WO1994016215A1 - Water-jet hydraulic power generation method - Google Patents

Water-jet hydraulic power generation method Download PDF

Info

Publication number
WO1994016215A1
WO1994016215A1 PCT/JP1994/000044 JP9400044W WO9416215A1 WO 1994016215 A1 WO1994016215 A1 WO 1994016215A1 JP 9400044 W JP9400044 W JP 9400044W WO 9416215 A1 WO9416215 A1 WO 9416215A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
head
turbine
water flow
sec
Prior art date
Application number
PCT/JP1994/000044
Other languages
English (en)
French (fr)
Inventor
Toshitaka Yasuda
Original Assignee
Toshitaka Yasuda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshitaka Yasuda filed Critical Toshitaka Yasuda
Publication of WO1994016215A1 publication Critical patent/WO1994016215A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • F03B13/105Bulb groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • a hydraulic pipe equipped with a reaction turbine and a generator is installed in water with a head underwater, and hydraulic power generation is performed using the aerial head in the water in the hydraulic pipe. Therefore, if there is no head in the air, the water driven by the turbine cannot be accelerated and hydropower cannot be generated.
  • the water head in the hydraulic pipe acting from the upstream side of the reaction turbine and the water head in the suction pipe acting from the downstream side of the reaction turbine both belong to one system of water in the hydraulic pipe.
  • the present invention is based on a new technical concept of utilizing hydraulic power, which is different from the conventional technical concept described above, and installs a hydraulic pipe provided with a reaction turbine and a generator in a water flow with no head in the air.
  • a hydraulic pipe provided with a reaction turbine and a generator in a water flow with no head in the air.
  • the movement of the hydraulic flow pipe flowing into the hydraulic pipe to make the discharge port of the hydraulic pipe a certain level the driving energy of the hydraulic turbine on the inlet side, which is the total energy of the pressure and the position
  • Two systems the water flow flowing outside the penstock, which acts to suck water in the penstock back from the discharge outlet to the guide vane of the reaction turbine, Combining this energy with the interaction of kinetic, pressure and potential energy shown by Bernoulli's equation of hydrodynamics, the turbine drive water can be accelerated even if there is no head drop in the air.
  • Water reaction water wheel The present invention relates to a hydroelectric power generation method, in which water is driven to drive a
  • the inlet and outlet of a water pipe equipped with a recoil water line and a generator are connected to the inlet-side still water and the outlet-side still water where there is an air head between the water surfaces. It is installed in the water and flows into the penstock with potential energy due to head drop in the air, and flows out from the outlet of the penstock.]
  • the turbine is accelerated, the reaction turbine is driven by the accelerated turbine drive water, and the generator is rotated by the driven reaction turbine to generate hydroelectric power.
  • a hydraulic pipe equipped with a reaction water turbine and a generator is placed in the water in the low aerial head of the stationary water, and the water turbine driving water in this hydraulic pipe is aerial head (m). and placed so as to have a water drop (m), the water depth H z pressure header by water drop H?
  • the present invention based on a new technical concept of hydropower utilization installs a hydraulic pipe equipped with a reaction turbine and a generator in a water flow that does not have an air head, and sets the outlet of the hydraulic pipe to a depth of H ( m)), and a loss compensation head is required for the head loss compensating means to compensate for the total loss head in the penstock generated for the set water speed in the penstock at the time of hydropower generation.
  • the hydraulic drive energy that acts on the outlet side acts synergistically on the inlet and outlet of the hydraulic pipe, and the interaction between kinetic, pressure, and potential energy is shown by the Bernoulli equation of hydrodynamics.
  • the turbine drive energy on the inlet side accelerates the turbine drive water, and the accelerated turbine drive water drives the reaction turbine to generate hydroelectric power, and the turbine drive energy on the discharge side discharges from the discharge port In the recoil turbine,
  • the theoretical hydraulic power W (kW) ⁇ Q (water volume of the turbine driving water (m 3 / sec)) in the water flow having no air head and no pressure difference ⁇ x (V,) 2/ 2) + gx Q x H 2 to give (k W), ocean currents, tidal stream, river, in the water stream aerial drop is not a ⁇ path such, or, in the water flow of a small drop And / or to provide a hydroelectric power generation method for performing hydroelectric power generation using water energy on an underwater moving object such as a surface ship or an underwater navigation ship having a relative speed with respect to water. Disclosure of the invention
  • the point of the present invention is to install a hydraulic pipe equipped with a reaction turbine and a generator in a water flow with no head drop in the air, with no pressure difference between before and after the guide vane east of the reaction water.
  • the energy of the two streams of water, the water flowing into the penstock and the water outside the penstock acts synergistically on the inlet and outlet of the penstock, resulting in the motion shown by Bernoulli's equation of hydrodynamics.
  • the energy of the two streams of water accelerates the turbine driving water in the guide vanes. It is necessary to design the structure of the reaction turbine and penstock so that it can be controlled.
  • the above-described setting conditions of the present invention are similar to the setting conditions for configuring the function of a semiconductor electronic component so that charges that exist in a semiconductor but cannot be moved as they are can be moved in a semiconductor electronic component. Therefore, they are compared and explained.
  • a predetermined amount of electric charges can be moved in a predetermined direction in a predetermined path when there is an input.
  • the water flow is allowed to flow into the inlet of the hydraulic pipe provided with the reaction water turbine at the set inflow speed, and the motion, pressure, and position based on the discharge port of the water flow flowing at the set inflow speed. It is necessary to make all of the energy available for the turbine drive energy on the inlet side.
  • the water flowing outside the penstock is the water flow inside the penstock equipped with the reaction turbine. From the discharge port at the set discharge water speed, and the total energy of the motion, pressure, and position at the set discharge water speed at which the water flow outside the hydraulic pipe acts on the discharge channel 1 is defined as the discharge-wheel turbine drive energy. Need to be available.
  • a hydraulic pipe equipped with a reaction water turbine and a generator is installed in a water flow with no head in the air, and a water flow with no head in the air flows into the hydraulic pipe and a water flow system outside the hydraulic pipe. And the two streams.
  • the total loss head which is the sum of the loss heads generated in the water flow of each part corresponding to the set water speed of each part in the hydraulic pipe and the reaction turbine in the reaction water turbine! ⁇ '(m) is replaced by the dynamic pressure head due to stagnation of the water flow generated at the inflow of the hydraulic pipe, the negative pressure head of the water flow flowing near the discharge port, and the loss head added if necessary.
  • One or a combination of two or more of these compensation pressure heads is used to make an apparent zero compensation at the set water speed.
  • the apparent compensation of the total loss head to 3 corresponds to the bias voltage.
  • the velocity of the water flow at the inlet of the penstock is V, (msec), the velocity of the water near the outlet of the penstock is V :. (m / se;), Set the inflow water velocity to V,. (m / sec), the set outflow water velocity at which the water flow outside the hydraulic pipe sucks out the water flow inside the hydraulic pipe is V 2 . (m / sec), the set water depth is ⁇ ', (m), the total loss head is (m), and the compensation pressure head of the loss head compensation means is g (m).
  • the set flow velocity V 2 n are determined by the following formula. Set outflow water velocity V,. And setting runoff water speed v 2. Once this is determined, it is possible to determine the set water speed for each part in the penstock.
  • the total loss head may be calculated using the hydrodynamic loss head calculation formula or may be a value estimated from the actual results of the conventional hydropower generation method.
  • HP [ ⁇ (V,) 2 / (2 X g) ⁇ - ⁇ (V, o) 2 / (2 xg) ⁇ + He- [ ⁇ (V 2 ) 2 Z (2 xg)) ⁇ ( V 2 hinder) 2 / (2 xg) ⁇ + He-
  • V 2 V 2
  • 100% of natural energy such as V,, V 2 , and H 2 can be used, so the resulting power generation capacity can be obtained. Becomes larger.
  • this causes the water turbine driving water to flow through the hydraulic pipe at the set water speed with no resistance, and the state of i. Of the semiconductor electronic component is established.
  • the shape and dimensions of the hydraulic pipe, the reaction water turbine, and the guide vane of the reaction water turbine are determined, the amount of water and driving water is determined, and the two systems of water flow
  • the drive energy of the inlet-side turbine and the drive energy of the outlet-side turbine are determined by this energy, and the energy of these two streams of water flow accelerates the turbine drive water by the guide vane.
  • HP; ⁇ (V) 2 / (2 xg) ⁇ one ((V 1 himself) 2 / (2 xg) ⁇
  • the shapes and dimensions of the hydraulic pipe, the reaction turbine, and the guide vanes of the reaction turbine are determined based on the following setting conditions (5) to (8).
  • the amount of water is determined and the energy of the two streams is determined by the drive water turbine drive energy and the discharge water turbine drive energy. The energy of these two streams is guided by the turbine drive water. It will accelerate.
  • Total loss head H is the upstream total loss head from the inlet to the guide vane outlet, and the downstream total loss head H from the guide vane outlet to the discharge outlet H 2
  • a part of the water flow head H, (m) is, as in the case of the conventional hydroelectric power generation method, independently securing the water amount of the water turbine driving water and driving the water turbine.
  • H is converted to H ,, corresponding to the upstream total loss head, and the downstream total loss head.
  • H L 2 and H 10 which has the effect of accelerating the turbine drive water
  • H F2 ⁇ (V / (2 xg) ⁇ — "V ⁇ ) 2 (2 X g) ⁇ -M
  • the energy required to generate the compensation pressure head of the loss head compensating means is estimated from the results of the conventional technology, and is useful in the present invention.
  • Inlet-side turbine drive energy is about 15% or less of discharge-side turbine drive energy Therefore, sufficient profitability can be obtained.
  • the composition ratio of the upstream total loss head H,... And the downstream total loss head 2 is about ⁇ ⁇ - ⁇ ⁇ /3.5.
  • the setting conditions of the present invention are the following (5) to (8).
  • C (5) The water for driving the turbine that can flow into and out of the ice tube due to the above setting conditions (1) to (4). In order to accelerate at the guide vane of the reaction water turbine by the two systems of water flow described in (1) and (2) in the absence of a pressure difference, Outflow water velocity V 2 . When it is necessary to link the set water speed V n of water flowing out of the reaction water turbine.
  • an outflow water speed adjuster whose cross-sectional area gradually expands or contracts is provided at the discharge of the reaction turbine and the hydraulic pipe, and the set water velocity V of the water flow flowing out of the reaction turbine. (M / sec) is., Between from reaction water turbine to discharge port, due to deceleration or ⁇ to set runoff water speed V 21, the Unisuru.
  • the reaction is Set water speed V flowing out of turbine. It will be flashing speed or accelerated to the set outlet water speed V 2 ,, a, if you look at the penstock outside sucking the water flow pressure tube from Nagareruru water side, the setting outflow water speed V 2 (), discharge Going back from the mouth.
  • the water flowing out of the reaction turbine will be accelerated or decelerated to the set water velocity V u.
  • the amount of the inlet-side turbine drive energy consumed by driving the reaction turbine by converting it to kinetic energy is calculated as the discharge port
  • the side turbine drive energy can be replenished with pressure energy, and the water flow that has flowed in from the inlet drives the reaction turbine, and the consumed kinetic energy is replenished with pressure energy and flows out of the discharge port.
  • the water flow cross section S.,. (M ') of the guide vane of the reaction turbine is calculated based on the interaction between motion, pressure and potential energy shown by Bernoulli's equation. , determined by the inlet-side water turbine driving energy, set to the cross-sectional area that can be accelerated to set water speed VT (m / sec) to obtain a predetermined power generation capacity, S x V, the amount of water waterwheel driven water by (m 3 sec)
  • the setting conditions relating to the structure of the hydraulic pipe and the reaction turbine of the present invention are set, and the above-mentioned inlet-side turbine drive energy and discharge port-side turbine drive energy accelerate the turbine drive water on the guide vanes. To establish.
  • the drive-side turbine driving energy is as follows:
  • the inflow of the penstock is the cross-sectional area S, (m 2 ), and the set inflow velocity at the inflow port is V, (m / sec), the water head equivalent to the atmospheric pressure is ⁇ ⁇ (m), the water depth of the discharge port is H (m), and the specific gravity of the water is 1.
  • Inlet-side turbine drive energy ((S, XV, .) X (V, ⁇ ) 2/2 ⁇ + 9. 8 X (S, XV, o) (H, + H,)
  • the suction energy acting so that the water flow flowing near the outlet of the penstock draws the water in the penstock from the outlet is determined by the discharge outlet of the outflow water speed adjustment part of the penstock.
  • the area is S 2 Cm 2
  • the velocity of the water flow outside the hydraulic pipe near the discharge port is V ⁇ ”(m / sec)
  • the head equivalent to the atmospheric pressure is ⁇
  • the specific gravity of water is 1,
  • the suction energy acts to suck out the water flow in the hydraulic pipe from the discharge port, or acts to cause the water flow outside the hydraulic pipe flowing near the discharge port to flow to the downstream side, thereby causing the upstream side and the downstream side to flow.
  • the static pressure of the water flow inside the hydraulic pipe and the static pressure of the water flow outside the hydraulic pipe at the discharge port are balanced at the set outflow water velocity described above, as described in (4) above. Therefore, according to the setting conditions described in the above (3) to (8), the water speed V; the water speed V; and the set flowing water speed Vi.
  • the set water velocity V ? ( , The set water velocity V flowing out of the reaction turbine.
  • the set water velocity V T accelerated by the guide vanes can be all interlocked. Therefore, the suction energy is Under the above-mentioned interlocking conditions, it is possible to act retroactively from the outlet to the guide vane.
  • Outlet-side turbine drive energy ⁇ (SV 2201) X (V 2 furnish) / 2 ⁇ ten 9.8 X (SV c) (H + Hz)
  • the inflow-side turbine drive energy which has water-direct drive water flowing from the migratory population, drives the reaction turbine to consume kinetic energy.
  • the above-mentioned energy consumption of the driving energy on the input side of the turbine is converted into the pressure energy of its own at the place where it is consumed.
  • Replenish by Therefore, the turbine driving water that drives the reaction turbine transfers its energy to the discharge-side turbine driving energy. It recovers energy to lugi and flows out of the discharge outlet where the static pressure of the water flow inside and outside is equal.
  • the turbine drive water that has flowed into the inflow port is drawn out from the discharge port by the discharge side turbine drive energy. Since this suction action is obtained, the drive energy of the inflow ⁇ -side turbine and the drive energy of the discharge turbine will act synergistically on the Guy vane from the upstream side and the downstream side, and the turbine driven from the inlet will be driven. Water is accelerated by guide vanes based on Bernoulli's formula, drives the reaction water, and flows out of the discharge outlet even if there is no drop in the air.
  • the available power generation capacity is obtained by multiplying the above theoretical hydraulic power by the efficiency, and subtracting the power used by the loss head compensation means.
  • the inlet-side water turbine drive energy ⁇ (S: XV, 0 ) (V, ⁇ 2 '/ 2 ⁇ + 9 8 X (S, V 1 o) ( ⁇ ⁇ + ⁇ :.) ,
  • the aerial drop Eta , (m) exists, then
  • Inlet side hydraulic turbine drive energy . ⁇ (S; V, o) (V, 0) 2/2 ⁇ + 9 8 X (. S, V, t) X ( ⁇ ⁇ + ⁇ 2 + ⁇ , ⁇ )
  • reaction water turbine may be separately driven by the air drop ⁇ : and the power may be used to drive the loss head compensation means to obtain the compensation pressure head.
  • the loss head compensation means When the compensating pressure heads,. , are not used, the cross sectional area of the guide vane's water flow S r Cm) and the set water velocity V ⁇ , ⁇ (m / sec) and by adjusting the, S, x V ⁇ , combined (m 3 / sec), water velocity V after change,, S by V 2, XV, and XV ⁇ , to, one g
  • the rotation speed of the reaction turbine can be maintained at a predetermined value, and the power generation frequency and the power generation voltage can be maintained at predetermined values.
  • setting depth of H 2 discharge port is made to be fixed to the water depth H 2, set water depth H that Yusuke water flow which flows from the inlet of the penstock Since the total energy based on 2 is equal irrespective of the depth of the population due to the characteristics of the water flow, the water depth at the inlet can be set freely.
  • the loss head compensating means is divided into two parts and installed separately on the upstream and downstream sides of the reaction turbine, the condition of the control surface can be simplified.
  • the direction of the device for implementing the present invention should be adjusted to the direction of the water flow. It may be changed by 180 °, or the reaction water turbine and the means for using the loss head may be configured to operate bidirectionally while maintaining the above-mentioned interlocking conditions.
  • FIG. 1 is a side view of a hydroelectric power generation facility installed on a tidal seabed by implementing the method of the present invention.
  • FIG. 2 is a side view of a hydroelectric power generation facility installed at a location where the method of the present invention is carried out and moored in a water flow such as a tidal current or a river.
  • FIG. 3 is a side view of a hydroelectric power generation facility installed on a surface ship by carrying out the method of the present invention.
  • FIG. 4 is a side view of a hydroelectric power generation facility installed between two water streams having a step between water surfaces by implementing the method of the present invention.
  • FIG. 1 is a side view showing the configuration of one hydropower hydroelectric power generation system using the method of the present invention when large-scale hydroelectric power generation of several hundred thousand to several million kW is arranged by arranging a large number of hydroelectric power generation facilities on the seabed of tidal current F FIG.
  • the hydroelectric power generation equipment is installed on a turntable 20 provided on the seabed so as to be rotatable in the direction of the tidal current F.
  • the whole is covered with the mantle 9 and becomes streamlined so as not to disturb the current of the tidal current F.
  • the guide vane 5, the reaction water turbine 6, and the loss head compensating means 8 may have a structure in which the operation direction is reversed. Alternatively, it may be used by hanging from ⁇ , and the direction of ⁇ may be changed according to the direction of tidal current F.
  • a reaction turbine 6, a guide vane 5 of the reaction turbine 6, and a generator 7 connected to the reaction turbine 6 are provided in the hydraulic pressure pipe 1, and furthermore, a loss is provided downstream of the reaction turbine 6.
  • Head loss compensation means 8 is provided.
  • an inlet 3a whose cross-sectional area gradually increases toward the upstream side in order to increase the amount of water flowing into the inlet 1 of the hydraulic pipe 1. Is provided.
  • the set water speed V of the turbine drive water to be accelerated in guide vane 5 is V: (m / 'sec)
  • the total length of the penstock 1 is about 13.5 m.
  • Fig. 2 shows that a hydroelectric power plant using the method of the present invention is mounted on a kage 10 and is moored in tidal currents or river water currents. It is a side view which shows the structure of one unit at the time of hydropower generation.
  • the hydroelectric power generation facility is provided at ⁇ 10, which is more convenient for maintenance than the case of FIG.
  • a reaction turbine 6, a guide vane 5 of the reaction turbine 6, and a generator 7 connected to the reaction turbine 6 are provided in the hydraulic pressure pipe 1, and a downstream side of the reaction turbine 6. Loss head compensation means 8 is provided.
  • the inflow part whose cross-sectional area gradually increases toward the upstream side in order to increase the amount of water flowing into the migratory population 3 of the penstock 1. 3a is provided.
  • the set water speed V, (m / sec) of the turbine drive water to be accelerated in guide vane 5 is
  • the reaction turbine 6 is a power plan turbine
  • the angle of the runner of the reaction turbine 6 is changed together with the guide vane 5, so that a decrease in efficiency is reduced.
  • FIG. 3 is a side view of a case where a hydroelectric power generation facility using the method of the present invention is installed on floating ship lees 1].
  • one hydraulic pipe ⁇ is installed below the water surface on both sides of the bow of the surface boat ⁇ 11, and the discharge ⁇ 4 of the hydraulic pipe 1 is arranged at the specified water depth I (m).
  • the water depth of the inlet 3 of the penstock 1 is determined by the navigation speed of the watercraft 11 regardless of the water speed V, (m) regardless of the water depth, and the driving energy of the inlet-side turbine at the inlet is always the same regardless of the water depth. since, it may be deeper shallower than the set water depth H 2. Therefore, it may be an underwater ship.
  • a reaction turbine 6, a guide vane 5 of the reaction turbine 6, and a generator ⁇ connected to the reaction turbine 6 are provided inside the hydraulic pipe 1, a reaction turbine 6, a guide vane 5 of the reaction turbine 6, and a generator ⁇ connected to the reaction turbine 6 are provided.
  • ⁇ , ⁇ (V, 2 / (2 X g) ⁇ one ⁇ (V, ⁇ ) 2 (2 xg) ⁇
  • H, 2 ⁇ (V,) 2 / (2 xg) ⁇ - ⁇ (V 2 o) 2 (2 xg) ⁇
  • V 2 n 5.2 4 m. ,, s e c
  • the amount of water to be driven by the turbine is set.
  • the cross-sectional area of the inlet of the penstock 1 or the inlet 3a is S, (m 2 ), and the set inflow velocity is
  • Inlet side hydraulic turbine drive energy ⁇ (S, V, ( V, o) 2/2 ⁇ + 9.
  • the water flow is set inflow velocity V,.
  • the water is driven and driven by the reaction water turbine 6, and the amount of 7 14 kW is accelerated by the water turbine drive water and driven by the reaction water turbine 6 to be consumed.
  • V due to a change in the change and draft waterborne vessel 1 1 sailing speed, V: relative variation such as H 2, water flow cross-sectional area S of the Guy Dobeichin 5, - and (m 2) , S r XV ⁇ (m 3 / sec) is adjusted by adjusting the set water velocity V T (m / sec) obtained by accelerating at guide vane 5, S, V, and S 2 x suit V 2, by adjusting the output of the generator 7 can maintain the rotational speed of the reaction water turbine 6 to a predetermined value.
  • the reaction turbine 6 is replaced with a power turbine, together with the guide vanes 5, Recoil. Since the angle of the runner of the turbine 6 also changes, the decrease in efficiency is reduced.
  • V: 7.72 m / sec.
  • Figure 4 is a flow hydroelectric power plant using the present invention method, by arranging a large number straddling two water flow between the upper canal and lower canals F 2, small water hundreds k watts to several thousand k W It is a side view which shows the structure of one unit at the time of hydropower generation.
  • the upper canal F i and lower canals F 2 is constructed to be substantially parallel, although not shown, at a predetermined distance, the flow of water about lm 3 Z sec, from the upper side canals It is supplied to the lower canal F 2, lower canals F, even if there is supplied the upper SL, as water level does not change, and sequentially increases in accordance with the water flow cross-sectional area to the feed water.
  • a reaction turbine 6, a guide vane 5 of the reaction turbine 6, and a generator 7 connected to the reaction turbine 6 are provided inside the hydraulic pipe 1.
  • An outflow water speed adjustment unit 4a is provided to reduce the water flow to the set outflow water speed V 2I , up to the discharge outlet.
  • Air head (m) 2.5 m can compensate for ⁇ ⁇ ,, ⁇ ”to 0, so no loss head compensation is required.
  • H r, ⁇ (V,) 2 / (2 xg) ⁇ is calculated from ⁇ (V, ⁇ ) 2 / (2 xg) ⁇ +,,,.
  • H G .2 ⁇ (V 2) ? / (2 xg) ⁇ One ⁇ (V 20) 2 / (2 g) ⁇ + H, and is calculated from.
  • the cross-sectional area S 2 (m '") of the outlet 4 is
  • the available water turbine drive water acceleration is
  • the W component is the kinetic energy of the water chamber driving water, and the turbine driving water flows out of the discharge port.
  • the 130.6.3 kW component is the water turbine driving the reaction turbine. As the pressure energy of the water, the turbine driving water that drives the reaction turbine is discharged from the discharge port.
  • V. Coefficient ( ⁇ . 25 to 0.4) X V ⁇ , so if the coefficient is 0.33,
  • V 0 0.33
  • V ⁇ 0.33
  • X 1 6.4 5.1 / sec
  • the reaction turbine 6 is a power plan turbine, Since the angle of the runner of the reaction turbine 6 also changes, the decrease in efficiency is reduced. And, the supply amount of water from the upper canal is, around a 1 m 3 / sec, can accommodate variations in the 3 0% 1 50%.
  • the water flow hydroelectric power generation method of the present invention is based on a new technical concept of hydropower utilization, such as in a water flow with no head drop in the air such as an ocean current, a tidal current, a river, an irrigation channel, or as a watercraft or an underwater navigation ship.
  • Water-flow hydropower can be generated by moving objects in water that have a relative speed with respect to water, and there is a possibility that the energy problems of inexhaustible ocean currents and tidal currents can be used to solve power energy problems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Water Turbines (AREA)

Description

明 钿 書 水流水力発電方法 技術分野
従来の水力発電方法の技術概念では、 水中落差がある水に、 反動水車-と発 電機とを備えた水圧管を設置し、 水圧管内の水の空中落差を利用して水力発 電しているので、 空中落差が無いと、 水車駆動水を加速できず、 水力発電で きない。 そして、 反動水車の上流側から作用する水圧管内の水の空中落差も 反動水車の下流側から作用する吸出管内の水の空中落差も、 共に水圧管内の 1系統の水が有するものである。
本発明は、 上記の従来の技術概念とは異る水力利用の新しい技術概念に基 づき、 空中落差が無い水流中に、 反動水車と発電機とを備えた水圧管を設置 して、 水圧管と反動水車との構造を設定条件に合わせることにより、 水圧管 に流入する水流の水圧管の放流口を某準にする運動 ·圧力,位置の全ェネル ギである流入口側水車駆動エネルギと、 放流口から反動水車のガイ ドべ一ン まで遡って水圧管内の水を吸い出すように作用する水圧管外を流れる水流の 運動 ·圧力 ·位置の全エネルギによる放流口側水車駆動エネルギとの 2系統 のエネルギを、 流体力学のベルヌ—ィの式が示す運動 ·圧力 ·位置エネルギ の相互変換作用と組み合わせて、 空中落差が無くても、 水車駆動水を加速す ることができ、 加速した水車駆動水で反動水車を駆動し、 反動水車を駆動し た水車駆動水を放流口から水流中に放流するという、 水流水力発電方法に関 する。 背景技術
従来の水力発電方法では、 反動水直と発電機とを備えた水压管の流入口と 放流口とを、 水面間に空中落差が存在する流入口側静止水中と放流口側静止 水中とに設置し、 空中落差による位置エネルギを伴って水圧管内に流入し水 圧管の放流口から流出する 】 系統の水の空中落差による位置エネルギを利用 して、 水圧管内の水車駆動水をガイ ドべ一ンで加速させ、 加速された水車駆 動水に反動水車を駆動させ、 駆動された反動水車に発電機を回転させて水力 発電している。
例えば、 従来のチューブラ水虽 ^力発電方法では、 反動水車と発電機とを 備えた水圧管を、 静止水の低空中落差部の水中に、 この水圧管内の水車駆動 水が空中落差 ( m ) と水中落差 ( m ) とを有するように設置し、 水 深 H z の放流口において水圧管内の水車駆動水の水中落差 H ? の圧力ヘッ ド と水圧管外の水の水中落差 H による圧力ヘッ ドとを釣り合わせて水圧管内 の水が空中落差ト 1 , によつて放流口から静止水中に流出できるようにして、 水圧管内の水車駆動水の空中落差 H: の位置エネルギによつて水東駆動水を ガイ ドベーンで加速させ、 加速された水車駆動水に反動水車を駆動させ、 駆 動された反動水車に発電機を回転させて水力発電し、 水圧管内の水車駆動水 という 1系統の水の空中落差 H , の位置エネルギによる理論水力 W ( k W ) = g X Q {水車駆動水の水量 (m 3 / s e c ) } H , ( k W ) を得ている, 上記のように、 従来の水力発電方法の技術概念では、 水圧管内の水車駆動 水という 1系統の水の空中落差の位置エネルギしか利用出来ないので、 無尽 蔵に水流の運動 ·圧力 ·位置エネルギを有するが、 空中落差が無い海流、 潮 流等で水力発電ができないという問題点がある。
これに対して、 水力利用の新しい技術概念に基づく本発明は、 空中落差を 有しない水流中に、 反動水車と発電機とを備えた水圧管を設置し、 水圧管の 放流口を水深 H ( m ) の位置に配し、 水流水力発電時にその時の水圧管内 の設定水速に対して発生する水圧管内の総損失へッ ドを補償する損失へッ ド 補償手段の損失補償へッ ドを必要により付加し、 反動水車の出口から水圧管 の放流口間で、 反動水車から流出する水流の設定水速を放流口までに設定流 出水速に減速又は加速する流出水速調整部を設けることにより、 水圧管の放 流口において、 水圧管内の水流の静圧と水圧管外の水流の静圧とを釣り合わ せて、 水圧管外を流れる水流に放流口から遡つて水圧管内の水流を吸い出さ せるようにすることにより、 水圧管に流入する水流の水圧管の放流口を某準 にする全エネルギである流入口側水車駆動エネルギと、 水圧管外を流れる水 流が放流口から遡って水圧管内の水流を吸い出すように作用する放流口側水 車駆動エネルギとを、 水圧管の流入口と放流口とに相乗的に作用させ、 流体 力学のベルヌ ーィの式が示す運動 ·圧力 ·位置エネルギの相互変換作用と組 み合わせて、 流入口側水車駆動エネルギが水車駆動水を加速し、 加速された 水車駆動水が反動水車を駆動して水流水力発電し、 放流口側水車駆動エネル ギが、 放流口から遡り反動水車内において、 反動水車の駆動に消費される前 記流入口側水車駆動エネルギ分をそれが消費される位置で補充し、 反動水車 を駆動した水圧管内の水車駆動水を水圧管外に流出させる。
本発明は、 上記のようにして、 空中落差が無く圧力差が無い水流中で、 水 流の全エネルギによる理論水力 W ( k W ) = { Q (水車駆動水の水量 (m 3 / s e c ) } x ( V , ) 2 / 2 ) + g x Q x H 2 ( k W ) を得て、 海流、 潮 流、 河川、 甩水路等の空中落差が無い水流中において、 又は、 小落差の水流 中において、 又は、 水との相対速度がある水上船舶や水中航行船舶等の水中 移動物体において水流エネルギによる水力発電を行う水流水力発電方法を提 供することを目的とする。 発明の開示
本発明のポイ ン トは、 空中落差が無い水流中に、 反動水車と発電機とを備 えた水圧管を設置し、 反動水東のガイ ドべ—ンの前後間に圧力差が無い状態 で、 水圧管内に流入する水流と水圧管外の水流との 2系統の水流のエネルギ を水圧管の流入口と放流口とに相乗的に作用させ、 流体力学のベルヌ ーィの 式が示す運動 ·圧力 ·位置エネルギの相互変換作用と組み合わせて、 前記 2 系統の水流のエネルギが、 前記ガイ ドべ—ンにおいて、 水車駆動水を加速で きるように、 反動水車や水圧管の構造を設定することである。
上記の本発明の設定条件は、 半導体電子部品において、 半導体中に存在す るが、 そのままでは移動させることができない電荷を移動させ得るようにし て半導体電子部品の機能を構成する設定条件に類似しているので、 両者を対 比して説明する。
半導体電子部品の設定条件をエネルギを利用するという見方で独断的に纏 めてみると、
1 . 異種の半導体を相互間に接触面を作って接触させ、 バイアス電圧を印 加して前記接触面での両者のエネルギレベルを合わせて、 電荷が前記接触面 を通って所定方向に移動できるようにする c
2 . 異種の半導体の組合せ構造を所定の形に形成することにより、 入力が あれば所定の通路を所定量の電荷が所定方向に移動できるようにする。
3 . 入力の状態に合わせて電荷を目的どおりに移動させるようにする。 というものである。
これらに対する、 本発明の設定条件は、 下記のとおりである。
( 1 ) 通常、 自然界の水流は水速が小さいので、 反動水車を備えた水圧管 の流入口に発生する水流の淀みによる動圧へッ ドが小さく、 動圧へッ ド《水 圧管内の総損失へッ ドとなるので、 水流は水圧管に流入できない。
本発明では、 先ず、 水流が設定流入水速で反動水車を備えた水圧管の流入 口に流入できるようにし、 前記設定流入水速で流入する水流の放流口を基準 にする運動 ·圧力 ·位置の全エネルギを流入口側水車駆動エネルギとして利 用できるようにする必要がある。
( 2 ) 又、 通常、 自然界の水流では水圧管の放流口近傍の水速が小さいの で、 反動水車を備えた水圧管の放流口に水流の水速によつて作用する負圧へ ッ ドが小さく、 負圧へッ ド《水圧管内の総損失へッ ドとなるので、 水圧管外 を流れる水流が水圧管内の水流を放流口から吸い出すことができない。 本発 明では、 先ず、 水圧管外を流れる水流が、 反動水車を備えた水圧管内の水流 を放流口から設定流出水速で吸い出せるようにし、 水圧管外の水流が放流匚 1 に作用させる前記設定流出水速での運動 ·圧力 ·位置の全エネルギを放流口 側水車駆動ェネルギと して利用できるようにする必要がある。
[ I ] 上記 ( 1 ) 、 ( 2 ) に対する本発明の下記設定条件 ( 3 ) 〜 ( 4 ) が、 上記 1. の 「異種の半導体を相互間に接触面を作って接触させ、 バイァ ス電圧を印加して前記接触面での両者のエネルギレベルを合わせて、 電荷が 前記接触面を通って所定方向に移動できるようにする。 」 に対応する。
( 3 ) 先ず、 反動水車と発電機とを備えた水圧管を空中落差が無い水流中 に設置して、 空中落差が無い水流を、 水圧管内に流入する水流系と水圧管外 を流れる水流系との 2系統の水流に分ける。
これらの 2系統の水流が異種の半導体であり、 水圧管の流入口と放流口と が、 これら 2つの水流系間に作られた相互接触面である。
( 4 ) 次いで、 水流水力発電時に水圧管内や反動水車内の各部分の設定水 速に対応して前記各部分の水流に発生する各損失へッ ドの総和である総損失 ヘッ ド! ·Κ' (m) を、 水圧管の流入□に発生する水流の淀みによる動圧へッ ドと放流口近傍を流れる水流の負圧へッ ドと必要により付加ォる損失へッ ド 補償手段の補償圧力へッ ドとの中の 1つ又はこれらの 2つ以上の組合せによ つて、 前記設定水速において、 見掛け上 0に補償する。
この設定水速において総損失へッ ドを見掛け上 3に補償することがバイァ ス電圧に相当する。
この 0補償は下記のように行う。
水圧管の流入口での水流の水速を V , ( m s e c ) 、 水圧管の放流口近 傍での水流の水速を V:. ( m / s e ; ) 、 前記の流人口から流入する水流の 設定流入水速を V ,。 (m/ s e c ) 、 水圧管外の水流が水圧管内の水流を吸 い出す設定流出水速を V 2。 (m/ s e c ) 、 設定水深を Η', (m) 、 総損失 へッ ドを (m) 、 損失へッ ド補償手段の補償圧力へッ ドをト (m) とした場合に、 先ず、 総損失ヘッ ド H を 0 に補償する際の設定流入水速 V ,。と、 設定流 出水速 V2 nとを、 下記の計算式で決める。 設定流出水速 V ,。と設定流出水速 v2。とが決まれば、 水圧管内の各部分の設定水速を決めることができる。 この場合、 総損失へッ ド には、 流体力学の損失へッ ドの計算式で計算 したものを使用しても、 従来例の水力発電方法による実績から推定した値を 使用してもよい。
( A ) 設定流入水速 V ,。と設定流出水速 V 2 nとは、 自然界の水流のように、 水速 V , と水速 V 2 とが小さ く て、 補償圧力ヘッ ド HCM, を使用する場合に は、
総損失へッ KHF を、 流入口からガイ ドべ一ンの出口までの上流側総損失 へッ ド と、 ガイ ドべ一ンの出口から放流口までの下流側総損失へッ ド H とに分け、 補償圧力へッ ド HCI," をこれらに対応する上流側補償圧力へッ ド HC1>R Iと下流側補償圧力へッ ド HCPK2とに分け、 水速 V ,0と水速 V 2。とを 下記の式から計算する。
HP, = [ { ( V , ) 2 / ( 2 X g ) } - { (V,o) 2 / ( 2 x g) } + He- [ { (V2 ) 2 Z ( 2 x g ) ) 一 { ( V2„) 2 / ( 2 x g ) } + He-
R 2 ϋ
H = HP, + H P2 = [ { (V , ) 2 ./ ( 2 x g) } 一 { ( V ,o) 2 / ( 2 x g ) } + HcPR ) ] + [ { (V 2 ) 2 / ( 2 X g ) } 一 { ( V 2„ ) 2 / ( 2 x g ) } + H PH2] = [ { ( V , ) 2 ( 2 x g ) } 一 { ( V ,o) 2 / ( 2 x
K ) } ] + C { ( V 2 ) 2 ( 2 X g ) } 一 { ( V ? o ) 2 X C 2 x g ) } ]
+ H C P K
この場合、 H 一
Figure imgf000008_0001
0 とするのが、 V , = V ,„ . V 2 = V2。となって、 V , 、 V2 、 H2 等の自然界のエネルギを 1 0 0 %利 用できるので、 得られる発電容量が大きく なる。
これらの式は、 水速 V , の水流が流入口で淀んで設定流入水速 V ,。で流入 口に流入する場合に流入口に加わる速度へッ ド [ ( V , ) 2 ./ ( 2 X g ) } 一 { (V ,„) 2 ノ ( 2 X g ) } ] と、 水圧管外の水速 V7 の水流が水圧管 内の水流を放流口から設定流出水速 V 2。で流出させ場合に放流 Πから遡る負 圧と して作 する速度ヘッ ド [ { ( V 2 ) 2 / ( 2 X g ) } 一 { ( V 2„ ) 2 ノ ( 2 X g ) } ] と、 補償圧力へッ ド H (:,.,, との総和が、 総損失へッ ド Η,. を 0に補償し、 設定流出水速 V 2。において放流口内外での水流の静圧が等し く なつていることを示す。
即ち、 これによつて水車駆動水が設定水速で水圧管内を抵抗 0で流れるこ とになり、 半導体電子部品の i . の状態になる。
次いで、 下記の設定条件 ( 5 ) 〜 ( 8 ) に基づいて、 水圧管、 反動水車、 反動水車のガイ ドベーンの形状 ·寸法が決ま り、 水茧駆動水の水量が決ま り, 2系統の水流のエネルギによる流入口側水車駆動エネルギと放流口側水車駆 動エネルギが決ま り、 これらの 2系統の水流のエネルギが、 水車駆動水をガ ィ ドベーンで加速することになる。
( B ) 又、 設定流入水速 V 1 0と設定流出水速 V 2。とは、 船舶の場合のよう に、 水速 V , と水速 V 2 とが等しく 、 且つ、 大き くて、 補償圧力へッ ド He, , を使用しない場合には、
総損失へッ ド H P を流入口からガイ ドベーンの出口までの上流側総損失へ ッ ド HK Iと、 ガイ ドべ一ンの出口から放流口までの下流側総損失へッ ド とに分け、 水速 V ,。と水速 V 2 nとを下記の式から計算する。
H P ; = { ( V ) 2 / ( 2 x g ) } 一 ( ( V 1„) 2 / ( 2 x g) }
H P 2 = { ( V 2 ) 2 / ( 2 x β ) } - { ( V 2„ ) 2 ' ( 2 x g ) }
Ηκ = Η , + Η F 2 = [ { ( V , Ζ ( 2 X g ) ) - { ( V , ο ) 2 ./ ( 2 g) } ] + [ { ( V ) 2 / ( 2 X g ) } 一 { ( V 2。) : Ζ ( 2 x g ) } ] これらの式は、 水速 V , の水流が流入口で淀んで設定流入水速 V ι ηで流入口 に流入する場合に、 流入口に加わる速度へッ ド [ { (V , ) 2 / ί 2 X g ) } 一 { (V ,。) 2 / ( 2 x g) } ] と、 水圧管外の水速 V2 の水流が水圧管 内の水流を放流口から設定流出水速 V 2 で流出させる場合に、 放流口から遡 つて負圧として作用する速度へッ ド [ ί (V2 ) 2 ( 2 x R ) } - { ( V 2„) 2 ./ ( 2 X κ ) } ] とが、 総損失へッ ドトし を(1 に捕償し、 設定流出水 速 V 20において放流口内外での水流の静圧が等しく なっていることを示す。 即ち、 これらによって水車駆動水が水圧管内を抵抗 0で流れることになり 前記 (Α ) の場合と同様に、 半導体電子部品の 1. の状態になる。
次いで、 前記 (Α ) の場合と同様に、 下記の設定条件 ( 5 ) 〜 ( 8 ) に基 づいて、 水圧管、 反動水車、 反動水車のガイ ドべ—ンの形状 ·寸法が決まり 水車駆動水の水量が決まり、 2系統の水流のエネルギによる流人口側水車駆 動エネルギと放流口側水車駆動エネルギが決まり、 これらの 2系統の水流の エネルギが、 水車駆動水をガイ ドべ一ンで加速することになる。
(C) 又、 設定流入水速 V と設定流出水速 ν:„とは、 水流に小空中落差 Η, (m) があり、 補償圧力へッ ドを HC,.R を使甩しない場合には、
総損失へッ ドト を、 流入口からガイ ドべ一ンの出口までの上流側総損失 へッ ド H と、 ガイ ドべ一ンの出口から放流口までの下流側総損失へッ ド H 2とに分け、 又、 水流の小落差 H, (m) が、 本発明方法において、 の一 部が、 従来の水力発電方法の場合と同様に、 単独で水車駆動水の水量を確保 し水車駆動水を加速すると共に、 その他の部分が、 補儐圧力へッ ドとして作 用するので、 H , を、 上流側総損失へッ ド に対応する H , ,と、 下流側総 損失へッ ド に対応する H L 2と、 水車駆動水を加速する作用を有する H 1 0
= H , 一 CH + H , ?. ) とに分け、 水速 V,„と水速 V2nとを下記の式から計 算する。
H P! = { ( V ( 2 g ) } - { C V , 0 ) 2 . / ( 2 X g ) } -t- H
H F2 = { ( V / ( 2 x g ) } — " V π ) 2 ( 2 X g ) } - M , _ H P = ΗΚ, + Η Ρ:= Γ { ( V , ) 2 / ( 2 X g ) } { ( V ,„ ) 2 / ( 2 g ) } + Η , , ] + [ { ( V , ) 2 ( 2 X g ) } - ( V 2„) 2 ./■" ( 2 X g ) } + Η 1 2] 、 合、 トし H M - O H ,..2— H , Γ= o とするのが、 ν - ν , 、 V , ,, = V となって、 V , 、 V , 、 Η , 等の自然界のエネルギを 1 0 0 %利用で きるので、 得られる発電容量が大き く なる。
これらの式は、 水速 V , の水流が流入口で淀んで設定流入水速 V で流入 口に流入する場合に、 流入口に加わる速度へッ ド [ { ( V , ) / ( 2 X g ) } 一 { ( V 10) 2 / ( 2 X g ) ) ] と、 水圧管外の水速 V 2 の水流が水圧 管内の水流を放流口から設定流出水速 V ^で流出させる場合に、 放流口から 遡って負圧と して作用する速度へッ ド [ { ( V ) 2 Z ( 2 X g ) } — { ( V20) 1 / ( 2 X g ) } ] と、 小さな空中落差 Η! の一部である Η : + Η , 2 とが、 総損失へッ ド を 0 に補信し、 放流口内外での水流の静圧が等しく なっていることを示す。
即ち、 これらによ つて水車駆動水が水圧管内を設定水速で抵抗 0で流れる . とになり、 前記 (Α) と ( Β ) の場合と同様に、 半導体電子部品の 1. の状 態になる。
次いで、 前記 (Α) と ( Β ) の場合と同様に、 下記の設定条件 ( 5 ) 〜 ( 8 ) に基づいて、 水圧管、 反動水車、 反動水車のガイ ドベーンの形状 ·寸法 が決まり、 水車駆動水の水量が決ま り、 2系統の水流のエネルギによる流入 口側水車駆動エネルギと放流口側水車駆動エネルギが決ま り、 これらの 2系 統の水流のエネルギが、 水車駆動水をガイ ドべ一ンで加速することになる。 そして、 Η は、 従来例の水力発電方法の場合と同様に、 単独に水車駆動 水の水量を確保し水車駆動水を加速し理論水力 W= g X Q X Η ( k W) を 得る。
( D) 更に、 場合によっては、 上記の (A ) 、 ( B ) 、 ( C ) を組み合わ せることもできる。
尚、 これらの場合、 損失へッ ド補償手段の捕償圧力へッ ド の発生に 必要なエネルギは、 従来技術での実績から推定して、 本発明で利.!!する流入 口側水車駆動エネルギゃ放流口側水車駆動エネルギの 1 5 %以下程度である ので、 充分な採算性が得られる。 又、 上流側総損失へッ ド H ,· と下流側総搢 失へッ ド 2との構成比率は、 Η ΖΗ - Ι ϋ / 3. 5程度である。
[ Π ] 前記 2. の 「異種の半導体の組合せ構造を所定の形に形成すること により、 入力があれば所定の通路を所定量の電荷が所定方向に移動できるよ うにする c 」 に対応する本発明の設定条件は下記の ( 5 ) 〜 ( 8 ) である c ( 5 ) 上記の設定条件 ( 1 ) 〜 ( 4 ) によって氷圧管内に流入し流出でき るようになった水車駆動水を、 圧力差が無い状態で、 前記 ( 1 ) 、 ( 2 ) に 記述した 2系統の水流のェ不ルギによって、 反動水車のガイ ドべ一ンにおい て加速するためには、 先ず、 前記の設定流出水速 V2。と、 反動水車から流出 する水流の設定水速 V n とを連動させる必要がある。
そのために、 反動水車と水圧管の放流 に断面積が徐々に拡大又は縮小 する流出水速調整部を設けて、 反動水車から流出する水流の設定水速 V。 ( m/ s e c ) が.、 反動水車から放流口までの間で、 前記の設定流出水速 V 21, にまで減速又は增速するよ うにする。
前記 ( 3 ) 、 ( 4 ) の設定条件と、 この設定条件 ( 5 ) とによって、 反動 水車から放流口までの間について、 反動水車の出口から流出する水圧管内側 の水流側から見れば、 反動水車から流出する設定水速 V。 を設定流出水速 V 2,,にまで滅速又は増速させることになり、 水圧管内の水流を吸い出す水圧管 外を流れるる水流側から見れば、 設定流出水速 V2()を、 放流口から遡らせて. 反動水車から流出する水流の設定水速 V u にまで加速又は減速させることに なる。
従って、 ベルヌーィの式が示す運動 ·圧力 ·位置エネルギの相互変換作用 に某づいて、 運動エネルギに変換して反動水車を駆動して消費された流入口 側水車駆動エネルギの消費分を、 放流口側水車駆動エネルギが圧力エネルギ で補給することができ、 流入口から流入した水流は、 反動水車を駆動し、 消 費した運動エネルギを圧力エネルギで補充されて放流口ら流出する。
このようにして、 設定流出水速 V20と、 反動水車から流出する水流の設定 水速 V U とを連動させることと、
( 6 ) 自然界の水流では、 水速が小さい場合が多いので、 水速が小さくて も、 水圧管の流入口に流入する水量を多くするために、 水圧管の流入口に、 上流側に向かって断面積が徐々に大きく なる流人部を設けて、 7k茧駆動水の 水量を多くすることと、
( 7 ) 水圧管又は流人部の流入口断面積を S , (m2 、 流入口での水流 の設定流入水速を V i n (m/ s e c ) 、 水圧管の流出水速調整部の放流口断 面積を S : (m 2 ) 、 流出水速調整部の放流口での設定流出水速を V :。 (m / s e c ) とした場合に、 S , X V , (m ノ s e c ) - S 2 V :„ ( m :i / s e c ) として、 水車駆動水の水量を設定することと、
( 8;) 反動水車のガイ ドべ—ンの水流断面積 S.,. (m' ) を、 ベルヌ一ィ の式が示す運動 ·圧力 ·位置エネルギの相互変換作用に基づき、 水車駆動水 を、 前記流入口側水車駆動エネルギによって、 所定発電容量を得る設定水速 V T (m/ s e c ) に加速できる断面積に設定し、 S x V , (m3 s e c ) によって水車駆動水の水量を決定することとによって、
本発明の水圧管と反動水車の構造に関する設定条件が整い、 前記の流入口 側水車駆動エネルギと放流口側水車駆動エネルギとが、 水車駆動水をガイ ド ベ一ンにおいて加速し、 本発明が成立する。
これらの詳細計算は下記のとおりになる。
( 9 ) 前記流人口側水車駆動エネルギは、 水圧管の流入□断面積を S , ( m2 ) 、 流入口での設定流入水速を V ,。 ( m / s e c ) 、 大気圧に相当する 水頭を ΗΛ (m) 、 放流口の水深を H (m) 、 水の比重を 1 とすると、 流入口側水車駆動エネルギ = { ( S , X V ,。) X ( V , ο) 2 / 2 } + 9. 8 X ( S , X V , o) ( H、 + H , )
となる。
又、 水圧管の放流口近傍を流れる水流が、 水圧管内の水を放流口から吸い 出すように作用する吸出しエネルギは、 水圧管の流出水速調整部の放流口断 面積を S 2 Cm2 ) 、 放流口近傍の水圧管外の水流の水速を V ·」 ( m / s e c ) 、 大気圧に相当する水頭を Η,、 (π 、 放流口の水深を! (m) 、 水 の比重を 1 とすると、
吸出しエネルギ = { ( S , X V 2 ) X ( V 2 ) ;: ./ 2! + 9. 8 X ( S;■ V 2 ) κ ( H + H
となる。
この吸出しエネルギは、 水圧管内の水流を放流口内から吸い出すように作 用するか、 又は、 放流口近傍を流れる水圧管外の水流を下流側に流れ去らせ るように作用して上流側と下流側とが釣り合っているが、 上記 ( 4 ) に記述 したように、 放流口で水圧管内の水流の静压と水圧管外の水流の静圧とが前 記の設定流出水速 で釣り合っているので、 前記 ( 3 ) 〜 ( 8 ) に記述し た設定条件によって、 水速 V; 、 水速 V 、 設定流人水速 V i。、 設定流出水 速 V? (,、 反動水車から流出する設定水速 V。 、 ガイ ドベーンにおいて加速さ れる設定水速 VT とを総て連動させることができる。 従って、 前記吸出しェ ネルギは、 上記の連動条件で、 放流口からガイ ドベーン方向に遡って作用す ることができる。
即ち、 放流口から遡って反動水車のガイ ドべ—ンまで作用する放流口側水 車駆動エネルギは、
放流口側水車駆動エネルギ = { ( S V 2„) X ( V 2„ ) / 2 } 十 9. 8 X ( S V c ) ( H + Hz )
となる。
設定条件 ( 4 ) 〜 ( 8 ) が揃う と、 流人口から流人する水直駆動水が有す る前記流入口側水車駆動エネルギが反動水車を駆動して運動エネルギ分を消 費する際に、 上記のようにして放流口から遡って作用する前記放流口側水車 駆動エネルギが.. 流入口側水車駆動エネルギの上記のエネルギ消費分を、 そ れが消費される場所で、 自己の圧力エネルギによって補充する。 従って、 反 動水車を駆動した水車駆動水は、 そのエネルギを前記放流口側水車駆動エネ ルギにまでエネルギを回復し、 内外の水流の静圧が等しい放流口から流出す る。 即ち、 流入口に流入した水車駆動水は、 放流口側水車駆動エネルギによ つて放流口から吸い出されることになる。 この吸い出し作用が得られるので, 前記の流入□側水車駆動エネルギと放流ロ侧水車駆動エネルギとが、 ガイ ベーンに上流側と下流側とから相乗的に作用し、 流入口から流入した水車駆 動水は、 空中落差がなく ても、 ベルヌーィの式に基づいてガイ ドベ--ンで加 速し反動水虽を駆動して放流口から流出し、 水流水力発電が可能になる。 勿論、 利用できる発電容量は上記の理論水力に効率を乗じ、 損失へッ ド袖 償手段が使用する電力を差し引いたものである。
尚、 上記の本発明の構成によると、 水流に小さな空中落差 がある場合.. 前記の ( 4 ) に記述したように、 空中落差' t- は、 従来のチューブラ水車発 電方法の場合と同様に作用することができ、 前記の水流水力発電の理論水力 以外に、 空中落差 H , の有効分 H ,。の位置エネルギによる從来技術の理論水 力 W ( k W) = g X Q {水車駆動水の水量 (m3 / s e c ) ) x H ,„ ( k W ) が得られる。
即ち、 流入口側水車駆動エネルギ = ί ( S: X V , 0 ) ( V , ο 2 '/ 2 } + 9 . 8 X ( S , V 1 o) (ΗΛ + Η: ) に、 空中落差 Η , ( m ) が存在 すると、
流入口側水車駆動エネルギ = { ( S; V , o) ( V , 0 ) 2 / 2 } + 9 . 8 X ( S , V , t. ) X ( Η Λ + Η 2 + Η , Ο )
となる。
尚、 空中落差 Η : で別個に反動水車を駆動し、 その動力で、 損失へッ ド補 償手段を駆動して捕償圧力へッ ド得ても良い。
[ 3 ] 以上で、 水流水力発電方法の水圧管と反動水車の構造 *寸法につい ては設定条件が揃うが、 実際に運転する場合には、 水流の条件変動等に対 する下記の設定条件が必要である。
即ち、 上記 3. の 「入力の状態に合わせて電荷を目的どおりに移動させる ようにする。 .1 に対応する、 下記の設定条件が必要である。
( 1 0 ) 本発明の入力である、 水流の水速 V , 、 V 2 や放流口の水深! "し の変動に対応するためには、 水流の水速 V , 、 V:: や放流 Πの水深 H :... の起 こ り得る範囲の各種の組合せについて、 前記の設定条件 ( 1 ) 〜 ( 9 ) にお ける、 水速 V , 、 水速 V 、 設定流入水速 V M,、 設定流岀水速 V 、 反動水 車から流出する設定水速 V„ 、 ガイ ドべ一ンにおいて加速される設定水速 V τ 、 反動水車の回転数や発電機の出力等の運転条件等の間の制御甩連動条件 を予め設定しておく 。
この制御用設定条件があれば、 水圧管と反動水菜の構造 · 寸法は変動前後 を通じて常に基本的な連動条件を満たしているので、 簡単な制御で対応でき 先ず、 損失へッ ド捕償手段の補償圧力へッ ドト ,.,, を使用していない場合 には、 ガイ ドべーンの水流断面積 S r Cm) と、 ガイ ドべ一ンで加速して得 られる設定水速 V·,· ( m / s e c ) とを調整して、 S , x V ·, ( m 3 / s e c ) を、 変動後の水速 V , 、 V 2 による S , X V , や X V ·, に合わせ、 gつ、 発電機の出力を調整すれば、 反動水車の回転数を所定値に維持し、 発 電周波数と発電電圧とを所定値に維持できる。
( ! 1 又、 損失へッ ド補償手段の捕償圧力へッ ド He を使用している 場合には、 損失へッ ド補償手段の送水量を前記変動した S , X V I や X V 2 に合わせ、 ガイ ドべーンの水流断面積 ST (m) と、 ガイ ドべ一ンで加 速して得られる設定水速 V ·:· (m/ s e c ) とを調整して、 S T X V , (m / s e c ) を前記変動した S , x V; や S 2 x V ? に合わせ、 損失へッ ド 補償手段の補償圧力へッ ド He,.,, を、 X V ,. ( m '■ ,/ s e c:) の変動に 伴って変動する総損失へッ ドトし に合わせて調整し、 且つ、 発電機の出力を 調整すれば、 反動水車の回転数を所定値に維持し、 発電周波数と発電電圧と を所定値に維持できる。
( 1 2 流入口の実断面積 S と、 放流口の実断面積 S ;.「 とを、 X V T に基づく上記の計算によって得られる S , 、 S , より多少大きく しても、 前記のように水量を決定するのは、 S T V ·,· であり、 その V, は水深 H 2 によって決まり、 と S (U,T とは関係が無いので、 S . V , に基づく計 算どおりの機能が得られる。
尚、 この場合に、 本発明の構成では、 流入口と放流口とで、 水圧管外の水 流側にロスが発生するが、 水圧管内の水流は、 S T X V ,· で設定される条件 で動作するので、 水流の水速 V , 、 V z や放流口の水深 H 2 が変動する場合 に、 このロス分が緩衝作用を発揮し、 上記 ( 1 0 ) 、 ( 1 1 ) の制御が容易 になる。
( 1 3 ) 上記の本発明の構成の説明において、 放流口の設定水深 H 2 は、 水深 H 2 に固定することになるが、 水圧管の流入口から流入する水流が有す る設定水深 H 2 を基準にする全エネルギは、 水流の特性によって、 流人口の 水深に無関係に等しくなるので、 流入口の水深は自由に設定できる。 従って 、 水中航行船舶に本発明を使用すると、 H 2 を大きくできるので、 大きな理 論水力を得られる。
( 1 4 ) 上記の本発明の構成の説明において、 水流の各部分の全エネルギ と全へッ ドとは、 設定水速が同一であれば、 水圧管の内外及び水深に関係な く、 同一の基準面に対して同一であるので、 反動水車の位置は、 水圧管内の どの位置に設けても、 同一の結果が得られる。
( 1 5 ) 上記の本発明の構成の説明において、 損失へッ ド補償手段の位置 を、 反動水車の下流側にすれば、 ガイ ドべ—ンの下流側の総損失へッ ド Η 2 については、 単純に、 損失へッ ド捕償手段の補償圧力へッ ド H C 1 ,2で補償す れば良いが、 ガイ ドべ—ンの上流側の総損失へッ ド については、 上流側 の総損失へッ ド を補償するための補儻圧力へッ ド H CP 分が反動水車で 消費されないで上流側に達するように、 反動水車を運動エネルギ主体で駆動 される構造にするか出力を合わせて通過させる必要がある。
損失へッ ド補償手段の位置が、 反動水車の上流側にある場合は、 前記と逆 になり、 下流側の総損失へッ ド Η 2を補償するための補償圧力へッ ド H e r ,、:. 分がガイ ドベーンと水車駆動水を通過して下流側に達するように、 ガイ ドべ ーンの水流断面積 S T を設定し反動水車を運動エネルギ主体で駆動される構 造にするか出力を合わせて通過させる必要がある。
従って、 損失へッ ド補償手段を 2つに分け、 反動水車の上流側と下流側と に分けて設置すると、 制御面の条件を単純化できる。
( 1 6 ) 本発明を、 潮流のように、 定期的に水流の方向が 1 8 0 ° 変わる 水流中に設置する場合には、 本発明を実施する装置の方向を水流の方向に合 わせて 1 8 0 ° 変えるか、 反動水車と損失へッ ド補僂手段とを、 前記の連動 条件を維持して双方向で動作する構造にすれば良い。
( 1 7 ) 本発明の水圧管全体を水流中に設置する場合には、 水圧管に外套 を設けその外形を流線形にすることにより、 水圧管の外面形状による水流の 乱れを少なくすれば、 水流エネルギの利用効率を向上できる。 図面の簡単な説明
第 1図は、 本発明方法を実施し潮流の海底に設置した水流水力発電設備の 側面図である。
第 2図は、 本発明方法を実施し潮流、 河川等の水流に係留した脬に設置し た水流水力発電設備の側面図である。
第 3図は、 本発明方法を実施し水上船舶に設置した水流水力発電設備の側 面図である。
第 4図は、 本発明方法を実施し水面間に段差がある 2つの水流間に設置し た水流水力発電設備の側面図である。 発明を実施するための最良の形態
太発明の最良の実施形態を、 添付の図 1〜図 4を参照にしてより詳細に説 明する。 図 1 は、 本発明方法を使用する水流水力発電設備を、 潮流 Fの海底に多数 並べて数十万 kW〜数百万 kWの大規模水流水力発電する場合の、 一台分の 構成を示す側面図である。
図 1 において、 水流水力発電設備は、 海底に設けた回動台 2 0上に、 潮流 Fの方向に合わせて回動可能に設置されている。 全体が外套 9に覆われて流 線形になり潮流 Fの水流を乱さないようにしている。 尚、 回動可能にする代 わりに、 ガイ ドベーン 5と反動水車 6と損失へッ ド補償手段 8とを、 動作方 向を逆転する構造にしても良い。 或いは、 脖から吊り下げて使用し、 潮流 F の方向に合わせて餑の方向を変えても良い。
水圧管 1内には、 反動水車 6 と、 反動水車 6のガイ ドべーン 5 と、 反動水 車 6に連結した発電機 7 とが設けられ、 更に、 前記反動水車 6の下流側に損 失へッ ド補值手段 8が設けられている。
流入口 3とガイ ドベーン 5との間には、 水圧管 1の流入□ 3に流入する水 量を多くするために、 上流側に向かって断面積が徐々に大きく なっている流 入部 3 aが設けられている。
損失へッ ド補償手段 8と放流□ 4 との間には、 断面積が徐々に拡大する流 出水速調整部 4 aを設け、 反動水車 6から流出し損失へッ ド補償手段 8を通 過した水車駆動水の設定水速 V。 が、 損失ヘッ ド補償手段 8から放流□ 4ま での間で設定流出水速 V 2。にまで減速する。
水圧管 1 の中心釉位置での潮流 Fの水深を H2 (m) = 3 0 mとする。 水 圧管 1内の水流は、 水深 H 2 に大気圧に相当する水頭 ΗΛ = 1 0. 3 3 τηを 加えた Η 2 + Η Λ = 3 0 + 1 0. 3 3 = 4 0. 3 3 mの EE力へッ ドを放流口 4に対して有することになる。
潮流 Fの水流 2の水速を時速 4ノ ッ 卜に相当する V · ( m s e c ) = 2 m / s e c = V 2 (m^Z s e c ) とする。
水深 の 3 0 mに対する流入口 3 と放流口 4の直径をそれぞれ 6 rnとす ると、 断面積 S , 、 S?. は、. S , = S 2 = 2 8. 3 m2 になる。 先ず、 設定流入水速 V ,。と、 設定流出水速 V 2。とを設定するが、 V , == 2 m s e c = V 2 であり、 水流のエネルギを 〗 0 0 %利用するために、 V l 0 = 2 m s e c = V2nとする。
次いで、 損失へッ ド補償手段 8の必要特性を設定する。
本発明によると、 H 2 + H Λ = 3 ϋ + 1 0. 3 3 = 4 0. 3 3 mの圧力へ ッ ドと水速 V; の速度へッ ド { ( V , ) ' ( 2 X g ) } = ί 22 /' ( 2 X g ) } = 0. 2 mとを水車駆動水の加速に利用できるので、 その際に発生す る総損失へッ ド H: (m) を、 従来の水力発電方法の実績から推定して前記 2つの圧力ヘッ ドの合計の 1 5 %とすると、 4 0. 5 3 m X 0. 1 = 6. 0 8 mになる。 そして、 総損失へッ ドト を 0に補償した状態で、 流入ロ 3 に流入し放流口 4から流出する水流の水量 Q Cm3 / s e c ) は、 Q= 2 8 . 3 2 = 5 6. 6 m: / s e cになる。
従って、 損失へッ ド捕值手段 8は、 補償圧力へッ ド Hc,>,; = 6. 0 8 m, 送水量 Q = 2 8. 3 X 2 = 5 6. 6 m3 / s e cの負荷になる。 これに必要 な電力 WP は、 Wト ( k W) = 9. 8 X 5 6. 6 x 6. 0 8 ÷効率 0. 7 6 = 4 4 3 7 kWになる。
上記の 4 4 3 7 k Wによる捕值圧力へッ ド He を加えると、 Q = 2 8. 3 X 2 = 5 6. 6 m3 / s e cの水車駆動水が、 設定流入水速 V ,n =設定流 出水速 V :。 =水速 2 m s e cで流入□ 3に流入し放流□ 4から流出するよ うになる。
次に、 流入口側水車駆動エネルギと放流口側水車駆動エネルギとを計算す ると、
流入口側水車駆動エネルギ = { ( S; V ,„) X ( V , ) 2 / 2 } + 9. 8 X ( S , X V , ) (ΗΛ + Η 2 ) = { ( 2 8. 3 X 2 ) X ( 2 ) 2 / 2 } + 9. 8 X ( 2 8. 3 X 2 ) x ( 1 0. 3 3 + 3 0 ) == 2 2 4 8 3 kW 放流口側水車 lg動エネルギ = { ( S: X V ?. ) X ( V 20) 2 ,/ 2 } + 9. 8 X ( S X V 2 ) X (ΗΛ + ) - { ( 2 8. 3 X 2 ) X ( 2 ) 2 / 2 } + 9. 8 x ( 2 8. 3 x 2 ) x (. 1 0. 3 3 + 3 0 = 2 2 4 8 3 k W となる。 V , 、 V 2 が等し く 、 補償圧力へッ ド He,.,,. を使用すると、 上記の 両エネルギは全く等しく なる。
次に、 反動水車 6 と、 ガイ ドべ一ン 5 との構造 · 寸法を設定する。
ガイ ドべ—ン 5 において加速すべき水車駆動水の設定水速 V: (m/' s e c ) は、
V τ = [ 2 X 9. 8 x 4 ϋ . 5 3 ] 1ハ = 2 8. 2 m / s e c
となる。
従って、 ガイ ドべ一ン 5の水流断面積 S T は、.
S T = S , x V ÷ V , = 2 8. 3 X 2 ÷ 2 8. 2 = 2. G l m':
となる。
又、 反動水車 6の出口の水速 V。 は、 通常、 V。 =係数 ( 0. 2 5〜 0. 4 ) X VT なので、 係数を 0. 3 3 とすると、
V n = 0. 3 3 X V τ = 0. 3 3 X 2 8. 2 = 9. 3 1 m / s e c となる。
従って、 反動水車 6の出口の断面積 S。 は、
S 0 = S! X V , ÷ V 0 = 2 8. 3 X 2 + 9. 3 1 = 6. 0 8 ir.2 と る。
水圧管 1 の全長は、 1 3. 5 m程度になる。
上記の設定によって、 発電容量 W ( k = 2 2 4 8 3 X効率 0. 8 5 - 4 4 3 ? = 1 4 6 7 4 kWが得られる。
そして、 潮流の水速 V , . V ., 、 水深 H2 等の変動に対しては、 損失へッ ド捕償手段 8の送水量を変動した S , X V! や S 2 X V , に合わせ-. ガイ ド ベ一ン 5の水流断面積 S.,. (m) と、 ガイ ドべ一ン 5で加速して得られる設 定水速 VT ( m S e c ) とを調整して、 S r x V:· (m ' / s e c ) を変 動した S , x V : や S V , に合わせ、 損失へッ ド補償手段 8の補償圧力 ヘッ ド HcPR を、 ST X V. (m / s e c ) の変動に伴って変動する総損 失へッ K H f に合わせて調整し、 発電機 7の出力を調整すれば、 反動水車 fi の回転数を所定値に維持できる。 この場合、 反動水車 6を力プラ ン水車にす ると、 ガイ ドべ一ン 5と共に、 反動水車 6のラ ンナーの角度も変わるので、 効率の低下が少なく なる。 そして、 潮流の水速 V , 、 V , の変動に対して、 上記の設定基準の、 V】 = V , = 2 mを中心と して、 3 0 %〜 1 !3 0 %の変 動に対応できる。
図 2は、 本発明方法を使用する水流水力発電設備を、 蜉 1 0に搭載し、 潮 流や河川の水流に係留し、 多数並べて、 数万 k W〜数十万 k Wの中規模水流 水力発電する場合の、 一台分の構成を示す側面図である。
図 2において、 水流水力発電設備は脬 1 0に設けられているので、 図 1 の 場合に比較して保守に都合が良い。
水圧管 1 内には、 反動水車 6と、 反動水車 6のガイ ド'ベ一ン 5と、 反動水 車 6に連結した発電機 7 とが設けられ、 更に、 前記反動水車 6の下流側に損 失へッ ド補償手段 8が設けられている。
流入□ 3とガイ ドべ一ン 5 との間には、 水圧管 1の流人口 3に流入する水 量を多くするために、 上流側に向かって断面積が徐々に大きく なつている流 入部 3 aが設けられている。
損失へッ ド補償手段 8と放流□ 4 との間には、 断面積が徐々に拡大する流 出水速調整部 4 aを設け、 反動水車 6から流出し損失へッ ド補償手段 8を通 過した水車駆動水の設定水速 V。 力 <、 損失へッ ド補償手段 8から放流□ 4ま での間で設定流出水速 V 2 nまで減速する。 図 2では、 放流口 4の近くから急 に大きく なつているが、 損失へッ ド補償手段 8から放流□ 4までの間で徐々 に大きく しても良い。
水圧管 1 の放流□ 4の中心軸位置における潮流 Fの水深を H 2 ( rn ) = 1 0 mとする。 水圧管 1 内の水流は、 水深 H 2 に大気圧に相当する水頭 Η Λ - 1 0 . 3 3 mを加えた Η? + Η Λ = 1 0 + 1 0 . 3 3 = 2 0 . 3 3 mの圧力 へッ ドを放流口 4に対して有することになる。 潮流 Fの水流 2の水速 V i 、 V 2 を時速 4 ノ ッ トに相当する V: (mZ s e c ) = 2 m/ s e c = V 2 ( m / s e c ) とする。
水深 H の 1 0 mに対する流入口 3 と放流口 4 の直径を 2 mとすると、 新 面積 S , 、 S 2 は、 S , = S = 3. ; 4 m " になる。
先ず、 設定流人水速 V ,。と、 設定流出水速 V 2;,とを設定するが、 V , == 2 m/ s e c = V z であり、 水流のエネルギを l () 0 %利用するために、 V = 2 / s e c =V 2。とする。
次いで、 損失へッ ド捕償手段 8の必要特性を設定する。
本発明によると、 Η2 + ΗΛ = 1 0 + 1 0. 3 3 = 2 0. 3 3 mの压力へ ッ ドと水速 V ,。の速度ヘッ ド { ( V , ) ? ノ C 2 X g ) } = { 2 . ( 2 V g ) } = 0. 2 mとを水車駆動水の加速に利用できるので、 その際に発生す る総損失へッ ド Η,.· (m) を、 従来の水力発電方法の実績から推定して前記 2つの圧力ヘッ ドの合計の 1 5 %とすると、 2 0. 5 3 m X 0. 1 5 = 3. 0 8 mになる。 そして、 総損失へッ ド を 0 に補償した状態で、 流入ロ 3 に流入し放流□ 4から流出する水流の水量 Q (m3 / s e ) は、 Q = 3. 1 4 X 2 = 6. 2 8 m3 Z s e cになる。
従って、 損失へッ ド補償手段 8 は、 補償圧力へッ ド H CM, = 3. 0 8 mで. 送水量 Q = 3. 4 2 = 6. 2 8 m J /' s e cの負荷が必要である。 これ に必要な電力 Wf は、 Wト ( k W) = 9. 8 6 . 2 8 3. (1 8 ÷効率 0 . 7 6 = 2 4 9 k Wになる。
上記の 2 4 9 k Wによる補償圧力へッ ド Hcl.n を加えると、 Q = 3. 1 X 2 = 6. 2 8 m3 / s e cの水車駆動水が、 設定流入水速 V , n =設定流出 水速 V =水速 2 m/ s e cで流入口 3 に流入し放流口 4から流出するよう になる。
次に、 流入口側水車駆動エネルギと放流口側水車駆動エネルギとを計算す ると、
流入口側水車駆動ェネルギ = { ( S; V ·, 0 ) X ( V ,„ ) 7 / 21 + 9. 8 x. ( S , X V ,„) x ( ΗΛ + H 2 ) = { ( 3. ί 4 X 2 ) x ( 2.) 2 / 2 } + 9. 8 X ( 3. 1 X 2 ) X ί 1 0. 3 3 + 1 0 ) - 1 2 5 I k W 放流口側水車駆動エネルギ = { ( S X V 0 ) ( V 2 ) ' / 2 } + 9. 8 ( S 2 X V 20 ) ( H A + H : ) = { ( 3. 1 4 X 2 ) x (、 2 ) 2 2 } + 9. 8 x ( 3. 1 4 X 2 ) X ί 1 C . 3 3 1 0 = 1 2 5 I k W となる。
次に、 反動水車 6 と、 ガイ ドべ一ン 5 との構造 *寸法を設定する。
ガイ ドべ—ン 5において加速すべき水車駆動水の設定水速 V , (m/ s e c ) は、
V - = [ 2 X 9. 8 X 2 0. 5 3 ] ] ': - 2 0. 1 m/ s e c
となる。
従って、 ガイ ドべ—ン 5の水流断面積 ST は、
S T = S ) x V , ÷ V τ = 3. 1 4 X 2 + 2 0. 1 = 0. 3 1 m2 となる。
又、 反動水車 6の出口の水速 V。 は、 通常、 V , =係数 ( 0. 2 5〜 0. 4 ) VT なので、 係数を 0. 3 3 とすると、
V 0 = 0. 3 3 X V τ = 0. 3 3 X 2 0. 8 = 6. 8 fi m / s e c となる。
従って、 反動水車 6の出口の断面積 S。 は、
S 0 = S , X V , ÷ V n = 3. 1 X 2 ÷ 6. 8 6 = 0. 9 2 m2 となる。
上記の設定によつて、 発電容量 W ( k W) = 1 2 5 1 X効率 0. 8 5 — 2 4 9 = 8 J 4 k Wが得られる。
そ して、 潮流の水速 V , 、 V 2 、 水深 H2 等の変動に対しては、 損失へッ ド補償手段 8の送水量を変動した S , V: や S 2 X V , に合わせ、 ガイ ド ベ一ン 5の水流断面積 S T (m) と、 ガイ ドべー ン 5で加速して得られる設 定水速 V T (m/ s e c ) とを調整して、 S T X V-, ( m :'' / s e c ) を変 動した V , や S 2 X V 2 に合わせ、 損失へッ ド補僂手段 8の補儐圧力 へッ ド HC,'K を、 ST X V; (m3 / s e c ) の変動に伴って変動する総損 失へッ ド Η· に合わせて調整し、 発電機 7の出力を調整すれば、 反動水車 B の回転数を所定値に維持できる。
この場合、 反動水車 6を力プラン水車にすると、 ガイ ドべ一ン 5 と共に、 反動水車 6のラ ンナーの角度も変わるので、 効率の低下が少なく なる。 そし て、 潮流の水速 V , 、 V 2 の変動に対して、 上記の V , = V:. = 2 m / s e cを中心として、 3 0 %〜 1 5 0 %の変動に対応できる。
図 3は、 本発明方法を使用する水流水力発電設備を、 水上船粕 1 】 に設置 した場合の側面図である。
図 3において、 水上船鉑 1 1の船首両舷側の水面下に、 各 1本の水圧管 ί を設置し、 水圧管 1 の放流□ 4を所定水深 I (m) に配する。 水圧管 1 の 流入口 3の水深は、 水速 V , (m) が水深に関係無く水上船舶 1 1 の航行速 度で決まり、 流入する流入口側水車駆動エネルギが水深に関わらず常に同一 になるので、 前記設定水深 H 2 より浅くても深くても良い。 従って、 水中航 行船舶でも良い。 水圧管 1 内には、 反動水車 6と、 反動水車 6のガイ ドべ一 ン 5と、 反動水車 6 に連結した発電機 Ί とが設けられている。
水上船舶〗 1 の場合には、 一般に、 航行速度による水速 V , 、 V 2 が自然 の水流の水速より大きいので、 流人水量を多くするために上流側に向かって 断面積が徐々に大きく なつている図 1、 図 2に示す流入部 3 aを流入口 3 に 設けることは、 実施しても良いが、 必須ではない。 図 3では実施していない, 反動水車 6の出口と放流口 4 との間には、 放流口 4に向かって断面積が徐 々に拡大する流出水速調整部 4 aを設けて、 反動水車 6から流出する水流の 設定水速 V。 (m/' s e c ) が、 反動水車 6から放流□ 4までの間で.、 前記 の設定流出水速 V 2 こまで減速するようにする。
水圧管 1 の放流口 4の中心軸位置における水流 2の設定水深を H2 (m) = 3 mとする。 水圧管 1内の水流は、 水深 H2 に大気圧に相当する水頭 ΗΛ = 1. ϋ . 3 3 mを加えた H :, + H Λ = 3 + 1 0. 3 3 = 1 3. 3 3 mの圧力 へッ ドを放流口 4 に対して有することになる。
水上船舶〗 1 の航行速度による水 Fの水流 2の水速 V; 、 V : を時速 1 5 ノ ッ トに相当する V , ( m / s e c ) - 7. 7 2 m/ s e c = V :. (m/ s e c ) とする。 この場合、 V , 、 V 2 の速度へッ ドは、 { (V , ) ' Z ( 2 X g ) } = { 7. 7 22 / ( 2 X g ) } = 3. 0 4 mとなる。
従来の水力発電設備の実績から、 Η ,を推定すると、
Η
Figure imgf000026_0001
( 3 + 1 0. 3 3 + 3. 0 4 ) X 0. 1 3 5 = 2. 2 1 m
=流入口側水車駆動エネルギの全ヘッ ドの約 3. 5 %= ( 3 + 1 0. 3
3 + 3. 0 4 ) 0. 0 3 5 = 0. 5 7 m
Hド 流入口側水車駆動エネルギの全へッ ドの約 1 0 ( 3 + 1 0. 3 3 + 3. 0 4 ) X 0. 1 = 1 . 6 4 m
となる。 流体力学の一般的な計算式を利用しても、 同様な結果が得られる。
V , 、 V? の速度ヘッ ド = 3. 0 4 mが大きいので、 損失ヘッ ド補償手段 が不要であるので、 設定流入水速 V , 設定流入水速 V 2 nを、
Ηκ, = { ( V , 2 / ( 2 X g ) } 一 { ( V ,ο) 2 ( 2 x g ) }
H,2= { ( V , ) 2 / ( 2 x g ) } - { ( V 2 o ) 2 ( 2 x g ) }
H P = Η Γ· , + H K2 = [ { ( V , ) 2 / ( 2 x g ) } - { ( V ;o) 2 / ( 2 x g ) } ] + [ { (V2 ) 2 / ( 2 X g ) } - { ( V , o ) 2 / ( 2 x g ) } ] によつて計算する。
V , "ま、
H P, = { ( V , ) 2 / ( 2 X g ) } - { ( V ,ο) 2 / ( 2 x g ) } から、 0. 5 7 = { ( 7. 7 2 ) ^ / ( 2 X 2 ) } - { (V l 0) 2 / ( 2 X g ) } V , o = 6. 9 6 m / s e c
となる。
V? "ま、 H F.2 = { ( V , ) 2 / ( 2 X g ) } - { ( V 2。 ) ^ ノメ ( 2 X g ) } から、 1. 6 4 = { ( 7. 7 2 ) 2 / ( 2 X g ) } - { ( V 2 ) 2 ( 2 x K ) }
V 2 n = 5. 2 4 m. ,, s e c
となる。
次に、 水深 H2 の 3 mに対する流入口 3の直径を 1 m、 断面積 0. 7 8 5 m3 と して、 水車駆動水の水量を設定する。
水圧管 1 又は流入部 3 aの流入口断面積を S , (m2 ) 、 設定流入水速を
V 10 (m / s e c ) . 水圧管 I の流出水速調整部 4 aの放流口断面積を S 2 (m ) 、 設定流出水速を V 2„ (m/ s e c ) と した場合に、 S , x V ,„ ( m 3 / s e c ) = S 2 V ? n ( m 3 / s e c ) の条件から、
水車駆動水の水量 = S I X V ,,. ( m ' / s e c ) = 0. 7 8 5 x 6. 9 6 ( m s e e ) = 5. 4 6 m1 / s e c
S 2 = 5. 4 6 ÷ 5. 2 4 = 1 . 0 4 m2
となる c
次に、 流入口側水車駆動エネルギと放流口側水車駆動エネルギとを計算す ると、
流入口側水車駆動エネルギ = { ( S , V , ( V , o) 2 / 2 } + 9.
8 X ( S , X V ,„) X (Η Λ + Η 2 ) = { ( 0 . 7 8 5 X 6 . 9 6 ) x 6 .
9 62 / 2 } + 9. 8 X ( 0. 7 8 5 X 6. 9 6 ) X f 1 0. 3 3 + 3 ) = 1 3 2 + 7 1 4 = 8 4 6 kW
となる。 1 3 2 kW分は、 水流を設定流入水速 V ,。で水圧管 1 内に水車駆動 水と して流入させると共に、 反動水蚩 6を駆動して消費され、 7 1 4 k W分 は水車駆動水を加速して反動水車 6を駆動して消費される。
放流口側水車駆動エネルギ = ( ( S: X V , n ) ( V 20) 2 / 2 } + 9. 8 X ( S . X V 20) ( H , + H 2 ) = { ( 1 . 0 4 5. 2 4 ) X 5. 2 42 / 2 } + 9. 8 x ( 1 . 0 4 X 5. 2 4 ) x ( 1 0. 3 3 + 3 ) = 7 5 + 7 1 = 7 8 9 kW と る。 7 5 k分は、 水車駆動水の運動エネルギと して、 水車駆動水を放流 □ 4から流出させ、 7 1 4 k W分は、 水車駆動水の圧力エネルギと して、 水 車駆動水を放流□ 4から水深 H 2 の水流中に流出させる。
次に、 反動水車 6 と、 ガイ ドベーン 5 との構造 ·寸法を設定する。
ガイ ドべー ン 5 において加速すべき水車駆動水の設定水速 V , (m/ s e c ) は、
V r = [ 2 X 9. 8 X [ 1 0. 3 3 + 3 + { 6. 9 62 / ( 2 X g ) } ) ] '" = 1 7. 6 m/ s e c
となる。
従って、 ガイ ドべーン 5の水流断面積 S T は、
S r = S , V , ÷ V τ = 0. 7 8 5 x 6. 9 6 + 1 7. 6 = 0 . 3 1 m2 となる。
又、 反動水車 6の出口の水速 V n は、 通常、 V n =係数 ( 0. 2 5 ~ 0.
4 ) X V r なので、 係数を 0. 3 3 とすると..
V 0 = 0. 3 3 X V τ = 0. 3 3 X 1 7. 6 = 5. 8 0 m / s e c となる。
従って、 反動水車 6の出口の断面積 S。 は、
5 a = S: X V , ÷ V 0 = 0. 7 8 5 X 6. 9 6 ÷ 5. 8 0 = 0. 9 4 m :' と 7よる。
上記の設定によつて、 発電容量 W (k W) = 8 4 6 X効率 0. 8 5 = 7 1 9 k Wが得られる。
そ して、 水上船舶 1 1 の航行速度の変化や喫水の変化による V 、 V: H2 等の変動に対しては、 ガイ ドべ一ン 5の水流断面積 S,- (m2 ) と、 ガ ィ ドべ一ン 5で加速して得られる設定水速 VT (m / s e c ) とを調整して S r X V τ (m3 / s e c ) を変動した S , V , や S 2 x V 2 に合わせ、 発電機 7の出力を調整すれば、 反動水車 6の回転数を所定値に維持できる。 この場合、 反動水車 6を力ブラン水車にすると、 ガイ ドべ一ン 5 と共に、 反動.水車 6のランナーの角度も変わるので、 効率の低下が少なく なる。 そし て、 水上船舶 1 1 の航行速度の変動に対して、 上記の V , = V: = 7. 7 2 m/ s e cを中心として、 3 0 %〜 1 5 0 %の変動に対応できる。
本実施例は、 船首の両舷側に各 I 台ずつあるので、 得られる発電容量 W (; k W) は、
発電容量 W ( kW) = 7 1 9 x 2 = 1 4 3 8 k W
になる。
この場合、 水上船舶 1 I の推進抵抗が増大し、 水上船舶 1 1 の主エンジン の負荷が増大するが、 反動水車 6を駆動し発電に有効に作用する水流のエネ ルギは、 反動水車 6の回転方向に作用し、 軸方向には作用しないので、 負荷 の増大は、 水圧管 1 内の総損失へッ ド Η,. 分だけになり、 得られる発電容 fi Wは、 前記主ェンジンの負荷增大分によるエネルギ消費量増加分より大きく なり、 経済性が得られる。
図 4は、 本発明方法を使用する水流水力発電設備を、 上側用水路 と下 側用水路 F 2 との 2つの水流に跨がって多数並べて、 数百 k W〜数千 k Wの 小規模水流水力発電する場合の、 一台分の構成を示す側面図である。
図 4において、 上側用水路 F i と下側用水路 F 2 とは、 略並行して建設さ れ、 図示されていないが、 所定間隔を隔てて、 水量約 l m3 Z s e cの水流 が、 上側用水路 から下側用水路 F 2 に供給され、 下側用水路 F は、 上 記の供給があっても、 水面水位が変化しないように、 水流断面積を供給水量 に応じて順次増大している。
上側用水路 F , の水面と下側用水路 F 2 の水面間の空中落差を h (m) = 2. 5 mとし、 水圧管 1 の流入口 3を上側用水路 F , 中の水速 V , = 1 . 5 mZ s e cの位置に配し、 水圧管 1 の放流□ 4を下側用水路 F:; の所定水 深 H2 (m) = 3 mで水速 V = 1 / s e cの位置に配する。
水圧管 1 内には、 反動水車 6 と、 反動水車 6のガイ ドべ一ン 5 と、 反動水 車 6 に連結した発電機 7 とが設けられている。 反動水車 6の出口から放流口 4までの間には、 放流□ 4に向かって断面積が徐々に拡大し、 反動水車 6の 出口から流出する水流の水速 V。 を、 放流口までに、 設定流出水速 V2I,にま で減速させる流出水速調整部 4 aが設けられている。
水圧管内の水流が放流口 4に対して有する全へッ ドは、 大気圧に相当する 水頭を ΗΛ (m) とすると、 水速 V , の速度へッ ド = { ( V , ) 2 ( 2 X g ) } = { ( に 5 ) 2 / ( 2 X g ) } = 0. 1 1 mであるので、 水圧管内の水流が放流□ 4に対して有する全ヘッ ド = { ( V , ) 2 / ( 2 X g) } +H , +Η2Λ = 0. 1 1 + 2. 5 + 3 + 1 0. 3 3 = 1 5 . 9 4 m
となる。
これと、 従来の水力発電設備の実績とから、 HK 1、 H,,2を推定すると、 HF, =全ヘッ ドの 3. 5 %= 1 5. 9 4 X 0. 0 3 5 = 0. 5 6 m
HF2 =全ヘッ ドの 1 0 1 5. 9 4 0. 1 = 】 . 5 9 m
となる。 流体力学の一般的な計算式を使用しても、 同様な結果が得られる。 空中落差 (m) = 2. 5 mが、 Η κ ,、 Η "を 0に捕償できるので、 損 失ヘッ ド補償手段は不要である。
設定流入水速 V ,。 (m/ s e c ) は、
H r , = { ( V , ) 2 / ( 2 x g ) } 一 { ( V , ο ) 2 / ( 2 x g ) } + Η , , から計算する。
Η ,; = Η, = 0 . 5 6 mとすると、
V i ο = V I = 1. 5 m / s e c
となる。
設定流出水速 V 2。 (m/ s e c ) は、
Hト.2 = { ( V 2 ) ? / ( 2 x g ) } 一 { ( V 20 ) 2 / ( 2 g ) } + Hに, から計算する。
H 1 2 = H Γ- ? = 1 - 5 9 111とすると、 ;!。= 2 1 m s e c
となる。 利用できる水量が、 前記の水車駆動水 = 1 m Z s e cであるの 流入口 3の断面積 S Cm ) は、
S , = 1 - 1 . p = 0. 6 7 m'
となる。
放流口 4 の断面積 S 2 ( m '」 ) は、
S 2 = 1 ÷ J = 1 m2
となる。
空中落差 H , で、 水車駆動水の加速に利用できるのは、
H , = H , H + H = 2. 5 - ( 0. 5 6 + 1 . 5 9 ) = 0 3 5 m
となる。
従って、 流入口側水車駆動エネルギは、
流入口側水車駆動エネルギ = { ( S ■ X V , a ) X ( V ,„ ) ;' 2 } + 9. 8 X ( S , X V , o) X ( Η Λ + Η - + Η ,„) = { ( 0. β 7 X 】 . 5 ) ( 】 . 5 ) 1 / 2 } + 9. 8 ( 0. 6 7 X 1 . 5 ) x ( 1 0. 3 3 + 3 4 0. 3 5 ) = 1 . 1 3 + 1 3 0. 6 3 + 3. 4 3 = 1 3 5 k W
となる。 1 . 1 3 kW分は、 水流を設定流入水速 V ι ηで水圧管〗 内に水車駆 動水と して流入させると共に、 反動水直 6 を駆動して消費され、 1 3 fi . 6 3 kW分は、 水車駆動水を加速して反動水車 6を駆動して消費される。 3. 4 3 k W分は、 従来の水力発電方法の場合と同様にして、 単独で、 反動水恵 6を駆動して消費される。
又 放流口側水車駆動ェネルギは、
放流口側水車駆動エネルギ = { ( S , X V 2„ ) X ( V , ,, ) 2 / 2 ) + 9. 8 X ( S , X V 20) ( H Λ + H , ) = { ( I X ; ) X ( 1 ) / 2 } + 9. 8 X ( 1 X 1 ) X ( 1 0. 3 3 + 3 - 0. 5 + 1 3 0. 6 3 = 1 3 1 k W となる。 G . 5 k W分は、 水室駆動水の運動エネルギと して、 水車駆動水を 放流口から流出させ、 1 3 0. 6 3 k W分は、 反動水車を駆動した水車駆動 水の圧力エネルギとして、 反動水車を駆動した水車駆動水を放流口から流出 させる。
次に、 反動水車 6と、 ガイ ドベーン 5 との構造 ·寸法を設定する。
ガイ ドベーン 5 において加速すべき水車駆動水の設定水速 V (m/ s e c ) は、
VT = [ 2 X 9. 8 X [ 1 0. 3 3 + 3 + 0. 3 5 + { ( 1 . 5 ) 2 / ( 2 x g ) } ] 1/2 = 1 6. 4 m/ s e c
となる。
従って、 ガイ ドべ一ン 5の水流断面積 ST (m2 ) は、
S r = S , X V , α ÷ V τ = 0. 0 6 m
となる。
又、 反動水車 6の出口での設定水速 V。 は、 通常、 V。 =係数 ( ϋ . 2 5 〜0. 4 ) X V τ なので、 係数を 0. 3 3とすると、
V 0 = 0. 3 3 V τ = 0. 3 3 X 1 6. 4 = 5. 1 / s e c
となる。
従って、 反動水車 6の出口の断面積 S。 は、
S 0 = S , X V , 0 ÷ VT = 0 - 6 7 1 . 5 ■÷ 5. 4 1 = 0. 1 8 m2 となる。
上記の設定によって、 発電容量 W ( k W) = 1 3 5 X効率 0. 8 5 = 1 1 5 k Wが得られる。
水流の状態が変動し、 V , 、 V2 、 H , 、 H2 が変動する場合には、 ガイ ドベーン 5の水流断面積 S (m2 ) と、 ガイ ドべーン 5で加速して得られ る設定水速 VT (m/ s e c ) とを調整して、 ST X V r ( m 3 / s e c ) を変動した S , x V , や S 2 x V z に合わせ、 発電機 7の出力を調整すれば. 反動水車 6の回転数を維持し、 発電機 7の周波数や電圧を所定値に維持でき る C
この場合、 反動水車 6を力プラン水車にすると、 ガイ ドべーン 5と共に、 反動水車 6のランナーの角度も変わるので、 効率の低下が少なく なる。 そし て、 上側用水路からの供給水量が、 1 m 3 / s e cを中心に、 3 0 %〜 1 5 0 %の変動に対応できる。 産業上の利用の可能性
上記のように、 本発明の水流水力発電方法は、 水力利用の新しい技術概念 により、 海流、 潮流、 河川、 用水路等の空中落差が無い水流における、 又、 水上船舶や水中航行船舶等のように水との相対速度がある水中の移動物体に おける水流水力発電が可能になり、 無尽蔵にある海流、 潮流の水流のェネル ギを利用して、 電力エネルギ問題を解決できるという可能性がある。

Claims

請 求 の 範 囲
1 . 海流、 潮流、 河川、 用水路等の空中落差が無い部分の水流中に、 又は、 前記水流にある小さな空中落差部分の水流中に、 又は、 水との相対速度があ る水上 ·水中船舶に、 反動水車と発電機とを備えた水圧管を、 この水圧管の 放流口を設定水深 H 2 ( m ) に配して、 設置し、 この水圧管と反動水車に下 記設定条件を満足させることにより、 前記水圧管内に流入する水流が前記放 流口を基準にして有する水流の全エネルギである流入口側水車駆動エネルギ と、 前記水圧管外の水流が前記放流口に負圧として作用させる水流の全エネ ルギである放流口側水車駆動エネルギとを、 前記反動水車のガイ ドべーンの 上流側と下流側とから相乗的に作用させ、 ベルヌーィの式が示す運動 ·圧力 •位置エネルギの相互変換作用に基づいて、 前記水圧管内に流入した水流を 前記ガイ ドベーンにおいて加速し、 加速した水流で反動水車を駆動して発電 機を運転し、 反動水車の駆動に消費された流入口側水車駆動エネルギを、 前 記負圧として作用する放流口側水車駆動エネルギに補充させて、 反動水車を 駆動した水流を、 前記設定水深 H 2 の放流口から流出させる水流水力発電方 法において、
水流水力発電時に水圧管内や反動水車内の各部分の水流の設定水速に対応 して前記各部分の水流に発生する各損失へッ ドの総和である総損失へッ ド H , ( m ) を、 水圧管の流入口に発生する水流の淀みによる動圧へッ ドと、 水 圧管外の水流が放流口に作用させる負圧へッ ドと、 必要により付加する損失 へッ ド補償手段の補償圧力へッ ドとの中の 1 つ又は 2つ以上の組合せによつ て、 前記設定水速において見掛け上 0に補償することにより、 水流が前記流 入口側水車駆動エネルギを伴って流入口に流入するようにし、 前記放流口側 水車駆動エネルギが放流口から遡ってガイ ドベーンに負圧として作用するよ うにし、
反動水車と放流口間に、 断面積が徐々に拡大又は縮小する流出水速調整部 を けて、 反動水車から流出する水流の設定水速 V„ ( m / s e c ) を、 反 動水直から放流口までの間で、 設定流出水速 V 。 ( m / s e c ) にまで減速 又は增速させ、
ベルヌーィの式が示す運動 ·圧力 ·位置エネルギの相互変換作 ¾に基づい て、 前記流入口側水車駆動エネルギによって、 前記ガイ ドべ—ンを通過する 水流が、 所定発電容量が得られる所定水速 V ., (m/ s e c ) にまで加速で きるように、 前記ガイ ドべーンの水流断面積 S.,. (m2 ) を設定することを 特徴とする水流水力発電方法。
2. 請求項〗 に記載の水流水力発電方法において、 損失へッ ド補償手段の補 償圧力へッ ドを使用する場合に総損失へッ ド Η ,. を 0に補償する条件を、 水 圧管の流入口での水流の水速を V , ( m / s e c ) 、 水流が水圧管の流入口 に流入する設定流人水速を V ,„ ( m / s e c _) 、 水圧管外の水流の放流口近 傍に水速を V 2 (m/ s e c ) 、 水圧管外の水流が水圧管内の水流を放流口 から吸い出す設定流出水速を V (m/ s e c ) 、 流入口から放流口間の総 損失へッ ドを Ηκ (m) 、 前記 Ηκ を補償する損失へッ ド補償手段の補償圧 力へッ ドを H C ; (m) 、 流入口からガイ ドベーンの出口間の総損失へッ ド を Η , (m) 、 前記 HF Iを浦償する損失へッ ド補償手段の補償圧力へッ ドを H CPH. (m) 、 ガイ ドべ一ンの出口から放流口間の総損失へッ ドを F\ 2 (m ) 、 前記 Hi. を捕償する損失へッ ド補償手段の補償圧力へッ ドを H CP^ (m ) とした場合に、
H P , = { ( V i ) / ( 2 X g ) } { ( V 1 (:) 2 ( 2 x g ) } + H
H P2 = { ( V , ) 2 / / ( 2 X g ) } { ( V : ) 2 ( 2 x g ) } + H ri = H !'、 1 + Hド
= [ { ( V , ) 2 ( 2 X g ) } 一 ί ( V ,„ ) ( 2 X g ) } - 11 c ,
+ [ i (V 2 ) 2 / ( 2 x R ) } 一 { ( V 2 , ) 2 ( 2 X g ) } + U
- [ ( ( V [ ) 2 / ( 2 X g ) } 一 { (. V , , ) ( 2 X g ) } ] -)- [ { (:
V 2 ) :; / ( 2 x g ) 、
} - { ( V, 0 ( 2 X g ) } ] + H の計算式から求めることを特徴とする水流水力発電方法。
3. 請求項 1 に記載の水流水力発電方法において、 損失ヘッ ド補償手段の捕 償圧力へッ ドを使 しない場合に総損失へッ ド Η,.· を 0に捕償する条件を、 水圧管の流入口での水流の水速を V , ( τη s e c ) 、 水流が水圧管の流 口に流入する設定流入水速を V ! u ( m / s e c ) 、 フ K圧管外の水流の放流口 近傍の水速を V2 (m/ s e c ) 、 水圧管外の水流が水圧管内の水流を放流 口から吸い出す設定流出水速を V2。 (m/s e c ) 、 流入口から放流口間の 総損失へッ ドを H (m) 、 流入口からガイ ドベーンの出口間の総損失へッ ドを H ,,, (m) 、 ガイ ドべ—ンの出口から放流口間の総損失へッ ドを F 2 ( m) とした場合に、
HF, = { ( V , ) 2 / ( 2 X g ) } ― { ( V ,„) 2 ( 2 X g ) }
H = { (V2 ) 2 / ( 2 x g ) } 一 { (V2。) 2 / ( 2 x g ) }
Figure imgf000036_0001
= [ { (V , ) 2 / ( 2 x g) } - { CV 10) 2 / ( 2 X g ) } ] + [ { ( V2 ) ^ / ( 2 X g) } - { (V2。) 2 / ( 2 X g ) } ]
の計算式から求めることを特徴とする水流水力発電方法。
4. 請求項 1 に記載の水流水力発電方法において、 水流に空中落差 H , (m ) があり、 損失へッ ド補值手段の捕償圧力へッ ドを使甩しない場合に総損失 へッ ド HF を 0に捕僂する条件を、 水圧管の流入口での水流の水速を V , ( m/ s e c ) 、 水流が水圧管の流入口に流入する設定流入水速を V , (m/ s e c ) . 水圧管外の水流の放流口近傍の水速を V 2 (m/ s e c ) 、 水圧 管外の水流が水圧管内の水流を放流口から吸い出す設定流出水速を V 2。 (m /s e c ) 、 流入口から放流口間の総損失へッ ドを Η,.· (m) 、 前記 Ηκ を 補償する空中落差 Η , を Η Μ + Η; 2 (m) 、 流入口からガイ ドべ—ンの出口 間の総損失へッ ドを (m) 、 前記 Hf lを補償する空中落差 を Η, , ( m) 、 ガイ ドベーンの出口から放流口間の総損失へッ ドを F K2 (m) 、 前記 HF を補償する空中落差 H , を H12 (m) 、 空中落差 H, の水車駆動水加速 分を H ,。 = H , — (H M + Hに') とした場合に、
H H , = { ( V , ) 2 ( 2 X g ) } 一 { ( V M, ) 2 / ( 2 X g ) } + H , ,
Η ΡΖ= { (V: ) 2 / ( 2 X g ) } 一 { (V20) / ( 2 x g ) } + H 1 2
ΪΊ y = Hド I + Hド
= [ { ( V , ) 2 ./ ( 2 X g ) } 一 { ( V , o ) 2 / ( 2 x g ) } + H , , ] + [ { ( V2 ) 2 / ( 2 x g ) } - { (V2„) 2 / ( 2 x g) } +H12] = [ { (V , ) 2 / ( 2 X g) } 一 { (V , o ) 2 / ( 2 x g ) } ] + [ ( ( V2 ) 2 / ( 2 x g) } ― { (V20) 2 / ( 2 x g) } ] +H, , + H ,2 の計算式から求めることを特徴とする水流水力発電方法。
5. 請求項 1 に記載の水流水力発電方法において、 総損失へッ ΚΗ「 を 0に 補償する条件を、 請求項 2と 4に記載の計算式を組み合わせて求めることを 特徴とする水流水力発電方法。
6. 請求項 1 に記載の水流水力発電方法において、 水圧管の流入口に、 上流 側に向かって断面積が徐々に拡大する流入部を設けて、 水流の水速が小さく ても、 流入口に流入する水流の水量を多くすることを特徴とする水流水力発 電方法。
7. 請求項 1 に記載の水流水力発電方法において、 ガイ ドべーンを通過する 水流が加速される所定水速を VT (m/ s e c ) 、 ガイ ドべ—ンの水流断面 積を ST (m2 ) 、 設定流入水速を V ,。 (mZ s e c ) 、 設定流出水速を V 2。、 流入口断面積を S , (m2 ) 、 放流口断面積を S2 (m2 ) とした場合 に、 S , V , 0≥ ST X VT ≤ S 2 x V 2。とすることを特徴とする水流水力 発電方法。
8. 請求項 1 に記載の水流水力発電方法において、 水流の状態が変動し、 V > 、 V 2 、 H , 、 H 2 が変動する場合に、 ガイ ドべ—ンの水流断面積 ST ( m2 ) と、 ガイ ドべ一ンで加速して得られる設定水速 VT (m/ s e c ) と を調整して、 ST X VT (m3 / s e c ) を変動した S i x V , や S 2 V; に合わせ、 発電機の出力を調整して、 反動水車の回転数を一定に維持し、 発 電機の周波数や電圧を所定値に維持することを特徴とする水流水力発電方法 < 9. 請求項 1 に記載の水流水力発電方法において、 水流の状態が変動し、 V , 、 V2 、 H, 、 H2 が変動する場合に、 損失へッ ド補償手段の送水量を変 動した S , X V , や S2 X V 2 に合わせて調整し、 ガイ ドべ一ンの水流断面 積 ST (m2 ) と、 ガイ ドべーンで加速して得られる設定水速 V., (m/ s e c ) とを調整して、 S'r X VT (m3 / s e c ) を変動した S , x V , や
S 2 X V 2 に合わせ、 損失へッ ド補償手段の捕償圧力へッ ド HCPR を、 ST
X VT (m3 / s e c ) の変動に合わせて調整し、 発電機の出力を調整して 反動水車の回転数を一定に維持し、 発電機の周波数や電圧を所定値に維持す ることを特徴とする水流水力発電方法。
1 0. 請求項 1 に記載の水流水力発電方法において、 損失へッ ド補值手段を. 反動水車とガイ ドべ—ンとの上流側又は下流側の何れか片側にのみ設置した 場合に、 ガイ ドベーンの水流断面積 ST (m2 ) を、 ガイ ドベーンに作用す る圧力へッ ドの、 水車駆動水を所定水速 VT (m/ s e c ) に加速するに要 する圧力へッ ドを越える圧力へッ ド分が、 圧力へッ ドのままで通過する断面 積とし、 反動水車を、 主として水速で駆動されるタイプとすることに り、 前記損失へッ ド捕值手段の補償圧力へッ ド HC の中の所定分が、 前記反動 水車とガイ ドベーンとを通過して、 反対側の水車駆動水に作用するようにす ることを特徴とする水流水力発電方法。
PCT/JP1994/000044 1993-01-09 1994-01-10 Water-jet hydraulic power generation method WO1994016215A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP3239093 1993-01-09
JP5/32390 1993-01-09
JP5/62423 1993-02-10
JP6242393 1993-02-10
JP8104393 1993-03-01
JP5/81043 1993-03-01
JP10521093 1993-03-24
JP5/105210 1993-03-24
JP5/138845 1993-05-05
JP13884593 1993-05-05
JP5/288584 1993-10-12
JP28858493 1993-10-12

Publications (1)

Publication Number Publication Date
WO1994016215A1 true WO1994016215A1 (en) 1994-07-21

Family

ID=27549637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000044 WO1994016215A1 (en) 1993-01-09 1994-01-10 Water-jet hydraulic power generation method

Country Status (1)

Country Link
WO (1) WO1994016215A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002430A1 (fr) * 1995-07-04 1997-01-23 Toshitaka Yasuda Procede et dispositif permettant d'utiliser la totalite de l'energie de pression gravitationnelle d'un fluide en ecoulement
NL1015553C2 (nl) * 2000-06-28 2002-07-16 Den Noort Innovations B V Van Getijstroom waterkracht turbine.
JPWO2006123796A1 (ja) * 2005-05-17 2008-12-25 中島 健一 係留浮上型水力発電機
JP2009115098A (ja) * 2001-10-04 2009-05-28 Rotech Holdings Ltd 動力発生装置およびタービンユニット
JP2013007290A (ja) * 2011-06-23 2013-01-10 Tatsuya Yamashita 漏斗状水流式羽根内蔵ロータ型発電機
CN104018979A (zh) * 2014-05-13 2014-09-03 国家海洋局第二海洋研究所 自动沉浮的潮流能发电装置
JP2016112950A (ja) * 2014-12-12 2016-06-23 株式会社新来島どっく 船舶構造

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913616A (ja) * 1972-05-19 1974-02-06
JPS58104371A (ja) * 1981-12-16 1983-06-21 Kunio Saito 流れ発電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913616A (ja) * 1972-05-19 1974-02-06
JPS58104371A (ja) * 1981-12-16 1983-06-21 Kunio Saito 流れ発電装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002430A1 (fr) * 1995-07-04 1997-01-23 Toshitaka Yasuda Procede et dispositif permettant d'utiliser la totalite de l'energie de pression gravitationnelle d'un fluide en ecoulement
WO1997002429A1 (fr) * 1995-07-04 1997-01-23 Toshitaka Yasuda Procede et appareil d'utilisation de l'energie de pression totale de la gravite du fluide en ecoulement
NL1015553C2 (nl) * 2000-06-28 2002-07-16 Den Noort Innovations B V Van Getijstroom waterkracht turbine.
JP2009115098A (ja) * 2001-10-04 2009-05-28 Rotech Holdings Ltd 動力発生装置およびタービンユニット
JPWO2006123796A1 (ja) * 2005-05-17 2008-12-25 中島 健一 係留浮上型水力発電機
JP4753382B2 (ja) * 2005-05-17 2011-08-24 健一 中島 係留浮上型水力発電機
JP2013007290A (ja) * 2011-06-23 2013-01-10 Tatsuya Yamashita 漏斗状水流式羽根内蔵ロータ型発電機
CN104018979A (zh) * 2014-05-13 2014-09-03 国家海洋局第二海洋研究所 自动沉浮的潮流能发电装置
CN104018979B (zh) * 2014-05-13 2016-06-15 国家海洋局第二海洋研究所 自动沉浮的潮流能发电装置
JP2016112950A (ja) * 2014-12-12 2016-06-23 株式会社新来島どっく 船舶構造

Similar Documents

Publication Publication Date Title
CN101319648B (zh) 一种垂直轴潮流发电机的导流装置
CA2792983C (en) Apparatus for generating power from fluid flow
US6956300B2 (en) Gimbal-mounted hydroelectric turbine
US8506244B2 (en) Instream hydro power generator
US5377485A (en) Electric power conversion system
CA2584362A1 (en) Kinetic hydropower generation from slow-moving water flows
US8994203B2 (en) Hydrokinetic energy conversion system
US20080229745A1 (en) Free Floating Wave Energy Converter
JP2013528737A (ja) 強化されたダクト、ブレード及び発電機を有する一方向ハイドロタービン
WO2010027774A1 (en) Force fluid flow energy harvester
JP2008019879A (ja) 低圧タービンによる水力発電方法とその水力発電装置
TW201344043A (zh) 水渦輪機
US20050236843A1 (en) Tidal current accelerating structure for electrical power generation
US20080101865A1 (en) Hydrodynamic Drive Train for Energy Converters that use Ocean Currents
WO1994016215A1 (en) Water-jet hydraulic power generation method
WO2013108412A1 (ja) 海洋発電システムおよび海洋発電方法
GB2283285A (en) Water powered generating apparatus
EP0526470B1 (en) Hydro-electric power conversion system
JPH05126026A (ja) 下流側流速を利用する小落差水力発電方法
US11434866B2 (en) Water current catcher system for hydroelectricity generation
JPS6187983A (ja) 流水のエネルギ−利用装置
JP2018145956A (ja) 水力発電システム
JP3171321U (ja) 水力発電装置
KR101596586B1 (ko) 수력발전설비
JPH0874729A (ja) 流体の流れに作用する重力を運動エネルギに変換する方法とその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA