WO1994016798A1 - Verfahren zur katalytischen zersetzung von reinem oder in gasgemischen enthaltenem distickstoffmonoxid - Google Patents

Verfahren zur katalytischen zersetzung von reinem oder in gasgemischen enthaltenem distickstoffmonoxid Download PDF

Info

Publication number
WO1994016798A1
WO1994016798A1 PCT/EP1994/000081 EP9400081W WO9416798A1 WO 1994016798 A1 WO1994016798 A1 WO 1994016798A1 EP 9400081 W EP9400081 W EP 9400081W WO 9416798 A1 WO9416798 A1 WO 9416798A1
Authority
WO
WIPO (PCT)
Prior art keywords
pure
catalytic decomposition
gas mixtures
dinitrogen monoxide
catalyst
Prior art date
Application number
PCT/EP1994/000081
Other languages
English (en)
French (fr)
Inventor
Thomas Fetzer
Wolfgang Buechele
Hermann Wistuba
Bernhard Otto
Gert Buerger
Paul Pijl
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US08/403,835 priority Critical patent/US5587135A/en
Priority to AU58827/94A priority patent/AU5882794A/en
Priority to KR1019950703005A priority patent/KR100230728B1/ko
Priority to DE59402378T priority patent/DE59402378D1/de
Priority to EP94905047A priority patent/EP0680374B1/de
Priority to JP51662394A priority patent/JP3553066B2/ja
Priority to CA002152816A priority patent/CA2152816C/en
Priority to UA95083847A priority patent/UA42712C2/uk
Publication of WO1994016798A1 publication Critical patent/WO1994016798A1/de
Priority to NO952887A priority patent/NO303622B1/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/487Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/30Improvements relating to adipic acid or caprolactam production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the invention relates to a process for the catalytic decomposition of pure nitrous oxide or nitrous oxide present in gas mixtures with a catalyst, produced by combining R-A1 2 0,
  • R stands for an element " of I., VII. And VIII. Subgroup of the Periodic Table of the Elements, with tin, lead, an element of the II. Main or subgroup of the Periodic Table of the Elements as oxide or salt or in elemental form and Calcine at temperatures from 300 to 1300 ° C and pressures from 0.1 to 200 bar.
  • the catalysts described therein leave something to be desired in terms of activity or service life or contain expensive elements such as noble metals.
  • nitrous oxide found at temperatures from 200 to 900 ° C, which is characterized in that a catalyst, prepared by combining CUAI 2 O 4 with tin, lead, an element of the II. Main or sub-group of the periodic table of the elements as an oxide or salt or in elemental form and calci-
  • the method according to the invention can be carried out as follows:
  • the process according to the invention can be carried out in such a way that pure gas mixtures containing nitrous oxide or nitrous oxide or exhaust gas containing nitrous oxide are heated in an oven or heat exchanger to the necessary reactor temperature of generally 200 to 900 ° C., preferably 250 to
  • reaction gas 45 800 ° C, particularly preferably 350 to 700 ° C preheated and then passed through a reaction tube filled with the catalyst described.
  • the preheating of the reaction gas can also be done directly in the Reaction tube take place on an upstream inert material layer which is at the reaction temperature.
  • the heat of reaction which is released during the decomposition of the dinitrogen monoxide can also be used to heat the catalyst and / or the inert material.
  • Dinitrogen monoxide can be in the purest form, in mixtures with oxygen or air, in mixtures with air, the larger amounts of water and / or larger amounts of other nitrogen oxides such as nitrogen
  • nitrogen oxides and other gases such as N0 X , N 2 , 0 2 , CO, C0 2 , H 2 0 and noble gases, in particular exhaust gases from adipic acid plants, are used, it being selective in the elements Nitrogen and oxygen can be decomposed without other nitrogen oxides
  • the nitrogen oxide content t ⁇ p x can generally be from 0 to 50% by volume, preferably from 1 to 40% by volume, particularly preferably from 10 to 30% by volume, and the N 2 0 content can as a rule 0.01 to 65 vol .-%, preferably 1 to 55 vol .-%, particularly preferably 5 to 45 vol .-%. It
  • nitrous oxide in mixtures with, for example, 20% water and 65% nitrogen dioxide (NO 2 ) can be selectively decomposed into the elements.
  • Suitable catalysts are those which, by combining 25 CuAl 2 O with the element as such, oxides or salts of tin, lead, an element of the II. Main or subgroup of the Periodic Table of the Elements and calcining at temperatures from 300 to 1300 ° C and pressures from 0.1 to 200 bar can be produced. These catalysts are free of precious metals (Ag, Au, Pd, Pt) and 30 have a BET surface area of 1 to 350 m 2 / g.
  • composition CuAl 2 0 in an Al 2 0 3 matrix go out and this with the same or higher concentration of tin, lead, an element of the II.
  • the mixing can be done, for example, by spraying, mechanical mixing, stirring, kneading, the ground solid of the composition CuAl 2 0, preferably in A1 2 0 3 , particularly preferably in ⁇ -Al 2 0 3 or preferably by impregnating an unmilled one Firmly- body of the composition CuAl 2 ⁇ , preferably in Al2O 3 , particularly preferably in ⁇ -Al 2 ⁇ 3 with tin, lead, an element of the II. main or subgroup of the periodic table of the elements as oxide or salt (for example in solution) or in elementary form.
  • the release of copper in elemental or oxidic form which generally leads to highly disperse distribution, can be induced by the calcination step comprising the elements tin, lead, the 2nd main or subgroup of the periodic table of the elements in elemental, oxidic or salt-like form, the copper in the spinel is partially (> 50 mol%, preferably> 70 mol%, particularly preferably> 90 mol%) or completely (100 mol%) substituted if the resulting spinel is thermodynamically more stable than that Output spinel CuAl 2 ⁇ .
  • the copper or copper oxide content in the ready-to-use catalyst is 0.1 to 50% by weight, preferably 1 to 40% by weight, particularly preferably 5 to 30% by weight.
  • Oxidic or salt-like compounds or the element as such are suitable as elements of the II. Main or subgroup of the Periodic Table of the Elements.
  • Examples of preferred salt-like compounds are carbonates, hydroxides, carboxylates, halides and oxidic anions such as nitrites, nitrates, sulfites, sulfates, phosphites, phosphates, pyrophosphates, halogenites, halogenates and basic carbonates
  • the preparation of the starting oxide of the composition CuAl 2 0 4 , preferably in the form of a spinel, is, for example, from Z. Phys. Chem., 141 (1984), 101-103.
  • a soluble compound such as a salt of the cation R, for example a nitrite, nitrate, sulfite, sulfate, carbonate, hydroxide, carboxylate, halide, halogenite and halogenate and subsequent thermal decomposition of the anion, has proven to be advantageous to the oxide.
  • Another possibility is to mix a compound such as a salt of the cation R with an oxygen-containing aluminum compound, for example by drying or in suspension, in particular by spray drying, compressing the material, for example by kneading, if appropriate by adding a suitable shaping aid, shaping by extrusion, drying and subsequent calcination to form the spinel.
  • the calcining temperature can be between 300 and 1300 ° C, preferably between 600 and 1000 ° C.
  • the doping of high-surface aluminum oxide supports, ie the formation of mixed oxides leads to an increase in the thermal resistance of the support (for example DE-A-34 03 328, DE-A-25 00 548, Appl. Catal. 7, 211 to 220 (1983) , J. Catal.
  • the foreign ions can contribute to the catalytic activity of the catalyst.
  • the following elements can generally be used for doping: alkali metals, alkaline earth metals, rare earth metals, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, B, Si, Ge , Sn, Pb, P, Bi.
  • the degree of substitution of aluminum oxide can be, for example, from 0.01 to 20% by weight.
  • the particle size of the copper oxide crystallites in the unused catalyst is between 1 and 100 nm, preferably between 3 and 70 nm, particularly preferably between 5 and 50 nm. by XRD (X-ray defraction) or TEM (transmission electron microscopy).
  • the catalysts of the invention contain mesopores from 2 to. 20 nm and macropores of more than 20 nm and BET surfaces between 1 and 350 m 2 / g, preferably between 10 and 200 m / g, particularly preferably between 25 and 150 m 2 / g and the porosity between 0 , 01 and 0.8 ml / g.
  • the catalysts preferably used in the process according to the invention generally contain 0.1 to 50% by weight, in particular 2 to 30% by weight, of copper oxide, based on the weight of the aluminum oxide.
  • the spinel-forming metal is present in the same or higher concentration than the copper (mol / mol).
  • the GHSV is usually between 500 and 50,000 Nl gas / 1 cat * h, preferably between 1500 and 20,000 Nl gas / 1 cat * h.
  • the inside diameter is 18 mm.
  • an inner tube with an outside diameter of 3.17 mm was used, in which a thermocouple can be easily moved.
  • the reactor in the heating zone was filled with inert material (steatite).
  • the reaction can also be carried out under quasi-isothermal conditions in a salt bath reactor.
  • a salt melt of 53% by weight of KNO 3 , 40% by weight of NaNO 2 and 7% by weight of NaNO 3 serves as the heat transfer medium.
  • the decomposition is carried out in a 600 mm long reaction tube made of Hasteloy C.
  • the inside diameter is 14 mm.
  • the gas is brought to the reaction temperature over a longer preheating section.
  • an inner tube with an outside diameter of 3.17 mm was used here, in which a thermocouple can be easily moved.
  • the N 2 ⁇ decomposition was tested in a gas mixture that is typical for the exhaust gas from an adipic acid plant.
  • a catalyst was simulated.
  • 150 g of commercially available aluminum oxide support (BET surface area 1.7 m 2 / g; water absorption 29.2% by weight) was impregnated with 100 ml of aqueous solution containing 41.7 g of AgNO 3 , then one hour in the room - temperature left.
  • the impregnated support was dried to constant weight at 120 ° C. and finally calcined at 700 ° C. for 4 h.
  • the catalyst thus obtained contained 14.6% by weight of silver and had a BET surface area of 1.12 m 2 / g.
  • the palladium catalyst on alpha-aluminum oxide preferred in DE-A-35 43 640 was reproduced.
  • 200 g of alpha aluminum oxide (BET surface area 20.2 m 2 / g) were impregnated with NaOH and dried at 120 ° C.
  • This carrier was impregnated with 96 ml of an aqueous sodium tetrachloropalladate II solution containing 1.29 g of Pd and then left to stand at room temperature for three hours.
  • the Pd 2+ -containing carriers were treated with hydrazine to reduce the Pd 2+ .
  • the catalyst was then washed free of chlorine and dried to constant weight at 120 ° C.
  • the catalyst thus obtained contained 0.64% by weight of palladium.
  • a catalyst was simulated. 225 g of Pural ® SB were kneaded with 25 g of La (NO 3 ) 3 and 12.5 g of formic acid for 3 hours, extruded, dried and calcined. 64.10 g of this (BET surface area 183 m 2 / g; water absorption 76% by weight) were impregnated with 50.9 ml of aqueous solution which contains 17.8 g of AgNO 3 , and then left to stand at room temperature for one hour. The impregnated support was dried to constant weight at 120 ° C. and finally calcined at 700 ° C. for 4 hours. The catalyst thus obtained contained 14.5% by weight of silver and had a BET surface area of 156 m 2 / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Verfahren zur katalytischen Zersetzung von reinem oder in Gasgemischen enthaltenem Distickstoffmonoxid bei Temperaturen von 200 bis 900 °C, indem man einen Katalysator, hergestellt durch Vereinigung von CuAl2O4 mit Zinn, Blei, einem Element der II. Haupt- oder Nebengruppe des Periodensystems der Elemente als Oxid oder Salz oder in elementarer Form und Calcinieren bei Temperaturen von 300 bis 1300 °C und Drücken von 0,1 bis 200 bar, einsetzt.

Description

Verfahren zur katalytischen Zersetzung von reinem oder in Gas¬ gemischen enthaltenem Distickstoffmonoxid
5 Beschreibung
Die Erfindung betrifft ein Verfahren zur katalytischen Zersetzung von reinem oder in Gasgemischen vorhandenem Distickstoffmonoxid mit einem Katalysator, hergestellt durch Vereinigung von R-A120 ,
10 wobei R für ein Element"der I., VII. und VIII. Nebengruppe des Periodensystems der Elemente steht, mit Zinn, Blei, einem Element der II. Haupt- oder Nebengruppe des Periodensystems der Elemente als Oxid oder Salz oder in elementarer Form und Calcinieren bei Temperaturen von 300 bis 1300°C und Drücken von 0,1 bis 200 bar.
15
Eine Übersicht über die Aktivierungsenergien der katalytischen Zersetzung von Distickstoffmonoxid (Lachgas) an oxidischen Katalysatoren, insbesondere an Mischoxiden, ist aus Catalysis Today __., 235 bis 251 (1989) bekannt.
20
Die dort beschriebenen Katalysatoren lassen in Aktivität bzw. Standzeit zu wünschen übrig bzw. enthalten teure Elemente wie Edelmetalle.
25 Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, den zuvor genannnten Nachteilen abzuhelfen.
Demgemäß wurde ein neues und verbessertes Verfahren zur katalyti¬ schen Zersetzung von reinem oder in Gasgemischen enthaltenem
30 Distickstoffmonoxid bei Temperaturen von 200 bis 900°C gefunden, welches dadurch gekennzeichnet ist, daß man einen Katalysatoren, hergestellt durch Vereinigung von CUAI2O4 mit Zinn, Blei, einem Element der II. Haupt- oder Nebengruppe des Periodensystems der Elemente als Oxid oder Salz oder in elementarer Form und Calci-
35 nieren bei Temperaturen von 300 bis 1300°C und Drücken von 0,1 bis 200 bar, einsetzt.
Das erfindungsgemäße Verfahren läßt sich wie folgt durchführen:
40 Das erfindungsgemäße Verfahren kann so durchgeführt werden, daß man reines Distickstoffmonoxid oder Distickstoffmonoxid enthal¬ tende Gasgemische oder Distickstoffmonoxid enthaltendes Abgas in einem Ofen oder Wärmetauscher auf die notwendige Reaktor¬ temperatur von in der Regel 200 bis 900°C, bevorzugt 250 bis
45 800°C, besonders bevorzugt 350 bis 700°C vorheizt und dann durch ein mit dem beschriebenen Katalysator gefülltes Reaktionsrohr leitet. Das Vorheizen des Reaktionsgases kann auch direkt im Reaktionsrohr an einer sich auf Reaktionstemperatur befindlichen vorgeschalteten Inertmaterialschicht erfolgen. Zum Aufheizen des Katalysators und/oder des Inertmaterials kann neben einer exter¬ nen Wärmequelle auch die Reaktionswärme, die bei der Zersetzung 5 des Distickstoffmonoxids frei wird, verwendet werden.
Distickstoffmonoxid kann in Reinstform, in Gemischen mit Sauer¬ stoff oder Luft, in Gemischen mit Luft, die größere Mengen an Wasser und/oder größere Mengen anderer Stickoxide wie Stickstoff-
10 monoxid und Stickstoffdioxid enthalten oder höherer Konzen¬ trationen von Stickoxiden und anderer Gase wie N0X, N2, 02, CO, C02, H20 und Edelgase, insbesondere Abgase aus Adipinsäureanlagen, eingesetzt werden, wobei es selektiv in die Elemente Stickstoff und Sauerstoff zersetzt werden kann, ohne daß andere Stickoxide
15 in nennenswertem Umfang in die Elemente zersetzt werden. Der
Gehalt an Stickoxiden t^px kann in der Regel 0 bis 50 Vol.-%, be¬ vorzugt 1 bis 40 Vol.-%, besonders bevorzugt 10 bis 30 Vol.-% und der N20-Gehalt kann in der Regel 0,01 bis 65 Vol.-%, bevorzugt 1 bis 55 Vol.-%, besonders bevorzugt 5 bis 45 Vol.-% betragen. Es
20 gelingt beispielsweise Distickstoffmonoxid in Gemischen mit z.B. 20 % Wasser und 65 % Stickstoffdioxid (N02) selektiv in die Ele¬ mente zu zersetzen.
Als Katalysatoren eignen sich solche, die durch Vereinigung von 25 CuAl20 mit dem Element als solchem, Oxiden oder Salzen von Zinn, Blei, einem Element der II. Haupt- oder Nebengruppe des Perioden¬ systems der Elemente und Calcinieren bei Temperaturen von 300 bis 1300°C und Drücken von 0,1 bis 200 bar hergestellt werden können. Diese Katalysatoren sind edelmetallfrei (Ag, Au, Pd, Pt) und 30 weisen eine BET-Oberflache von 1 bis 350 m2/g auf.
Man kann von einem oxidischen Festkörper, der teilweise oder vollständig - also zu 1 bis 100 Gew.-%, bevorzugt 10 bis
90 Gew.-%, besonders bevorzugt 20 bis 70 Gew.-% - ein Spinell der
35 Zusammensetzung CuAl20 in einer Al203-Matrix ist, ausgehen und diesen mit gleicher oder höherer Konzentration von Zinn, Blei, einem Element der II. Haupt- oder Nebengruppe des Periodensystems der Elemente als Oxid oder Salz oder in elementarer Form vermi¬ schen und bei Temperaturen von 300 bis 1300°C, bevorzugt 500 bis
40 1200°C, besonders bevorzugt 600 bis 1100°C und Drücken von 0,1 bis 200 bar, bevorzugt 0,5 bis 10 bar, besonders bevorzugt bei Nor¬ maldruck (Atmosphärendruck) calcinieren.
Das Vermischen kann z.B. durch Versprühen, mechanisches Ver- 45 mischen, Verrühren, Verkneten, des gemahlenen Festkörpers der Zu¬ sammensetzung CuAl20 , bevorzugt in A1203, besonders bevorzugt in γ-Al203 oder bevorzugt durch Imprägnieren eines ungemahlenen Fest- körpers der Zusammensetzung CuAl2θ , bevorzugt in AI2O3, besonders bevorzugt in γ-Al2θ3 mit Zinn, Blei, einem Element der II. Haupt¬ oder Nebengruppe des Periodensystems der Elemente als Oxid oder Salz (z.B. in Lösung) oder in elementarer Form erfolgen.
Die Freisetzung des Kupfers in elementarer oder oxidischer Form, das in der Regel zur hochdispersen Verteilung führt, kann dadurch induziert werden, daß durch den Calcinierungsschritt die Elemente Zinn, Blei, der II. Haupt- oder Nebengruppe des Periodensystems der Elemente in elementarer, oxidischer oder salzartiger Form das Kupfer im Spinell teilweise (zu >50 Mol-%, bevorzugt >70 Mol-%, besonders bevorzugt >90 Mol-%) oder vollständig (zu 100 Mol-%) substituiert, wenn der entstehende Spinell thermodynamisch stabiler ist als der Ausgangsspinell CuAl2θ . Der Kupfer- bzw. Kupferoxidgehalt beträgt im einsatzfertigen Katalysator 0,1 bis 50 Gew.-%, bevorzugt 1 bis 40 Gew.-%, besonders bevorzugt 5 bis 30 Gew.-%.
Als Elemente der II. Haupt- oder Nebengruppe des Periodensystems der Elemente eignen sich oxidische oder salzartige Verbindungen oder das Element als solches (in metallischer Form) . Als salz¬ artige Verbindungen seien beispielsweise Carbonate, Hydroxide, Carboxylate, Halogenide und oxidische Anionen wie Nitrite, Nitrate, Sulfite, Sulfate, Phosphite, Phosphate, Pyrophosphate, Halogenite, Halogenate und basische Carbonate, bevorzugt
Carbonate, Hydroxide, Carboxylate, Nitrite, Nitrate, Sulfate, Phosphate und basische Carbonate, besonders bevorzugt Carbonate, Hydroxide, basische Carbonate und Nitrate, bevorzugt in der Oxidationsstufe +2 wie Zn2+, Mg2+, Ca2+, Sr2+ und Ba2+, insbesondere Zn2+ und Mg2+ oder deren Gemische genannt.
Die Herstellung des Ausgangsoxides der Zusammensetzung CuAl204, bevorzugt in Form eines Spinelles ist z.B. aus Z. Phys. Chem., 141 (1984), 101 bis 103 bekannt. Vorteilhaft erweist sich die Tränkung eines Al203-Trägers mit einer löslichen Verbindung wie einem Salz des Kations R, z.B. einem Nitrit, Nitrat, Sulfit, Sulfat, Carbonat, Hydroxid, Carboxylat, Halogenid, Halogenit und Halogenat und anschließender thermischer Zersetzung des Anions zum Oxid. Eine weitere Möglichkeit ist das Mischen einer Ver- bindung wie einem Salz des Kations R mit einer sauerstoffhaltigen Aluminiumverbindung, z.B. durch Trocken oder in Suspension, ins¬ besondere durch Sprühtrocknung, Verdichtung des Materials, z.B. durch Verkneten, gegebenenfalls durch Zugabe eines geeigneten Verformungshilfsmittels, Formgebung durch Extrudieren, Trocknung und anschließender Calcinierung zur Bildung des Spinells. Die Calciniertemperatur kann zwischen 300 und 1300°C, bevorzugt zwi¬ schen 600 und 1000°C, liegen. Die Dotierung von hochoberflächigen Aluminiumoxidträgern, d.h. die Bildung von Mischoxiden, führt zur Erhöhung der thermischen Beständigkeit des Trägers (z.B. DE-A-34 03 328, DE-A-25 00 548, Appl. Catal. 7, 211 bis 220 (1983), J. Catal. 127, 595 bis 604 (1991) ) . Zusätzlich können die Fremdionen zur katalytischen Akti¬ vität des Katalysators beitragen. Zur Dotierung können im allge¬ meinen folgende Elemente herangezogen werden: Alkalimetalle, Erd¬ alkalimetalle, Metalle der seltenen Erden, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, B, Si, Ge, Sn, Pb, P, Bi. Der Substitutions- grad von Aluminiumoxid kann z.B. bei 0,01 bis 20 Gew.-% liegen.
Die Partikelgröße der Kupferoxidkristallite im ungebrauchten Ka¬ talysator liegt zwischen 1 und 100 nm, bevorzugt zwischen 3 und 70 nm, besonders bevorzugt zwischen 5 und 50 nm. Die Bestimmung der Partikelgröße kann z.B. durch XRD (X-ray defraction) oder TEM (Transmissionseleketronenmikroskopie) erfolgen.
Die erfindungsgemäßen Katalysatoren enthalten Mesoporen von 2 bis. 20 nm und Makroporen von mehr als 20 nm und BET-Oberflachen zwi- sehen 1 und 350 m2/g, bevorzugt zwischen 10 und 200 m /g, beson¬ ders bevorzugt zwischen 25 und 150 m2/g und die Porosität zwischen 0,01 und 0,8 ml/g.
Die bevorzugt bei dem erfindungsgemäße Verfahren eingesetzten Katalysatoren enthalten im allgemeinen 0,1 bis 50 Gew.-%, insbe¬ sondere 2 bis 30 Gew.-% Kupferoxid, bezogen auf das Gewicht des Aluminiumoxids. Das spinellbildende Metall liegt in gleicher oder höherer Konzentration als das Kupfer vor (mol/mol) .
Die GHSV liegt in der Regel zwischen 500 und 50000 Nl Gas/1 Kat*h, vorzugsweise zwischen 1500 und 20000 Nl Gas/1 Kat*h.
Beispiele
Durchführung der Distickstoffmonoxid-Zersetzung
a) Als Versuchsapparatur für die adiabatische Verfahrenweise dient ein 800 mm langes Reaktionsrohr aus Hasteloy C, unter¬ teilt in Aufheiz- und Reaktionszone. Der Innendurchmesser be- trägt 18 mm. Um den Temperaturverlauf im Rohr messen zu können, wurde ein Innenrohr mit 3,17 mm Außendurchmesser ein¬ gesetzt, in dem ein Thermoelement leicht verschoben werden kann. Zur besseren Wärmeübertragung wurde der Reaktor in der Aufheizzone mit Inertmaterial (Steatit) gefüllt. b) Alternativ kann die Reaktion aber auch unter quasi-isothermen Bedingungen in einem Salzbadreaktor durchgeführt werden. Als Wärmeträger dient eine Salzschmelze aus 53 Gew.-% KN03, 40 Gew.-% NaNθ2 und 7 Gew.-% NaN03. Die Zersetzung wird in einem 600 mm langen Reaktionsrohr aus Hasteloy C durchge¬ führt. Der Innendurchmesser beträgt 14 mm. Das Gas wird über eine längere Vorheizstrecke auf Reaktionstemperatur gebracht. Um den Temperaturverlauf im Rohr messen zu können, wurde auch hier ein Innenrohr mit 3,17 mm Außendurchmesser eingesetzt, in dem ein Thermoelement leicht verschoben werden kann.
Getestet wurden jeweils 40 ml Katalysator (Splitt 1,5 bis 2 mm) .
Getestet wurde die N2θ-Zersetzung in einem Gasgemisch, das für das Abgas einer Adipinsäureanlage typisch ist.
Typische Gaszusammensetzung:
Figure imgf000007_0001
Herstellung der Katalysatoren
Beispiel 1
Eine Mischung aus 284 g Puralox® SCF (Fa. Condea) , 166 g Pural® SB (Fa. Condea^ und 100 g CuO (Fa. Merck) wurde mit 20 ml Ameisensäure (gelöst in 140 ml H20) 0,75 h verknetet, zu 3 mm Strängen extrudiert, getrocknet und 4 h bei 800°C calciniert.
71,4 g des CuAl20_ι enthaltenden Aluminiumoxid-Trägers (Wasserauf¬ nahme: 69,1 %) wurden zweimal mit 49 ml einer salpetersauren (pH 3) wäßrigen Lösung, die 32,6 g Zn(N03)2 enthält, imprägniert, daraufhin eine Stunde bei Raumtemperatur belassen. Der imprä¬ gnierte Träger wurde bis zur Gewichtskonstanz bei 120°C getrocknet und abschließend 4 h bei 600°C calciniert. Beispiel 2
Eine Mischung aus 346 g Puralox® SCF (Fa. Condea) , 180 g Pural® SB (Fa. Condea) und 120 g CuO (Fa. Merck) wurde mit 18 ml Ameisen- säure (gelöst in 390 ml H20) 1 h verknetet, zu 3 mm Strängen ex- trudiert, getrocknet und 4 h bei 800°C calciniert.
85,2 g des CuAl2θ4 enthaltenden Aluminiumoxid-Trägers (Wasserauf¬ nahme: 70 %) wurden dreimal mit 47 ml einer salpetersauren (pH 2,5) wäßrigen Lösung, die 45,2 g Mg(N03)2-6 H20 enthält, im¬ prägniert, daraufhin eine Stunde bei Raumtemperatur belassen. Der imprägnierte Träger wurde bis zur Gewichtskonstanz bei 120°C ge¬ trocknet und abschließend 4 h bei 700°C calciniert.
Beispiel 3
Eine Mischung aus 288,4 g Puralox® SCF (Fa. Condea), 350 g Pural® SB (Fa. Condea) und 140 g CuO (Fa. Merck) wurde mit 25 ml Ameisenr säure (gelöst in 530 ml H20) 1 h verknetet, zu 3 mm Strängen ex- trudiert, getrocknet und 4 h bei 800°C calciniert.
65,9 g des CuAl2θ enthaltenden Aluminiumoxid-Trägers (Wasserauf¬ nahme: 60,3 %) wurden zweimal mit 47 ml einer salpetersauren (pH 3,1) wäßrigen Lösung, die 34,7 g Ca(N03)2 enthält, impräg- niert, daraufhin eine Stunde bei Raumtemperatur belassen. Der im¬ prägnierte Träger wurde bis zur Gewichtskonstanz bei 120°C ge¬ trocknet und abschließend 4 h bei 700°C calciniert.
Vergleichsbeispiel 1
Gemäß DE-A-40 29 061 wurde ein Katalysator nachgestellt. 150 g handelsüblicher Aluminiumoxid-Träger (BET-Oberflache 1,7 m2/g; Wasseraufnahme 29,2 Gew.-%) wurde mit 100 ml wäßriger Lösung, die 41,7 g AgN03 enthält, imprägniert, daraufhin eine Stunde bei Raum- temperatur stehengelassen. Der imprägnierte Träger wurde bis zur Gewichtskonstanz bei 120°C getrocknet und abschließend 4 h bei 700°C calciniert. Der so erhaltene Katalysator enthielt 14,6 Gew.-% Silber und hatte eine BET-Oberflache von 1,12 m2/g.
Vergleichsbeispiel 2
Der in DE-A-35 43 640 bevorzugte Palladiumkatalysator auf alpha- Aluminiumoxid wurde nachgestellt. 200 g alpha-Aluminiumoxid (BET- Oberflache 20,2 m2/g) wurden mit NaOH imprägniert und bei 120°C getrocknet. Dieser Träger wurde mit 96 ml einer wäßrigen Natrium- tetrachloropalladat-II-Lösung, enthaltend 1,29 g Pd, imprägniert, daraufhin drei Stunden bei Raumtemperatur stehengelassen. Der Pd2+-haltige Träger wurde zur Reduktion des Pd2+ mit Hydrazin be¬ handelt. Anschließend wurde der Katalysator chlorfrei gewaschen und bei 120°C bis zur Gewichtskonstanz getrocknet. Der so erhaltene Katalysator enthielt 0,64 Gew.-% Palladium.
Vergleichsbeispiel 3
Gemäß DE-A-41 28 629 wurde ein Katalysator nachgestellt. 225 g Pural® SB wurden mit 25 g La(N03)3 und 12,5 g Ameisensäure 3 h verknetet, verstrangt, getrocknet und calciniert. 64,10 g hiervon (BET-Oberflache 183 m2/g; Wasseraufnahme 76 Gew.-%) wurden mit 50,9 ml wäßriger Lösung, die 17,8 g AgN03 enthält, imprägniert, daraufhin eine Stunde bei Raumtemperatur stehengelassen. Der im¬ prägnierte Träger wurde bis zur Gewichtskonstanz bei 120°C ge- trocknet und abschließend 4 h bei 700°C calciniert. Der so erhaltene Katalysator enthielt 14,5 Gew.-% Silber und hatte eine BET-Oberflache von 156 m2/g.
Versuchsergebnisse
Adiabatisches Verfahren
Figure imgf000009_0001
Die Versuchsergebnisse (Katalysatoren 1 bis 3) veranschaulichen, daß die neu entwickelten silberfreien Katalysatoren in einem adiabatischen Verfahren gegenüber dem Stand der Technik (Katalysatoren VI bis V3) sowohl aktiver als auch stabiler sind.
b) Isothermes Verfahren
Figure imgf000009_0002
Die Versuchsergebnisse (Katalysatoren 1 bis 3) zeigen, daß in einem isothermen Verfahren Aktivitätsunterschiede viel deutlicher erkennbar sind als in einem adiabatischen Verfahren, wo die durch die N2θ-Zersetzung freiwerdende Energie einen hohen Beitrag zur Zersetzung liefert. Die Überlegenheit der neu entwickelten silberfreien Katalysatoren gegenüber dem Stand der Technik (Katalysatoren VI bis V3) kann durch eine isotherme Reaktions¬ führung deutlich belegt werden.

Claims

Patentansprüche
1. Verfahren zur katalytischen Zersetzung von reinem oder in Gasgemischen enthaltenem Distickstoffmonoxid bei Temperaturen von 200 bis 900°C und Drücken von 0,1 und 20 bar, dadurch ge¬ kennzeichnet, daß man einen Katalysator, hergestellt durch Vereinigung von CuAl20 mit Zinn, Blei, einem Element der II. Haupt- oder Nebengruppe des Periodensystems der Elemente als Oxid oder Salz oder in elementarer Form und Calcinieren bei Temperaturen von 300 bis 1300°C und Drücken von 0,1 bis 200 bar, einsetzt.
2. Verfahren zur katalytischen Zersetzung von reinem oder in Gasgemischen enthaltenem Distickstoffmonoxid nach Anspruch 1, dadurch gekennzeichnet, daß man zur Umsetzung von C Al2θ , Zink, Magnesium, Calcium, Strontium oder Barium als Oxid oder Salz oder in elementarer Form verwendet.
3. Verfahren zur katalytischen Zersetzung von reinem oder in
Gasgemischen enthaltenem Distickstoffmonoxid nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator eine BET-Oberfla¬ che von 1 bis 350 m2/g.
4. Verfahren zur katalytischen Zersetzung von reinem oder in
Gasgemischen enthaltenem Distickstoffmonoxid nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator einen CuO-Gehalt von 0,1 bis 50 Gew.-% hat.
5. Verfahren zur katalytischen Zersetzung von reinem oder in
Gasgemischen enthaltenem Distickstoffmonoxid nach Anspruch 1, dadurch gekennzeichnet, daß das spinellbildende Metalloxid in der Oxidationsstufe +2 vorliegt.
6. Verfahren zur katalytischen Zersetzung von reinem oder in
Gasgemischen enthaltenem Distickstoffmonoxid nach Anspruch 1, dadurch gekennzeichnet, daß die Porosität des Katalysators zwischen 0,01 und 0,8 ml/g liegt.
7. Verfanren zur katalytischen Zersetzung von reinem oder in Gasgemischen enthaltenem Distickstoffmonoxid nach den An¬ spruch 1, dadurch gekennzeichnet, daß der Gehalt an Stick¬ oxiden (N0X) zwischen 0 und 50 Vol.-% liegt.
8. Verfahren zur katalytischen Zersetzung von reinem oder in Gasgemischen enthaltenem Distickstoffmonoxid nach den An¬ spruch 1, dadurch gekennzeichnet, daß der N20-Gehalt des Gas¬ gemisches zwischen 0,01 und 65 Vol.-% liegt.
PCT/EP1994/000081 1993-01-21 1994-01-13 Verfahren zur katalytischen zersetzung von reinem oder in gasgemischen enthaltenem distickstoffmonoxid WO1994016798A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US08/403,835 US5587135A (en) 1993-01-21 1994-01-13 Process for the catalytic decomposition of dinitrogen monoxide in a gas stream
AU58827/94A AU5882794A (en) 1993-01-21 1994-01-13 Catalytic decomposition process of nitrous oxide pure or contained in gaseous mixtures
KR1019950703005A KR100230728B1 (ko) 1993-01-21 1994-01-13 순수하거나 기체 혼합물 중에 존재하는 일산화이질소의 촉매 분해 방법
DE59402378T DE59402378D1 (de) 1993-01-21 1994-01-13 Verfahren zur katalytischen zersetzung von reinem oder in gasgemischen enthaltenem distickstoffmonoxid
EP94905047A EP0680374B1 (de) 1993-01-21 1994-01-13 Verfahren zur katalytischen zersetzung von reinem oder in gasgemischen enthaltenem distickstoffmonoxid
JP51662394A JP3553066B2 (ja) 1993-01-21 1994-01-13 純粋のもしくはガス混合物中に含有されている一酸化二窒素の接触分解の方法
CA002152816A CA2152816C (en) 1993-01-21 1994-01-13 The catalytic decomposition of dinitrogen monoxide which is pure or present in gas mixtures
UA95083847A UA42712C2 (uk) 1993-01-21 1994-01-13 Спосіб каталітичного розкладу закису азоту
NO952887A NO303622B1 (no) 1993-01-21 1995-07-20 FremgangsmÕte for katalytisk nedbryting av dinitrogenmonoksyd i ren form eller i gassblandinger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4301470A DE4301470A1 (de) 1993-01-21 1993-01-21 Verfahren zur katalytischen Zersetzung von reinem oder in Gasgemischen enthaltenem Distickstoffmonoxid
DEP4301470.4 1993-01-21

Publications (1)

Publication Number Publication Date
WO1994016798A1 true WO1994016798A1 (de) 1994-08-04

Family

ID=6478590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/000081 WO1994016798A1 (de) 1993-01-21 1994-01-13 Verfahren zur katalytischen zersetzung von reinem oder in gasgemischen enthaltenem distickstoffmonoxid

Country Status (16)

Country Link
US (1) US5587135A (de)
EP (1) EP0680374B1 (de)
JP (1) JP3553066B2 (de)
KR (1) KR100230728B1 (de)
CN (1) CN1046638C (de)
AT (1) ATE151309T1 (de)
AU (1) AU5882794A (de)
CA (1) CA2152816C (de)
DE (2) DE4301470A1 (de)
DK (1) DK0680374T3 (de)
ES (1) ES2100049T3 (de)
NO (1) NO303622B1 (de)
SG (1) SG48259A1 (de)
TW (1) TW307697B (de)
UA (1) UA42712C2 (de)
WO (1) WO1994016798A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0698411A1 (de) * 1994-03-07 1996-02-28 Ngk Insulators, Ltd. Methode zur entfernung von distickstoffmonoxyd
WO1997021482A1 (de) * 1995-12-13 1997-06-19 Basf Aktiengesellschaft VERFAHREN ZUR REDUKTION VON NOx AUS ABGASEN
WO2000023176A1 (de) * 1998-10-21 2000-04-27 Basf Aktiengesellschaft Hochtemperaturstabile katalysatoren zur zersetzung von n2o

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419486C2 (de) * 1994-06-03 1996-09-05 Daimler Benz Ag Katalysator, Verfahren zu dessen Herstellung sowie Verwendung des Katalysators
DE4420932A1 (de) 1994-06-16 1996-01-11 Basf Ag Material zur katalytischen Reduktion von Stickoxiden
JPH0859236A (ja) * 1994-08-19 1996-03-05 Toyota Motor Corp 高耐熱性銅−アルミナ複合酸化物及び排気ガス浄化方法
DE19546484A1 (de) * 1995-12-13 1997-07-10 Daimler Benz Ag Verfahren zum Betreiben einer Reinigungsanlage für Gase sowie eine Reinigungsanlage für Gase
DE19533715A1 (de) * 1995-09-12 1997-03-13 Basf Ag Verfahren zum Entfernen von Stickstoffoxiden aus einem diese enthaltenden Gasstrom
DE19546476A1 (de) * 1995-12-13 1997-06-19 Daimler Benz Ag Katalysator, Verfahren zu dessen Herstellung und Verwendung desselben
DE19546481C2 (de) 1995-12-13 1998-08-13 Daimler Benz Ag Katalysator und Verfahren zu dessen Herstellung und Verwendung desselben
DE19606657C1 (de) * 1996-02-23 1997-07-10 Basf Ag Verfahren und Vorrichtung zum Reinigen von Gasen
US6696389B1 (en) * 1996-02-23 2004-02-24 Daimlerchrysler Ag Process and apparatus for cleaning a gas flow
ES2395319T3 (es) * 1996-03-21 2013-02-11 Basf Catalysts Llc Preparación de catalizadores de Cu/Al
DE19724545A1 (de) * 1997-06-11 1998-12-24 Basf Ag Speicherkatalysator
DE19813171C1 (de) * 1998-03-25 1999-11-25 Basf Ag Verfahren zur Herstellung von Spinell-Extrudaten
US6347627B1 (en) * 1998-04-23 2002-02-19 Pioneer Inventions, Inc. Nitrous oxide based oxygen supply system
DE19819882A1 (de) 1998-04-27 1999-10-28 Basf Ag Verfahren zur katalytischen Zersetzung von N2O
JP5072136B2 (ja) * 1998-07-24 2012-11-14 千代田化工建設株式会社 多孔性スピネル型複合酸化物の製造方法
DE10023538A1 (de) * 2000-05-13 2001-11-15 Basf Ag Verfahren zur katalytischen Zersetzung von N2O
JP4573320B2 (ja) * 2000-09-08 2010-11-04 昭和電工株式会社 亜酸化窒素分解触媒、その製造方法及び亜酸化窒素の分解方法
JP4672540B2 (ja) * 2005-12-07 2011-04-20 株式会社日本触媒 亜酸化窒素分解用触媒および亜酸化窒素含有ガスの浄化方法
WO2008142765A1 (ja) * 2007-05-18 2008-11-27 Nippon Shokubai Co., Ltd. 亜酸化窒素分解用触媒および亜酸化窒素含有ガスの浄化方法
CN109621956A (zh) * 2018-11-30 2019-04-16 中国科学院山西煤炭化学研究所 一种用于二氧化碳加氢制甲醇的铜基尖晶石催化剂及其制备方法
WO2023163899A1 (en) * 2022-02-24 2023-08-31 Basf Corporation Nickel promoted copper alumina catalyst for slurry phase process for producing fatty alcohol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261862A (en) * 1979-07-06 1981-04-14 Toyota Jidosha Kogyo Kabushiki Kaisha Catalyst for purifying exhaust gas and a process for manufacturing thereof
US4274981A (en) * 1979-07-06 1981-06-23 Toyota Jidosha Kogyo Kabushiki Kaisha Catalyst for purifying exhaust gas and the process for manufacturing thereof
EP0210681A1 (de) * 1985-07-31 1987-02-04 Shell Internationale Researchmaatschappij B.V. Bivalente Metalle enthaltender Aluminatkatalysator
WO1994002244A1 (de) * 1992-07-28 1994-02-03 Basf Aktiengesellschaft Silberhaltiger aluminiumoxid-tragerkatalysator und verfahren zur zersetzung von distickstoffmonoxid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261862A (en) * 1979-07-06 1981-04-14 Toyota Jidosha Kogyo Kabushiki Kaisha Catalyst for purifying exhaust gas and a process for manufacturing thereof
US4274981A (en) * 1979-07-06 1981-06-23 Toyota Jidosha Kogyo Kabushiki Kaisha Catalyst for purifying exhaust gas and the process for manufacturing thereof
EP0210681A1 (de) * 1985-07-31 1987-02-04 Shell Internationale Researchmaatschappij B.V. Bivalente Metalle enthaltender Aluminatkatalysator
WO1994002244A1 (de) * 1992-07-28 1994-02-03 Basf Aktiengesellschaft Silberhaltiger aluminiumoxid-tragerkatalysator und verfahren zur zersetzung von distickstoffmonoxid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0698411A1 (de) * 1994-03-07 1996-02-28 Ngk Insulators, Ltd. Methode zur entfernung von distickstoffmonoxyd
EP0698411A4 (de) * 1994-03-07 1996-10-02 Ngk Insulators Ltd Methode zur entfernung von distickstoffmonoxyd
US6143262A (en) * 1994-03-07 2000-11-07 Ngk Insulators, Ltd. Process for removing nitrous oxide (N2 O)
WO1997021482A1 (de) * 1995-12-13 1997-06-19 Basf Aktiengesellschaft VERFAHREN ZUR REDUKTION VON NOx AUS ABGASEN
WO2000023176A1 (de) * 1998-10-21 2000-04-27 Basf Aktiengesellschaft Hochtemperaturstabile katalysatoren zur zersetzung von n2o
US6723295B1 (en) 1998-10-21 2004-04-20 Basf Aktiengesellschaft High-temperature stabile catalysts for decomposing N2O

Also Published As

Publication number Publication date
NO303622B1 (no) 1998-08-10
ATE151309T1 (de) 1997-04-15
NO952887D0 (no) 1995-07-20
CA2152816C (en) 2004-03-23
KR960700096A (ko) 1996-01-19
DK0680374T3 (da) 1997-06-02
EP0680374A1 (de) 1995-11-08
UA42712C2 (uk) 2001-11-15
KR100230728B1 (ko) 1999-11-15
DE4301470A1 (de) 1994-07-28
NO952887L (no) 1995-07-20
TW307697B (de) 1997-06-11
JPH08505567A (ja) 1996-06-18
ES2100049T3 (es) 1997-06-01
EP0680374B1 (de) 1997-04-09
CN1116411A (zh) 1996-02-07
AU5882794A (en) 1994-08-15
SG48259A1 (en) 1998-04-17
US5587135A (en) 1996-12-24
DE59402378D1 (de) 1997-05-15
CN1046638C (zh) 1999-11-24
CA2152816A1 (en) 1994-08-04
JP3553066B2 (ja) 2004-08-11

Similar Documents

Publication Publication Date Title
EP0680374B1 (de) Verfahren zur katalytischen zersetzung von reinem oder in gasgemischen enthaltenem distickstoffmonoxid
EP1076634B1 (de) Verfahren zur katalytischen zersetzung von n 2?o
EP0600962B1 (de) Verfahren zur katalytischen zersetzung von distickstoffmonoxid mittels eines silberhaltigen trägerkatalysators
DE19847656B4 (de) Verwendung eines Ammonoxidationskatalysators bei der Herstellung von Acrylnitril oder Methacrylnitril aus Propan oder Isobutan durch Ammonoxidation
DE60110079T2 (de) Katalysator zum abbau von distickstoffoxid sowie methode zur durchführung von verfahren, welche die bildung von distickstoffoxid beinhalten
EP0652805B1 (de) Silberhaltiger aluminiumoxid-tragerkatalysator und verfahren zur zersetzung von distickstoffmonoxid
DE2615352A1 (de) Stoffzusammensetzung mit katalytischer metallsubstanz auf metalloxid mit perowskitkristallstruktur und ihre herstellung
DE2341363B2 (de) Verfahren zur Herstellung eines Katalysators zur Zersetzung von Hydrazin und seinen Derivaten
DE102007020154A1 (de) Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
DE69918831T2 (de) Verfahren zur regenration von molybden enthaltenden wirbelbett-oxid-katalysatoren
DE60111690T2 (de) Katalysator für die Dampfreformierung von Methanol und Methode zur Herstellung von Wasserstoff mit diesem Katalysator
DE2745456A1 (de) Verfahren zur hydrodealkylierung von aromatischen alkylkohlenwasserstoffen in anwesenheit eines katalysators auf einem aluminattraeger
DE2723520A1 (de) Kupferoxid-zinkoxid-katalysator
DE112018001183T5 (de) Mischoxidkatalysator für oxidative Kopplung von Methan
DE2212358A1 (de) Katalysator fuer die ammoniaksynthese, verfahren zu dessen herstellung und dessen verwendung
EP0680377B1 (de) Katalysatoren mit hochdisperser verteilung der aktivkomponente
DE19634192A1 (de) Bismut-haltige Katalysatoren
DE2748210A1 (de) Teilchen von legierungen von platinmetallen mit nichtplatinmetallen, verfahren zu ihrer herstellung und ihre verwendung
WO1994018118A1 (de) Chromfreier katalysator auf basis eisenoxid zur konvertierung von kohlenmonoxid
DE2754762A1 (de) Verfahren zur katalytischen verbrennung von schwefelwasserstoff enthaltenden abgasen und zur durchfuehrung des verfahrens geeigneter katalysator
EP0494898B1 (de) Verfahren zur herstellung von säurefesten katalysatoren für die direkte hydrierung von carbonsäuren zu alkoholen
EP0405348B1 (de) Verfahren zur Herstellung von Formaldehyd
DE2216328B2 (de) Verfahren zur herstellung eines spinellverbindungen aufweisenden traegerkatalysators und dessen verwendung
DE1518702B2 (de)
DE2700960A1 (de) Verfahren zur herstellung von methacrylsaeure oder acrylsaeure und katalysator zur durchfuehrung des verfahrens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94190924.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CN CZ FI HU JP KP KR KZ LK LV MG MN MW NO NZ PL RO RU SD SK UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994905047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08403835

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2152816

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1019950703005

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1994905047

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994905047

Country of ref document: EP