282 1994-03-04 1995-03-03 Röntgen-analysegerät WO1995022758A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19944407278 DE4407278A1 (de) 1994-03-04 1994-03-04 Röntgen-Analysegerät
DEP4407278.3 1994-03-04

Publications (1)

Publication Number Publication Date
WO1995022758A1 true WO1995022758A1 (de) 1995-08-24

Family

ID=6511892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/000282 WO1995022758A1 (de) 1994-03-04 1995-03-03 Röntgen-analysegerät

Country Status (2)

Country Link
DE (1) DE4407278A1 (de)
WO (1) WO1995022758A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6226349B1 (en) 1998-07-25 2001-05-01 Bruker Axs Analytical X-Ray Systems Gmbh X-ray analysis apparatus with a graded multilayer mirror
US6898270B2 (en) 2001-12-18 2005-05-24 Bruker Axs Gmbh X-ray optical system with collimator in the focus of an X-ray mirror
DE102014101226A1 (de) * 2014-01-31 2015-08-06 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der Bundesanstalt für Matrialforschung und -prüfung (BAM) Totalreflektionsröntgenfluoreszenzmesszelle für die Untersuchung einer flüssigen Probe
US20150300966A1 (en) * 2012-11-29 2015-10-22 Helmut Fischer GmbH Institut fur Elektronik und IV Method and device for performing an x-ray fluorescence analysis
DE112010001478B4 (de) * 2009-07-01 2016-05-04 Rigaku Corp. Verwendung einer Röntgenvorrichtung
US9335282B2 (en) 2012-04-02 2016-05-10 Rigaku Corporation X-ray topography apparatus
US20220381709A1 (en) * 2019-10-21 2022-12-01 Anton Paar Gmbh X-ray device having multiple beam paths

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014423A (en) * 1998-02-19 2000-01-11 Osmic, Inc. Multiple corner Kirkpatrick-Baez beam conditioning optic assembly
US6041099A (en) * 1998-02-19 2000-03-21 Osmic, Inc. Single corner kirkpatrick-baez beam conditioning optic assembly
DE19820861B4 (de) * 1998-05-09 2004-09-16 Bruker Axs Gmbh Simultanes Röntgenfluoreszenz-Spektrometer
DE10107914A1 (de) * 2001-02-14 2002-09-05 Fraunhofer Ges Forschung Anordnung für röntgenanalytische Anwendungen
ATE397782T1 (de) * 2001-06-01 2008-06-15 Xenocs Hybrides optisches element für röntgenstrahl- anwendungen und zugehöriges verfahren
DE10254026C5 (de) * 2002-11-20 2009-01-29 Incoatec Gmbh Reflektor für Röntgenstrahlung
DE102006015933B3 (de) 2006-04-05 2007-10-31 Incoatec Gmbh Vorrichtung und Verfahren zum Justieren eines optischen Elements
DE102013008486B4 (de) 2013-05-18 2016-07-14 Saxray GmbH Rauscharmes optisches Element zur Detektion von Strahlung mittels Messung elektrischer Signale und Verwendung desselben zur Einstellung einer Reflexionsbedingung
EP2896960B1 (de) * 2014-01-15 2017-07-26 PANalytical B.V. Röntgenvorrichtung für SAXS und Bragg-Brentano Messungen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021253A1 (de) * 1979-06-25 1981-01-07 Siemens Aktiengesellschaft Einrichtung für die Röntgenfluoreszenzanalyse
US4567605A (en) * 1982-11-25 1986-01-28 U.S. Philips Corporation X-Ray analysis apparatus comprising a four-crystal monochromator
DE8534299U1 (de) * 1985-12-06 1986-03-27 Gkss - Forschungszentrum Geesthacht Gmbh, 2054 Geesthacht Reflektor für eine Meßanordnung zur Röntgenfluoreszenzanalyse
EP0456897A1 (de) * 1990-05-15 1991-11-21 Siemens Aktiengesellschaft Messanordnung für die Röntgenfluoreszenzanalyse
GB2266040A (en) * 1992-04-09 1993-10-13 Rigaku Ind Corp X-ray analysis apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4429411A (en) * 1981-04-20 1984-01-31 The United States Of America As Represented By The United States Department Of Energy Instrument and method for focusing X-rays, gamma rays and neutrons
NL8700488A (nl) * 1987-02-27 1988-09-16 Philips Nv Roentgen analyse apparaat met saggitaal gebogen analyse kristal.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021253A1 (de) * 1979-06-25 1981-01-07 Siemens Aktiengesellschaft Einrichtung für die Röntgenfluoreszenzanalyse
US4567605A (en) * 1982-11-25 1986-01-28 U.S. Philips Corporation X-Ray analysis apparatus comprising a four-crystal monochromator
DE8534299U1 (de) * 1985-12-06 1986-03-27 Gkss - Forschungszentrum Geesthacht Gmbh, 2054 Geesthacht Reflektor für eine Meßanordnung zur Röntgenfluoreszenzanalyse
EP0456897A1 (de) * 1990-05-15 1991-11-21 Siemens Aktiengesellschaft Messanordnung für die Röntgenfluoreszenzanalyse
GB2266040A (en) * 1992-04-09 1993-10-13 Rigaku Ind Corp X-ray analysis apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6226349B1 (en) 1998-07-25 2001-05-01 Bruker Axs Analytical X-Ray Systems Gmbh X-ray analysis apparatus with a graded multilayer mirror
US6898270B2 (en) 2001-12-18 2005-05-24 Bruker Axs Gmbh X-ray optical system with collimator in the focus of an X-ray mirror
DE112010001478B4 (de) * 2009-07-01 2016-05-04 Rigaku Corp. Verwendung einer Röntgenvorrichtung
US9336917B2 (en) 2009-07-01 2016-05-10 Rigaku Corporation X-ray apparatus, method of using the same and X-ray irradiation method
US9335282B2 (en) 2012-04-02 2016-05-10 Rigaku Corporation X-ray topography apparatus
US20150300966A1 (en) * 2012-11-29 2015-10-22 Helmut Fischer GmbH Institut fur Elektronik und IV Method and device for performing an x-ray fluorescence analysis
US9513238B2 (en) * 2012-11-29 2016-12-06 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Method and device for performing an x-ray fluorescence analysis
DE102014101226A1 (de) * 2014-01-31 2015-08-06 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der Bundesanstalt für Matrialforschung und -prüfung (BAM) Totalreflektionsröntgenfluoreszenzmesszelle für die Untersuchung einer flüssigen Probe
DE102014101226B4 (de) * 2014-01-31 2015-11-05 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der Bundesanstalt für Matrialforschung und -prüfung (BAM) Totalreflektionsröntgenfluoreszenzmesszelle für die Untersuchung einer flüssigen Probe
US20220381709A1 (en) * 2019-10-21 2022-12-01 Anton Paar Gmbh X-ray device having multiple beam paths
US11906448B2 (en) * 2019-10-21 2024-02-20 Anton Paar Gmbh X-ray device having multiple beam paths

Also Published As

Publication number Publication date
DE4407278A1 (de) 1995-09-07

Similar Documents

Publication Publication Date Title
DE19833524B4 (de) Röntgen-Analysegerät mit Gradienten-Vielfachschicht-Spiegel
EP0585641B1 (de) Röntgendiffraktometer
EP1192451B1 (de) Vorrichtung zur röntgenfluoreszenzanalyse
DE112010001478B4 (de) Verwendung einer Röntgenvorrichtung
DE60213994T2 (de) Wellenlängen-dispersives röntgenfluoreszenz-system mit fokusierender anregungsoptik und einem fokusierenden monochromator zum auffangen
Iida et al. Synchrotron X-ray muprobe and its application to human hair analysis
WO1995022758A1 (de) Röntgen-analysegerät
KR20050010835A (ko) 대역 판을 포함하는 다중 영상화 시스템을 사용하는 원소특이성 x-선 형광 현미경
Thompson et al. Elemental measurements with an X-ray microprobe of biological and geological samples with femtogram sensitivity
EP0990140A1 (de) Winkelanfgelöstes röntgenspektrometer
GB2266040A (en) X-ray analysis apparatus
DE102018205163A1 (de) Messvorrichtung zur Messung von Reflexionseigenschaften einer Probe im extremen ultravioletten Spektralbereich
DE10245676A1 (de) Phasenkontrast-Röntgengerät zur Erstellung eines Phasenkontrast-Bildes eines Objekts und Verfahren zum Erstellen des Phasenkontrast-Bildes
EP0068045B1 (de) Kristall-Röntgen-Sequenzspektrometer
EP1647840B1 (de) Röntgen- oder neutronenoptisches Analysegerät mit variabel ausgeleuchtetem Streifendetektor
US6577705B1 (en) Combinatorial material analysis using X-ray capillary optics
EP0456897A1 (de) Messanordnung für die Röntgenfluoreszenzanalyse
Gao et al. 3.3 Polycapillary X-ray Optics
EP1360699B1 (de) Anordnung für röntgenanalytische anwendungen
EP0617431A2 (de) Röntgenstrahlen-Analysegerät
DE102013008486B4 (de) Rauscharmes optisches Element zur Detektion von Strahlung mittels Messung elektrischer Signale und Verwendung desselben zur Einstellung einer Reflexionsbedingung
DE2911596C3 (de) Meßanordnung zur Röntgenfluoreszenzanalyse
DE102016101988A1 (de) Röntgenanalysator, Vorrichtung und Verfahren zur Röntgenabsorptionsspektroskopie
Rosenbaum et al. Small-Angle Diffraction of X Rays and the Study of Biological Structures
DE4430615C2 (de) Verfahren und Vorrichtung zur abbildenden Pulverdiffraktometrie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase