WO1995004166A1 - Tole d'acier pour boites de conserve a resistance elevee a la fissuration par corrosion sous contraintes, et son procede de fabrication - Google Patents

Tole d'acier pour boites de conserve a resistance elevee a la fissuration par corrosion sous contraintes, et son procede de fabrication Download PDF

Info

Publication number
WO1995004166A1
WO1995004166A1 PCT/JP1994/001226 JP9401226W WO9504166A1 WO 1995004166 A1 WO1995004166 A1 WO 1995004166A1 JP 9401226 W JP9401226 W JP 9401226W WO 9504166 A1 WO9504166 A1 WO 9504166A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cans
steel sheet
steel
stress corrosion
Prior art date
Application number
PCT/JP1994/001226
Other languages
English (en)
French (fr)
Inventor
Kuniaki Maruoka
Yoshikuni Furuno
Yasuhiko Yamashita
Masayuki Matsuda
Yasushige Yoshitomi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16185302&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1995004166(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to KR1019950700994A priority Critical patent/KR0179419B1/ko
Priority to EP94921814A priority patent/EP0662523B1/en
Priority to DE69418172T priority patent/DE69418172T2/de
Publication of WO1995004166A1 publication Critical patent/WO1995004166A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps

Definitions

  • the present invention relates to an ultra-thin steel sheet for 2-piece cans and an ultra-thin steel sheet for 3-piece cans, which is resistant to stress corrosion cracking, and to a method for producing them.
  • Steel plates for cans such as free steel are food cans and It is widely used in azole cans, easy open cans, etc. These cans can be broadly classified into two-piece cans and three-piece cans.
  • 2-piece cans have a body and bottom that are integral with each other, and together with the lid, they can be made up of two parts.
  • the can-making cost is low, so the cans are occupied by the entire can.
  • the ratio of two-piece cans has been increasing gradually.
  • Two-piece cans are multi-stage drawn or DWI (short for Drawing and Wall Ironing, that is, they are ironed after deep drawing). Severe processing is required, and not only corrosion resistance but also excellent workability is required.
  • DWI short for Drawing and Wall Ironing
  • An example of a typical manufacturing process for a DWI can is as follows. Cutting * Pressing machine punches a disk-shaped blank plate with steel strip force, and at the same time, punches the blank plate with a punch and a die. And squeeze it into a cup. Next, with a DWI press machine, use a punch and a die whose clearance is smaller than the thickness of the side wall of the cup to stretch the side wall while squeezing the side wall. Then, a cup-shaped can body having a predetermined depth is formed by reducing the thickness of the side wall. This forming is called DWI processing, and the bottom of the can is formed into a dome shape that is convex inward by the bottom former.
  • ears are generated due to a phenomenon called "jarring" in which the upper end of the processed cylinder is wavy in the circumferential direction.
  • the ears are trimmed by a trimmer and the top of the torso is leveled.
  • the can is washed and dried, and the outer surface of the can is printed and painted.
  • a multi-stage necking process to reduce the opening diameter of the can body is performed on a neck flanger machine.
  • a flange process for forming a flange portion extending radially outward at the open end is performed. Is done.
  • DWI can steel sheet Important properties required of DWI can steel sheet include DWI workability, charring, neck work, flange workability, and can body. After pressurization and paneling strength.
  • DWI workability refers to the performance of DWI processing, in which mold wear is small, mold galling is small, and machining energy is small.
  • Carrying performance refers to the ability to minimize carrying in DWI machining as much as possible. Because the ears are trimmed before necking, large jaws will reduce the material yield.
  • Neck workability refers to a performance that does not cause wrinkles in multi-stage necking.
  • Flange workability refers to cracks that cause the contents of a can to leak into the flanges during the flanging process, that is, defects called flange cracks. It has poor performance.
  • the pressure resistance is defined as the critical pressure inside the can where the backing phenomenon occurs, in which the weak part of the can protrudes outward due to the internal pressure after the lid is wound.
  • the parts that are vulnerable to the can pressure are the can bottom and the lid, and the pressure resistance is often governed by the mechanical strength of the can bottom and the lid.
  • Paneling strength refers to the critical external pressure at which the can body indents inward due to external pressure after the lid is wound.
  • the 3-piece can has a higher paneling strength than the 2-piece can. Due to their advantages, such as high, the absolute amount produced still tends to grow.
  • the three-piece cans are generally manufactured as follows.
  • the steel plate is subjected to the specified printing and inner coating, and then dried (O), which is dried by a cutting machine, is subjected to two processes in the rolling direction and the right angle direction.
  • O dried
  • a multi-stage necking process is performed on the shearing machine to reduce the can opening diameter, and the opening end is used to cover the opening end of the can body.
  • Flanging is performed to form a flange portion that extends radially outward on the part, and then either the lid or the bottom is closed with a double-winding machine. Installed on the flange.
  • Three-piece cans are divided into welded cans and glued cans, depending on the joining method. Since the width of the overlapped part of the joint reduces the yield of the material, the welding canister having the smallest width tends to be used more and more.
  • Important properties required for steel plates for welding cans include weldability, neck workability, flangeability, and paneling strength.
  • the weldability refers to a performance that has a wide range of current that can be welded, that is, has a sufficient joining strength and does not generate splash. The wider the weldable current range, the more welding work Is stable.
  • the invention provides for the proper control of the chemical composition, in particular to reduce the C content to the utmost, and to add Ti, Nb or B, Combination with control of secondary cold rolling conditions, etc., makes it possible to reduce the thickness of the sheet and to achieve excellent earring properties and DWI workability.
  • This technology enables the production of extremely thin steel plates for welded cans with excellent workability.
  • stress corrosion cracking may occur with thinner steel plates for cans.
  • Stress corrosion cracking is a crack that penetrates through the thickness, and is a serious defect that leads to leakage of the contents and entry of foreign matter from the outside. There are many unclear points about the cause, but some factors such as the stress state of the steel plate, the shape and processing conditions of the can, the composition of the contents and the hydrogen ion concentration (pH) It is said that it occurs when the bad conditions of the situation overlap.
  • the reason why stress corrosion cracking becomes a problem with thinning is not only that the thickness of the steel sheet is so thin that cracks can easily penetrate, but also steel sheets that can handle thinning It seems that there is also a specific manufacturing method for manufacturing.
  • the present invention has been made to solve the above-mentioned problems, and is intended to provide a steel plate for a 2-piece can and a steel plate for a 3-piece can which has a small thickness and is resistant to stress corrosion cracking.
  • the aim is to provide these manufacturing methods.
  • the steel sheet for cans resistant to stress corrosion cracking according to the present invention has a C content of not more than 0.0015% and a Mn content of not more than 0.05% by weight.
  • T i 3.4x ([N weight%]-0.0010%) or more, 0.06% or less
  • Nb 6.6x ([N weight%] -0.0 ⁇ 10)% or more, 0. 06% or less
  • Electron channeling pattern measured for 20 or more crystal grains with an aging index of 15 MPa or more and 50 m or more apart from each other at the center of the plate thickness Characterized in that the relative average sharpness of the button is 0.85 or less.
  • Another feature of the present invention is that after hot-rolling a hot-steel slab composed of the above-mentioned chemical components to a sheet thickness of 2.0 mm or more at a finishing temperature of 8.10 ° C or more, Within 1.5 seconds after the hot-rolled steel strip exits the finishing stand of the hot rolling mill, the finish temperature should be within the range of [finish temperature-30]. This is rolled up with water cooling, pickled, cold-rolled, and recrystallized and annealed.
  • the average strain rate (SR) defined by the following equation is 12.4 s — 1 As described above, this is a method for producing a steel sheet for cans in which the secondary cold rolling is performed at a reduction ratio of 0.7 to 60%.
  • the present inventors have found that there is a strong correlation between the sharpness of the electronic channel ring pattern of a steel sheet and the occurrence of stress corrosion cracking. As a result of systematically examining this correlation and conducting various experiments on the method of manufacturing steel sheets, the following items were found.
  • a steel sheet with a small relative average sharpness of the electronic channeling pattern is resistant to stress corrosion cracking.
  • the present invention has been made based on these new findings.
  • ECP Electronic Channel One-Ping Pattern
  • Scanning type When an electron beam is angularly scanned on a crystalline material using an electron microscope, a channeling phenomenon occurs at an incident angle that satisfies the Bragg reflection condition, and many pseudo An image consisting of the Kikuchi Line can be obtained. This image is called an electron channeling ⁇ pattern, and is used to study crystal grains and individual crystal orientations.
  • ECP may not be obtained in some cases.
  • the spacing of the three sets of parallel pseudo-Kikuchi lines of the ECP and the coordinates of the center of the parallelogram that can be intersected by these parallel lines are important.
  • the blurring of ECP is treated as noise.
  • the present inventors have found that there is a correlation between the sharpness of this ECP and the incidence of stress corrosion cracking, and that steel plates for cans with sharpness smaller than a certain value are resistant to stress corrosion cracking. , Was found.
  • the image input refers to the average addition of the ECP image from the scanning electron microscope to the image analysis device.
  • the grayscale image processing is as follows: 1 The input image is smoothed with an intermediate value file. 2 The minimum and maximum of the grayscale level are the lower limit of the grayscale level of the image analysis device. , Perform linear transformation so as to reach the upper limit, 3 perform selective local averaging, 0 perform two-dimensional differentiation using the S0be1 filter, and 5 perform gamma transformation. And then perform gamma conversion and then perform gamma conversion again
  • Binarization is a method of applying a fixed threshold value to an image that has been subjected to grayscale image processing, and converting it into two values according to a larger or smaller force. I say that.
  • Binary image processing consists of (1) removing the isolated points from the binarized image, then performing dilation / shrinkage processing, (2) performing smoothing processing, and then filling in holes. Water treatment is performed, and 3 water treatment is performed by Tamura's method (Shinzen Daigaku, Vol. 1, 1993, Vol. 1, 1993, published on 139, 000 pages), and finally expansion again. To perform processing.
  • the present inventors used T0 SPIX-II type for these image analysis.
  • Image solutions with equal or higher image analysis capabilities The image processing described above can be performed using any analyzer.
  • the sharpness s is a physical quantity of the steel sheet, and does not depend on the type of the image analysis device.
  • the scanning electron microscope and the image analyzer do not need to be connected online, and data may be passed on a medium such as a magnetic tape.
  • the clear pseudo-Kikuchi line is, in fact, nothing like all the curves in the image after the image processing. This is because the unclear pseudo-Kikuchi line is deleted during the image processing.
  • the criterion for determining whether or not the image is clear is a threshold value for binarization. O The inventors used 50 as the threshold value.
  • the sum L of the lengths of the clear pseudo-Kikuchi lines in the ECP screen is the sum of the lengths of all the intermittent curves in the image after the above image processing. This amount can be easily obtained with a general image analyzer.
  • the width W of the clear pseudo-Kikuchi line in the screen is a constant, which can also be easily obtained with a general image analyzer.
  • the area A of the ECP screen has a constant that does not depend on the sample.
  • the measured sharpness S also depends strongly on the orientation of the crystal grain hit by the electron beam.
  • the orientation of the grains has no direct relationship with stress corrosion cracking. Therefore, in order for sharpness to correspond to stress corrosion cracking, it is necessary to separate the azimuthal contribution from sharpness.
  • the present inventors measured the sharpness S of each of 2 ° or more crystal grains separated by 50 / m or more from each other at the center of the plate thickness, and measured them.
  • the arithmetic averaging was used to determine the average sharpness AS.
  • the center of the thickness refers to any part within a thickness of approximately 1 to 4 on the front and back sides from the center of the thickness.
  • the average sharpness AS is an amount that eliminates the influence of the orientation of individual crystal grains, and it has become more compatible with stress corrosion cracking. .
  • the present inventors used the relative average sharpness R AS to further clarify the correspondence with stress corrosion cracking.
  • the relative average sharpness R AS is a value obtained by dividing the average sharpness A S of the test material by that of a standard sample without processing strain.
  • Relative average sharpness, RAS is a physical quantity of a steel sheet and is measured using a scanning electron microscope and an image analyzer. ) On page 22 to 28), it can be measured.
  • the relative average sharpness RAS shows a correlation with stress corrosion cracking. If this value exceeds 0.85, it is impossible to completely prevent stress corrosion cracking. Limit the upper limit to 0.85.
  • the sample to be subjected to the ECP measurement is polished from one side to the center of the plate thickness, then finished by chemical polishing, and the surface to be irradiated with the electron beam is mirror-finished.
  • the reason for exhibiting excellent carrying properties is that the steel of the present invention has a low C content and a high purity of components. Therefore, the organization that controls the earrings is improved.
  • the reason for the excellent DWI workability is that the steel of the present invention is extremely low in strength and harder than carbide. Therefore, even if secondary cold rolling with the same reduction rate is performed, the amount of internal accumulated strain is small, and the deformation resistance during DWI processing is small.
  • the reason why the steel shows excellent flangeability when applied to ultra-thin steel sheets for welding cans is that the steel of the present invention is observed in ordinary steels because the C content is extremely low. No hardening phenomenon is observed in the weld, and no stress is concentrated on the hardened part. Further, since the steel of the present invention has an extremely low carbon content and contains no carbides harmful to ductility, the steel exhibits high local ductility even after secondary cold rolling. The potential transformation of the material in the process
  • the C content should be reduced to 0.010% or less.
  • n If it is less than 0.05%, hot brittleness will occur and it will not be possible to manufacture steel plates for cans, so it is necessary to contain 0.05% or more. . If the force exceeds 0.40%, the steel sheet becomes excessively hard, and the flangeability and
  • DWI processability is degraded, and furthermore, the effect of purifying the components obtained by reducing the amount of C is diminished, thereby deteriorating the jarring performance and reducing cost. What Therefore, it was limited to 0.05 to 0.40%.
  • P is an element that does not need to be actively added. It is an unavoidable impurity element that hardens steel remarkably. If the content exceeds 0.6%, the steel sheet becomes excessively hard. The flangeability and DWI performance will be degraded. Also,
  • the upper limit is set to 0.06%, because the effect of purifying the components obtained by the reduction of C ri is reduced and the charg- ing property is degraded, and the corrosion resistance is also degraded.
  • the content In order to obtain better flange workability, DWI workability, charring properties and corrosion resistance, it is desirable that the content be less than 0.02%.
  • a 1 Necessary as a deoxidizing element, but need not be present as acid-soluble A 1.
  • the effect of the present invention is not lost if the acid-soluble A1 is at most 0.000%, and the amount of o is 0.10%.
  • Ru exceeded, a 1 2 0 S inclusions is Ri
  • N whose upper limit is set to 0.100%, is an element that does not need to be added. It is an unavoidable source of impurities that harden the steel, and this amount
  • the steel sheet becomes excessively hard, deteriorating the flangeability and the DWI behavior, and can be obtained by reducing the C content. Since the effect of purifying the components is reduced and the charg- ing properties are degraded, the upper limit is set to 0.0100%. Limited
  • B If B is added, the effect of the present invention can be further enhanced. If the value is less than 0.1%, stress corrosion cracking is likely to occur and the product's carrying properties, DWI processability, and neck processability will deteriorate.
  • the lower limit is preferably 0.001%, and it is said that 7. ri is above 0.60%, said again. Dish; JSC rises and alloy cost becomes excessive, so the upper limit is preferably 0.060% 0
  • T i and N b The effect of the present invention can be further enhanced by adding T i N b.
  • These additional elements can be easily carried out by adding a sufficiently large amount. It is possible to obtain an ultra-thin steel plate for a 2-piece can with excellent heat resistance and an ultra-thin steel plate for a weld can with excellent flangeability. However, it is difficult to prevent stress corrosion cracking, and this has the disadvantage of increasing the alloy cost and increasing the recombination date. If the amount of these additives is small, stress corrosion BJ will occur, the die cost will rise, and Collinsi says that the disadvantages of increasing DLB are avoided, but the two-piece peaking performance is excellent. It is difficult to obtain ultra-thin steel sheets for cans and ultra-thin steel sheets for welded cans with excellent flangeability 0
  • the present inventors have proposed an ultra-thin steel sheet for 2-piece cans that suppresses the rise in alloy cost and the rise in recrystallization temperature to an industrially acceptable range, and is resistant to stress corrosion cracking.
  • the amount of Ti and Nb that can be used to obtain ultra-thin steel sheets for welding and welding cans is reduced in relation to other steel components! I studied.
  • c content It is effective to restrict the amount of these elements to the range of ⁇ and to control the addition amount of these elements to the following range in relation to the N content. 0
  • T i is 3.4 X in relation to N content.
  • N b is 6.6 X in relation to mass.
  • T i and N b are effective if any one of them is added within the above range.However, even if two kinds are added, it is not necessary to prevent stress corrosion cracking. However, a certain amount of solid solution C and solid solution N must be present. In order to limit the amount of solid solution C and solid solution N, use internal friction method, resistance method, etc. It is desirable to measure these quantities exactly, but to manage industrial products such as steel plates for cans, a simpler method is desired. According to their research, even if the solid solution C and the solid solution N are not directly measured, it is possible to easily limit these elements by measuring the aging index.
  • the aging index that can be obtained is as follows: the flow stress when a tensile test specimen is subjected to a tensile prestrain of 10%, and 100 ° C for 1 hour. This is the difference between the lower yield stress after artificial aging and the lower yield stress. If the aging index is lower than 15 MPa, it is difficult to completely prevent stress corrosion cracking, so the lower limit was limited to 15 MPa.o
  • the steel smelted by the usual method is converted into a hot slab by a continuous squeezing method or an ingot making and a slab rolling method, and then subjected to hot rolling.
  • the slab Prior to the hot rolling, the slab may be processed in any of the conventional methods. That is, the hot slab may be directly fed and rolled, or may be reheated in a heating furnace.
  • the finish temperature cannot be secured during the hot rolling operation. It is not possible to set the reheating temperature too low.0 In the case of ordinary hot rolling equipment, if the reheating temperature is lower than 100 Since it is difficult to secure the temperature above, it is desirable to set the reheating temperature to 100 ° C or more. If the hot-rolling finishing temperature is lower than 810, the object of the present invention cannot be achieved for the reasons described below.o
  • the thickness of the finished hot-rolled steel sheet is less than 2.0 mm, it is difficult to secure the required finishing temperature and it is not desirable to prevent stress corrosion cracking. Limited to 0 mm.
  • the hot-rolled copper strip exits the final stand and is subjected to a force until cooling on the run-out table is started. It can be seen that the time (cooling start time) and the degree to which cooling is started (cooling start temperature) affect the flangeability of the product steel sheet and the relative average brightness of the ECP. Tsuta First, after the hot-rolled steel strip exits the finishing stand, the cooling start time on the run-and-start table is very high.
  • the hot rolling temperature With respect to the hot rolling temperature, if the force exceeds 72 °, the scale production of the hot-rolled steel strip becomes excessively large, and the production of the pickling process is increased. Therefore, it is desirable to keep the winding temperature below 72 ° C.
  • the steel strip that has been hot-rolled is pickled, cold-rolled, and recrystallized by a conventional method.
  • the lower limit of the average strain rate is limited to 12.4 s _1 . 0 0 0 v
  • the rolling reduction (r) of the secondary cold rolling is less than 0.7%, stress rot is likely to occur and the strength of the can is insufficient, so the lower limit is set. It was limited to 0, 7%. If the rolling reduction exceeds 60%, the steel sheet becomes excessively hard and the flangeability and the DWI workability deteriorate, so the upper limit was set to 60%.
  • the surface coating applied to the steel sheet of the present invention does not matter. That is, tin plating, a method of applying ultra-thin tin plating after special underlaying, or using a high-molecular organic film. Good effects can be obtained even with a high strength applied to a 2-piece steel plate for cans and a steel plate for welding cans, such as those that have been attached. Next, the method for producing steel of the present invention will be described.
  • the can-making method may be any of the DWI method and the multi-step drawing method.
  • the steel of the present invention uses the normal method (removing the steel sheet so that the rolling direction of the steel sheet is perpendicular to the axial direction of the can body). Law), the reverse law It is possible to produce cans using any of the above-mentioned methods, in which the rolling direction of the steel sheet is parallel to the axial direction of the can body, and a mixture of both types.
  • Example 1 the effect of the steel of the present invention can be exerted on an adhesive can.
  • the present invention will be further described below based on examples.
  • Sample Nos. 1 to 6 fall within the scope of the present invention
  • Sample Nos. 7 to 10 listed as Comparative Examples fall outside the scope of the present invention.
  • Sample 7 outside the present invention has chemical components of C and Ti out of the range, and the aging index and the relative average sharpness are out of the range.
  • the chemical composition is within the range, but the definition is not clear.
  • Sample 9 has sharpness Is out of range. Further, in Sample 10, the T i and the aging index are out of the range.
  • the evaluation of the frangibility is based on the force up to the occurrence of fracture when the flanging of the welding can is simulated on a flanging machine. It was done at the rate. This addition rate was judged as "passed” if 9.0% or more and “failed” if less than 9.0%. Then, the difference between the average height of the valley and the average height of the valley was divided by the average height of the valley, and the value was expressed as a percentage. A carrying rate of 3.5% or less was judged as “pass”, and a carrying rate of more than 3.5% was judged as “fail”.
  • the evaluation method of paneling strength is as follows. First, wire cans • The can body was manufactured using a seam welding machine, and rubber was attached to both ends of the body. -z-
  • the hot rolling was performed at the cooling start temperature and the winding temperature. Next, pickling, cold rolling, continuous annealing, and secondary cold rolling to a sheet thickness of 0.2 Omm with an average strain rate and a secondary cold rolling reduction shown in Table 4, and tin An instinct was held.
  • the aging index of the tin-plated steel sheet obtained in this manner is based on the relative average sharpness of EC ⁇ , stress corrosion cracking resistance, flangeability, charging properties, and the like. And pressure resistance as shown in Table 4. Show.
  • Sample Nos. 11 to 18 had chemical components within the scope of the present invention, and Sample Nos. 19 to 22 were steels outside the scope of the present invention, which were listed as comparative examples. is there .
  • Sample No. 19 has C and T
  • Sample No. 20 has C, S, N
  • Sample No. 21 has M ⁇ , P, so 1 A1 force
  • Sample No. 22 has Ti Are chemical components outside the scope of the present invention, respectively.
  • Sample Nos. 19 to 22 are out of the scope of the present invention even under the manufacturing conditions. That is, Sample No. 19 has the aging index, Sample No. 20 has the cooling start time, cooling start temperature, average strain rate, aging index, relative average sharpness, and Sample No. 21 has the hot rolled finish Temperature, average strain rate, secondary cold rolling reduction, sharpness, and Sample No. 22 have different average strain rate, secondary cold rolling reduction, aging index, and sharpness o
  • the stress corrosion cracking resistance was evaluated in the same manner as in Example 1.
  • a steel body for DWI cans was prepared, heat-treated in an atmosphere drying oven equivalent to the coating and drying process, and then the can body opening was sealed with a rubber liner. Then, compressed air was gradually introduced into the can body to determine the critical pressure at which the back of the can generates backing.
  • Critical pressure 7, 5
  • the present invention has a small thickness and can secure predetermined earring properties, neck workability, flange workability, and can strength. It can be used for steel plates for 2-piece cans and steel plates for 3-piece cans, which are highly resistant to stress corrosion cracking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

明 細 書 応力腐食割れ に 強 い 缶用 鋼板お よ び そ の 製造方法 技 術 分 野
本発明 は、 応力腐食割れ に 強 い 2 ピ ー ス 缶用 極薄鋼板 お よ び 3 ピ ー ス 缶用極薄鋼板、 お よ びそ れ ら の製造方法 に 関す る も の で あ る 。
背 景 技 術
鋼板 に錫 め つ き を施 し た ブ リ キ あ る い は ク ロ ム 酸処理 を施 し た テ ィ ン ♦ フ リ ー · ス チ ー ル の よ う な 缶用 鋼板 は 食缶や エ ア ゾー ル缶、 イ ー ジ ー オ ー プ ン 缶 な ど に 多 く 使 用 さ れて い る 。 こ れ ら の缶 は、 2 ピ ー ス 缶 と 3 ピ ー ス 缶 に大別す る こ と がで き る 。
2 ピ ー ス 缶 は、 胴 と 底が一体 と な り 、 蓋 と 合わ せて 2 部品力、 ら な る も の で あ っ て 、 製缶 コ ス ト が低い た め 、 缶 全体 に 占 め る 2 ピ ー ス 缶 の 比率 は近年次第 に伸 び る 傾向 に あ る 。 2 ピ ー ス 缶 は、 多段絞 り 加工 あ る い は D W I 加 ェ ( Drawing and Wal l I roningの 略。 す な わ ち 、 深絞 り 加工後 に し ご き 加工が施 さ れ る 。 ) な ど、 き び し い加工 が行な われ、 耐食性の み な ら ず、 優れた加工性 も 要求 さ れ る 。
2 ピ ー ス缶 と し て代表 さ れ る D W I 缶の一般的 な 製造 工程の一例 は 、 次 の よ う な も の で あ る 。 カ ツ ピ ン グ * プ レ ス 機で、 鋼帯力、 ら 円盤状 の ブ ラ ン ク 板を打ち抜 く と 同時に 、 そ の ブ ラ ン ク 板 を ポ ン チ と ダ イ ス を用 い て浅絞 り し て カ ッ プ に成形す る 。 次に 、 D W I プ レ ス機で、 カ ッ プの側壁の厚 さ よ り ク リ ア ラ ン ス が小 さ い ポ ン チ と ダイ ス を用 い て側壁を し ご き な が ら 引伸 ば し 、 側壁の厚 さ を減少 さ せ る こ と に よ り 所定深 さ の カ ツ プ状の缶体を成形す る 。 こ の成形を、 D W I 加工 と い う さ ら に 、 缶体の底をボ ト ム · フ ォ ー マ 一 に よ り 缶底を 内 側 に 凸の ドー ム状に成形す る 。
D W I 加ェの 際、 材料の加工性の異方性に よ り 、 加工 後の胴の上端が円周方向 に波打つ ィ ャ リ ン グ と 呼ばれ る 現象に よ り 耳が生ず る 。 こ の耳は ト リ マ ー機で ト リ ム さ れ、 胴の上端の高 さ が揃え ら れ る 。
次に、 上記缶体は洗浄お よ び乾燥 さ れ、 缶外面に 印刷 お よ び塗装が施 さ れ る 。 次 いで、 ネ ッ カ ー · フ ラ ン ジ ャ —機で、 缶体開 口 径を小 さ く す る 多段ネ ッ キ ン グ加工が 行な われ る 。 さ ら に、 缶体開 口端 に蓋をつ け る た め に、 開 口端部 に半径方向外側 に 向か っ て延出す る フ ラ ン ジ部 を形成す る フ ラ ン ジ加工が行な われ る 。
D W I 缶用鋼板に要求 さ れ る 重要な特性 と し て は、 D W I 加工性、 ィ ャ リ ン グ性、 ネ ッ ク 加工性、 フ ラ ン ジ 加工性、 さ ら に は缶体 と な っ た後の耐圧強度お よ びパネ リ ン グ強度があ る。
こ れ ら の特性は、 次の通 り であ る 。 D W I 加工性は、 D W I 加工 に お い て、 金型の摩耗が 小 さ く 、 金型か じ り の発生が少な く 、 加工エ ネ ルギー が 小 さ い性能を い う 。
ィ ャ リ ン グ性は、 D W I 加工の際の ィ ャ リ ン グをで き る だ け小 さ く す る 性能を い う 。 耳の部分 はネ ッ ク 加工の 前 に ト リ マ ーで切 り 取 ら れ る ので、 ィ ャ リ ン グが大 き い と 材料の歩留 ま り が低下す る こ と と な る 。
ネ ッ ク 加工性は、 多段ネ ッ キ ン グ加工 に お い て し わが 発生 し な い性能を い う 。
フ ラ ン ジ加工性は、 フ ラ ン ジ加工の 際、 フ ラ ン ジ部 に 缶の 内容物が漏れ る 原因 と な る 割れ、 すな わ ち フ ラ ン ジ 割れ と 呼ばれ る 欠陥を生 じ に く い性能を い う 。
耐圧強度は、 蓋が巻締め ら れた後、 内圧に よ っ て缶体 の弱 い部分が外側に突き 出 し て し ま う バ ッ ク リ ン グ現象 が生 じ る 臨界の缶内圧を い う 。 缶内圧 に弱い部分 は缶底 お よ び蓋で あ り 、 耐圧強度 も缶底お よ び蓋の力学強度に 支配 さ れ る こ と が多 い。
パネ リ ン グ強度は、 蓋が巻締め ら れた後、 外圧 に よ つ て缶体胴部が内側にへ こ む臨界の外圧を い う 。 缶詰の梱 包、 運搬、 開梱、 自動販売機での落下な ど、 取扱い中の 外か ら の力 に対す る 強 さ は、 こ のパネ リ ン グ強度で代表 さ れ る こ と 力《多 い。
次に、 3 ピー ス缶 につ い て説明す る 。
3 ピー ス缶は、 2 ピー ス缶に比べてパネ リ ン グ強度が 高い な ど の長所を持つ ので、 生産 さ れ る 絶対量は ま だ ま だ伸 び る 傾向 に あ る 。
3 ピー ス缶は、 概略次の よ う に し て製造 さ れ る 。
ま ず、 鋼板に所定の 印刷 と 内面塗装が施 さ れ、 乾燥 さ れ る O ( に 切断機で、 圧延方向お よ び直角方向の 2 工程 をかけて、 所定の大 き さ の 四角形の ブラ ン ク 板に切断 さ れ る 。 製胴機で円筒 に成形後、 溶接、 接着、 はん だ付け な どの方法で接合 し 、 缶胴 と な る 。 次に、 ネ ッ カ ー · フ ラ ン シ ヤ ー機で、 缶体開 口径を小 さ く す る 多段ネ ッ キ ン グ加ェが行な われ、 さ ら に缶体開 口端 に蓋をつ け る た め に、 開 口端部 に半径方向外側に 向 か っ て延出す る フ ラ ン ジ部を形成す る フ ラ ン ジ加工が行な われ る 。 次いで、 二 重巻締め機で蓋ま た は底の一方が フ ラ ン ジ部 に取 り 付 け ら れ る。
3 ピー ス缶 はそ の接合方法 に よ っ て、 溶接缶、 接着缶 はん だ缶に分 け ら れ る 。 接合の重ね合わせ部の幅が材料 の歩留 ま り 低下につ なが る た め、 そ の幅の最 も小 さ い溶 接缶が次第 に多用 さ れ る 傾向 に あ る 。
溶接缶用鋼板に要求 さ れ る 重要な特性 と し て は、 溶接 性、 ネ ッ ク 加工性、 フ ラ ン ジ加工性、 パネ リ ン グ強度が あ る 0
溶接性は 、 溶接可能電流範囲、 すな わ ち十分な接合強 度を持ち、 かつ ス プラ ッ シ ュ の発生 し な い電流範囲が広 い性能をい う 。 溶接可能電流範囲が広い ほ ど、 溶接作業 は安定す る 。
ネ ッ ク 加工性、 フ ラ ン ジ加工性、 パネ リ ン グ強度 は、 先に述べた通 り であ る 。
さ て、 2 ピー ス缶 に し て も 3 ピー ス缶に し て も 、 省資 源の観点か ら 、 製缶業者は缶用鋼板製造業者に ま す ま す 板厚の薄い缶用鋼板を要求す る 趨勢 に あ る 。 し か し 、 板 厚が薄 く なればな る 程、 イ ヤ リ ン グ性、 ネ ッ ク 加工性お よ びフ ラ ン ジ加工性は劣化 し 、 缶強度は低下す る と い う 問題が発生す る 。 し たが っ て、 板厚が薄 く 、 かつ所定の イ ヤ リ ン グ性、 ネ ッ ク 加工性、 フ ラ ン ジ加工性お よ び缶 強度を確保で き る 缶用鋼板を供給す る こ と が、 大 き な課 題 と な っ て き た。
本発明者 ら は、 こ れ ら の要望 に答え る た め に、 こ れま で に特願平 4 一 1 3 2 7 1 2 号 (特開平 5 — 3 4 5 9 2 4 号公報) を提案 し た。 こ の発明 は、 化学成分を適切に 制御す る 、 特に C 含有量を極限 ま で低減す る と と も に、 T i , N b 、 ま た は B を添加す る こ と に加え て、 2 次冷 間圧延条件の制御な ど と の組み合わせに よ り 、 板厚が薄 く 、 かつ イ ヤ リ ン グ性、 D W I 加工性の優れた 2 ピー ス 缶用鋼板お よ びフ ラ ン ジ加工性の優れた溶接缶用極薄鋼 板が製造で き る 技術であ る 。
し 力、 し 、 そ の後 さ ら に詳細な検討を行な っ た結果、 缶 用鋼板の薄手化に伴 っ て応力腐食割れの発生す る 場合が あ り 、 本発明者 ら が こ れま で に提案 し た技術を含め従来 の技術で は、 応力腐食割れを完全に は防止で き な い こ と がわ力、 つ た。
応力腐食割れは、 扳厚を貫通す る 割れであ っ て、 内容 物の漏洩や外界か ら の異物の混入な どに結びつ く 重大な 欠陥であ る 。 そ の原因 につ い て は不明 な点が多 いが、 鋼 板の応力状態、 缶の形状 · 加工条件、 内容物の組成や水 素イ オ ン濃度 ( p H ) な どの い く つ かの悪条件が重な つ た時に発生す る と さ れて い る 。 薄手化に伴 っ て応力腐食 割れが問題 と な る 理由 は、 鋼板扳厚が薄い た め に割れが 貫通 し やす く な つ た こ と ばか り でな く 、 薄手化に対応す る 鋼板を製造す る た めの特有の製造方法に も あ る と 思わ れ る 。
本発明 は、 前記の課題を解決す る た めの も のであ っ て 板厚が薄 く 、 かつ応力腐食割れに強い 2 ピー ス缶用鋼板 お よ び 3 ピー ス缶用鋼板、 並びに こ れ ら の製造方法を提 供す る こ と を 目 的 と す る 。
発明 の開示
本発明 に よ る 応力腐食割れに強い缶用鋼板は、 重量% で、 C : 0 . 0 0 1 5 %以下、 M n : 0 . 0 5 〜
0. 4 0 % ^ P : 0 . 0 6 %以下、 S : 0 . 0 6 %以下 酸可溶 A 1 : 0 . 1 0 %以下、 N : 0 . 0 1 0 0 %以下 を含み、 あ る い は こ れに更 に、
T i : 3. 4x ( 〔Nの重量%〕 一 0. 0010) %以上、 0. 06%以下 Nb: 6. 6x ( 〔Nの重量%〕 -0. 0〇10) %以上、 0. 06%以下 の う ち少な く と も 1 種を含有 し 、 残部が鉄お よ び不可避 的不純物か ら な り 、
1 5 M P a 以上の時効指数を持ち 、 板厚中心の互い に 5 0 m以上離れた 2 0 個以上の結晶粒につ い て測定 さ れた電子チ ヤ ン ネ リ ン グ · パ タ ー ン の相対平均鮮明度が 0 . 8 5 以下であ る こ と を特徴 と す る 。
本発明 の他の特徴は、 前記 し た化学成分か ら な る 熱鋼 片を、 8 1 0 °C以上の仕上温度で 2 . O m m 以上の板厚 ま で熱間圧延 し た後、 熱間圧延鋼帯が熱間圧延機の仕上 最終ス タ ン ドを 出 てか ら 1 . 5 秒以内 に 〔仕上温度 一 3 0 〕 で以上の温度か ら ラ ン ♦ ア ウ ト ♦ テー ブル上で水 冷 し なが ら こ れを巻取 り 、 酸洗 し 、 冷間圧延 し 、 再結晶 焼鈍 し 、 下記の式で定義 さ れ る 平均歪速度 ( S R ) が 1 2 . 4 s —1以上 に な る よ う に 0 . 7 〜 6 0 % の圧下率 で 2 次冷間圧延を施す缶用鋼板の製造方法であ る 。
1 1000 V
SR · β η
60V~T ,/ ただし、 r :圧 下 率 (一)
R: ワークローノレ半径 (讓)
t : 入 側 板 厚 (麵)
V : ワークロール周速 (πι/πιίη) 発明 を実施す る た めの最良の形態
本発明者 ら は、 鋼板 の電子チ ヤ ン ネ ル リ ン グ · パ タ ー ン の鮮明度 と 応力腐食割れ発生 と の 間 に は強い相関関係 があ る こ と を知見 し た。 そ し て、 こ の相関関係を系統的 に調査す る と 共 に 、 鋼板を製造す る 方法 に つ い て各種実 験を行な っ た結果、 下記の事項が判明 し た。
( 1 ) 電子チ ャ ン ネ リ ン グ · パ タ ー ン の相対平均鮮明 度の小 さ い鋼板が、 応力腐食割れに強い。
( 2 ) —定量以上の 固溶 C お よ び固溶 N の存在 も 応力 腐食割れ防止に必要であ る 。
( 3 ) 2 次冷間圧延の条件、 特 に ロ ー ルバイ 卜 間の平 均歪速度を制御す る こ と に よ り 、 電子チ ャ ン ネ リ ン グ * パ タ ー ン の鮮明度を小さ く す る の に重要であ る 。
( 4 ) 化学成分を適切 に制御 し 、 特に C 含有量を極限 ま で低減す る と と も に、 熱間圧延条件を適切 に制御す る こ と も 、 鋼板の製造 に必要であ る 。
本発明 は、 こ れ ら の新規な知見に基づい てな さ れた も の であ る 。
以下に 、 本発明 を詳細 に説明す る 。
ま ず、 鋼板の電子チ ヤ ン ネ リ ン グ · パ タ ー ン お よ びそ の鮮明度につ いて説明す る 。
電子チ ヤ ン ネ リ ン グ · パ タ ー ン ( Electron Channel 1- ing Pattern 。 以下 「 E C P 」 と い う 。 ) の相対平均鮮 明度は、 本発明の最 も 重要な構成要件であ る 。 走査型電 子顕微鏡を用 いて、 結晶質材料 に電子 ビ ー ム を角度走査 す る と 、 ブラ ッ グ反射条件を満 たす入射角度でチ ヤ ン ネ リ ン グ現象を起 こ し 、 多 く の擬菊地線か ら な る 像が得 ら れ る 。 こ の像 は電子チ ャ ン ネ リ ン グ ♦ パ タ ー ン と 呼ばれ 結晶粒ひ と つ ひ と つ の結晶方位の研究な ど に利用 さ れて い る 。
工業的 に製造 さ れた鋼板の場合 は、 必ず し も鮮明 な
E C P が得 ら れな い こ と が あ る 。 結晶方位の研究を行な う 場合 は、 E C P の 3 組の平行な擬菊地線の 間隔お よ び それ ら の平行線の交わ っ てで き る 平行四辺形の中心の座 標が重要で あ る 。 E C P の不鮮明 さ は、 ノ イ ズ と し て処 理 さ れ る 。
本発明者 ら は、 こ の E C P の鮮明度 と 応力腐食割れ発 生率 と の 間 に相関関係があ り 、 鮮明度が一定値よ り 小 さ い缶用鋼板は応力腐食割れに強い こ と 、 を見出 し た。
鮮明度を定量化す る に は い く つ か の方法があ る が、 本 発明者 ら は 「 E C P 画像解析 に よ る 結晶歪測定方法」 ( 日 本金属学会誌第 5 5 卷第 1 号 ( 1 9 9 1 年) 2 2 〜 2 8 ペー ジ) の論文で用 い ら れて い る方法 に よ っ た。
すな わ ち 、 走査型電子顕微鏡 と オ ン ラ イ ンで結ん だ画 像解析装置を用 い て、 画像入力、 濃淡画像処理、 二値化 二値画像処理 と い う 一連の E C P の画像処理を行な っ た 後、 E C P 画面内の鮮明 な擬菊地線の長 さ の和を L 、 E C P 画面内の鮮明 な擬菊地線の幅を W、 E C P 画面の面 積を A と し た時
S = L X W / A ( 1 ) 式 ( 1 ) で表わ さ れ る 量 S を、 鮮明度 と 定義す る 。
こ こ で、 画像入力 は、 E C P 像を走査型電子顕微鏡か ら 画像解析装 に平均加算入力す る こ と を い う 。
濃淡画像処理は、 ①入力 さ れた画像を中間値 フ ィ ル 夕 — で ス ム ー一 シ ン グ し 、 ②濃淡 レ ベル の最小値、 最大値が 画像解析装 の濃淡 レ ベル の下限値、 上限値に な る よ う に線形変換 し ③選択的局所平均化を行な い、 ④ S 0 b e 1 フ ィ ノレ タ ー で 2 次元微分を行な い、 ⑤ガ ン マ変換を行な い、 次いで グ変換を行な い、 再びガ ン マ変換を行な い
⑥最後 に再び中間値フ ィ ルタ ー で対象画面の ス ム ー ジ ン グを行な う と をい う 。
二値化 と は 濃淡画像処理の終 っ た画像に対 し て固定 し き い値を し 、 そ れよ り 大 き い力、小 さ い力、に よ っ て 二つ の値に変換す る こ と を い う 。
二値画像処理は、 ①ニ値化の終 っ た画像に対 し て、 孤 立点を除去 し 、 次いで膨張 • 収縮処理を行な い、 ②平滑 化処理を行な い、 次い で穴埋め処理を行な い、 ③田村の 方法 (信全大誌、 第 1 5 3 9 巻 1 9 7 4 年 1 3 9 0 ベ ー ジ 所載) で 水化処理を行な い、 最後 に再び膨張処理を 行な う 、 こ とと を い う 。
本発明者 ら は 、 こ れ ら の画像解析 に T 0 S P I X— I I型 を用 い た。 こ れ と 同等以上の画像解析能力の あ る 画像解 析装置であ れば どれを用 い て も 、 上記の画像処理を行な う こ と が可能であ る 。 鮮明度 s は、 鋼板の物理量であ つ て、 画像解析装置の型式 に依存す る も の で は な い。 ま た 走査型電子顕微鏡 と 画像解析装置 と はオ ン ラ イ ン で結ば れてい る 必要 はな く 、 磁気テー プな どの媒体で デー タ を 渡 し て も よ い 0
鮮明 な擬菊地線 は、 実際 に は、 上記画像処理の終 っ た 画像中のすベて の 曲線に他な ら な い。 な ぜな ら 、 鮮明で な い擬菊地線は、 画像処理の過程で消去 さ れ る か ら であ る 。 鮮明であ る かな い かの判定基準は、 二値化の し き い 値であ る o 発明者 ら は、 こ の し き い値 と し て、 5 0 を 用 い た。
E C P 画面内の鮮明 な擬菊地線の長 さ の和 L は、 上記 画像処理の終 つ た画像中の断続的なすべての 曲線の長 さ の和であ る 。 こ の量は、 一般的な 画像解析装置で容易 に 求め る こ と がで き る 。
E C P 画面内の鮮明 な擬菊地線の幅 Wは、 定数であ り こ れ も一般的な画像解析装置で容易 に求め る こ と がで き o
ま た、 E C P 画面の面積 A は、 試料に依存 し な い定数 'あ る 。
X 線回折が多結晶材料であ る 鋼板の平均的な結晶方位 の情報を与え る の に対 し て、 E C P は細 い電子線を用 い る た め、 結晶粒ひ と つ ひ と つ の方位の情報を与え る と い
1 一 う 特徴があ る 。 そ の結果、 測定 さ れ る 鮮明度 S も 、 電子 ビー ム の 当 た っ た結晶粒の方位に強 く 依存す る 。 し か し 結晶粒の方位 は、 応力腐食割れ と 直接の関係を持 っ て い な い。 し たが っ て、 鮮明度を応力腐食割れ と 対応 さ せ る に は、 鮮明度か ら 方位の寄与を分離す る 必要があ る 。
そ こ で、 本発明者 ら は、 板厚中心部の互い に 5 0 / m 以上離れた 2 ◦ 個以上の結晶粒につ い て そ れぞれ鮮明度 S を測定 し 、 そ れ ら を算術平均 し て平均鮮明度 A S を求 めた。 こ こ で 、 板厚中心部 と は、 板厚中心か ら表お よ び 裏側 に、 板厚の お よ そ 1 ノ 4 以内の部分であ れば ど こ で も よ い も の と す る 。 缶用鋼板 は多結晶材料であ る か ら 、 平均鮮明度 A S は個 々 の結晶粒の方位の影響を除去 し た 量 と な り 、 応力腐食割れ と 対応がつ く よ う に な っ た。
本発明者 ら は、 応力腐食割れ と の対応を一層明確にす る た め、 相対平均鮮明度 R A S を用 い た。 相対平均鮮明 度 R A S は供試材の平均鮮明度 A S を、 加工歪の な い標 準試料の それで除す こ と に よ っ て規格化 し た 値であ る。 相対平均鮮明度 R A S は、 鋼板の物理量であ っ て、 走査 型電子顕微鏡 と 画像解析装置を用 い て、 前述の論文 ( 曰 本金属学会誌第 5 5 巻第 1 号 ( 1 9 9 1 年) 2 2 〜 2 8 ペー ジ所載) を参照すれば、 測定で き る も のであ る 。
本発明者 ら の実験に よ れば、 相対平均鮮明度 R A S は 応力腐食割れ と 相関関係を示す。 こ の値力 0 . 8 5 を超 え る と応力腐食割れを完全に防止す る こ と がで き な い の で、 上限を 0 . 8 5 に 限定す る 。
E C P 測定に供す る 試料は、 片面か ら板厚中心部 ま で 研磨 し た後、 化学研磨で仕上げ、 電子線の 当 た る 表面を 鏡面状態 に し てお く
次に、 本発明鋼の化学成分、 すな わ ち 各元素の機能、 適正組成範囲 につ い て説明す る 。
C : c 含有量 は、 〇 . 0 0 1 5 % を超え る と 、 応力腐 食割れを完全に防止で き な い ば力、 り で な く 、 2 ピー ス缶 用極薄鋼板の ィ ャ リ ン グ性、 D W I 加工性、 フ ラ ン ジ加 ェ性が劣化 し 、 ま た 、 溶接缶用極薄鋼板の フ ラ ン ジ加ェ 性が劣化す る の で、 0 . 0 0 1 5 %以下に 限定 し た。
こ れ ら の特性に及ぼす C の影響 につ い ての メ 力 ニ ズム は明 ら かでな いが > 次の よ う な理由力《考え ら れ る o
① C と 応力腐食割れの関係につ い て は、 応力腐食割れ の完全防止に は一定量の 固溶 C を確保す る こ と が必要な ので、 C 量が上限値を超え る と 炭化物の析出 サ イ ト が多 く な り 、 応力腐食割れ防止 に有効な 固溶 C を確保で き な く な る
② 2 ピー ス缶用極薄鋼板に適用 し た場合 に優れた ィ ャ リ ン グ性を示す理由 と し て は、 本発明鋼は C 量が低 く 成 分の高純度化が著 し い た め、 イ ヤ リ ン グ性を支配す る 集 合組織が改善 さ れ る 。
③優れた D W I 加工性を示す理由 と し て は、 本発明鋼 レ 里力 極端 に低 く フ ユ ラ イ ト よ り 硬質の炭化物が存在 し な い た め、 同 じ 圧下率 の 2 次冷間圧延を施 し て も 、 内 部蓄積歪量が小 さ く 、 D W I 加工時の変形抵抗が小 さ い
④溶接缶用極薄鋼板に適用 し た場合 に優れた フ ラ ン ジ 加工性を示す理由 と し て は、 本発明鋼 は、 C 量が極端 に 低い た め通常の鋼で観察 さ れ る 溶接部の硬化現象がみ ら れ な い こ と 力、 ら 、 硬化部への応力集中が起 こ ら な い。 ま た、 本発明鋼 は C量が極端 に低 く 延性に有害な炭化物が 存在 し な い た め、 2 次冷間圧延を施 し て も高い局部延性 を示す こ と 力、 ら 、 フ ラ ン ジ加ェに お け る 素材の潜在的変 形能が问 ぃ o
よ り 薄い板厚で 2 ピ ー ス缶用極薄鋼板お よ び溶接缶用 極薄鋼板を製造す る た め に は、 C 含有量を 0 , 0 0 1 0 %以下に す る こ と が望 ま し い o
n : 0 . 0 5 % を下回 る と 熱間脆性を生 じ 、 缶用鋼 板を製造す る こ と がで き な い ので、 0. 0 5 %以上含有 さ せ る 必要があ る 。 一力 、 そ の量力 0 . 4 0 %を超え る と 、 鋼板が過度に硬質化 し て フ ラ ン ジ加工性お よ び
D W I 加工性が劣化 し 、 さ ら に C 量の低減で得 ら れた成 分 の高純度化効果を減殺 し てィ ャ リ ン グ性を劣化す る と と も に 、 コ ス ト 问 と な 。 従 っ て、 0 . 0 5 〜 0 . 4 0 % に 限定 し た。
P : P は敢ぇ て積極的 に添加す る 必要は な い元素であ る 。 鋼を著 し く 硬化す る 不可避的不純物元素であ り 、 こ の量が 0 , 0 6 % を超え る と 、 鋼板が過度に硬質化 し て フ ラ ン ジ加ェ性お よ び D W I 加ェ性が劣化す る 。 ま た、
C 里の低減で得 ら れ る 成分の 问純度化効果を減殺 し て ィ ャ リ ン グ性を劣化 さ せ る と と に 、 耐食性 も 劣化す る の で、 上限を 0 . 0 6 % と す る o よ り 優れた フ ラ ン ジ加工 性、 D W I 加工性、 ィ ャ リ ン グ性お よ び耐食性を得 る た め に は、 〇 . 0 2 %以下 と す る こ と が望ま し い ο
S : s ち敢え て添加す る 必要は な い元素であ る 。 熱間 脆性を昂進 さ せ る 不可避的不純物元素で あ り 、 こ の量が
0 . 0 6 % を超え る と 、 熱間脆性の た め缶用鋼板を製造 で き な い ので、 そ の上限を 0 〇 6 % に 限定 し た。 よ り 好ま し い範囲 は、 0 . 0 2 %以下で め る ο
A 1 : 脱酸元素 と し て必要であ る が、 酸可溶 A 1 と し て存在 さ せ る 必要は な い。 ま 、 他の品種 と の鋼成分集 約の観点か ら 、 酸可溶 A 1 が 0 0 0 %以下であ れば 本発明 の効果は失われな い o の量が 0 . 1 0 0 % を超 え る と 、 A 1 2 0 S 系介在物が增え て製缶加工時 に フ ラ ン ジ割れや D W I 加工性の劣化な どの原因 と な り 、 ま た コ ス ト 高 と も な る ので、 そ の上限を 0 . 1 0 0 % と し た N : N も敢え て添加す る 必 はな い元素であ る 。 鋼を 硬化 さ せ る 不可避的不純物元 であ り 、 こ の量が
0 . 0 1 0 0 % を超え る と 、 鋼板が過度に硬質化 し て フ ラ ン ジ加ェ性お よ び D W I 加ェ性が劣化す o ま た、 C 量の低減で得 ら れ る 成分 の高純度化効果を減殺 し て ィ ャ リ ン グ性を劣化す る ので、 そ の上限を 0 . 0 1 0 0 % に 限定 し た
B : B を添加すれば、 本発の効果を一層高め る こ と が で き る 。 〇 . 0 〇 0 1 % を下回 る と 、 応力腐食割れが発 生 し やす く な り 、 ま た製品の ィ ャ リ ン グ性、 D W I 加工 性、 ネ ッ ク 加工性が劣化す る の で、 そ の下限 は 0 . 0 0 0 1 %が好ま し い o よ 7 . 里が 0 . 〇 0 6 0 % を上回 る と 、 再 曰曰 ?皿 ; JSCが上昇 し 合金 コ ス ト ち過大 と な る の で、 そ の上限は 0 . 0 0 6 0 %が好ま し い 0
T i と N b : T i N b を添加すれば 、 本発明の効果 を一層高め る こ と がで き る G れ ら の添加元素は、 十分 多量に添加すれば容易 に ィ ャ リ ン グ性の優れた 2 ピー ス 缶用極薄鋼板お よ びフ ラ ン ジ加ェ性の優れた溶接缶用極 薄鋼板が得 られ る 。 し か し 、 応力腐食割れ防止が,困難 と な り 、 合金 コ ス ト を上昇 さ せ、 ま た再結日日 度を上昇 さ せ る 欠点力 あ る 。 力 、 こ れ ら の添加量が少な ければ、 応力腐食 BJれ、 口 金 コ ス 卜 上昇 と 冉秸曰曰 ¾DL B 上昇の欠点 は免れ る が、 ィ ャ リ ン グ性の優れた 2 ピー ス缶用極薄鋼 板お よ びフ ラ ン ジ加工性の優れた溶接缶用極薄鋼板を得 る こ と が困難 と な る 0
そ こ で、 本発明者 ら は 、 合金 コ ス ト 上昇 と 再結晶温度 上昇をェ業的 に許容で き る 範囲 に抑え、 かつ応力腐食割 れに強い 2 ピー ス缶用極薄鋼板お よ び溶接缶用極薄鋼板 を得 る こ と の で き る T i と N b の添加量を、 他の鋼成分 と の関係 に おいて 細 !^研究 し た。 そ の結果、 c 含有量 を刖 の範囲 に 限定す る と と も に れ ら の元素の添加 量を N 含有量 と の関係に お い て下記の よ う な範囲 に制御 す る こ と が有効であ る が分 つ た 0
T i : T i は、 N量 と の関係 に お い て、 3 . 4 X
( 〔 N の重量 %〕 一 0 . 0 0 1 0 ) % を下回 る と 、 製品 の ィ ャ リ ン グ性、 D W I 加ェ性、 ネ ッ ク 加工性が劣化す る ので、 そ の下限を 3 . 4 X ( 〔 N の重量%〕 一
0 . 〇 0 1 0 ) % に 限定 し た O た、 T i 量が 0 . 〇 6 % を上回 る と 、 応力腐食割れ -ar 兀全に防止す る こ と が困 難 と な り 、 再 *± 曰 が著 し く 上昇 し 、 合金 コ ス ト も過 大 と な る の で 、 そ の上限を 0 . 〇 6 % に 限定 し た。
N b : N b は、 Ν量 と の関係 に お い て、 6 . 6 X
( 〔 N の重量 %〕 一 0 . 0 0 1 0 ) % を下回 る と 、 製品 の ィ ャ リ ン グ性、 D W I 加ェ性、 ネ ッ ク 加工性が劣化す る の で、 そ の下限を 6 . 6 X ( 〔 N の重量%〕 一
0 . 0 0 1 0 ) % に 限定 し i<— o ο た、 N b 量が 0 . 0 6 % を上回 る と 、 応力腐食割れ ¾r 兀全に防止す る こ と が困 難 と な り 、 再 «± 曰
τπ 曰曰温度が著 し く 上昇 し 口 コ ス ト も過 大 と な る の で 、 そ の上限を 0 . 0 6 % に 限定 し た。
T i お よ び N b は、 上記の範囲内でいずれか 1 種を添 加すれば有効であ る が、 2 種を添加 し て も差 し支え な い 応力腐食割れを防止す る に は 、 一定量以上の 固溶 C お よ び固溶 N の存在が必要で め る 。 固溶 C お よ び固溶 N の 量を限定す る に は、 内部摩擦法、 抵抗法な ど に よ つ て そ れ ら の量を厳密に測定す る こ と が望 ま し いが、 缶用 鋼板の よ う な工業製品を管理す る に は、 も つ と 簡便な方 法が望 ま れ 0 発明者 ら の研究 に よ れば、 固溶 C お よ び固溶 N を直接 に測定 し な く て も 、 時効指数を測定す る こ と に よ り こ れ ら の元素を簡便 に 限定す る こ と がで き る こ こ でい う 時効指数は、 引 張試験片 に 1 0 % の 引 張予 歪を与え た時の流動応力 と 、 そ れに さ ら に 1 0 0 °C X 1 時間の人工時効を施 し た後の下降伏応力 と の差をい う 。 時効指数が 1 5 M P a を下回 る と 、 応力腐食割れを完全 に防止す る こ と が困難 と な る の で、 そ の下限を 1 5 M P a に 限定 し た o
次に、 本発明鋼の製造方法につ いて述ベ る 。
通常の方法で溶製 し た鋼を連続铸造法ま た は造塊お よ び分塊圧延法に て熱鋼片 と し 、 熱間圧延 に供す る 。 熱間 圧延に先立っ鋼片の 執、 理条件は、 通常行な われ る いか な る 方法 も採用 し得 る 。 すな わ ち 、 熱鋼片を直送 し て圧 延 し て も よ く 、 加熱炉で再力 Q熱 し て も よ い o
本発明 に おい て は、 熱間圧延仕上温度を 8 1 〇 °C以上 に確保す る こ と が必須条件で あ る の で、 熱間圧延作業上 仕上温度が確保で き な い よ う な過度に低い再加熱温度を と る こ と はで き な い 0 通常の熱間圧延設備の場合、 再加 熱温度が 1 0 0 0 を下回 る と 、 仕上温度を 8 1 0 'C以 上に確保す る こ と が困難 と な る の で、 再加熱温度は 1 0 0 0 °C以上 と す る こ と が望 ま し い。 熱間圧延仕上温度は、 こ れが 8 1 0 て を下回 る と 、 以 下に述ベ る 理由 に よ り 、 本発明 の 目 的を達す る こ と がで き な い o
①熱間圧延鋼帯の板厚制御が困難 と な る 結果、 冷間圧 延で の板厚制御が困難 と な り 、 製品鋼板の板厚精度が劣 化す る と と も に、 し ば し ば冷間圧延作業中 に板破断を起 し す o 極薄鋼板を製造す る に あ た っ て、 こ れは致命的欠 点であ る 0
②熱間圧延鋼帯 に ィ ャ リ ン グ性に有害な集合組織が形 成 さ れ る 結果、 製品鋼板の D W I 加工時に お け る ィ ャ リ ン グが大 き く な つ て、 製缶業者に お け る 歩留 ま り を劣化 さ せ る
③応力腐食割れを完全に防止す る こ と が困難 と な る 。 こ れ も 熱間圧延鋼帯 に集合組織が形成 さ れ る 結果で あ る と 考え ら れ る o
熱間圧延の仕上板厚は、 こ れが 2 . O m m を下回 る と 所要の仕上温度の確保が困難 と な り 、 応力腐食割れ防止 に も 好ま し く な い の で、 下限を 2 . 0 m m に 限定す る 。
本発明者 ら の研究に よ る と 、 熱間圧延銅帯が仕上最終 ス タ ン ドを出て力、 ら ラ ン · ア ウ ト · テ ー ブル上で の冷却 が開始 さ れる ま で の時間 (冷却開始時間) お よ び冷却が 開始 さ れ る 度 (冷却開始温度) は、 製品鋼板の フ ラ ン ジ加ェ性お よ び E C P の相対平均鲜明度に影響を持つ こ と がわか つ た ま ず、 熱間圧延鋼帯が仕上最終ス タ ン ドを 出 てか ら ラ ン · ァ ゥ ト · テ ー ブル上での冷却開始時間 は、 こ れ力く
1 . 5 秒を超え る と 、 製品鋼板の フ ラ ン ジ加工性が劣化 し 、 E C P の相対平均鮮明度が大 き く な る の で、 1 . 5 秒以下 に 限定す る 必要があ る 。
ま た、 冷却開始温度は、 こ れが 〔仕上温度 — 3 0 〕 V を下回 る と 、 や は り 製品鋼板の フ ラ ン ジ加工性が劣化 し E C P の相対平均鮮明度が大 き く な る の で、 〔仕上温度 - 3 0 ] 。C以上に 限定す る 必要があ る 。 こ れ ら の現象の 理由 は必ず し も 明 ら かでな いが、 こ れ ら の 限定 に よ っ て 熱間圧延鋼帯の結晶粒が小 さ く な る こ と が関係 し て い る と 推測で き る 。
熱間圧延の巻取温度につ い て は、 こ れ力 7 2 ◦ を超 え る と 、 熱間圧延鋼帯の ス ケ ー ル生成量が過度に多 く な り 、 酸洗工程の生産性を阻害す る ので、 巻取温度は 7 2 ◦ °C以下 にす る こ と が望 ま し い。
熱間圧延の終了 し た鋼帯は、 常法 に よ り 、 酸洗 し 、 冷 間圧延 し 、 再結晶焼鈍を施 さ れ る 。
再結晶焼鈍の後、 2 次冷間圧延を行な う 。
2 次冷間圧延の 際、 下記 ( 1 ) 式、 で定義 さ れ る 平均 歪速度 ( S R ) が 1 2 . 4 s _1を下回 る と 、 E C P の相 対平均鮮明度が過大 と な る ので、 平均歪速度の下限を 1 2 . 4 s _1に 限定す る 。 0 0 0 v
S R = Q n ( 1 )
6 0 V " ただし、 r :圧 下 率 (-)
R: ワークロール半径 (固)
t :入 側 扳 厚 (匪)
v : ヮ一クロール周速 On/m i n)
ま た 、 2 次冷 圧延の圧下率 ( r ) は 、 0 . 7 % を下 回 る と 、 応力腐 割れが発生 し やす く な り 、 ま た缶強度 が不足す る の で そ の下限を 0 , 7 % に 限定 し た。 ま た 圧下率が 6 0 % を超え る と 鋼板が過度に硬質化 し て フ ラ ン ジ加ェ性お よ び D W I 加工性が劣化す る ので、 そ の上 限を 6 0 % に し た
本発明 の鋼板に施 さ れ る 表 ¾被覆 は、 そ の方法を問わ な い。 すな わ ち 錫め つ き 二 ッ ケ ノレ め つ き 、 特殊な下 地処理後 に極薄 付 け の錫 め っ き を行な う 方法、 あ る い は高分子有機フ ィ ル ム を 張 り 付 け た も の な ど、 2 ピー ス 缶用鋼板お よ び 接缶用鋼板に用 い ら れ る い 力、 よ る 表面 被覆であ つ て も 良好な効果が得 ら れ る 次に 、 本発明鋼の製缶方法につ い て説明す る 。
本発明鋼を 2 ピー ス缶 に適用 す る 場合 、 そ の製缶方法 は D W I 加ェ法 多段絞 り 加ェ法の いずれで も よ い。 ま ー ス 缶 適用す る ヽ 本発明鋼 は、 板取 り 方 向 の制約を取 り き 、 ノ ー マ ル法 (鋼板の圧延方向が缶 胴の軸方向 に 直角 と な る よ う な板取 り 法 ) 、 リ バ ー ス法 (鋼板の圧延方向が缶胴の軸方向 に平行 と な る よ う な板 取 り 法) 、 お よ びそれ ら の混在の いずれの板取 り で も製 缶可能で あ る 。
ま た、 接着缶に対 し て も本発明鋼の効果 は発揮 さ れ る 以下に、 本発明 を実施例 に基づい て さ ら に説明す る 。 実施例 1
表 1 に示す化学成分を有す る 鋼を転炉で溶製 し 、 ス ラ ブを室温ま で冷却 し た後、 1 0 0 0 〜 1 2 9 0 。C の ス ラ ブ再加熱温度ま で再加熱 し 、 8 0 0 〜 9 5 0 。C の仕上温 度で板厚 3 . 0 m m ま で熱間圧延 し た。 熱間圧延鋼帯が 仕上最終ス タ ン ドを 出て力、 ら 0 . 4 〜 1 . 9 秒後に ラ ン • ァ ゥ ト ♦ テ ー ブル上での冷却を開始 し 、 次いで巻取 り 酸洗 し 、 冷間圧延 し 、 連続焼鈍 し 、 板厚 0 . 1 7 m m ま で 2 次冷間圧延 し 、 最後 に極薄錫め つ き を行な っ た。
こ の よ う に し て得 ら れた極薄錫め つ き 鋼板の時効指数 E C P の相対平均鮮明度、 耐応力腐食割れ性、 フ ラ ン ジ 加工性、 イ ヤ リ ン グ性お よ びパネ リ ン グ強度を、 表 2 に 示す。
表 1 お よ び表 2 に示すよ う に 、 試料番号 1 〜 6 は本発 明 の範囲内であ り 、 比較例 と し て挙げた試料番号 7 〜 1 0 は本発明の範囲外であ る 。 本発明外の試料 7 は、 C お よ び T i の化学成分が範囲外であ り 、 時効指数 と 相対 平均鮮明度が範囲外であ る 。 試料 8 は、 化学成分 は範囲 内であ る が、 鮮明度がはずれて い る 。 試料 9 は、 鮮明度 が範囲外であ る 。 さ ら に試料 1 0 は、 T i と 時効指数が 範囲外であ る 。
な お 、 表 1 お よ び表 2 に お いて、 本発明 の範囲か ら外 れた数値は、 下線を付けて示 し てあ る 。 ま た 、 「合格」 は〇、 「不合格」 は X の 印で表わ し た。
各試料の特性につ い ての試験結果の評価につ い て述べ る o
耐 iじ、力腐食割れ性の評価 は、 引 張試験片を常温の大気 中で 1 0 " 6 s 一1の歪速度で引 張 っ た時の破断伸 び E (j と 同 じ試料の 引 張試験片 を 8 0 。c の腐食促進液中で同 じ 歪速度で引 つ 張 っ た時の破断伸 び E { と の比 E E
1 ^ ^ 0 を用 い た。 E 1 ハ 0 の比が 〇 . 9 0 以上の も の を 「合 格」 、 それ未満の も の を 「不合格」 と 判定 し た o
フ ラ ン ジ加ェ性の評価は、 フ ラ ン シ成形機に て溶接缶 の フ ラ ン ジ加ェ の シ ミ ュ レ ー シ ヨ ン を行な つ た時の破断 発生ま で の 力 Πェ率で行な っ た。 こ の加ェ率は、 9 . 0 % 以上を 「合格」 、 9 . 0 %未満 を 「不合格」 と 判定 し た ィ ャ リ ン グ性の評価は、 絞 り 加工機で 力 ッ プ成形を行 な い、 ィ ャ リ ン グの 山の平均高 さ と 谷の平均高 さ の差を 谷の平均高 さ で除 し た値を百分率で表わ し て求め た。 ィ ャ リ ン グ率 3 . 5 %以下を 「合格」 、 3 . 5 %超を 「不 合格」 と 判定 し た。
パネ リ ン グ強度の評価方法 は、 次の通 り であ る 。 ま ず ワ イ ヤ • シ一ム溶接機で缶胴を製作 し 、 胴の両端 に ラ バ - z -
Figure imgf000026_0001
° ^ Ί ¾ ri* ? 「 ^ 」 ¾ ^
¥ , in a / S ¾ 0 S - Z 、 「 ^」 ¾ T 2 ω D / S ¾ 0 Ζ ' S > ¾ί ^ べ A t 。 つ ¾ ^ ? Ι マ ϊί ^
¼ Ο Μ ^ ^ ^ ( ·<? - ^ ω ¾ ¾ 5 ? Β ¼ ) ^ Γι 。、/ 、 つ fFMg ^ ¾ ^ ¾ 0) ¾d ¾ ベ ¾ ¾ 、 つ
9 lO/fridf/IOd 991P0IS6 O 表 2
Figure imgf000027_0001
実施例 2_
表 3 に示す化学成分を有す る 鋼を転炉で溶製 し 、 表 4 示す製造条件、 すな わ ち仕上温度、 仕上板厚、 熱間圧延 鋼帯が仕上最終 ス タ ン ドを 出 て 力、 ら ラ ン · ア ウ ト · テ一 ブル上での冷却が開始 さ れ る ま での時間 (冷却開始時間)
、 冷却開始温度、 お よ び巻取温度で熱間圧延 し た。 次い で、 酸洗 し 、 冷間圧延 し 、 連続焼鈍 し 、 表 4 に示す平均 歪速度 と 2 次冷間圧延圧下率で板厚 0 . 2 O m m ま で 2 次冷間圧延 し 、 錫め つ き を行な っ た。
こ の よ ラ に し て得 ら れた錫め つ き 鋼板の時効指数は、 E C Ρ の相対平均鮮明度、 耐応力腐食割れ性、 フ ラ ン ジ 加工性、 ィ ャ リ ン グ性お よ び耐圧強度を、 表 4 に併せて 示す。
表 3 に示す よ う に 、 試料番号 1 1 〜 1 8 は化学成分が 本発明 の範囲内であ り 、 試料番号 1 9 〜 2 2 は比較例 と し て挙げた本発明範囲外の鋼であ る 。 試料番号 1 9 は C お よ び T が、 試料番号 2 0 は C , S , N が、 試料番号 2 1 は M η , P , s o 1 A 1 力 、 お よ び試料番号 2 2 は T i が、 そ れぞれ本発明 の範囲外の化学成分であ る 。
表 4 に示すよ う に、 試料番号 1 9 〜 2 2 は、 製造条件 に お い て も本発明範囲外であ る 。 すな わ ち 、 試料番号 1 9 は時効指数が、 試料番号 2 0 は冷却開始時間、 冷却開 始温度、 平均歪速度、 時効指数、 相対平均鮮明度が、 試 料番号 2 1 は熱延仕上温度、 平均歪速度、 2 次冷延圧下 率、 鮮明度が、 お よ び試料番号 2 2 は平均歪速度、 2 次 冷延圧下率、 時効指数、 鮮明度が、 そ れぞれはずれてい o
次に、 各試料の特性につ い て の試験お よ び評価につ い て述べ る 。
耐応力腐食割れ性の評価は、 実施例 1 と 同様の方法で 行な っ た。
フ ラ ン ジ加工性の評価 は、 D W I 缶体の開 口端を ト リ ム後、 フ ラ ン ジ加工性試験機に て 円錐状のパ ン チ を開 口 端 に挿入 し なが ら 開 口端の径を広げ る 試験を行な い、 破 断発生ま での加工率で行な っ た。 加工率が 9 . 0 %以上 を 「合格」 、 9 . 0 %未満を 「不合格」 と 判定 し た。 ィ ャ リ ン グ性の評価 は、 実施例 1 と 同様の方法で行な つ た o
耐圧強度の評価は、 D W I 缶用鋼板の缶体を作 り 、 雰 囲気乾燥炉で塗装乾燥工程相 当 の熱処理を与え た後、 缶 体開 口部を ラ バー製ラ イ ナ ー で密閉 し て、 缶体内部 に圧 縮空気を徐 々 に導入 し 、 缶底がバ ッ ク リ ン グを生 じ る 臨 界の圧力 を求め る こ と で行な っ た。 臨界圧力が 7 , 5
K g f / c m 2 以上の も の を 「合格」 、 そ れ未満 の も の を 「不合格」 と評価 し た。
表 3 お よ び表 4 に お い て、 本発明 の範囲か ら 外れた数 値は、 下線をつ けて示 し て あ る 。 ま た、 「合格」 は〇、 「不合格」 は X の 印で表わ し た。
Figure imgf000030_0001
表 4 製 造 条 件 験 □ 5r
腿仕 什卜 冷却開 冷却開 熱延巻 平 均 2次冷 時効 相 対 応力 フラ ィャ 纟公 A
,IUJゾ丄 料 延圧下 ンジ
上 板厚 始時間 始 取' 歪速度 指数 平 均 腐食 リン
力 I1T
強度 |Γ1 脚 ΓΟ (mm) (秒) (。C) (°C) is"1) (%) (MPa) 鮮明度 割れ 性 グ性
11 879 3.0 0.8 862 351 347.4 12 36 0.52 〇 〇 〇 〇 〇 本 12 864 3.0 0.7 851 3B7 977.4 37 24 0.55 〇 〇 〇 〇 〇
13 901 3.0 1.1 879 675 1676.6 46 22 0.44 〇 〇 〇 〇 〇
14 815 2.4 0.4 851 473 1256.8 35 18 0.46 〇 〇 〇 〇 〇 t ? G
15 911 3.0 1.1 890 612 555.9 35 24 0.30 〇 〇 〇 〇 〇
16 863 2.7 0.5 858 660 1622.7 35 25 0.62 〇 〇 〇 〇 〇 明
17 870 3.0 0.6 858 642 844.2 35 18 0.17 〇 〇 〇 〇 〇
18 906 3.0 0.6 894 336 630.1 35 19 0.19 〇 〇 〇 〇 〇 本 19 908 3.0 1.0 887 550 188.7 35 14 0.35 X X X 〇 X 発 20 891 3.0 1.7 858 476 12.0 35 13 0.89 X X X 〇 X 明 21 807 3.0 1.5 825 613 11.7 0.5 21 0.93 X X X X X 外 22 893 3.0 1.2 8GG 619 12.2 65 13 0.98 X X 〇 〇 X
産業上 の利用 可能性 本発明 は 、 板厚が薄 く 、 かつ 、 所定の イ ヤ リ ン グ性、 ネ ッ ク 加工性、 フ ラ ン ジ 加工性 お よ び缶強度 を確保で き さ ら に 応力腐食割れ に 強 い 2 ピ ー ス 缶用 鋼板 お よ び 3 ピ 一ス 缶用 鋼板 に 利用 す る こ と がで き る 。

Claims

1 . %で、
C : 0 . 0 0 1 5 %以下、 M n : 0 . 0 5 〜 0 . 4 0 %、 P : 0 . 〇 6 %以下、 S : 0 . 0 6 %以下、 酸可溶 A 1 : G . 1 ◦ %以下、 N : 0 , 0 1 0 0 %以下 を含み、 残部が鉄お よ び不可避的不純物か ら な り 、
1 5 M P a 以上の時効指数を持ち 、 板厚中心部の互い
に 5 0 m以上離れた 2 0 個以上の結晶粒につ い て測定 さ れた電子チ ヤ ン ネ リ ン グ · パ タ ー ン の相対平均鮮明度 が 0 . 8 5 以下であ る こ と を特徴 と す る 、 応力腐食割れ に強い缶用鋼板。
2 . 請求項 1 に記載の化学成分 に加え て、
T i : 3, 4x ( 〔Nの重量%〕 -0. 0010) 0. 06%以下 Nb: 6. 6x ( 〔Nの重量%〕 一 0. 0010) %社、 0. 06%以下 の う ち の少な く と も 1 種を含有す る こ と を特徴 と す る 請 求項 1 に記載の応力腐食割れに強い缶用鋼板。
3 , %で、
C : 0 . 0 0 1 5 %以下、 M n : 0 . 0 5 〜 0 . 4 0
%、 P : 0 . 0 6 %以下、 S : 0 . 0 6 %以下、 酸可溶 A 1 : 〇 . 1 0 %以下 、 N : 0 . 0 1 0 0 %以下 を含み、 残部が鉄お よ び不可避的不純物か ら な る 熱鋼片 ( ス ラ ブ) を、
8 1 0 て以上の仕上温度で 2 . O m m以上の板厚ま で 熱間圧延 し た後、 熱間圧延鋼帯が熱間圧延機の仕上最終 ス タ ン ドを 出 て力、 ら 1 . 5 秒以 内 に 〔仕上温度 一 3 ◦ 〕 °C以上の温度か ら ラ ン ♦ ァ ゥ ト · テ ー ブル上で水冷 し 、 次いで こ れを巻取 り 、 酸洗 し 、 冷間圧延 し 、 再結晶焼鈍 し 、
下記 ( 1 ) 式で定義 さ れ る 平均歪速度 ( S R ) が、 1 2 . 4 s _1以上 と な る よ う に 0 , 7 ~ 6 0 % の圧下率で 2 次冷間圧延を施 し 、
時効指数が 1 5 M P a 以上、 板厚中心部の互い に 5 〇 m 以上離れた 2 0 個以上の結晶粒 に つ い て測定 さ れた 電子チ ヤ ン ネ リ ン グ · パ タ ー ン の相対平均鲜明度が 0 . 8 5 以下であ る こ と を特徴 と す る 、 応力腐食割れに強い 缶用鋼板の製造方法。
1 1000 V 1
SR= ♦ J? n (1)
60 ~r lT* V~T 1— r
ただし、 r ··圧 下 率 (-)
R:ワークロール半径 (nun)
t :入 側 板 厚 (ram)
V : ワークロール周速 (m/min)
4 . 請求項 3 に記載の化学成分 に加え て、
T i : 3. 4 X ( 〔Nの重量%〕 一〇. 0010) %以上、 0. 06%以下 Nb : 6. 6x ( 〔Nの重量%〕 一〇. 001〇) %以上、 0. 06%以下 の う ち の少な く と も 1 種を含有す る こ と を特徴 と す る 請 求項 3 に記載の応力腐食割れに強い缶用銅板の製造方法
PCT/JP1994/001226 1993-07-28 1994-07-26 Tole d'acier pour boites de conserve a resistance elevee a la fissuration par corrosion sous contraintes, et son procede de fabrication WO1995004166A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019950700994A KR0179419B1 (ko) 1993-07-28 1994-07-26 응력부식균열에 강한 캔용강판 및 그 제조방법
EP94921814A EP0662523B1 (en) 1993-07-28 1994-07-26 Steel sheet of high stress-corrosion-cracking resistance for cans and method of manufacturing the same
DE69418172T DE69418172T2 (de) 1993-07-28 1994-07-26 Stahlblech mit hoher spannungsrisskorrosionsbeständigkeit für die herstellung von dosen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/186267 1993-07-28
JP18626793 1993-07-28

Publications (1)

Publication Number Publication Date
WO1995004166A1 true WO1995004166A1 (fr) 1995-02-09

Family

ID=16185302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001226 WO1995004166A1 (fr) 1993-07-28 1994-07-26 Tole d'acier pour boites de conserve a resistance elevee a la fissuration par corrosion sous contraintes, et son procede de fabrication

Country Status (5)

Country Link
EP (1) EP0662523B1 (ja)
KR (1) KR0179419B1 (ja)
CN (1) CN1043904C (ja)
DE (1) DE69418172T2 (ja)
WO (1) WO1995004166A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739581B1 (fr) * 1995-10-06 1997-10-31 Lorraine Laminage Procede de fabrication d'une boite metallique du type boite boisson
DE10247998B4 (de) * 2002-10-15 2004-07-15 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines besonders gut verformbaren kaltgewalzten Stahlbands oder -blechs
KR20070086712A (ko) * 2005-03-24 2007-08-27 제이에프이 스틸 가부시키가이샤 연질캔용 강판 및 그 제조방법
CN101880821B (zh) * 2010-06-11 2012-08-15 武汉钢铁(集团)公司 抗拉强度为280MPa级的钢铝复合热轧钢及生产方法
EP2650396B1 (en) 2010-12-06 2018-11-07 Nippon Steel & Sumitomo Metal Corporation Steel sheet for bottom covers of aerosol cans and method for producing same
CN103045937A (zh) * 2012-12-14 2013-04-17 宝山钢铁股份有限公司 一种二次冷轧钢及其制造方法
JP6052412B2 (ja) * 2013-07-17 2016-12-27 Jfeスチール株式会社 缶用鋼板およびその製造方法
CN107250413B (zh) * 2015-02-26 2019-04-05 杰富意钢铁株式会社 瓶盖用钢板、瓶盖用钢板的制造方法及瓶盖

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203721A (ja) * 1987-02-18 1988-08-23 Kobe Steel Ltd 耐水素誘起割れ性及び耐応力腐食割れ性にすぐれる熱延鋼板の製造方法
JPH01306527A (ja) * 1988-06-01 1989-12-11 Toyo Kohan Co Ltd 異方性の小さい硬質薄鋼板の製造方法
JPH03285046A (ja) * 1990-03-30 1991-12-16 Kawasaki Steel Corp 3ピース缶の製造方法
JPH05117807A (ja) * 1991-10-30 1993-05-14 Kawasaki Steel Corp 食缶用薄鋼板の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126756A (ja) * 1984-07-17 1986-02-06 Kawasaki Steel Corp 良化成処理性を有する極低炭素鋼板
DE69014532T2 (de) * 1989-08-09 1995-05-04 Kobe Steel Ltd Verfahren zur Herstellung eines Stahlbleches.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203721A (ja) * 1987-02-18 1988-08-23 Kobe Steel Ltd 耐水素誘起割れ性及び耐応力腐食割れ性にすぐれる熱延鋼板の製造方法
JPH01306527A (ja) * 1988-06-01 1989-12-11 Toyo Kohan Co Ltd 異方性の小さい硬質薄鋼板の製造方法
JPH03285046A (ja) * 1990-03-30 1991-12-16 Kawasaki Steel Corp 3ピース缶の製造方法
JPH05117807A (ja) * 1991-10-30 1993-05-14 Kawasaki Steel Corp 食缶用薄鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0662523A4 *

Also Published As

Publication number Publication date
EP0662523A1 (en) 1995-07-12
KR950703660A (ko) 1995-09-20
CN1043904C (zh) 1999-06-30
CN1114113A (zh) 1995-12-27
DE69418172D1 (de) 1999-06-02
KR0179419B1 (ko) 1999-02-18
EP0662523A4 (en) 1995-12-13
EP0662523B1 (en) 1999-04-28
DE69418172T2 (de) 1999-12-02

Similar Documents

Publication Publication Date Title
JP5453884B2 (ja) 高強度容器用鋼板およびその製造方法
CN106255772B (zh) 高强度容器用钢板及其制造方法
JP4853325B2 (ja) ドラム缶用薄肉冷延鋼板およびその製造方法
WO1995004166A1 (fr) Tole d&#39;acier pour boites de conserve a resistance elevee a la fissuration par corrosion sous contraintes, et son procede de fabrication
JP6813132B2 (ja) 缶用鋼板およびその製造方法
JP2006283113A (ja) 飲料缶胴用アルミニウム合金板およびその製造方法
JP6601571B2 (ja) 王冠用鋼板およびその製造方法並びに王冠
JP2011058036A (ja) 絞り缶用鋼板および絞り缶用めっき鋼板
JP2005350737A (ja) 強い缶体強度と良好なプレス加工性を備えた缶用薄鋼板およびその製造方法
JP4771726B2 (ja) 飲料缶胴用アルミニウム合金板およびその製造方法
JP2003231948A (ja) 成形性及び溶接部の特性に優れた容器用鋼板及びその製造方法
TW201732054A (zh) 罐用鋼板及其製造方法
JPS63134645A (ja) 伸びフランジ成形性の優れたdi缶用鋼板
KR102587650B1 (ko) 캔용 강판 및 그의 제조 방법
JPH01142051A (ja) 有機皮膜被覆絞り容器用鋼箔
JP3108615B2 (ja) フランジ加工性およびネック成形性に優れる溶接缶用鋼板の製造方法
JP6809619B2 (ja) 缶用鋼板およびその製造方法
JP3244956B2 (ja) 缶成形性に優れた極薄容器用鋼板の製造方法
JP3474647B2 (ja) 薄手容器用鋼板の製造方法
JP2010255021A (ja) 缶用鋼板用冷延鋼板と缶用鋼板およびそれらの製造方法
JPH08218146A (ja) フランジ加工性及びネック成形性に優れた溶接缶用鋼板とその製造方法
JP3048739B2 (ja) 伸びフランジ性のすぐれた高強度合金化溶融亜鉛めっき熱延鋼板の製造方法
JPH08127815A (ja) 容器用原板の製造方法
JP4784352B2 (ja) 印刷基板用鋼板
JPH05117807A (ja) 食缶用薄鋼板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994921814

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994921814

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994921814

Country of ref document: EP