WO1994017363A1 - Angular velocity sensor - Google Patents

Angular velocity sensor Download PDF

Info

Publication number
WO1994017363A1
WO1994017363A1 PCT/JP1994/000114 JP9400114W WO9417363A1 WO 1994017363 A1 WO1994017363 A1 WO 1994017363A1 JP 9400114 W JP9400114 W JP 9400114W WO 9417363 A1 WO9417363 A1 WO 9417363A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
substrate
velocity sensor
vibrating body
vibrating
Prior art date
Application number
PCT/JP1994/000114
Other languages
English (en)
French (fr)
Inventor
Tomayasu Hasegawa
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to EP94905219A priority Critical patent/EP0634629B1/en
Priority to US08/284,611 priority patent/US5559291A/en
Priority to DE69420481T priority patent/DE69420481T2/de
Publication of WO1994017363A1 publication Critical patent/WO1994017363A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Definitions

  • the present invention relates to an angular velocity sensor suitable for detecting, for example, a rotation direction and a posture of a vehicle or an aircraft.
  • vibration type angular velocity sensors have been developed as relatively small angular velocity sensors.
  • This type of angular velocity sensor electrically detects displacement acting on a vibrating body using a piezoelectric material as angular velocity, utilizing the fact that the force of the collory is proportional to the angular velocity. .
  • an angular velocity sensor of this type requires extremely precise processing and is expensive, so that a method of manufacturing using a semiconductor manufacturing technology has been proposed (for example, see Japanese Unexamined Patent Publication No. — Japanese Patent Application Laid-Open No. 11-139, JP-A-61-13971).
  • reference numeral 1 denotes a substrate made of a silicon material, and the substrate 1 includes a lower substrate 1 ⁇ located on the lower side in the figure and an upper substrate provided on the lower substrate 1 A.
  • a space 1C is formed between the substrates 1A and 1B, and a space 1C is provided between the substrates 1A and 1B to allow vibration of the cantilever 2 described later.
  • Reference numeral 2 denotes a thin plate-shaped cantilever integrally formed on the upper substrate 1 B of the substrate 1 by using an etching technique or the like.
  • the base end 2A is a fixed end fixed to the upper substrate 1B
  • the front end 2B is a free end that can vibrate upward and downward perpendicular to the substrate 1.
  • a square slit 3 extending in the longitudinal direction is formed at the center in the width direction.
  • Reference numeral 4 denotes an electrode formed on the top surface 2B of the tip 2B of the cantilever 2, and the electrode 4 includes an oscillation circuit (neither is shown) for emitting a predetermined frequency signal via a lead wire. It is connected .
  • the cantilever 2 is generated by electrostatic force generated between the cantilever 2 and the lower substrate 1A. It vibrates up and down.
  • Numerals 5 and 5 denote piezoresistive elements located on the left and right sides of the slit 3 and provided on the base 2A side of the cantilever 2, respectively.
  • the angular velocity sensor according to the prior art detects the stress generated in the cantilever 2 during rotation as a change in resistance value and outputs this as an angular velocity in the rotation direction to a signal processing circuit (not shown).
  • a signal processing circuit not shown.
  • a predetermined frequency signal is applied from the oscillation circuit via the electrode 4
  • an electrostatic force is generated, and the tip 2 B side of the cantilever 2 has its own resonance frequency, for example. Oscillates vertically upward and downward to the board 1.
  • each piezoresistive element 5 outputs a signal corresponding to the compressive stress C and the tensile stress E, and detects the angular velocity of the rotational force T.
  • the cantilever 2 is vibrated upward and downward by using the force of the coil to adjust the angular velocity of the rotational force T. The corresponding stress is detected by each piezoresistive element 5.
  • the cantilever 2 is always vibrated in the direction perpendicular to the substrate 1, it is easily affected by the viscous resistance of air, and the excitation structure is complicated.
  • the angular velocity sensor according to the prior art has a structure in which the torsion generated in the cantilever 2 is detected while exciting the cantilever 2, so that the angular velocity detection sensitivity is low. That is, in the prior art, since the beam for excitation and the beam for detection are the same, when the cantilever 2 is vibrated to use the force of the coil, the cantilever 2 The vibration causes torsion on the base 2 A side of the cantilever 2. Then, since each twist is detected by each piezoresistive element 5, the background noise increases, and a minute angular velocity cannot be detected. Is greatly reduced.
  • a configuration adopted by the present invention includes a substrate, and a first substrate supported on the substrate via a first support beam and provided so as to be capable of vibrating in a horizontal direction with respect to the substrate.
  • a vibrating body which is positioned on a support axis of the first supporting beam, is horizontally supported by the first vibrating body via a second supporting beam, and is capable of vibrating horizontally and vertically with respect to the substrate.
  • a second vibrating body provided; vibration generating means for vibrating the first vibrating body in a horizontal direction with respect to the substrate; and a second vibration in a state where the vibration generating means applies vibration. It consists of displacement amount detecting means for detecting the displacement amount when the body is displaced in the vertical direction.
  • the second vibrating body when the first vibrating body is vibrated in the horizontal direction with the substrate by the vibration generating means, the second vibrating body is horizontally moved together with the first vibrating body. Vibrates in the direction. Then, in this state, when the entire sensor rotates around the support axis of the first support beam, the second vibrating body applies a force of the criterion corresponding to the angular velocity of the rotational force. Is applied, the second vibrating body is displaced in a direction perpendicular to the substrate by the force of the coil. Thus, the amount of displacement of the second vibrating body in the vertical direction is detected by the displacement amount detecting means and output as the angular velocity signal of the rotational force.
  • the vibration generating means includes a movable-side conductive portion provided on both ends in the width direction of the first support beam, and a fixed-side conductive portion provided on the substrate side facing the movable-side conductive portion.
  • the first vibrating body is caused to vibrate together with the second vibrating body by providing a frequency signal to each of the conductive parts.
  • the displacement amount detecting means includes: a pair of piezoresistive elements provided apart from each other in a width direction of the second support beam;
  • the pair of piezoresistive elements provided in the first vibrating body constitute a prism circuit.
  • the displacement amount detecting means includes one conductive part provided on the second vibrating body, and another conductive part provided on the substrate so as to face the conductive part. In the second configuration, the vertical displacement of the vibrating body is detected as a change in the capacitance between the conductive portions.
  • the first vibrating body is a cantilever supported frame via a first support beam
  • the second vibrating body is a frame of the first vibrating body.
  • a cantilevered angular velocity sensor is provided by forming a plate-shaped body positioned inside and supported by a cantilever via a second support beam.
  • the first vibrator is a frame supported at both ends via a pair of first support beams positioned on a support shaft, and the second vibrator is provided. Is a plate-like body positioned inside the first vibrating body and supported in a cantilever manner via a second support beam, thereby providing a doubly supported beam type angular velocity sensor.
  • the substrate includes a lower substrate and an upper substrate joined to the lower substrate via an insulating layer.
  • the second vibrator may be formed integrally with the upper substrate by processing the upper substrate.
  • FIG. 1 is a perspective view showing an angular velocity sensor according to a first embodiment of the present invention with a protective layer removed.
  • FIG. 2 is an enlarged cross-sectional view taken in the direction of arrows II-II in FIG.
  • Fig. 3 is a cross-sectional view showing the direction of arrows III-III in Fig. 1 in an enlarged manner.
  • FIG. 4 is a cross-sectional view showing, in an enlarged manner, the direction indicated by arrows IV-IV in FIG.
  • FIG. 5 is a sectional view showing an oxide film forming step.
  • FIG. 6 is a cross-sectional view showing a recess forming step.
  • FIG. 7 is a cross-sectional view showing the joining step.
  • FIG. 8 is a cross-sectional view showing a device forming step.
  • FIG. 9 is a cross-sectional view showing a vibrating body forming step.
  • FIG. 10 is a sectional view showing the angular velocity sensor according to the second embodiment of the present invention at the same position as in FIG.
  • FIG. 11 is a perspective view of a main part showing an angular velocity sensor according to a modification of the present invention with the protective layer removed.
  • FIG. 12 is a partially cutaway perspective view showing a conventional angular velocity sensor.
  • FIG. 1 or FIG. 11 an example in which the embodiment is configured as an independent single angular velocity sensor.
  • FIG. 1 to 10 show a first embodiment of the present invention.
  • 11 is a lower substrate formed of a silicon material or the like, and 12 is bonded to the upper side of the lower substrate 11 via an oxide film 13 as an insulating layer.
  • An upper substrate made of a material such as a material is shown, and a first vibrator 14 and a second vibrator 16 described later are integrally formed on the upper substrate 12 by using an etching technique or the like. Have been.
  • a concave portion 11A is formed in the center of the lower substrate 11 as shown in FIG.
  • Reference numeral 14 denotes a first vibrator provided substantially at the center of the upper substrate 12 and formed in a square frame shape. The first vibrator 14 is provided via a first support beam 15.
  • the first support beam 15 has a fixed end connected to an end of the upper substrate 12 at the base end, and a distal end extended toward the center of the upper substrate 12.
  • the free end side is formed integrally with the first vibrating body 14 as a free end. Then, when vibration is applied to the first support beam 15 by the vibration generating section 18 described later, the first vibrating body 14 is on the same plane as the upper substrate 12. Further, it vibrates in the X-X direction orthogonal to the support axis 0-0 of the first support beam 15.
  • Reference numeral 16 denotes a second vibrating body which is provided inside the first vibrating body 14 and is provided in the center of the upper substrate 12 and is formed in a rectangular plate shape.
  • the cantilever is horizontally supported by a first vibrating body 14 via a second support beam 17, and as shown in FIG. 2, is horizontal to the upper substrate 12 and has a support shaft 0-0.
  • the second vibrating body 16 vibrates in the X-X direction together with the first vibrating body 14 and a rotational force T is applied about the support axis 0-0, the second vibrating body 16 It is oscillated in the Z-Z direction in Fig. 2 under the force of the collimator generated by the above.
  • the second support beam 17 is connected to the first vibrator 14 with its base end facing the first support beam 15 and its first end is connected to the first vibrator 14. It becomes a free end extending toward the center of the first support beam, and its support axis coincides with the support axis 0 — 0 of the first support beam 15. Then, the first supporting member 14 is connected to the second supporting beam by the vibration generating section 18. When vibrating in the X-X direction, the length, thickness, and the like are determined so that the horizontal vibration is amplified and transmitted to the second vibrating body 16.
  • Reference numerals 18 and 18 denote vibration generating portions as vibration generating means provided on the upper substrate 12 located on both sides of the first support beam 15, and each of the vibration generating portions 18
  • the first conductive beam 15 is provided at both ends in the width direction of the first support beam 15 and faces the movable conductive part 18 A formed in an uneven shape and faces the movable conductive part 18 A.
  • the movable side conductive portion 18A and the fixed side conductive portion 18B which are alternately combined with each other via a small gap. , 18B are connected to an oscillation circuit (not shown) for supplying a predetermined frequency signal.
  • each of the vibration generating portions 18 When the frequency signal from the oscillating circuit is applied to each of the conductive portions 18A and 18B, each of the vibration generating portions 18 generates a corresponding one of the conductive portions 18A and 18B.
  • An electrostatic force consisting of a suction force and a repulsive force is generated between B, and the first vibrator 14 and the second vibrator 16 are vibrated in the XX direction by the electrostatic force.
  • Reference numeral 19 denotes a displacement amount detecting section provided as a displacement amount detecting means provided directly between the first vibrating body 14 and the base end of the second support beam 17.
  • the part 19 includes first diffusion resistances 19 A and 19 A as piezoresistive elements provided in the second support beam 17 so as to be spaced apart in the width direction.
  • a second diffused resistor 19 B, 19 B as a piezoresistive element provided at the base end side of the second support beam 17 and spaced apart on the first vibrator 14. It is composed of
  • the respective diffusion resistors 19 A and 19 B are formed by diffusing impurities such as phosphorus, boron, aluminum, arsenic, and antimony into the upper substrate 12. What becomes a piezoresistive element
  • the respective diffused resistors 19 A, 19 B are assembled into a bridge circuit by metal wirings 20, 20,..., For example, to a signal processing circuit (not shown) formed on the upper substrate 12. It is connected.
  • the displacement detector 19 detects the strain (stress) generated in the second support beam 17 as a change in the resistance value, and outputs this as an angular velocity signal to the signal processing circuit.
  • the first diffusion resistors 19 ⁇ is provided at both ends in the width direction of the second support beam 17, one of the diffusion resistors A compressive stress acts on 9 ⁇ , and an opposite tensile stress acts on the other diffusion resistance 19 9.
  • the angular velocity is detected by comparing and calculating the resistance change rates of the two with the signal processing circuit. be able to.
  • FIG. 2 Shown in FIG. 2 are protective layers such as nitride films formed on the upper surface of the upper substrate 12.
  • the angular velocity sensor according to the present embodiment has the above-described configuration. Next, a method of manufacturing the angular velocity sensor will be described with reference to FIGS.
  • an oxide film is formed on the upper surface side of the lower substrate 11 using, for example, a thermal oxidation method, and the etching is performed while leaving a portion for supporting the upper substrate 12.
  • the film is removed by ching to form a square frame-shaped oxide film 13.
  • the upper substrate 12 formed in a separate process is mounted on the upper side of the lower substrate 11 via an oxide film 13 and the silicon direct bonding technology is used.
  • the upper substrate 12 is polished to a predetermined thickness.
  • the vibration generating portion 18 (diffusion) as an element is formed on the upper surface of the upper substrate 12 by using a technique such as an impurity introduction technique or a photolithography technique. Only a resistor 19 A is shown), a displacement detector 19, metal wiring 20 (not shown), etc. are formed, and a protective layer covering these elements is provided on the upper surface of the upper substrate 12 to protect them.
  • the upper substrate 12 is etched in a predetermined pattern to form the vibrating bodies 14 and 16 and the supporting beams 15 and 17. You. At this time, the conductive portions 18A and 18B of each vibration generating portion 18 are formed in an uneven shape.
  • the angular velocity sensor according to the present embodiment is manufactured as described above.
  • each of the vibration generating sections 18 becomes a conductive section 18. Due to the electrostatic force generated between A and 18B, the first support beam 15 is horizontal to the upper substrate 12 and the X-axis orthogonal to the support axis 0— ⁇ of the first support beam 15 Vibrates in the X direction.
  • the first vibrating body 14 vibrates in the X--X direction.
  • the second vibrator 16 also vibrates in the XX direction along with the vibration of the first vibrator 14.
  • the second vibrating body 16 is connected to the first vibrating body 14 via the second supporting beam 17, the amplitude in the X—X direction is the first vibrating body. It is larger than 14.
  • a rotational force T about the support axis 0—0 is applied, and the second sensor is rotated.
  • the vibrating body 16 receives the force of the coil which is proportional to the angular velocity generated by this rotational force, and is supported by the second support beam 17 while the Z-Z direction in FIG. Vibrates.
  • a distortion corresponding to the amount of displacement of the second vibrating body 16 is generated in the second support beam 17, and the displacement amount detecting section 19 applies a compressive stress and a tensile stress due to the distortion. Is detected using the piezoresistive effect of each diffused resistor 19A and 19B, and this is output to the signal processing circuit as an angular velocity signal.
  • the first support beam 15 allows the X-axis which is horizontal to the upper substrate 12 and orthogonal to the support axis 0-0 of the first support beam 15.
  • a first vibrating body 14 having a rectangular frame shape provided so as to be capable of vibrating in the X direction, and a first vibrating body 14 positioned on the support axis 0-0 of the first supporting beam 15
  • a second vibrating body 16 supported horizontally by a second supporting beam 17 so as to be capable of vibrating in the X-X direction and the upper substrate 12 and in a vertical Z-Z direction.
  • the vibration generators 18 and 18 cause the vibrators 14 and 16 to vibrate in the X-X direction while vibrating in the Z-Z direction by the force of the coil. Since the displacement of the vibrating body 16 is detected by the displacement detector 19, the rotational force T applied around the support axis 0-10 of each of the support beams 15 and 17 is adopted. Angular velocity can be accurately detected, and has the following effects.
  • each of the vibrating bodies 14 and 16 is configured to vibrate horizontally with the upper substrate 12 by each of the vibration generating sections 18, each of the vibrating bodies 14 and 16 is surrounded by the surrounding air. Viscous drag from The force can be greatly reduced, and the amplitude of each of the vibrators 14 and 16 can be increased to improve the angular velocity detection sensitivity.
  • the first support beam 15 is used as an excitation beam and the second support beam 17 is used as a detection beam, the first support beam 15 is used. Vibration can be effectively prevented from increasing by detecting the vibration by the displacement detection unit 19, and the background noise can be effectively detected.Accurately detecting minute angular velocities, greatly increasing the detection sensitivity and detection accuracy Can be improved.
  • a recess 11 A is formed in each of the substrates 11 and 12 made of a silicon material by using a semiconductor fine processing technique such as etching.
  • the vibrators 14.1'6 etc. are integrally formed, a plurality of angular velocity sensors can be easily manufactured from a silicon wafer of the same material, and the angular velocity sensor has uniform characteristics. Speed sensors can be mass-produced effectively, and costs can be significantly reduced.
  • each support beam 15, 17, that is, the length dimension, width dimension, and thickness dimension, according to various conditions such as the angular velocity detection range and required accuracy.
  • the elastic modulus can be easily obtained, and it can respond quickly to market demands.
  • FIG. 10 shows a second embodiment according to the present invention.
  • the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted.
  • this embodiment is characterized in that the piezoresistive displacement detector 19 composed of the diffused resistors 19A, 19A and 19B, 19B used in the first embodiment is replaced by a static sensor. This is due to the use of the capacitance type displacement detector 31.
  • reference numeral 31 denotes a capacitance-type displacement detecting section as displacement detecting means, and the displacement detecting section 31 includes a second vibration detecting section.
  • An upper conductive part 32 provided on the body 16 and a lower conductive part 33 provided at a position facing the upper conductive part 32 in the recess 11A of the lower substrate 11.
  • the upper conductive portion 32 diffuses impurities such as phosphorus, arsenic, and boron into a portion of the upper substrate 12 made of a silicon material, which becomes the second vibrator 16. Then, a low-resistance portion of about 0.01 to 0.02 Qcm is formed by ion implantation or ion implantation to form an electrode.
  • the lower conductive portion 33 is formed by an electrode plate made of a metal material joined to the concave portion 11A of the lower substrate 11.
  • the present embodiment is configured as described above. However, when the second vibrating body 16 vibrates (displaces) in the Z-Z direction due to the force of the coil due to the rotation of the sensor, the displacement occurs. Since the capacitance between the upper conductive part 32 and the lower conductive part 33, which constitute the electrodes constituting the quantity detection part 31, changes, this capacitance is detected and this is used as an angular velocity signal. And outputs it to the signal processing circuit. Thereby, the displacement amount detecting section 31 can accurately detect the angular velocity of the rotational force applied to each of the support shafts 15 and 17 as the capacitance.
  • the upper conductive portion 32 is formed as an electrode by forming a low-resistance portion on a part of the upper substrate 12, but the lower surface of the upper substrate 12 is made of a metal material. It is also possible to adopt a configuration in which an electrode plate made of a metal is joined, and it is only necessary that the conductive portion can detect the capacitance between the electrodes.
  • the vibration generating section 18 as the vibration generating means is composed of the movable-side conductive section 18A and the fixed-side conductive section 18B.
  • a conductive portion as a heater is formed in a part of the support beam 15 of the above, and heat is generated by intermittently applying a current to the conductive portion, and the thermal expansion due to the generated heat is used.
  • Each of the vibrators 14 and 16 may be configured to vibrate, or other vibration generating means may be used.
  • the case where the first vibrating body 14 is supported in a cantilever manner by the single first supporting beam 15 has been described as an example.
  • the first vibrating body 14 is supported from both sides by a pair of supporting beams 15 and 15 'located on the supporting axis 0-O, and a doubly supported structure is adopted. It may be.
  • a vibration generating section may be provided on the support beam 15 '.
  • the case where the diffusion resistances 19A and 19B are used as the piezoresistive elements constituting the displacement amount detection unit 19 has been described as an example.
  • the piezoresistance effect of a field-effect transistor may be used.
  • the first vibrating body and the second vibrating body are caused to vibrate horizontally with respect to the substrate by the vibration generating means, while being centered on the support axis of the first support beam.
  • the displacement in the vertical direction of the second vibrator which is displaced in the vertical direction by the force of the coil, is detected by the displacement detector. Therefore, adding to each vibrator By effectively reducing the viscous drag force of the gas, the amplitude can be increased and the angular velocity detection sensitivity can be improved.
  • the displacement detection means detects the displacement of the first support beam. This can effectively prevent back ground noise, accurately detect minute angular velocities, and improve detection sensitivity and detection accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Description

明 細 書 角速度セ ンサ 技術分野
本発明は、 例えば車両や航空機等の回転方向, 姿勢等 を検出するのに用いて好適な角速度センサに関する。 背景技術
最近、 比較的小型な角速度セ ンサと して、 振動型の角 速度センサが開発されている。 この形式の角速度センサ は、 コ リ オ リ の力が角速度に比例する こ とを利用 し、 圧 電材料を用いて振動体に作用する変位を角速度と して電 気的に検出する ものである。
このため、 この形式の角速度センサは、 非常に精密な 加工が要求され、 高価な ものとなるため、 半導体製造技 術を利用 して製造する方法が提案されている (例えば、 特開昭 6 1 — 1 1 4 1 2 3号公報、 特開昭 6 1 - 1 3 9 7 1 9号公報) 。
そ こで、 特開昭 6 1 — 1 3 9 7 1 9号公報に示される よ う な従来技術による角速度セ ンサについて、 図 1 2 を 参照 しつつ説明する。
図 1 2 において、 1 はシ リ コ ン材料からなる基板を示 し、 該基板 1 は、 図中下側に位置する下側基板 1 Αと、 該下側基板 1 A上に設けられた上側基板 1 B とから大略 構成され、 該各基板 1 A , 1 B間には後述する片持梁 2 の振動を許す空間 1 Cが形成されている。
2 は基板 1 の上側基板 1 Bにエッ チング技術等を用い て一体形成された薄肉板状の片持梁を示 し、 該片持梁 2 は、 その基端 2 A側が上側基板 1 Bに固定された固定端 とな り、 その先端 2 B側が基板 1 に対して垂直な上, 下 方向に振動可能な自由端となっている。 また、 該片持梁 2 の基端 2 A側には、 幅方向の中心に位置 して長手方向 に伸びる角形状のス リ ツ ト 3 が穿設されている。
4 は片持梁 2 の先端 2 B上面側に形成された電極を示 し、 該電極 4 は リ ー ド線を介して所定の周波数信号を発 振する発振回路 (いずれも図示せず) と接続されている 。 そ して、 発振回路から所定の周波数信号が電極 4 を介 して片持梁 2 に印加される と、 該片持梁 2 は下側基板 1 Aとの間に発生する静電力によ り上, 下方向に振動する よ う になつている。
5 , 5 はス リ ッ ト 3 の左, 右に位置 して片持梁 2 の基 端 2 A側に設けられたピエゾ抵抗素子を示 し、 該各ピエ ゾ抵抗素子 5 は、 基板 1 の回転時に片持梁 2 に生じる応 力を抵抗値変化と して検出 し、 これを回転方向の角速度 と して信号処理回路 (図示せず) に出力する ものである 従来技術による角速度セ ンサは上述の如き構成を有す る もので、 発振回路から電極 4 を介して所定の周波数信 号を印加する と静電力が発生し、 片持梁 2 の先端 2 B側 は例えば自身の共振周波数で基板 1 に垂直な上, 下方向 に振動する。 そ して、 この振動状態で、 基板 1 に回転軸 0を中心とする回転力 Tが加わる と、 片持梁 2 にはコ リ オ リ の力 F , F ' によってよ じれ (応力) が生じ、 この 回転によるよ じれは、 ス リ ッ ト 3 の左, 右に圧縮応力 C , 引張応力 E と してそれぞれ表われる。 これによ り、 各 ピエゾ抵抗素子 5 は、 これら圧縮応力 C , 引張応力 Eに 応じた信号を出力 し、 回転力 Tの角速度を検出する。 と こ ろで、 上述した従来技術による角速度セ ンサでは 、 片持梁 2 を上. 下方向に振動させる こ とによ り、 コ リ オ リ の力を利用 して、 回転力 Tの角速度に応じた応力を 各ピエゾ抵抗素子 5 によ り検出 している。 しかし、 常時 、 片持梁 2 を基板 1 に垂直な方向に振動させているから 、 空気の粘性抵抗を受け易 く 、 励振構造が複雑化する。
このため、 上述した従来技術による ものでは、 空気の 粘性抵抗によって、 片持梁 2 を振動させるためのェネル ギが徒に浪費されて しまい、 エネルギ効率が極めて低い ばか りか、 この粘性抵抗力のために、 片持梁 2 の振幅を 大き く できず、 各ピエゾ抵抗素子 5 による角速度の検出 感度が低いという問題がある。
また、 従来技術による角速度セ ンサは、 片持梁 2 を励 振させつつ該片持梁 2 に生じたねじれを検出する構造で あるから、 角速度の検出感度が低いという問題がある。 即ち、 従来技術による ものでは、 励振用の梁と検出用の 梁とが同一であるから、 コ リ オ リ の力を利用するために 片持梁 2 を振動させる と、 該片持梁 2 の振動によ って片 持梁 2 の基端 2 A側にね じれが生じる。 そ して、 このね じれを各ピエゾ抵抗素子 5 が検出するため、 バッ ク グラ ゥ ン ドノ イ ズが増大し、 微小な角速度を検出する こ とが できず、 角速度の検出感度や検出精度が大幅に低下する という問題がある。
本発明は上述した従来技術の問題に鑑みなされたもの で、 振動体に加わる気体の粘性抵抗力を低減する と共に 、 ノ イ ズを低減して角速度の検出感度等を向上でき るよ う に した角速度セ ンサを提供する こ とを目的とする。 発明の開示 上述した課題を解決するために本発明が採用する構成 は、 基板と、 該基板に第 1 の支持梁を介 して支持され、 該基板に対し水平方向に振動可能に設けられた第 1 の振 動体と、 前記第 1 の支持梁の支持軸上に位置して該第 1 の振動体に第 2 の支持梁を介して水平に支持され、 前記 基板に対し水平および垂直方向に振動可能に設けられた 第 2 の振動体と、 前記第 1 の振動体を前記基板に対し水 平方向に振動させる振動発生手段と、 該振動発生手段で 振動を与えている状態で、 前記第 2 の振動体が垂直方向 に変位したときの変位量を検出する変位量検出手段とか らなる。
こ のよ う に構成される角速度セ ンサにおいては、 振動 発生手段によ り第 1 の振動体を基板と水平方向に振動さ せる と、 第 2 の振動体は該第 1 の振動体と共に水平方向 に振動する。 そ して、 こ の状態で、 センサ全体が第 1 の 支持梁の支持軸を中心と して回転する と、 第 2 の振動体 にはこの回転力の角速度に応じたコ リ オ リ の力が加わる から、 このコ リ オ リ の力によって該第 2 の振動体は基板 と垂直な方向に変位する。 これによ り、 第 2 の振動体の 垂直方向の変位量は変位量検出手段によって検出され、 前記回転力の角速度信号と して出力される。
この場合、 前記振動発生手段は、 前記第 1 の支持梁の 幅方向両端側に設けられた可動側導電部と、 該可動側導 電部と対向 して前記基板側に設けられた固定側導電部と から構成し、 該各導電部に周波数信号を与える こ とによ り、 第 1 の振動体を第 2 の振動体と共に振動させるよ う に しう る。
また、 前記変位量検出手段は、 前記第 2 の支持梁の幅 方向に離間して設けられた一対のピエゾ抵抗素子と、 前 記第 1 の振動体に設けられた一対の ピエゾ抵抗素子とに よ ってプリ ッ ジ回路と して構成しう る。
また、 前記変位量検出手段は、 前記第 2 の振動体に設 けられた一の導電部と、 該導電部と対向 して前記基板に 設けられた他の導電部とからな り、 前記第 2 の振動体の 垂直方向変位を該各導電部間の静電容量の変化と して検 出する構成と しう る。
さ らに、 本発明にあっては、 前記第 1 の振動体を第 1 の支持梁を介して片持支持された枠体と し、 前記第 2 の 振動体を前記第 1 の振動体の内側に位置 して第 2 の支持 梁を介して片持支持された板状体とする こ とによ り、 片 持梁式角速度セ ンサと しう る。
一方、 本発明にあっては、 前記第 1 の振動体を、 支持 軸上に位置する一対からなる第 1 の支持梁を介して両持 支持された枠体と し、 前記第 2 の振動体を前記第 1 の振 動体の内側に位置して第 2 の支持梁を介して片持支持さ れた板状体とする こ とによ り、 両持梁式角速度センサと しう る。
さ らにまた、 本発明による角速度セ ンサによれば、 前 記基板は下側基板と該下側基板に絶縁層を介して接合さ れた上側基板とからな り、 前記第 1 の振動体, 第 2 の振 動体は上側基板を加工する こ とによ り該上側基板と一体 形成してなる構成と しう る。 図面の簡単な説明
図 1 は本発明の第 1 の実施例による角速度セ ンサを保 護層を除去した状態で示す斜視図である。
図 2 は図 1 中の矢示 I I - I I方向を拡大して示す断面図 である。 図 3 は図 1 中の矢示 I I I — I I I 方向を拡大して示す断 面図である。
図 4 は図 1 中の矢示 I V - I V方向を拡大して示す断面図 である。
図 5 は酸化膜形成工程を示す断面図である。
図 6 は凹部形成工程を示す断面図である。
図 7 は接合工程を示す断面図である。
図 8 は素子形成工程を示す断面図である。
図 9 は振動体形成工程を示す断面図である。
図 1 0 は本発明の第 2 の実施例による角速度センサを 示す図 2 と同様位置の断面図である。
図 1 1 は本発明の変形例による角速度セ ンサを保護層 を除去した状態で示す要部斜視図である。
図 1 2 は従来技術による角速度センサを示す一部破断 の斜視図である。 発明を実施するための最良の形態
以下、 本発明の実施例を図 1 ない し図 1 1 に基づき、 独立した単一の角速度センサと して構成した場合を例に 挙げて説明する。
図 1 ないし図 1 0 は本発明の第 1 の実施例を示す。 図中、 1 1 はシ リ コ ン材料等から形成された下側基板 、 1 2 は該下側基板 1 1 の上側に絶縁層と しての酸化膜 1 3 を介して接合され、 シ リ コ ン材料等から形成された 上側基板をそれぞれ示し、 該上側基板 1 2 にはエツチ ン グ技術等を用いて後述する第 1 の振動体 1 4 , 第 2 の振 動体 1 6等が一体形成されている。 また、 前記下側基板 1 1 の中央部には図 2 に示す如 く 凹部 1 1 Aが形成され ている。 1 4 は上側基板 1 2 のほぼ中央部に設けられ、 角枠状 に形成された第 1 の振動体を示 し、 該第 1 の振動体 1 4 は第 1 の支持梁 1 5 を介 して上側基板 1 2 と水平に片持 支持されている。 こ こで、 前記第 1 の支持梁 1 5 は、 基 端側が上側基板 1 2 の端部に接続された固定端とな り、 先端側が上側基板 1 2 の中央部に向けて延設されて自由 端となって、 当該自由端側は第 1 の振動体 1 4 と一体的 に形成されている。 そ して、 該第 1 の振動体 1 4 は、 後 述の振動発生部 1 8 によ って第 1 の支持梁 1 5 に振動が 加えられる と、 上側基板 1 2 と同一平面上で、 かつ該第 1 の支持梁 1 5 の支持軸 0 — 0 と直交する X - X方向に 振動する ものである。
1 6 は第 1 の振動体 1 4 の内側に位置 して上側基板 1 2 の中央部に設けられ、 方形板状に形成された第 2 の振 動体を示し、 該第 2 の振動体 1 6 は、 第 1 の振動体 1 4 に第 2 の支持梁 1 7 を介 して水平に片持支持され、 図 2 に も示す如 く 、 上側基板 1 2 と水平で、 かつ支持軸 0 - 0 と直交する X - X方向と、 上側基板 1 2 に垂直な Z - Z方向とに対して、 それぞれ振動可能に設けられている 。 そ して、 該第 2 の振動体 1 6 は第 1 の振動体 1 4 と共 に X — X方向に振動しつつ、 支持軸 0 — 0を中心と して 回転力 Tが加わる と、 これによ り生じたコ リ オ リ の力を 受けて図 2 中の Z — Z方向に振動する ものである。
こ こで、 前記第 2 の支持梁 1 7 は、 その基端側が第 1 の支持梁 1 5 と対向 して第 1 の振動体 1 4 に接続され、 その先端側が第 1 の振動体 1 4 の中央部に向けて延設さ れた自由端とな り、 さ らに、 その支持軸は第 1 の支持梁 1 5 の支持軸 0 — 0 と一致している。 そ して、 該第 2 の 支持梁は、 振動発生部 1 8 によって第 1 の振動体 1 4 が X - X方向に振動した場合に、 こ の水平方向の振動を増 幅させて第 2 の振動体 1 6 に伝達すべく 、 その長さ寸法 、 厚み寸法等が決定されている。
1 8 , 1 8 は第 1 の支持梁 1 5 の両側に位置して上側 基板 1 2 に設けられた振動発生手段と しての振動発生部 を示 し、 該各振動発生部 1 8 は、 図 3 に も示す如 く 、 第 1 の支持梁 1 5 の幅方向両端部に設けられ、 凹凸状に形 成された可動側導電部 1 8 Aと、 該可動側導電部 1 8 A と対向 して上側基板 1 2 に設けられ、 該可動側導電部 1 8 A と微小な隙間を介 して互い違いに組合される固定側 導電部 1 8 B とから構成され、 該各導電部 1 8 A, 1 8 Bは所定の周波数信号を供給する発振回路 (図示せず) とそれぞれ接続されている。 そ して、 該各振動発生部 1 8 は、 発振回路からの周波数信号が各導電部 1 8 A, 1 8 Bに印加される と、 これによ り該各導電部 1 8 A , 1 8 B間に吸引力, 反発力からなる静電力を生ぜしめ、 こ の静電力によって第 1 の振動体 1 4 を第 2 の振動体 1 6 と共に X— X方向に振動させる ものである。
1 9 は第 1 の振動体 1 4 と第 2 の支持梁 1 7 の基端側 との間に直って設けられた変位量検出手段と しての変位 量検出部を示し、 該変位量検出部 1 9 は、 図 4 にも示す 如 く 、 第 2 の支持梁 1 7 に幅方向に離間して設けられた ピエゾ抵抗素子と しての第 1 の拡散抵抗 1 9 A, 1 9 A と、 第 2 の支持梁 1 7 の基端側に位置して第 1 の振動体 1 4上に離間して設けられたピエゾ抵抗素子と しての第 2 の拡散抵抗 1 9 B , 1 9 B とから構成されている。 こ こで、 該各拡散抵抗 1 9 A, 1 9 Bは、 上側基板 1 2 に リ ン、 ホウ素、 アル ミ ニウ ム、 ヒ素、 ア ンチモ ン等の不 純物を拡散する こ とによ って ピエゾ抵抗素子となる もの で、 該各拡散抵抗 1 9 A , 1 9 Bは金属配線 2 0 , 2 0 , …によってブリ ッ ジ回路に組まれ、 例えば上側基板 1 2 に形成された信号処理回路 (図示せず) に接続されて いる。
こ こで、 センサの回転に伴な ぅ コ リ オ リ の力によ って
、 第 2 の振動体 1 6 が Ζ — Ζ方向に振動 (変位) する と 、 これによ り第 2 の支持梁 1 7 に歪み (応力) が生じる 。 そ こで、 前記変位量検出部 1 9 は、 第 2 の支持梁 1 7 に生 じる歪み (応力) を抵抗値変化と して検出 し、 これ を角速度信号と して信号処理回路に出力する ものである こ のよ う に、 前記各第 1 の拡散抵抗 1 9 Αは、 第 2 の 支持梁 1 7 の幅方向両端側に離間して設けられているた め、 一方の拡散抵抗 1 9 Αには圧縮応力が作用 し、 他方 の拡散抵抗 1 9 Αには逆の引張応力が作用する。 従って 、 該各拡散抵抗 1 9 Αの ピエゾ抵抗効果による抵抗変化 率も互いに逆符号となるので、 信号処理回路によって両 者の抵抗変化率を比較演算する こ とによ り、 角速度を検 出する こ とができ る。
なお、 図 2 に示す 2 1 , 2 1 , …は上側基板 1 2 の上 面側に形成された窒化膜等の保護層である。
本実施例による角速度センサは上述の如き構成を有す る もので、 次に、 その製造方法について図 5 ない し図 9 を参照しつつ説明する。
まず、 図 5 に示す酸化膜形成工程では、 例えば熱酸化 法等の手段を用いて、 下側基板 1 1 の上面側に酸化膜を 形成 し、 上側基板 1 2 を支持する部分を残してエツ チ ン グによ り除去し、 角枠状の酸化膜 1 3 を形成する。
次に、 図 6 に示す凹部形成工程では、 下側基板 1 1 の 上面側を第 2 の振動体 1 6 に対応する部分だけエツチ ン グによ り除去し、 凹部 1 1 Aを形成する。
そ して、 図 7 に示す接合工程では、 別工程で形成され た上側基板 1 2 を下側基板 1 1 の上側に酸化膜 1 3 を介 して搭載し、 シ リ コ ンの直接接合技術等を用いて両者を 接合 し、 該上側基板 1 2 を所定の厚さまで研磨する。
さ らに、 図 8 に示す素子形成工程では、 上側基板 1 2 の上面側に、 不純物導入技術, フ ォ ト リ ソ グラフ ィ 技術 等の手段を用いて、 素子たる振動発生部 1 8 (拡散抵抗 1 9 Aのみ図示) 、 変位量検出部 1 9 、 金属配線 2 0 ( 図示せず) 等を形成し、 これらを保護すべく 、 上側基板 1 2 の上面側にこれらの素子を覆う保護層 2 1 を形成す る o
最後に、 図 9 に示す振動体形成工程では、 上側基板 1 2 を所定のパターン形状でエッチングする こ とによ り、 各振動体 1 4 , 1 6 および各支持梁 1 5 , 1 7 を形成す る。 なお、 こ のときに、 各振動発生部 1 8 の各導電部 1 8 A , 1 8 Bが凹凸状に形成される。
本実施例による角速度センサは、 このよ う に して製造 される もので、 発振回路から各振動発生部 1 8 に周波数 信号を印加する と、 該各振動発生部 1 8 は各導電部 1 8 A , 1 8 B間に生じた静電力によ り、 第 1 の支持梁 1 5 を上側基板 1 2 と水平で、 かつ第 1 の支持梁 1 5 の支持 軸 0 — ◦ と直交する X— X方向に振動させる。
これによ り、 第 1 の振動体 1 4 は X— X方向に振動し
、 該第 1 の振動体 1 4 の振動に伴なつて第 2 の振動体 1 6 も X— X方向に振動する。 こ こで、 該第 2 の振動体 1 6 は第 2 の支持梁 1 7 を介して第 1 の振動体 1 4 に接続 されているため、 その X — X方向の振幅は第 1 の振動体 1 4 よ り も大き く なつている。
そ して、 各振動体 1 4 , 1 6 が X — X方向に振動して いる状態で、 支持軸 0 — 0を中心とする回転力 Tが加わ り、 センサ全体が回転する と、 第 2 の振動体 1 6 は、 こ の回転力によ り生じた角速度に比例する コ リ オ リ の力を 受けて、 第 2 の支持梁 1 7 に支持されつつ、 図 2 中の Z 一 Z方向に振動する。
これによ り、 第 2 の支持梁 1 7 には、 第 2 の振動体 1 6 の変位量に応じた歪みが発生し、 変位量検出部 1 9 は 、 こ の歪みによる圧縮応力, 引張応力を各拡散抵抗 1 9 A, 1 9 Bの ピエゾ抵抗効果を利用 して検出 し、 これを 信号処理回路に角速度信号と して出力する。
か く して、 本実施例によれば、 第 1 の支持梁 1 5 によ り上側基板 1 2 と水平方向で、 かつ第 1 の支持梁 1 5 の 支持軸 0 - 0 と直交する X - X方向に振動可能に設けら れた角枠状の第 1 の振動体 1 4 と、 第 1 の支持梁 1 5 の 支持軸 0 - 0上に位置 して該第 1 の振動体 1 4 内に第 2 の支持梁 1 7 を介して水平に支持され、 前記 X - X方向 および上側基板 1 2 と垂直な Z - Z方向に振動可能に設 けられた第 2 の振動体 1 6 とを備え、 振動発生部 1 8 , 1 8 によって各振動体 1 4 , 1 6 を X— X方向に振動さ せつつ、 コ リ オ リ の力によ って Z - Z方向に振動する第 2 の振動体 1 6 の変位量を変位量検出部 1 9 によ って検 出する構成と したから、 各支持梁 1 5 , 1 7 の支持軸 0 一 0を中心と して加わった回転力 Tの角速度を正確に検 出でき、 以下の効果を奏する。
第 1 に、 各振動発生部 1 8 によ って、 各振動体 1 4 , 1 6 を上側基板 1 2 と水平に振動させる構成と したから 、 各振動体 1 4 , 1 6 が周囲の空気から受ける粘性抵抗 力を大幅に低減する こ とができ、 該各振動体 1 4 , 1 6 の振幅を大き く して角速度の検出感度を向上する こ とが でき る。
第 2 に、 第 1 の支持梁 1 5 を励振用梁と して使用 し、 第 2 の支持梁 1 7 を検出用梁と して使用する構成である から、 第 1 の支持梁 1 5 の振動を変位量検出部 1 9 が検 出 してバッ ク グラ ウ ン ドノ イズが増大するのを効果的に 防止でき、 微小な角速度を正確に検出 して、 検出感度や 検出精度を大幅に向上できる。
第 3 に、 シ リ コ ン材料からなる各基板 1 1 , 1 2 に、 エッ チング等の半導体微細加工技術を用いて凹部 1 1 A
、 各振動体 1 4 . 1' 6等を一体形成する構成と したから 、 同一素材のシ リ コ ンウェハから複数個の角速度セ ンサ を容易に製造する こ とができ、 均一な特性を有する角速 度センサを効果的に量産するこ とができ、 コス トを大幅 に低減できる。
第 4 に、 各支持梁 1 5 , 1 7 の形状、 即ち、 長さ寸法 、 幅寸法、 厚さ寸法を適宜調整する こ とによ り 、 角速度 の検出範囲、 要求精度等の諸条件に応じた弾性率を容易 に得る こ とができ、 市場要求に即応できる。
次に、 図 1 0 は本発明に係る第 2 の実施例を示 し、 第 1 の実施例と同一構成要素には同一符号を付し、 その説 明を省略する。
然るに、 本実施例の特徴は、 第 1 の実施例に用いた拡 散抵抗 1 9 A, 1 9 Aと 1 9 B, 1 9 Bからなる ピエゾ 抵抗式変位量検出部 1 9 に替え、 静電容量式変位量検出 部 3 1 を採用 したこ とにある。
即ち、 3 1 は変位量検出手段と しての静電容量式の変 位量検出部を示し、 該変位量検出部 3 1 は、 第 2 の振動 体 1 6 に設けられた上側導電部 3 2 と、 下側基板 1 1 の 凹部 1 1 A内で、 上側導電部 3 2 と対向 した位置に設け られた下側導電部 3 3 とから構成されている。 こ こで、 上側導電部 3 2 は、 シ リ コ ン材料からなる上側基板 1 2 のう ち、 第 2 の振動体 1 6 となる部位に、 リ ン、 ヒ素、 ボロ ン等の不純物を拡散し、 またはイオン注入する こ と によ って、 0 . 0 1 〜 0. 0 2 Q c m程度の低抵抗部を 形成し、 電極とする ものである。 一方、 下側導電部 3 3 は下側基板 1 1 の凹部 1 1 Aに接合された金属材料から なる電極板によ って形成されている。
本実施例はこ のよ う に構成されるが、 セ ンサの回転に 伴な ぅ コ リ オ リ の力によって第 2 の振動体 1 6 が Z — Z 方向に振動 (変位) する と、 変位量検出部 3 1 を構成す る電極となる上側導電部 3 2 と下側導電部 3 3 との間の 静電容量が変化するから、 この静電容量を検出 し、 これ を角速度信号と して信号処理回路に出力する。 これによ つて、 変位量検出部 3 1 は、 各支持軸 1 5 , 1 7 に加わ つた回転力の角速度を、 静電容量と して正確に検出する こ とができる。 なお、 上記第 2 の実施例において、 上側 導電部 3 2 は上側基板 1 2 の一部に低抵抗部を形成する こ とによって電極とする構成と したが、 上側基板 1 2 の 下面に金属材料からなる電極板を接合する構成と して も よいもので、 電極間静電容量が検出可能な導電部であれ ばよい。
なお、 前記各実施例では、 振動発生手段と しての振動 発生部 1 8 を可動側導電部 1 8 Aおよび固定側導電部 1 8 B とから構成し、 該各導電部 1 8 A, 1 8 B間に生じ る静電力によって、 各振動体 1 4 , 1 6 を振動させる も のと して述べたが、 本発明はこれに限らず、 例えば第 1 の支持梁 1 5 の一部に ヒータ と しての導電部を形成し、 該導電部に間欠的に電流を通電する こ とによ り発熱せし め、 こ の発熱による熱膨張を利用 して各振動体 1 4 , 1 6 を振動させる構成と してもよ く 、 他の振動発生手段を 用いてもよい。
また、 前記各実施例では、 単一の第 1 の支持梁 1 5 に よって第 1 の振動体 1 4 を片持梁式に支持する場合を例 に挙げて説明 したが、 図 1 1 による変形例と して示す如 く 、 支持軸 0 - O上に位置する一対の支持梁 1 5 , 1 5 ' によ って第 1 の振動体 1 4 を両側から支持し、 両持梁 式の構成と してもよい。 この場合、 支持梁 1 5 ' に振動 発生部を設けてもよい。
さ らに、 前記各実施例では、 変位量検出部 1 9 を構成 する ピエゾ抵抗素子と して、 拡散抵抗 1 9 A, 1 9 Bを 用いる場合を例に挙げて説明したが、 これに替えて、 例 えば電界効果型 ト ラ ンジスタのピエゾ抵抗効果を利用 し て も よい。
一方、 前記各実施例では、 独立した単体の角速度セ ン サと して用いる場合を例に挙げて説明 したが、 本発明は これに限らず、 例えば車両に搭載される他の基板の一部 と して、 複数の角速度センサを形成する こ と もできる。 産業上の利用可能性
以上詳述した通り、 本発明によれば、 振動発生手段に よって第 1 の振動体と第 2 の振動体とを基板と水平に振 動させつつ、 第 1 の支持梁の支持軸を中心と して回転力 が加わった場合は、 コ リ オ リ の力によ り基板と垂直方向 に変位する第 2 の振動体の垂直方向の変位量を変位量検 出手段によ って検出する構成と したから、 各振動体に加 わる気体の粘性抵抗力を効果的に低減して、 振幅を大き ' く する こ とができ、 角速度の検出感度を向上する こ とが でき る。 また、 第 1 の支持梁を励振用梁と して使用 し、 第 2 の支持梁を検出用梁と して使用する構成と したから 、 変位量検出手段が第 1 の支持梁の変位を検出するのを 防止して、 バッ ク グラウ ン ドノ イズを効果的に低減する こ とができ、 微小な角速度を正確に検出 して、 検出感度 や検出精度を向上できる。

Claims

請求の範囲
1 . 基板と、 該基板に第 1 の支持梁を介して支持され
、 該基板に対し水平方向に振動可能に設けられた第 レの 振動体と、 前記第 1 の支持梁の支持軸上に位置して該第 1 の振動体に第 2 の支持梁を介して水平に支持され、 前 記基板に対し水平および垂直方向に振動可能に設けられ た第 2 の振動体と、 前記第 1 の振動体を前記基板に対し 水平方向に振動させる振動発生手段と、 該振動発生手段 で振動を与えている状態で、 前記第 2 の振動体が垂直方 向に変位したときの変位量を検出する変位量検出,手段と . から構成してなる角速度センサ。
2 . 前記振動発生手段は、 前記第 1 の支持梁の幅方向 両端側に設けられた可動側導電部と、 該可動側導電部と 対向 して前記基板側に設けられた固定側導電部とから構 成し、 該各導電部に周波数信号を与える こ とによ り、 第 1 の振動体を第 2 の振動体と共に振動させるよ う に して なる請求項 1 記載の角速度センサ。
3 . 前記変位量検出手段は、 前記第 2 の支持梁の幅方 向に離間して設けられた一対のピエゾ抵抗素子と、 前記 第 1 の振動体に設けられた一対のピエゾ抵抗素子とによ つてプリ ッ ジ回路と して構成してなる請求項 1 記載の角 速度セ ンサ。
4 . 前記変位量検出手段は、 前記第 2 の振動体に設け られた一の導電部と、 該導電部と対向 して前記基板に設 けられた他の導電部とからな り、 前記第 2 の振動体の垂 直方向変位を該各導電部間の静電容量の変化と して検出 する請求項 1 記載の角速度セ ンサ。
5 . 前記第 1 の振動体は第 1 の支持梁を介して片持支 持された枠体からな り 、 前記第 2 の振動体は前記第 1 の 振動体の内側に位置 して第 2 の支持梁を介 して片持支持 された板状体からなる請求項 1 記載の角速度セ ンサ。
6 . 前記第 1 の振動体は、 支持軸上に位置する一対か らな る第 1 の支持梁を介 して両持支持された枠体からな り 、 前記第 2 の振動体は前記第 1 の振動体の内側に位置 して第 2 の支持梁を介 して片持支持された板状体からな る請求項 1 記載の角速度セ ンサ。
7 . 前記基板は下側基板と該下側基板に絶縁層を介 し て接合された上側基板とからな り 、 前記第 1 の振動体, 第 2 の振動体は上側基板を加工する こ とによ り該上側基 板と一体形成してなる請求項 1 記載の角速度セ ンサ。
PCT/JP1994/000114 1993-01-29 1994-01-28 Angular velocity sensor WO1994017363A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94905219A EP0634629B1 (en) 1993-01-29 1994-01-28 Angular velocity sensor
US08/284,611 US5559291A (en) 1993-01-29 1994-01-28 Angular velocity sensor
DE69420481T DE69420481T2 (de) 1993-01-29 1994-01-28 Winkelgeschwindigkeitsmessaufnehmer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3453493 1993-01-29
JP5/34534 1993-01-29

Publications (1)

Publication Number Publication Date
WO1994017363A1 true WO1994017363A1 (en) 1994-08-04

Family

ID=12416950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000114 WO1994017363A1 (en) 1993-01-29 1994-01-28 Angular velocity sensor

Country Status (4)

Country Link
US (1) US5559291A (ja)
EP (1) EP0634629B1 (ja)
DE (1) DE69420481T2 (ja)
WO (1) WO1994017363A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19503623B4 (de) * 1995-02-03 2008-01-10 Robert Bosch Gmbh Drehratensensor
DE19519488B4 (de) * 1995-05-27 2005-03-10 Bosch Gmbh Robert Drehratensensor mit zwei Beschleunigungssensoren
JP3028766B2 (ja) * 1995-12-05 2000-04-04 株式会社村田製作所 角速度センサ
US5895866A (en) * 1996-01-22 1999-04-20 Neukermans; Armand P. Micromachined silicon micro-flow meter
DE19641284C1 (de) * 1996-10-07 1998-05-20 Inst Mikro Und Informationstec Drehratensensor mit entkoppelten orthogonalen Primär- und Sekundärschwingungen
JP3555388B2 (ja) * 1997-06-30 2004-08-18 株式会社デンソー 半導体ヨーレートセンサ
US6192756B1 (en) * 1998-02-12 2001-02-27 Ngk Insulators, Ltd. Vibrators vibratory gyroscopes a method of detecting a turning angular rate and a linear accelerometer
US6393913B1 (en) * 2000-02-08 2002-05-28 Sandia Corporation Microelectromechanical dual-mass resonator structure
US6595056B2 (en) * 2001-02-07 2003-07-22 Litton Systems, Inc Micromachined silicon gyro using tuned accelerometer
US6465355B1 (en) * 2001-04-27 2002-10-15 Hewlett-Packard Company Method of fabricating suspended microstructures
US7721590B2 (en) * 2003-03-21 2010-05-25 MEAS France Resonator sensor assembly
JP4654668B2 (ja) 2004-03-12 2011-03-23 パナソニック電工株式会社 ジャイロセンサおよびそれを用いたセンサ装置
KR100908124B1 (ko) * 2007-07-09 2009-07-16 삼성전자주식회사 혈압측정용 압력 센서 및 그 제조방법
JP4640459B2 (ja) * 2008-07-04 2011-03-02 ソニー株式会社 角速度センサ
KR20110139008A (ko) * 2010-06-22 2011-12-28 삼성전기주식회사 각속도 센서를 이용한 타이어 위치 자동인식 시스템 및 방법
CN102393191A (zh) * 2011-11-18 2012-03-28 郑州煤矿机械集团股份有限公司 矿用本安型双轴倾角传感器
KR101540154B1 (ko) * 2013-10-04 2015-07-28 삼성전기주식회사 각속도 센서 및 그의 제조방법
WO2020122901A1 (en) * 2018-12-12 2020-06-18 Micro Motion, Inc. Planar vibratory viscometer, viscometer member, and related method
CN113167705B (zh) * 2018-12-12 2024-10-15 高准有限公司 平面振动密度计、密度计构件和相关方法
US11448661B2 (en) * 2019-01-03 2022-09-20 Viettel Group Coaxial angular velocity sensor system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185118A (ja) * 1986-02-04 1987-08-13 ザ・チヤ−ルズ・スタ−ク・ドレイパ・ラボラトリ・インコ−ポレイテツド 振動型デイジタル積分加速度計
US5016072A (en) * 1988-01-13 1991-05-14 The Charles Stark Draper Laboratory, Inc. Semiconductor chip gyroscopic transducer
JPH04242114A (ja) * 1991-01-16 1992-08-28 Japan Aviation Electron Ind Ltd 振動型角速度センサ
JPH04296657A (ja) * 1990-12-22 1992-10-21 Robert Bosch Gmbh 回転レートセンサ
JPH05248872A (ja) * 1992-03-06 1993-09-28 Toshiba Corp 慣性センサー
JPH05312576A (ja) * 1992-05-08 1993-11-22 Murata Mfg Co Ltd 角速度センサ
JPH05333038A (ja) * 1992-06-03 1993-12-17 Canon Inc 角速度センサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2544646A (en) * 1948-06-16 1951-03-13 Sperry Corp Angular velocity measuring instrument
US4930351A (en) * 1988-03-24 1990-06-05 Wjm Corporation Vibratory linear acceleration and angular rate sensing system
US5025346A (en) * 1989-02-17 1991-06-18 Regents Of The University Of California Laterally driven resonant microstructures
DE4032559C2 (de) * 1990-10-13 2000-11-23 Bosch Gmbh Robert Drehratensensor und Verfahren zur Herstellung
US5331853A (en) * 1991-02-08 1994-07-26 Alliedsignal Inc. Micromachined rate and acceleration sensor
US5359893A (en) * 1991-12-19 1994-11-01 Motorola, Inc. Multi-axes gyroscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185118A (ja) * 1986-02-04 1987-08-13 ザ・チヤ−ルズ・スタ−ク・ドレイパ・ラボラトリ・インコ−ポレイテツド 振動型デイジタル積分加速度計
US5016072A (en) * 1988-01-13 1991-05-14 The Charles Stark Draper Laboratory, Inc. Semiconductor chip gyroscopic transducer
JPH04296657A (ja) * 1990-12-22 1992-10-21 Robert Bosch Gmbh 回転レートセンサ
JPH04242114A (ja) * 1991-01-16 1992-08-28 Japan Aviation Electron Ind Ltd 振動型角速度センサ
JPH05248872A (ja) * 1992-03-06 1993-09-28 Toshiba Corp 慣性センサー
JPH05312576A (ja) * 1992-05-08 1993-11-22 Murata Mfg Co Ltd 角速度センサ
JPH05333038A (ja) * 1992-06-03 1993-12-17 Canon Inc 角速度センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0634629A4 *

Also Published As

Publication number Publication date
EP0634629A1 (en) 1995-01-18
EP0634629A4 (en) 1995-07-05
DE69420481T2 (de) 2000-05-18
DE69420481D1 (de) 1999-10-14
EP0634629B1 (en) 1999-09-08
US5559291A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
WO1994017363A1 (en) Angular velocity sensor
US6430998B2 (en) Resonant element
US6155115A (en) Vibratory angular rate sensor
JP3123301B2 (ja) 角速度センサ
US7603903B2 (en) Vibration-type angular rate sensor
US7188525B2 (en) Angular velocity sensor
US7546768B2 (en) Mounting structure of angular rate sensor
JP2888029B2 (ja) 角速度センサ
JP2000009472A (ja) 角速度センサ
JP3102320B2 (ja) センサ装置
JP3985796B2 (ja) 力学量センサ装置
JP2011117944A (ja) 加速度センサー
JPH04242114A (ja) 振動型角速度センサ
JP3265792B2 (ja) 角速度センサ
JP2002502493A (ja) 軸整合速度及び加速度センサ
JP3355812B2 (ja) 半導体ヨーレートセンサ
JP3186975B2 (ja) 力センサー
JPH10318758A (ja) 圧電マイクロ角速度センサおよびその製造方法
JP2001082964A (ja) 共振素子
JP3161057B2 (ja) 振動型センサの振動子
JPH09325031A (ja) 振動型角速度センサ
JPH07301536A (ja) 角速度センサ
JP2591931B2 (ja) 振動ジャイロ
JP3230331B2 (ja) 角速度センサ
JPH08178667A (ja) 半導体角速度センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1994905219

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08284611

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994905219

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994905219

Country of ref document: EP