WO1995016118A1 - Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers - Google Patents

Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers Download PDF

Info

Publication number
WO1995016118A1
WO1995016118A1 PCT/DE1994/001416 DE9401416W WO9516118A1 WO 1995016118 A1 WO1995016118 A1 WO 1995016118A1 DE 9401416 W DE9401416 W DE 9401416W WO 9516118 A1 WO9516118 A1 WO 9516118A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
time
consumer
signal
current
Prior art date
Application number
PCT/DE1994/001416
Other languages
English (en)
French (fr)
Inventor
Gerhard Rehbichler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP95901342A priority Critical patent/EP0692067A1/de
Priority to JP51587895A priority patent/JP3834598B2/ja
Priority to US08/500,994 priority patent/US5592921A/en
Publication of WO1995016118A1 publication Critical patent/WO1995016118A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time

Definitions

  • the invention relates to a method and a device for controlling an electromagnetic consumer according to the generic terms of the independent claims.
  • a method and a device for controlling an electromagnetic consumer is known from DE-OS 34 26 799 (US-A 4 653 447).
  • the switching times and, based on this, the switch-on and switch-off times of the solenoid valve are recorded.
  • the exact switching time of the solenoid valve is determined on the basis of the time course of the current through the solenoid valve.
  • Solenoid valves of this type are preferably used to control the injection of fuels in gasoline and / or diesel engines. For the exact metering of even the smallest injection quantities, the switching time at which the armature of the solenoid valve reaches one of its two positions is of particular interest.
  • the procedure is such that the current profile is evaluated in a time window within which the switching time usually occurs and the switching time is determined on the basis of its time profile.
  • the invention is based on the object of demonstrating a possibility in a method and a device for controlling an electromagnetic consumer of the type mentioned at the beginning in which the switching time can be determined with little effort. This object is achieved by the features characterized in the independent claims.
  • the switching time can be determined with little effort.
  • FIG. 1 shows a block diagram of the device according to the invention
  • FIG. 2 shows various signals plotted over time
  • FIG. 3 shows a flow chart. Description of the embodiments
  • the exemplary embodiments described are a device for controlling electromagnetic consumers, in particular in the area of fuel metering in a diesel internal combustion engine.
  • the described device can be used in connection with any electromagnetic consumer. It is not limited to the specific application described.
  • a solenoid valve can be used in a particularly advantageous manner to control the metering of fuel into the internal combustion engine. By triggering the solenoid valve, the start of injection, the end of injection and thus the amount of fuel injected is determined.
  • FIG. 1 the circuit of the device according to the invention is shown schematically. Only the essential components are shown.
  • the positive pole Ubat of the battery is connected to ground via a series circuit comprising a consumer 100, in particular an electromagnetic consumer, a switching means 110 and a measuring device 120.
  • the positive pole of the battery voltage Ubat is connected to the cathode of a diode 105.
  • the anode of the diode 105 is in contact with the connection point between the consumer 100 and the switching means 110.
  • the anode of diode 105 is connected to the cathode of a Zener diode 108.
  • the anode of the Zener diode 108 is connected to ground.
  • the switching means 110 is acted upon by control signals from an output stage 130.
  • the two connections of the measuring means 120 are connected to a current evaluation 135.
  • the current evaluation 135 acts on a current controller 140 with an actual value II for the current.
  • the current controller applies a signal Vtc to the output stage 130 and a filter 145.
  • the filter 145 in turn applies a signal VCLP to a time window 150.
  • the time window 150 forwards a signal CLP to a control unit 155.
  • the control unit 155 applies a signal CLPV to the time window 150. In addition, the control unit 155 applies a setpoint IS for the current to the current regulator 140.
  • the control unit 155 is also connected to the output stage 130 and transmits the signals CHIL and DRVO to it. Furthermore, the output stage 130 is connected to the current regulator 140 for transmitting a signal.
  • the control unit 155 detects the signals from various sensors 160 and acts on further elements 165 with various signals.
  • the arrangement of the consumer, the switching means 110 and the measuring device 120 are only given by way of example in FIG. 1. They can also be arranged in a different order. It can also be provided that the measuring means 120 is arranged between the consumer 100 and the switching means 110. Is the measuring means 120 between the electromagnetic consumer 100 and the switching means 110 or between the electromagnetic consumer 100 and the positive pole Ubat of the supply voltage, the current values can also be detected and evaluated after opening the switching means 110.
  • the diode 105 serves as a freewheeling circuit and represents the simplest implementation of such a freewheeling circuit. It can optionally be replaced by other switching elements such as, for example, a plurality of diodes connected in series or by a series connection of transistor and diode. The same applies to the Z diode 108, which serves as an extinguishing device and can, if necessary, be replaced or supplemented by other suitable components.
  • the switching means 110 is preferably a transistor, in particular a field effect transistor.
  • an ohmic resistor can be used as the measuring means 120.
  • the voltage drop across the ohmic resistor serves as a measure of the current flowing through the series connection of consumer 100 switching means 110.
  • the control unit 155 evaluates the signals from various sensors 160.
  • the sensors 160 record, for example, the rotational speed, the accelerator pedal position, various temperature and pressure values, and, in particular in the case of spark-ignited internal combustion engines, the throttle valve position. Based on these sensor signals and operating parameters, the control unit 155 calculates various signals for controlling various actuators 165.
  • control unit 155 specifies a signal DRVO that specifies the activation duration of the switching means 110.
  • Switching means 110 closes on the positive edge of signal DRVO and switching means 110 opens on the negative edge.
  • the current regulator 140 regulates the current flowing through the consumer, which is detected by the measuring means 120, to a specific value.
  • the current is preferably regulated to a higher value and in a second phase to a lower value.
  • the current evaluation 135 determines the actual current flowing through the consumer 100 based on the voltage drop across the resistor 120.
  • the current controller 140 compares the actual current II with the target current IS. Based on this comparison, it generates a control signal Vtc to act on the output stage 130, which then controls the switching means 110 accordingly.
  • the output signal of the current regulator 140 is further processed by the filter 145.
  • This filter generates a voltage value that is proportional to the pulse length of the output signal Vtc of the current regulator 140.
  • the switching time can be determined by evaluating the pulse length.
  • the time window 150 permits this evaluation only within a specific time range after the solenoid valve has been activated.
  • FIG. 2 in which various signals are plotted over time.
  • the DRVO signal is shown in the first line. This signal is transmitted from the control unit 155 to the output stage 130.
  • the signal CHIL which is also transmitted from the control unit 155 to the output stage 130, is plotted in the second line. While this signal is present, the second setpoint of the current is regulated.
  • the third line shows the current I flowing through the solenoid valve.
  • the stroke H of the solenoid valve needle is shown in the fourth line.
  • the fifth line shows the signal Vtc which corresponds to the output signal of the current regulator 140. This signal also corresponds to the switching state of the switching means 110. The switch is open when the signal value is low, and the switch is closed when the signal value is high.
  • the filtered pulse length of this signal is plotted on the next line. This signal is only present internally in filter 145.
  • the seventh line shows the signal VCLP, which assumes an increased value when the frequency exceeds a certain threshold value.
  • the next signal CLPV defines with its increased signal value the time window within which the switching time is usually. This signal is transmitted from the control unit to the time window 150.
  • the signal CLP the positive edge of which defines the switching instant, is plotted in the last line.
  • the output stage 130 controls the switching means 110 in such a way that it closes or there is a non-zero setpoint for the current I. This means that the output signal Vtc of the current regulator 140 takes on an increased value.
  • the current regulator 140 regulates the current flowing through the solenoid valve to a desired value IS1 specified by the control unit.
  • This current regulator is preferably implemented as a two-point regulator.
  • the two-point controller opens the switching means 110 when an upper current threshold is exceeded.
  • the lower current threshold is fluid and is reached by deactivating the switching means for a certain time TP. This means that when the current value is exceeded, the switch opens and after the predetermined time TP the switch closes again.
  • the current I through the solenoid valve fluctuates between a predetermined upper threshold and a lower value.
  • the solenoid valve needle Shortly before the end of the Tlreg period, the solenoid valve needle begins to move towards its new end position.
  • the switching state of the switching means 110 or the output signal of the current regulator changes between its upper and lower signal value.
  • the switching means is closed for a relatively long time.
  • the switch-off time TP is set so that a desired hysteresis of the two-point controller is achieved.
  • the setpoint which corresponds to the upper current threshold S1
  • the setpoint S1 in the first phase is called the starting current and the setpoint S2 in the second phase is called the holding current.
  • the setpoint value for the current is lowered after the solenoid valve needle has started to move.
  • This point in time is estimated by the control unit 155 depending on various operating parameters. After this point in time has been reached, the control unit 155 outputs a signal CHIL with a positive edge. From the positive edge of the signal CHIL, a constant or linearly decreasing switch-off time TP is specified, so that a desired hysteresis or sufficient accuracy of the switching time is achieved. If the switch-off time TP is reduced linearly or non-linearly in the direction of the expected closing time, the accuracy or the sensitivity of the detection can be improved.
  • the advantage of a variable switch-off time is a reduced power loss of the switching element 110, since the highest switching frequency only occurs in the vicinity of the closing time.
  • the pulse length of the signal Vtc changes suddenly. If one now considers the pulse length of the signal Vtc, one can see a sudden change or increase in the pulse length at the time of switching. As soon as the filtered pulse length exceeds the threshold value S, the signal VCLP has a positive edge. In order to prevent error detections, the VCLP signal only recognizes as permissible between the positive and the negative edge of the CLPV signal.
  • a positive edge of the signal CLP is transmitted to the control unit 155.
  • This positive edge characterizes the switching time of the solenoid valve. Due to signal delays, the edge is around the delay time Td after the actual switching time. This delay time Td is a function of the filter and the switching frequency at the time of closing and is taken into account by the control unit 155.
  • the period duration change is evaluated by a two-point controller with an upper and lower threshold if the current in the solenoid valve 100 can be measured directly. It is essential that a variable characterizing the switching state of the switching means 110 is evaluated. changes the control signal of the switching means or the output variable of the current controller 140, the time of the change corresponds to the switching time of the electromagnetic consumer.
  • the program begins with step 100.
  • the current is regulated by the current controller 140 to a first setpoint IS1.
  • step 320 the current controller 140 regulates the current on the. second setpoint IS2.
  • the subsequent query 330 checks whether the CLPV signal is present. If this is not the case, the program continues with step 320. If the signal CLPV is present, step 340 follows. Here, a constant value is specified for TP. Then, at step 350, the pulse length is determined from the signal Vtc and filtered. The query 360 checks whether the filtered signal Vtc is greater than a threshold S. If this is not the case, step 350 takes place again. Otherwise, if the pulse length is greater than a threshold S, the signal CLP is output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Es wird ein Verfahren und eine Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers, insbesondere eines Magnetventils zur Beeinflussung der Kraftstoffzumessung bei einer Dieselbrennkraftmaschine beschrieben. Der Verbraucher ist in Reihe mit einem Schaltmittel geschaltet, das mit einem Ansteuersignal beaufschlagt wird. Zur Ermittlung eines Schaltzeitpunktes des elektromagnetischen Verbrauchers wird eine das Ansteuersignal charakterisierende Größe ausgewertet.

Description

Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
Stand der Technik
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur An¬ Steuerung eines elektromagnetischen Verbrauchers gemäß den Oberbe¬ griffen der unabhängigen Ansprüche.
Ein Verfahren und eine Vorrichtung zur Ansteuerung eines elektro¬ magnetischen Verbrauchers ist aus der DE-OS 34 26 799 (US-A 4 653 447) bekannt. Bei der dort beschriebenen Vorrichtung werden die Schaltzeitpunkte und davon ausgehend die Einschaltzeiten und Ausschaltzeiten des Magnetventils erfaßt. Ausgehend von dem zeitlichen Verlauf des Stroms durch das Magnetventil wird der genaue Schaltzeitpunkt des Magnetventils bestimmt.
Solche Magnetventile werden vorzugsweise zur Steuerung der Ein¬ spritzung von Kraftstoffen in Benzin- und/oder Dieselmotoren einge¬ setzt. Zur exakten Zumessung auch kleinster Einspritzmengen ist ins¬ besondere der Schaltzeitpunkt von Interesse, bei dem der Anker des Magnetnventils eine seiner beiden Entlagen erreicht.
ERSATZBLATT Bei bekannten Systemen wird derart vorgegangen, daß in einem Zeit¬ fenster innerhalb dem der Schaltzeitpunkt üblicherweise auftritt der Stromverlauf ausgewertet und anhand dessen zeitlichen Verlaufs der Schaltzeitpunkt bestimmt wird.
Aufgabe der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren und einer Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrau¬ chers der eingangs genannten Art eine Möglichkeit aufzuzeigen, bei der mit geringem Aufwand der Schaltzeitpunkt bestimmbar ist. Diese Aufgabe wird durch die in den unabhängigen Ansprüchen gekennzeichne¬ ten Merkmale gelöst.
Vorteile der Erfindung
Mit dem erfindungsgemäßen Verfahren und der entsprechenden Vorrich¬ tung zur Ansteuerung eines elektromagnetischen Verbrauchers gemäß der Merkmalskombination der unabhängigen Ansprüche läßt sich mit ge¬ ringem Aufwand der Schaltzeitpunkt bestimmen.
Zeichnung
Die Erfindung wird nachstehend anhand der in der Zeichnung darge¬ stellten Ausführungsform erläutert. Es zeigen Figur 1 ein Blockdia¬ gramm der erfindungsgemäßen Vorrichtung, die Figur 2 verschiedene über Zeit aufgetragene Signale und Figur 3 ein Flußdiagramm. Beschreibung der Ausführungsbeispiele
Bei den beschriebenen Ausführungsbeispielen handelt es sich um eine Vorrichtung zur Ansteuerung elektromagnetischer Verbraucher, insbe¬ sondere im Bereich der Kraftstoffzumessung bei einer Dieselbrenn- kraftmaschine. Prinzipiell ist die beschriebene Vorrichtung im Zu¬ sammenhang mit jeglichen elektromagnetischen Verbrauchern einsetz¬ bar. Sie ist nicht auf die spezielle beschriebene Anwendung be¬ schränkt.
Besonders vorteilhaft ist es jedoch die erfindungsgemäße Vorrichtung im Zusammenhang mit Brennkraftmaschinen einzusetzen, insbesondere bei der Zumessung von Kraftstoff in einen Brennraum der Brennkraftma¬ schine. In diesem Fall kann in besonders vorteilhafter Weise ein Magnetventil zur Steuerung der Zumessung von Kraftstoff in die Brennkraftmaschine verwendet werden. Durch die Ansteuerung des Magnetventils wird der Einspritzbeginn, das Einspritzende und damit die eingespritzte Kraftstoffmenge festgelegt.
Insbesondere bei kleinen Lasten und hohen Drehzahlen ist es erfor¬ derlich, daß kleinste Einspritzmengen möglichst exakt zugemessen werden. Hierzu ist es wiederum erforderlich, daß der Zeitpunkt, zu dem der Anker des Magnetventils seine Endlage erreicht, bekannt ist. Dieser Zeitpunkt wird üblicherweise als Schaltzeitpunkt bezeichnet. Dieser Zeitpunkt kann durch die Auswertung des zeitlichen Verlaufs des Magnetventilstroms gewonnen werden.
In Figur 1 ist die Schaltung der erfindungsgemäßen Vorrichtung schematisch dargestellt. Es sind nur die wesentlichen Bauelemente eingezeichnet. Der Pluspol Ubat der Batterie steht über eine Reihen¬ schaltung aus einem Verbraucher 100, insbesondere einem elektro¬ magnetischen Verbraucher, einem Schaltmittel 110 und einer Meßein¬ richtung 120 mit Masse in Verbindung. Ferner steht der Pluspol der Batteriespannung Ubat mit der Kathode einer Diode 105 in Verbindung. Die Anode der Diode 105 steht mit dem Verbindungspunkt zwischen Verbraucher 100 und Schaltmittel 110 in Kontakt. Die Anode der Diode 105 ist mit der Kathode einer Z-Diode 108 verbunden. Die Anode der Z-Diode 108 steht mit Masse in Verbin¬ dung.
Das Schaltmittel 110 wird von einer Endstufe 130 mit Steuersignalen beaufschlagt. Die beiden Anschlüsse des Meßmittels 120 sind mit ei¬ ner Stromauswertung 135 verbunden. Die Stromauswertung 135 beauf¬ schlagt einen Stromregler 140 mit einem Istwert II für den Strom. Der Stromregler beaufschlagt die Endstufe 130 und einen Filter 145 mit einem Signal Vtc. Der Filter 145 wiederum beaufschlagt ein Zeit¬ fenster 150 mit einem Signal VCLP. Das Zeitfenster 150 leitet ein Signal CLP an eine Steuereinheit 155 weiter.
Die Steuereinheit 155 beaufschlagt das Zeitfenster 150 mit einem Signal CLPV. Desweiteren beaufschlagt die Steuereinheit 155 den Stromregler 140 mit einem Sollwert IS für den Strom. Die Steuerein¬ heit 155 ist ferner mit der Endstufe 130 verbunden und übermittelt an diese die Signale CHIL und DRVO. Desweiteren ist die Endstufe 130 mit dem Stromregler 140 zur Übermittlung eines Signals verbunden. Die Steuereinheit 155 erfaßt die Signale von verschiedenen Sensoren 160 und beaufschlagt weitere Elemente 165 mit verschiedenen Signa¬ len.
Die Anordnung des Verbrauchers, des Schaltmittels 110 und der Me߬ einrichtung 120 sind in der Figur 1 nur beispielhaft angegeben. Sie können auch in anderer Reihenfolge angeordnet werden. So kann auch vorgesehen sein, daß das Meßmittel 120 zwischen dem Verbraucher 100 und dem Schaltmittel 110 angeordnet ist. Ist das Meßmittel 120 zwi¬ schen dem elektromagnetischen Verbraucher 100 und dem Schaltmittel 110 bzw. zwischen dem elektromagnetischen Verbraucher 100 und dem Pluspol Ubat der Versorgungsspannung angeordnet, so können auch die Stromwerte nach dem Öffnen des Schaltmittels 110 erfaßt und ausge¬ wertet werden.
Die Diode 105 dient als Freilaufkreis und stellt die einfachste Rea¬ lisierung eines solchen Freilaufkreises dar. Sie kann ggf. durch an¬ dere Schaltelemente wie beispielsweise mehrere in Reihe geschaltete Dioden oder durch eine Reihenschaltung aus Transistor und Diode er¬ setzt werden. Entsprechendes gilt für die Z-Diode 108, sie dient als Löscheinrichtung und kann ggf. durch andere geeignete Bauelemente ersetzt bzw. ergänzt werden.
Bei dem Schaltmittel 110 handelt es sich vorzugsweise um einen Transistor, insbesondere um einen Feldeffekttransistor. Als Meßmit¬ tel 120 kann im einfachsten Fall ein ohmscher Widerstand eingesetzt werden. In diesem Fall dient der Spannungsabfall am ohmschen Wider¬ stand als Maß für den durch die Reihenschaltung aus Verbraucher 100 Schaltmittel 110 fließenden Strom.
Diese Vorrichtung soll nun am Beispiel einer Kraftstoffzumeßeinrich- tung einer Brennkraftmaschine beschrieben werden. Die Steuereinheit 155 wertet die Signale verschiedener Sensoren 160 aus. Die Sensoren 160 erfassen beispielsweise die Drehzahl, die Fahrpedalstellung ver¬ schiedene Temperatur- und Druckwerte sowie insbesondere bei fremdge¬ zündeten Brennkraftmaschinen die Drosselklappenstellung. Ausgehend von diesen Sensorsignalen und Betriebskenngrößen berechnet die Steuereinheit 155 verschiedene Signale zur Ansteuerung verschiedener Stellglieder 165.
Unter anderem gibt die Steuereinheit 155 ein Singal DRVO vor, daß die Ansteuerdauer des Schaltmittels 110 festlegt. Bei der positiven Flanke des Signals DRVO schließt das Schaltmittel 110 und bei der negativen Flanke öffnet das Schaltmittel 110. Zwischen der positiven und der negativen Flanke des Signals regelt der Stromregler 140 den durch den Verbraucher fließende Strom, der vom Meßmittel 120 erfaßt wird, auf einen bestimmten Wert.
Während einer ersten Zeitphase Tlreg wird der Strom vorzugsweise auf einen höheren und in einer zweiten Phase auf eine niederen Wert ge¬ regelt. Hierzu ermittelt die Stromauswertung 135 ausgehend vom Span¬ nungsabfall am Widerstand 120 den Iststrom, der durch den Verbrau¬ cher 100 fließt. Der Stromregler 140 vergleicht den Iststrom II mit dem Sollstrom IS. Ausgehend von diesem Vergleich erzeugt er ein An¬ steuersignal Vtc zur Beaufschlagung der Endstufe 130, die dann ent¬ sprechend das Schaltmittel 110 ansteuert.
Das Ausgangssignal des Stromreglers 140 wird desweiteren von dem Filter 145 verarbeitet. Dieser Filter erzeugt ein Spannungswert, der proportional zur Impulslänge des Ausgangssignals Vtc des Stromreg- lers 140 ist.
Während sich der Anker des Magnetventils bewegt, wird in der Spule des Magnetventils eine Spannung induziert. Zum Schaltzeitpunkt er¬ reicht der Anker seine neue Endlage und die Bewegung endet. Dies be¬ wirkt, daß die induzierte Spannung verschwindet. Dies hat zur Folge, daß sich zu diesem Zeitpunkt der durch die Spule fließende Strom än¬ dert. Somit ändert sich zum Schaltzeitpunkt die Impulslänge. Durch Auswerten der Impulslänge läßt sich der Schaltzeitpunkt ermitteln.- Das Zeitfenster 150 läßt diese Auswertung nur innerhalb eines be¬ stimmten Zeitbereichs nach der Ansteuerung des Magnetventils zu.
Zur weiteren Erläuterung der Beschreibung sei auf Figur 2 verwiesen, in der verschiedene Signale über der Zeit aufgetragen sind.
In der ersten Zeile ist das Signal DRVO aufgetragen. Dieses Signal wird von der Steuereinheit 155 an die Endstufe 130 übermittelt. In der zweiten Zeile ist das Signal CHIL, das ebenfalls von der Steuereinheit 155 an die Endstufe 130 übermittelt wird, aufgetragen. Während dieses Signal vorliegt, wird auf den zweiten Sollwert des Stroms geregelt.
In der dritten Zeile ist der Strom I, der durch das Magnetventil fließt, aufgetragen. In der vierten Zeile ist der Hub H der Magnet¬ ventilnadel eingezeichnet.
Die fünfte Zeile zeigt das Signal Vtc das dem Ausgangssignal des Stromreglers 140 entspricht. Dieses Signal entspricht ferner dem Schaltzustand des Schaltmittels 110. Bei niederem Signalwert ist der Schalter geöffnet, bei hohem Signalwert ist der Schalter geschlossen.
In der nächsten Zeile ist die gefilterte Impulslänge dieses Signales aufgetragen. Dieses Signal liegt lediglich intern im Filter 145 vor. Die siebte Zeile zeigt das Signal VCLP, das einen erhöhten Wert an¬ nimmt, wenn die Frequenz einen bestimmten Schwellwert überschreitet.
Das nächste Signal CLPV definiert mit seinem erhöhten Signalwert das Zeitfenster, innerhalb dem der Schaltzeitpunkt üblicherweise liegt. Dieses Signal wird von der Steuereinheit an das Zeitfenster 150 übermittelt. In der letzten Zeile ist das Signal CLP, dessen positi¬ ve Flanke den Schaltzeitpunkt definiert, aufgetragen.
Erhält die Endstufe 130 eine positive Flanke des Signals DRVO, so steuert die Endstufe 130 das Schaltmittel 110 derart an, daß dieses schließt bzw. es gibt einen von Null verschiedenen Sollwert für den Strom I vor. Dies bedeutet, das Ausgangssignal Vtc des Stromreglers 140 nimmt einen erhöhten Wert an. Innerhalb eines ersten Zeitraumes, bis das Signal CHIL einen höheren Wert annimmt, regelt der Stromregler 140 den durch das Magnetventil fließenden Strom auf einen von der Steuereinheit vorgegebenen Soll¬ wert IS1 ein. Dieser Stromregler ist vorzugsweise als Zwei-Punkt-Regler realisiert. Der Zwei-Punkt-Regler öffnet das Schaltmittel 110, wenn eine obere Stromschwelle überschritten wird. Die untere Stromschwelle ist fließend und wird durch Deaktivieren des Schaltmittels für eine bestimmte Zeit TP erreicht. Dies bedeu¬ tet, wenn der Stromwert überschritten wird, öffnet der Schalter und nach der vorgegebenen Zeit TP schließt der Schalter wieder. Der Strom I durch das Magnetventil pendelt zwischen einer vorgegebenen oberen Schwelle und einem unteren Wert.
Kurz vor Ende des Zeitraums Tlreg beginnt die Magnetventilnadel ihre Bewegung in Richtung ihrer neuen Endlage. Der Schaltzustand des Schaltmittels 110 bzw. das Ausgangssignel des Stromreglers wechselt zwischen seinem oberen und unteren Signalwert. Zu Beginn ist das Schaltmittel für eine relativ lange Zeit geschlossen. Während des ersten Zeitraums Tlreg wird die Ausschaltzeit TP so eingestellt, daß eine gewünschte Hysterese des Zwei-Punkt-Reglers erreicht wird.
Bei Vorliegen des Signals CPHIL wird der Sollwert, der der oberen Stromschwelle Sl entspricht, auf einen kleineren Wert abgesenkt. Der Sollwert Sl in der ersten Phase wird als Anzugsstrom und der Soll¬ wert S2 in der zweiten Phase wird als Haltestrom bezeichnet. Die Ab¬ senkung des Sollwerts für den Strom erfolgt nach dem sich die Magnetventilnadel in Bewegung gesetzt hat.
Dieser Zeitpunkt wird abhängig von verschiedenen Betriebsparamtern von der Steuereinheit 155 abgeschätzt. Nachdem dieser Zeitpunkt er¬ reicht ist, gibt die Steuereinheit 155 ein Signal CHIL mit positiver Flanke aus. Ab der positiven Flanke des Signals CHIL wird eine kon¬ stante oder linear kleiner werdende Ausschaltzeit TP vorgegeben, so daß eine gewünschte Hysterese bzw. eine ausreichende Genauigkeit des Schaltzeitpunktes erreicht wird. Wird die Ausschaltzeit TP in Rich¬ tung des zu erwartenden Schließzeitpunkt linear oder nichtlinear verkleinert, so läßt sich dadurch die Genauigkeit bzw. die Empfind¬ lichkeit der Erkennung verbessern. Als Vorteil einer variablen Aus¬ schaltzeit ergibt sich eine verminderte Verlustleistung des Schalt¬ elements 110, da die höchste Schaltfrequenz erst in der Nähe des Schließzeitpunktes auftritt.
Zum Zeitpunkt, bei dem sich die Magnetventilnadel ihrer Endlage nähert, ändert sich die Impulslänge des Signals Vtc schlagartig. Be¬ trachtet man nun die Impulslänge des Signals Vtc, so erkennt man zum Schaltzeitpunkt eine plötzliche nderung bzw. Anstieg der Impulslän¬ ge. Sobald die gefilterte Impulslänge den Schwellwert S übersteigt, so besitzt das Signal VCLP eine positive Flanke. Um Fehlerkennungen zu verhindern, wird durch das Signal VCLP nur zwischen der positiven und der negativen Flanke des Signals CLPV als zuläßig erkannt.
Bei der zulässigen positiven Flanke des Signals VCLP wird eine posi¬ tive Flanke des Signals CLP an die Steuereinheit 155 übermittelt. Diese positive Flanke kennzeichnet den Schaltzeitpunkt des Magnet¬ ventils. Auf Grund von Signalverzögerungen liegt die Flanke um die Verzögerungszeit Td nach dem eigentlichen Schaltzeitpunkt. Diese Verzögerungszeit Td ist eine Funktion des Filters und der Schalt¬ frequenz zum Schließzeitpunkt und wird von der Steuereinheit 155 be¬ rücksichtigt.
Alternativ kann auch vorgesehen sein, daß die Periodendaueränderung durch einen Zwei-Punkt-Regler mit oberer und unterer Schwelle auszu¬ werten, wenn der Strom im Magnetventil 100 direkt meßbar ist. We¬ sentlich ist, daß eine den Schaltzustand des Schaltmittels 110 charakterisierende Größe ausgewertet wird. ndert sich das Ansteuer¬ signal des Schaltmittels bzw. die Ausgangsgröße des Stromreglers 140, so entspricht der Zeitpunkt der Änderung dem Schaltzeitpunkt des elektromagnetischen Verbrauchers.
Zur Verdeutlichung des erfindungsgemäßen Verfahrens sei auf das Flußdiagramm gemäß Figur 3 verwiesen. Sobald die positive Flanke des Signals DRVO auftritt, beginnt das Programm mit Schritt 100. Hier erfolgt die Stromregelung durch den Stromregler 140 auf einen ersten Sollwert IS1.
Die anschließende Abfrage 310 überprüft, ob das Signal CHIL vor¬ liegt. Ist dies nicht der Fall, so wird weiterhin Schritt 300 abge¬ arbeitet. Liegt dieses Signal vor, so folgt Schritt 320. In Schritt 320 regelt der Stromregler 140 den Strom auf der. zweiten Sollwert IS2 ein.
Die sich anschließende Abfrage 330 überprüft, ob das Signal CLPV vorliegt. Ist dies nicht der Fall, so setzt das Programm mit Schritt 320 fort. Liegt das Signal CLPV vor, so folgt Schritt 340. Hier wird für TP ein konstanter Wert vorgegeben. Anschließend wird an Schritt 350 wird aus dem Signal Vtc die Impulslänge ermittelt und gefiltert. Die Abfrage 360 überprüft, ob das gefilterte Signal Vtc größer als eine Schwelle S ist. Ist dies nicht der Fall, so erfolgt wieder Schritt 350 andernfalls, wenn die Impulslänge größer als eine Schwelle S ist, wird das Signal CLP ausgegeben.
An Stelle der Regelung des Stroms, der durch den Verbraucher fließt, kann auch vorgesehen sein, daß die am Verbraucher abfallende Span¬ nung geregelt wird.

Claims

Ansprüche
1. Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers, insbesondere eines Magnetventils zur Beeinflussung der Kraftstoffzu¬ messung bei einer Dieselbrennkraftmaschine, wobei der Verbraucher in Reihe mit einem Schaltmittel geschaltet ist, und das Schaltmittel mit einem Ansteuersignal beaufschlagt wird, wobei das Ansteuersignal von einem Mittel zur Regelung vorgebbar ist, dadurch gekennzeichnet, daß zur Ermittlung eines Schaltzeitpunktes des elektromagnetischen Verbrauchers eine das Ansteuersignal charakterisierende Größe ausge¬ wertet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Impulslänge oder die Periodendauer des Ansteuersignais ausgewertet wird.
3. Verfahren nach Anspruch loder 2, dadurch gekennzeichnet, daß der Schaltzeitpunkt erkannt wird, wenn sich die Impulslänge oder die Periodendauer ändert.
4. Verfahren nach wenigstens einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß der Schaltzeitpunkt erkannt wird, wenn die Ände¬ rung der Impulslänge oder der Periodendauer einen Schwellwert über¬ schreitet.
5. Verfahren nach wenigstens einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß ein Zeitfenster vorgebbar ist innerhalb dem der Schaltzeitpunkt erkannt wird.
6. Verfahren nach wenigstens einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Ansteuersignal von einem Mittel zur Regelung des Stroms durch den Verbraucher vorgebbar ist.
7. Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrau¬ chers, insbesondere eines Magnetventils zur Beeinflussung der Kraft¬ stoffzumessung bei einer Dieselbrennkraftmaschine, mit einem zu dem Verbraucher in Reihe geschalteten Schaltmittel, wobei das Schaltmit¬ tel mit einem Ansteuersignal beaufschlagt wird, dadurch gekennzeich¬ net, daß Mittel vorgesehen sind, die zur Ermittlung eines Schalt- zeitpunktes des elektromagnetischen Verbrauchers eine das Ansteuer¬ signal charakterisierende Größe auswerten.
PCT/DE1994/001416 1993-12-08 1994-11-29 Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers WO1995016118A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP95901342A EP0692067A1 (de) 1993-12-08 1994-11-29 Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers
JP51587895A JP3834598B2 (ja) 1993-12-08 1994-11-29 電磁的な負荷の制御方法及び装置
US08/500,994 US5592921A (en) 1993-12-08 1994-11-29 Method and device for actuating an electromagnetic load

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4341797A DE4341797A1 (de) 1993-12-08 1993-12-08 Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DEP4341797.3 1993-12-08

Publications (1)

Publication Number Publication Date
WO1995016118A1 true WO1995016118A1 (de) 1995-06-15

Family

ID=6504456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/001416 WO1995016118A1 (de) 1993-12-08 1994-11-29 Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers

Country Status (6)

Country Link
US (1) US5592921A (de)
EP (1) EP0692067A1 (de)
JP (1) JP3834598B2 (de)
KR (1) KR100352198B1 (de)
DE (1) DE4341797A1 (de)
WO (1) WO1995016118A1 (de)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611885B4 (de) * 1996-03-26 2007-04-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Schaltorgans
DE19614866A1 (de) * 1996-04-16 1997-10-23 Zahnradfabrik Friedrichshafen Verfahren zur Stromregelung
JP3707210B2 (ja) * 1997-07-22 2005-10-19 いすゞ自動車株式会社 燃料噴射制御装置
DE19735560B4 (de) * 1997-08-16 2007-06-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Verbrauchers
WO1999021269A1 (de) 1997-10-17 1999-04-29 Continental Teves Ag & Co. Ohg Verfahren und schaltungsanordnung zur verringerung von spannungseinbrüchen auf den batteriezuleitungen
US6208498B1 (en) 1997-12-17 2001-03-27 Jatco Transtechnology Ltd. Driving method and driving apparatus of a solenoid and solenoid driving control apparatus
DE50000490D1 (de) * 1999-03-01 2002-10-17 Siemens Ag Anordnung und verfahren zur regelung eines steuerventils für ein diesel-einspritzsystem
KR100398005B1 (ko) * 2001-05-07 2003-09-19 현대자동차주식회사 커먼레일 인젝터의 니들 변위 추정시스템
DE10134346B4 (de) * 2001-07-14 2010-07-15 K.A. Schmersal Gmbh & Co Vorrichtung zur Ansteuerung eines Elektromagneten
US7089915B2 (en) * 2001-08-16 2006-08-15 Robert Bosch Gmbh Method and device for controlling an electromagnetic consumer
DE10235188B3 (de) 2002-07-26 2004-04-01 Hydac Electronic Gmbh Verfahren zum Ermitteln der Position eines Stellelements eines elektrisch antreibbaren Aktuators, zugehörige Schaltungsanordnung und Vorrichtung
DE10315282B4 (de) 2003-04-03 2014-02-13 Continental Automotive Gmbh Schaltungsanordnung und Verfahren zur Ansteuerung eines bistabilen Magnetventils
DE10347056A1 (de) * 2003-10-07 2005-05-12 Daimler Chrysler Ag Verfahren zur Regelung eines Magnetventils
DE102004056653B4 (de) * 2004-11-24 2022-11-24 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schaltungsanordnung zum Erkennen des Schaltens eines Magnetankers
DE102006006878A1 (de) * 2006-01-20 2007-07-26 Continental Teves Ag & Co. Ohg Schaltungsanordnung mit Rückspeiseschutz zum Schalten in Leistungsanwendungen
DE102006044080B4 (de) 2006-09-20 2023-10-12 Robert Bosch Gmbh Verfahren zum Betreiben eines Reagenzmittel-Dosierventils und Vorrichtung zur Durchführung des Verfahrens
FI121281B (fi) * 2007-11-20 2010-09-15 Abloy Oy Sähkömekaanisen lukon solenoidin ohjain
EP2072791A1 (de) 2007-12-18 2009-06-24 C.R.F. Società Consortile per Azioni Verfahren zur Bestimmung des Zeitpunkts, zu dem die Nadel eines Magnetventils ihre Endposition erreicht
GB2470211B (en) 2009-05-14 2013-07-31 Gm Global Tech Operations Inc Hysteresis-type electronic controlling device for fuel injectors and associated method
DE102009044953B4 (de) 2009-09-24 2019-12-05 Robert Bosch Gmbh Verfahren zum Ansteuern eines elektromagnetischen Verbrauchers sowie entsprechende Schaltung
DE102010019495B3 (de) * 2010-05-06 2011-11-10 K.A. Schmersal Holding Gmbh & Co. Kg Zuhaltung mit einem Elektromagneten
DE102010036941B4 (de) * 2010-08-11 2012-09-13 Sauer-Danfoss Gmbh & Co. Ohg Verfahren und Vorrichtung zur Ermittlung des Zustands eines elektrisch angesteuerten Ventils
DE102011005672B4 (de) * 2011-03-17 2019-07-11 Continental Automotive Gmbh Verfahren, Vorrichtung und Computerprogramm zur elektrischen Ansteuerung eines Aktuators zur Bestimmung des Zeitpunkts eines Ankeranschlags
DE102011076113B4 (de) * 2011-05-19 2016-04-14 Continental Automotive Gmbh Bestimmung des Bewegungsverhaltens eines Kraftstoffinjektors basierend auf dem zeitlichen Abstand zwischen den ersten beiden Spannungspulsen in einer Haltephase
DE102011086957A1 (de) * 2011-11-23 2013-05-23 Robert Bosch Gmbh Verfahren zur Ansteuerung eines Magnetventils, sowie Computerprogramm und Steuer- und/oder Regeleinrichtung
EP2796695B1 (de) * 2013-04-26 2020-06-10 Vitesco Technologies GmbH Verfahren zum betreiben einer kraftstoffversorgungsanlage, steuerungsvorrichtung für eine kraftstoffversorgungsanlage, kraftstoffversorgungsanordnung und computerprogrammprodukt
DE102015204686A1 (de) * 2015-03-16 2016-09-22 Robert Bosch Gmbh Verfahren zur Steuerung der Kraftstoffzumessung
DE102015209770A1 (de) 2015-05-28 2016-12-01 Robert Bosch Gmbh Verfahren zum Ansteuern eines elektromagnetischen Verbrauchers
US10234496B2 (en) * 2016-02-16 2019-03-19 Woodward, Inc. Detection of valve open time for solenoid operated fuel injectors
EP3385528B1 (de) * 2017-04-06 2020-10-28 Vitesco Technologies GmbH Verfahren zur erkennung einer schaltstelle eines schaltbaren magnetventils, elektronische schaltung, pumpe und kraftfahrzeug
US10221800B1 (en) 2018-01-22 2019-03-05 Delphi Technologies Ip Limited Fuel injector control including adaptive response
US10371082B1 (en) 2018-01-22 2019-08-06 Delphi Technologies Ip Limited Fuel injector control including state selection based on a control signal characteristic
DE102019200572A1 (de) 2019-01-17 2020-07-23 Robert Bosch Gmbh Verfahren zur Ermittlung der Bewegung eines Ankers eines elektrischen Saugventils
JP2019196774A (ja) * 2019-07-19 2019-11-14 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242446A2 (de) * 1986-04-07 1987-10-28 VDO Adolf Schindling AG System zur Messung des Tastverhältnisses von Impulsen veränderlicher Frequenz
US4821562A (en) * 1986-04-03 1989-04-18 Nissan Motor Company, Limited Signal monitoring apparatus
DE3817770A1 (de) * 1988-05-26 1989-11-30 Daimler Benz Ag Einrichtung zur getakteten ansteuerung eines elektromagnetischen ventils
WO1990007188A1 (de) * 1988-12-22 1990-06-28 Robert Bosch Gmbh Verfahren und vorrichtung zur steuerung und erfassung der bewegung eines ankers eines elektromagnetischen schaltorgans
DE3426799C2 (de) * 1984-07-20 1993-05-19 Robert Bosch Gmbh, 7000 Stuttgart, De

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970622A (en) * 1986-12-03 1990-11-13 Buechl Josef Method and apparatus for controlling the operation of an electromagnet
DE3824526A1 (de) * 1988-07-20 1990-01-25 Vdo Schindling Schaltungsanordnung zur regelung eines pulsierenden stroms
DE3923478C2 (de) * 1989-07-15 2000-02-03 Bosch Gmbh Robert Sequentielle Kraftstoffeinspritzung mit Vorabspritzer
JPH0450550A (ja) * 1990-06-18 1992-02-19 Aisin Aw Co Ltd 自動変速機のソレノイド駆動回路
JPH05248300A (ja) * 1992-03-04 1993-09-24 Zexel Corp 燃料噴射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3426799C2 (de) * 1984-07-20 1993-05-19 Robert Bosch Gmbh, 7000 Stuttgart, De
US4821562A (en) * 1986-04-03 1989-04-18 Nissan Motor Company, Limited Signal monitoring apparatus
EP0242446A2 (de) * 1986-04-07 1987-10-28 VDO Adolf Schindling AG System zur Messung des Tastverhältnisses von Impulsen veränderlicher Frequenz
DE3817770A1 (de) * 1988-05-26 1989-11-30 Daimler Benz Ag Einrichtung zur getakteten ansteuerung eines elektromagnetischen ventils
WO1990007188A1 (de) * 1988-12-22 1990-06-28 Robert Bosch Gmbh Verfahren und vorrichtung zur steuerung und erfassung der bewegung eines ankers eines elektromagnetischen schaltorgans

Also Published As

Publication number Publication date
KR100352198B1 (ko) 2003-01-15
US5592921A (en) 1997-01-14
KR960700403A (ko) 1996-01-20
JPH08506642A (ja) 1996-07-16
DE4341797A1 (de) 1995-06-14
JP3834598B2 (ja) 2006-10-18
EP0692067A1 (de) 1996-01-17

Similar Documents

Publication Publication Date Title
EP0692067A1 (de) Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers
EP0449852B1 (de) Verfahren und vorrichtung zur steuerung und erfassung der bewegung eines ankers eines elektromagnetischen schaltorgans
DE102016224326B4 (de) Verfahren zur Steuerung eines Injektors mittels einer Öffnungsdauer
DE4312587C2 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffeinspritzsystems
EP0764238B1 (de) Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers
DE4322199C2 (de) Verfahren und Einrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
EP0765438B1 (de) Verfahren und vorrichtung zur steuerung eines elektromagnetischen verbrauchers
DE4140043A1 (de) System zur ansteuerung eines induktiven verbrauchers
DE3704586C2 (de)
EP1311751B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
EP1430207B1 (de) Verfahren und vorrichtung zur steuerung eines elektromagnetischen verbrauchers
EP0720770B1 (de) Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers
DE4020094C2 (de) Verfahren und Einrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE19606965A1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in eine Brennkraftmaschine
DE19735560A1 (de) Verfahren und Vorrichtung zur Steuerung eines Verbrauchers
DE10336606B4 (de) Stellverfahren und Stellvorrichtung für einen Aktor
DE19537381B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP0708233B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19728840A1 (de) Verfahren und Vorrichtung zur Erfassung eines Schaltzeitpunktes eines Magnetventils
DE19547644A1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in eine Brennkraftmaschine
DE4222650A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE4415361B4 (de) Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers
DE102004052690B4 (de) Treiber- und Auswerteeinrichtung für ein Einspritzventil,Verfahren und Vorrichtung zum Steuern eines Einspritzventils und Computerprogramm
DE19821046A1 (de) Verfahren und Vorrichtung zur Ermittlung eines Schaltzeitpunktes eines Magnetventils
DE102005017130A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995901342

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08500994

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995901342

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995901342

Country of ref document: EP