WO2013108412A1 - 海洋発電システムおよび海洋発電方法 - Google Patents

海洋発電システムおよび海洋発電方法 Download PDF

Info

Publication number
WO2013108412A1
WO2013108412A1 PCT/JP2012/051538 JP2012051538W WO2013108412A1 WO 2013108412 A1 WO2013108412 A1 WO 2013108412A1 JP 2012051538 W JP2012051538 W JP 2012051538W WO 2013108412 A1 WO2013108412 A1 WO 2013108412A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
power generation
water
piston
discharge
Prior art date
Application number
PCT/JP2012/051538
Other languages
English (en)
French (fr)
Inventor
俊久 西岡
Original Assignee
Nishioka Toshihisa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishioka Toshihisa filed Critical Nishioka Toshihisa
Priority to JP2012512165A priority Critical patent/JP5102407B1/ja
Priority to US14/372,875 priority patent/US20150014995A1/en
Priority to EP12865701.2A priority patent/EP2808538A1/en
Publication of WO2013108412A1 publication Critical patent/WO2013108412A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/06Mobile combinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a marine power generation system and a marine power generation method using seawater.
  • the Dover Strait (English-French Strait) can be cited as a place where the speed of tides and currents is relatively high.
  • the maximum tidal current in the Dover Strait is 6 knots and 12 km / h.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-270491
  • This English-French Strait Current Power Generation System excavates several dedicated power generation tunnel spaces attached to the English-French Strait tunnel, installs power generation equipment, and installs a water turbine on the seabed that is directly above this equipment. Are connected, and the generator is operated by converting the flow energy of the ocean current into rotational energy with the blades of the turbine wheel. Because the English-French Strait is only about 60m deep, it is said that a power generator will be installed in the sea at a depth of 40m or less, which does not hinder the navigation of large ships (draft 35m).
  • electromotive force is obtained by rotating a large propeller or turbine for a generator at high speed using water flow or water pressure.
  • the generator uses a Pelton-type turbine
  • the water flow speed is required to rotate the high-speed rotation by applying the falling water to the Pelton-type turbine
  • the generator uses a Francis-type turbine
  • the pressure difference is used.
  • high pressure is applied to the Francis-type water wheel, and after passing through the water wheel, it is rotated at high speed by discharging it under atmospheric pressure.
  • FIG. 11 is a diagram for explaining a problem in the conventional ocean current power generation system. As shown in FIG. 11, the current of the ocean current is relatively slow, and it is not suitable for power generation because the flow speed is not sufficient to guide the current directly into the generator and rotate the internal water turbine or turbine. Absent. Therefore, in order to rotate the turbine and turbine in the generator at a desired speed using the ocean current, it is necessary to devise and improve the turbine and turbine in the generator.
  • the following are known as ocean current power generation systems equipped with power generation equipped with a propeller mechanism that has been devised to stably generate power with high efficiency even for ocean currents with insufficient flow velocity for conventional generators. ing.
  • an ocean current power generation system disclosed in Patent Document 2 (Japanese Patent Application Laid-Open No. 2011-208531) combines a first propeller and a second propeller that rotate in the same direction due to tidal currents and ocean currents, through a speed increasing mechanism.
  • the speed increasing mechanism is a planetary gear mechanism, that is, a mechanism including a combination of an internal gear, a planetary gear, and a sun gear. The rotation speed is increased through the speed increasing mechanism.
  • FIG. 12 shows an ocean current power generation system proposed in Patent Document 2.
  • FIG. 13 shows an ocean current power generation submarine proposed in Patent Document 3.
  • a floating body B having a conduit A and a generator C is moored at a predetermined depth from the bow by a mooring line 9 and anchor 10 so as to face the flow of a current having a stable flow velocity and direction.
  • the ocean current flowing in the conduit A is converted into electric energy by the propeller 6 and the generator C, and is transmitted to the land by the submarine power transmission line 7.
  • the vicinity of the center is constricted so that the ocean current is accelerated at the location where the propeller 6 is installed, and a taper is formed so that the inner dimension gradually increases toward the inlet or outlet. .
  • FIG. 14 shows an ocean current power generation submarine proposed in Patent Document 4.
  • the ocean current power generation submarine includes a cylindrical first ocean current conduit having an ocean current inlet and an outlet formed at both ends, and a tube provided near the center in the first ocean current conduit.
  • a taper is formed in which the vicinity of the center is constricted and the inward dimension gradually increases toward the inlet or the outlet. ing.
  • a double-pipe structure in which the second ocean current conduit is provided in the first ocean current conduit, and the ocean current guided from the inlet into the first ocean current conduit flows into the second ocean current conduit (inside Current) and the flow (outer flow) between the first and second outer current conduits, and they merge near the outlet of the second current conduit. It is said that there is an ejector effect that the inner flow is drawn out by the outer flow.
  • JP 2009-270491 A JP 2011-208531 A Japanese Patent Laid-Open No. 7-259064 JP 2007-9833 A
  • Patent Document 1 discloses that the place suitable for ocean current power generation is the Dover Channel (English-French Channel). The total amount of ocean current energy is enormous, but the flow speed is slow, and it is not possible to directly obtain a pressure difference enough to rotate a large propeller or turbine for a generator at high speed.
  • the propeller and turbine itself need to be devised, but the publication does not disclose a normal propeller body, and with this as it is, a large generator can be rotated sufficiently efficiently to obtain a desired electromotive force. It cannot be said that the technology is disclosed.
  • the rotation of the propeller is performed by combining the first propeller and the second propeller that rotate in the same direction by the ocean current and connecting them through the speed increasing mechanism.
  • the speed of the first propeller and the second propeller obtained by the ocean current is quite low, and in order to rotate it at the desired speed of a normal large generator, the rotation gear ratio Becomes too large and mechanically difficult.
  • the torque obtained from the ocean current and the torque required to rotate a normal large-sized generator at high speed are transmitted, there is a problem that the mechanical strength of the gear is practically easily caused and easily damaged.
  • Patent Document 4 in order to accelerate the current flow velocity so much that the generator is rotated at a desired speed, the cross-sectional area at the center of the conduit A and the cross-sectional area of the intake port 1 are There is a problem that the size of the floating body becomes enormous for the size of the working propeller, and in Patent Document 4, the conduit is connected to the first ocean current. Duplication of the conduit and the second ocean current conduit, the diameter of the first ocean current conduit may be even larger than the inner second ocean current conduit, and the problem is that the body submerged in the sea will become even larger There is. In other words, in the technique using the floating body with the tapered shape of Patent Document 3 and Patent Document 4, in consideration of the size of the available floating body and the size of the propeller of the generator, the ocean current can be sufficiently accelerated. is not.
  • the present invention makes use of the large energy even in the case of ocean currents where the flow velocity is not sufficient, creating a water flow that is ideal for hydroelectric power generation, as if it is a water discharge from a dam, so that it can generate power efficiently and stably.
  • the purpose of this project is to provide a marine power generation system that is devised.
  • the marine power generation system of the present invention is a structure that takes in seawater, and has a water intake structure that includes an opening that takes in seawater inside, and an upper water guide that feeds the seawater taken in through the opening.
  • One end is connected to the upper water guide portion of the intake structure, and a water guide tube that secures a space in the sea for introducing seawater taken from the upper water guide portion downward below the sea surface; and A generator that is attached to the generator and generates power by the falling motion or water pressure of seawater introduced into the space in the conduit, and the seawater that is connected to the other end of the conduit and discharged from the other end of the conduit
  • a diving body that provides a storage space to be taken in and a discharge unit that discharges seawater taken into the diving body to the outside of the diving body.
  • the intake structure may be a structure provided along the coast of the land as long as it has an opening for taking in seawater, or a floating object floating on the sea away from the coast by buoyancy. May be.
  • the seawater taken in through the opening can pass through the upper water guide part that flows into the inside and can be led to a water guide provided in the sea.
  • the intake structure is provided along the coast of the land, the terrain like a so-called steep cliff is desirable.
  • the configuration of the first discharge section includes a cylinder, a piston body that performs piston movement in the cylinder, a first check valve path that connects the cylinder and the storage space of the diving body while preventing backflow, and a cylinder.
  • a second check valve path for connecting the underwater body to the sea while preventing backflow, and a power transmission mechanism for conducting power to cause the piston body to perform piston movement under the force of the sea current flowing in the vicinity of the diving body Operated in a seawater discharge piston cycle equipped with an intake phase that takes in the seawater in the storage space into the cylinder in synchronization with the piston movement of the piston body, and a discharge phase that discharges the seawater taken into the cylinder into the sea outside the diving body
  • the piston-cylinder type seawater discharge mechanism can be said to be a “submersible piston mechanism” that operates in a seawater discharge piston cycle that takes seawater into the cylinder and discharges it from the cylinder to the outside of the diving body by piston movement. Natural drainage "will be performed.
  • the piston cylinder type seawater discharge mechanism discharges seawater from the storage space of the diving body with low water pressure to the sea outside the diving body with high water pressure, but the drive of the piston is the pressure of the strong current of the ocean current. If there is, it can be done, and the current velocity is not important.
  • Piston cylinder type seawater discharge mechanism shall be arranged around the diving body, and each piston cylinder type seawater discharge mechanism shall take in seawater from the storage space of the diving body and discharge it into the sea in the seawater discharge piston cycle. Can do.
  • the piston cylinder type seawater discharge mechanism By paralleling the piston cylinder type seawater discharge mechanism in this way, the amount of seawater discharged can be increased. Since the storage space for the diving body is limited, only the amount corresponding to the amount of seawater discharged from the storage space for the diving body into the sea via the piston-cylinder seawater discharge mechanism is newly taken from the upper water guide section and passed through the water conduit. It is not possible to limit the amount of seawater that can be supplied to the power generation through the water conduit.
  • a configuration including a seawater flow rate control unit that controls the amount of seawater introduced from the upper water guide to the water guide pipe to an amount commensurate with the amount of seawater discharged by the piston cylinder type seawater discharge mechanism.
  • the configuration of the second discharge unit includes a pump mechanism that pumps and discharges seawater stored in the storage space of the diving body into the sea outside the diving body, and a pump mechanism that receives the force of the ocean current flowing in the vicinity of the diving body.
  • This is a pump-type seawater discharge mechanism equipped with an extra-submersible power generator that obtains electric power for driving the vehicle.
  • the pump-type seawater discharge mechanism forcibly drains seawater into the sea outside the diving body with the pump mechanism using the electric power obtained by the generator outside the diving body.
  • a pump-type seawater discharge mechanism can be arranged around the diving body, and each pump-type seawater discharge mechanism can take in the seawater from the storage space of the diving body and discharge it into the sea by driving the pump.
  • paralleling the pump-type seawater discharge mechanism in this way the amount of seawater discharged can be increased, and the amount of seawater that can be supplied to the power generation through the water conduit can be increased.
  • seawater flow volume control part which controls the amount of seawater introduce
  • a ventilation pipe that leads to the outside air is provided to ensure ventilation to at least a part of the space inside the conduit and to the storage space for the diving body. It is preferable to provide it. In particular, venting the space below the place where the generator is combined in the water conduit path and venting the storage space of the diving part will prevent the system from overflowing with seawater and becoming unable to drive. Can do.
  • the type of the generator provided in the water conduit can be applied as long as it is used for the generator.
  • the impulse water wheel changes the pressure head to the speed head and acts on the water wheel. That is, the kinetic energy of the water flow is received by the water wheel and converted into the kinetic energy of the water wheel.
  • Pelton turbines, open perimeter turbines, etc. are known. If it is a generator provided with impulse water turbines, such as a Pelton turbine, it can generate electric power by applying the seawater which is introduced into the water conduit and falls to the turbine of the generator.
  • the reaction water turbine causes the pressure head to act on the water wheel. In other words, the water pressure is applied to the reaction water wheel, and the applied water pressure is converted into the kinetic energy of the water wheel.
  • There are Francis turbine, propeller turbine and Kaplan turbine If it is a generator using reaction water turbines, such as a Francis type water turbine, it can generate electricity by applying the water pressure of the seawater which introduced the inside of a conduit pipe to a generator.
  • a water guide pipe is provided so as to secure a space for dropping seawater in the sea, and the falling motion of seawater introduced into the space in the water guide pipe through the opening
  • a generator for generating electricity by water pressure is attached
  • a diving body is provided which is connected to the lower end of the water conduit and provides a storage space for taking in seawater discharged from the water conduit, and the storage space of the submersible body
  • There is a discharge part for discharging the seawater in the sea the seawater is taken in from the opening, the seawater is poured into the water pipe and dropped, the power is generated by the generator, and the water is discharged from the water pipe.
  • a marine power generation method in which seawater taken into the diving body is discharged out of the diving body by the discharge unit.
  • the space of the water guide pipe is ensured so that a hollow cylinder is raised in the sea, and the dam corresponding to the height from the sea surface to the submarine in the sea is secured. A space with such a head can be obtained. It is possible to generate power using a power generation device applied to a normal hydroelectric dam using a space having a head like this dam.
  • the discharge of the seawater that has fallen into the diving body to the outside of the diving body drives the piston cylinder type seawater discharging mechanism while preventing the backflow through the first check valve path and the second check valve path. If it is set as the structure which discharges seawater by this, "natural drainage” using what is called an ocean current will be attained. Further, if the seawater is discharged by driving the pump-type seawater discharge mechanism, “forced drainage” using electric power obtained by using a so-called ocean current is possible. In other words, the piston-cylinder type seawater discharge mechanism discharges seawater from the storage space of a diving body with low water pressure to the sea outside the diving body with high water pressure. The flow velocity of the ocean current is not important.
  • the amount of seawater that falls on the water conduit can be set as much as the volume of the storage space of the diving body obtained by the piston cylinder type seawater discharge mechanism, and this falling seawater is suitable for hydropower generation. It is obtained as a water flow with flow velocity and flow pressure.
  • the pump-type seawater discharge mechanism discharges seawater from the storage space of the diving body with a low water pressure into the sea outside the diving body with a high water pressure.
  • the power for driving the pump mechanism is generated by a generator outside the diving body. It is possible to obtain the amount of seawater falling through the conduit by the volume of the obtained submersible storage space, and the falling seawater has a flow velocity suitable for hydropower generation. It is obtained as a water flow with flow pressure.
  • the ocean power generation system of the present invention can be used in the form of a water flow having a flow velocity and flow pressure suitable for hydroelectric power generation by converting the action of ocean currents with relatively low flow rates. .
  • FIG. 100 shows the structural example of the ocean power generation system 100 of this invention. It is a figure which shows the motion of the seawater of the ocean power generation system 100 of this invention. It is a figure which shows the structural example provided in the water conduit 20 of the generator 30 using a Pelton turbine. It is a figure which shows the structural example provided in the water conduit 20 of the generator 30 using a Francis turbine. This is a configuration example in which a ventilation pipe 42 is provided for the water guide pipe 20 and the diving body 40. It is the figure shown so that the structure of the discharge part 50 provided with the piston cylinder type seawater discharge mechanism concerning Example 1 could be understood easily. It is a figure which shows a motion of seawater intake phase 1. FIG. It is a figure which shows the motion of seawater intake phase 2.
  • FIG. It is a figure which shows the motion of a discharge phase. It is the figure shown so that the structure of the discharge part 50a provided with the pump mechanism concerning Example 2 could be understood easily. It is a figure explaining the problem of the ocean current power generation in a prior art. It is the figure which showed the ocean current power generation system proposed in patent document 2 of a prior art. It is a figure which shows the ocean current power generation submarine proposed in patent document 3 of a prior art. It is a figure which shows the ocean current power generation submarine proposed in patent document 4 of a prior art.
  • FIG. 1 is a diagram showing the basic principle of the marine power generation system of the present invention.
  • FIG. 2 is a diagram simply showing the ocean power generation system of the present invention and the flow of seawater around it.
  • the ocean power generation system 100 includes a water intake structure 10, a water guide pipe 20, a generator 30, a diving body 40, and a discharge unit 50.
  • FIG. 2 there is a flow of seawater inside or around these components.
  • the ocean power generation system 100 according to the present invention generates power using the flow of seawater introduced into the components and the action of the ocean current flowing around.
  • the intake structure 10 may be a structure provided along the coast of the land as long as it has an opening that can take in seawater, or a floating body that floats on the sea away from the coast by buoyancy. good.
  • the intake structure 10 has a structure in which the seawater taken in through the opening 12 is poured into the inside regardless of whether it is a structure provided along the coast of the land or a floating body on the sea.
  • the opening 12 is provided so that at least a part thereof is located below the water line, and serves as an inlet for taking in seawater.
  • the upper water guide part 13 for pouring the seawater taken in from the opening part 12 inside is provided.
  • the diameter, length, and the like of the upper water guide portion 13 are not particularly limited as long as they are suitable for guiding a necessary amount of seawater to the water guide pipe 20 as described later.
  • the water intake structure 10 is a ship type and floats on the sea due to the buoyancy of the floating body 11.
  • a basalt ship shape is drawn.
  • the floating body 10 is provided with an opening 12 and is further provided with an upper water guide 13 for flowing seawater taken from the opening 12 into the interior.
  • the intake structure 10 is a structure provided along the coast of the shore, the water dike 20 needs to be erected in order to secure a space with a drop in the sea. When it is provided along the coast, the terrain like a steep cliff is desirable.
  • the intake structure 10 is provided with a seawater flow rate control unit 14 for controlling the amount of seawater taken in.
  • the ocean power generation system 100 of the present invention operates the generator 30 by introducing seawater into the water conduit 20 to generate power. However, if all of the water conduit 20 is filled with seawater, power generation is performed. The operation of the machine 30 is stopped. Therefore, as described later, it is necessary to control the intake amount of seawater to an amount commensurate with the discharge capacity of the discharge unit 50. Therefore, a seawater flow rate control unit 14 is provided, and a device is devised to control so that excessive seawater is not taken into the conduit 20.
  • the water guide pipe 20 is a tubular pipe body, and as illustrated in FIG. 1, one end is connected to the intake structure 10 and the other end is connected to the diving body 40. And a structure provided between the diving body 40.
  • the water guide pipe 20 secures a space in the sea for introducing the seawater taken from the upper water guide section 13 downward below the sea surface. That is, a space having a head from near the sea surface to the sea where the diving body 40 is located is ensured in a substantially vertical direction in the sea.
  • the structural strength is strong enough to withstand the water pressure in the sea.
  • a stainless steel wire frame built-in spectrum distribution pipe can be used as a material.
  • Spectra distribution piping with a built-in stainless steel wire frame is lightweight and flexible, and about ten times stronger than iron. Moreover, there is an advantage that metal fatigue does not occur and it is difficult to rust. The advantage of not rusting when applied at sea and in the sea is also great.
  • a space with a drop from near the sea surface to the sea where the diving body 40 is located can be secured, and it can be regarded as a “dam” that can discharge seawater downward. That is, the sea level above one end of the conduit 20 can be regarded as “water stored in the dam lake”, and the wall surface of the conduit 20 can be regarded as “dam wall surface”.
  • the seawater introduced into the inside of the water conduit 20 can be regarded as a water mass used for hydroelectric power generation of the dam.
  • the generator 30 is a generator that is attached to the conduit 20 and generates electric power by the falling motion or water pressure of seawater introduced into the space in the conduit 20. Any generator that is used for hydropower generation can be applied to the ocean power generation system 100 of the present invention.
  • generators 30 There can be various types of generators 30. Roughly divided, there are those using an impulse water wheel and those using a reaction water wheel.
  • the impulse water wheel changes the pressure head to the speed head and acts on the water wheel. That is, the kinetic energy of the water flow is received by the water wheel and converted into the kinetic energy of the water wheel.
  • Pelton turbines, open perimeter turbines, etc. are known.
  • the Pelton turbine is one of the impulse turbines, and is a turbine that rotates by hitting a water stream against a bucket around the runner.
  • a general Pelton turbine ejects a jet water stream from a nozzle and applies it to a bucket.
  • a Pelton turbine is combined with a water conduit 20 and the water flow flowing down the water conduit 20 is reduced. Impress by hitting the bucket.
  • the open peripheral flow type water turbine is an ordinary water wheel that has been used since ancient times, and is a water wheel that rotates the water flow against a plate around the runner.
  • FIG. 3 is a simplified depiction of the flow of seawater in the water conduit 20 and the state of the power generator 30 when a Pelton turbine is used. It is provided at a position where the bucket of the Pelton turbine hits the conduit 20 through which the seawater is guided, and the seawater guided to the conduit 20 collides with the bucket of the Pelton turbine. Rotate the Pelton wheel. Thus, the runner to which the Pelton turbine is attached is impulsively rotated, and a generator (not shown) of the generator is rotated to obtain an electromotive force.
  • the reaction water turbine causes the pressure head to act on the water wheel.
  • the water pressure is applied to the reaction water wheel, and the applied water pressure is converted into the kinetic energy of the water wheel.
  • the Francis turbine is a turbine in which the introduced flowing water flows radially into the outer periphery of the spiral runner and flows out in the axial direction. It is said that the structure is simple and easy to maintain, and it is widely used as a hydroelectric turbine.
  • the propeller turbine flowing water flowing in from the axial direction flows out in the axial direction, and a plurality of runner blades are provided at a predetermined angle on the rotating shaft.
  • the Kaplan turbine is a type of propeller turbine, and the one that changes the angle of the runner blades according to the drop or change in the water volume is called the Kaplan turbine.
  • the cross flow turbine running water crosses a runner (impeller) and flows.
  • FIG. 4 simply shows the flow of seawater in the water conduit 20 and the state of the generator 30 when a Francis turbine of a reaction water turbine is used.
  • the peripheral portion of the Francis turbine is located with respect to the conduit 20 through which the seawater is guided, and the seawater guided to the conduit 20 is filled into the conduit 20 at the top of the generator 30 using the Francis turbine, and the Francis turbine Is a state in which water pressure is applied to the blades in the vicinity of.
  • the Francis turbine is under great water pressure, and the blades react and rotate with that water pressure.
  • the blades are twisted and attached to the runner, and the seawater changes its direction so that it can be twisted from the periphery of the Francis turbine to the back side of the center.
  • FIG. It is a going-up configuration.
  • the runner to which the Francis turbine is attached rotates, and a generator (not shown) of the generator is rotated to obtain an electromotive force.
  • the diving body 40 is connected to the lower end side of the water conduit 20 and is a structure that provides a storage space 41 for taking in seawater discharged from the lower end of the water conduit 20.
  • the diving body 40 operates in a state where it is submerged in the sea, and requires a structural strength that can withstand water pressure in the sea.
  • the internal storage space 41 is a space for taking in the seawater discharged from the lower end of the water conduit 20, but is a temporary seawater storage space because it is discharged by the discharge unit 50 described later.
  • the operation of the marine power generation system 100 of the present invention is approaching its limit. is there. Therefore, although the seawater flow rate control unit 14 is provided, as a further contrivance, a contrivance that provides the vent pipe 42 is also possible.
  • FIG. 5A is a configuration example in which a vent pipe 42 is provided in a part of the water conduit 20 with respect to the diving body 40.
  • FIG. 5B is a configuration example in which a vent pipe 42 is provided separately from the water guide pipe 20 with respect to the diving body 40.
  • seawater is introduced into the water conduit 20, but if there is no air passage that communicates with the outside air with respect to the diving portion 40, the air must be vented through the water conduit 20.
  • the diving portion 40 and the water conduit 20 are gradually filled with seawater. Therefore, ventilation is ensured by the ventilation pipe 42 together with the control of the amount of seawater introduced by the seawater flow rate control unit 14.
  • the ventilation through the ventilation pipe 42 is performed so that ventilation is ensured in a space below the location where the generator 30 is provided at least in the conduit 20 and further in the storage space of the diving body 40.
  • a trachea 42 is preferably provided.
  • the discharge unit 50 has a function of discharging seawater taken into the diving body 40 out of the diving body 40.
  • the discharge part 50 will not be specifically limited if the seawater taken in by the diving body 40 is discharged out of the diving body 40.
  • Examples of the configuration of the discharge unit 50 include those using a piston cylinder type seawater discharge mechanism and those using a pump mechanism.
  • the ocean power generation system 100 according to the first embodiment of the present invention is referred to as the discharge unit 50. The description will be made assuming that a piston cylinder type seawater discharge mechanism is employed. A configuration example to which the discharge unit 50 employing the pump mechanism is applied will be described in a second embodiment.
  • FIG. 6 is a diagram illustrating the structure of the discharge unit 50 including the piston-cylinder seawater discharge mechanism according to the first embodiment so as to be easily understood. The principle of operation is shown in an easy-to-understand manner, and detailed mechanical structures and shapes are omitted.
  • the discharge part 50 provided with the piston cylinder type seawater discharge mechanism includes a cylinder 51, a piston body 52, a first check valve path 53, a second check valve path 54, a third check valve path.
  • the check valve passage 55, the power transmission mechanism 56, and the discharge port 57 are provided.
  • the cylinder 51 is a cavity for temporarily taking in seawater discharged into the sea outside the diving body 40, and is a cylinder having a mechanical structural strength capable of withstanding high pressure as will be described later.
  • the inner diameter of the cylinder 51 is substantially the same as the outer diameter of the piston body 52 as will be described later.
  • the installation location of the cylinder 51 may be anywhere inside or outside the diving body 40, but in this configuration example, it is provided at the rearmost portion of the diving body 40.
  • the cylinder 51 communicates with the storage space of the diving body 40 via a first check valve path 53 described later, and is connected to the outside of the diving body 40 via a second check valve path 54 described later. It communicates with the sea, and can take in seawater from the storage space of the diving body 40 and release it outside the diving body 40.
  • the inside of the cylinder 51 is divided into two cylinder chambers by the piston 52, and here, the first cylinder chamber 511, the diving body is located near the storage space 41 of the diving body 40.
  • the one near the sea outside 40 is a second cylinder chamber 512.
  • the piston body 52 is a cylindrical body that operates so as to perform a so-called piston movement inside the cylinder 51, and its outer diameter corresponds to the inner diameter of the cylinder 51, and is assumed to be D here.
  • piston engines can be applied to the cylinder 51 and the piston body 52.
  • a member such as a piston ring can be attached to sufficiently increase the pressure in the seawater pumping and discharging described later. It is preferable to devise as such.
  • the first check valve path 53 is a check valve path that connects the cylinder 51 and the storage space of the diving body 40 while preventing backflow.
  • a hinge type check valve path is shown so that it can be easily understood that it is a check valve path, but the present invention is not limited to a hinge type check valve path.
  • the first check valve path 53 is opened when seawater is introduced from the storage space of the diving body 40 into the first cylinder chamber 511 in the piston motion cycle. When seawater introduced into the cylinder chamber 511 is moved to the second cylinder chamber 512, it functions to prevent backflow.
  • the second check valve path 54 is a check valve path that connects the cylinder 51 and the sea outside the diving body 40 while preventing backflow.
  • the check valve path is shown as a hinge type check valve so that it can be easily understood that it is a check valve path.
  • the route is not limited.
  • the second check valve path 54 is provided at the discharge port 57 of the diving body 40.
  • the second check valve path 54 opens when the seawater in the second cylinder chamber 512 is discharged from the discharge port 57 in the cycle of the piston motion, but the first cylinder chamber 511 is opened. When the seawater introduced in is moved to the second cylinder chamber 512, the seawater is prevented from flowing back.
  • the third check valve passage 55 is a check valve passage for controlling opening and closing of the water passage 521 connecting the upper surface side and the lower surface side of the piston 52.
  • the third check valve passage 55 is provided in the piston 52 when the seawater introduced into the first cylinder chamber 511 is moved to the second cylinder chamber 512 during the piston movement cycle. Although it opens in the direction of passing through the water channel 521, it functions to prevent backflow when the seawater in the second cylinder chamber 512 is discharged from the discharge port 57.
  • the power transmission mechanism 56 is a mechanism that conducts power that causes the piston 52 to perform piston movement under the force of the ocean current flowing in the vicinity of the diving body 40.
  • the structure of the power transmission mechanism 56 is not particularly limited as long as it can convert the ocean current force into the piston operation.
  • the propeller body 561 that rotates by receiving the ocean current force flowing in the vicinity of the diving body 40
  • a rotation shaft 562 of the propeller body, and a conversion mechanism 563 that converts rotational power obtained by the rotation shaft 562 into piston operation are provided.
  • the discharge port 57 is an opening that opens into the sea, and is a portion that connects the second cylinder chamber 512 and the sea. As will be described later, the discharge port 57 is opened when the seawater is discharged from the second cylinder chamber 512 during the piston movement cycle, but the seawater introduced into the first cylinder chamber 511 is discharged to the first position. When moving to the second cylinder chamber 512, the second check valve 55 is closed.
  • the seawater intake phase 1 is a phase in which seawater in the storage space 41 of the diving body 40 is taken into the first cylinder chamber 511 of the cylinder 51 in synchronization with the piston movement of the piston 52.
  • FIG. 7A to FIG. 7C show the movement of the seawater uptake phase 1.
  • FIG. 7A shows the state at the start of the seawater intake phase 1 and also the state at the start of the seawater discharge phase described later.
  • the piston 52 is in a position (the rightmost side in the cylinder 51 in the drawing) that minimizes the space of the first cylinder chamber 511 and maximizes the second cylinder chamber 512.
  • check valve path 53 is opened, and a flow of taking seawater in the storage space 41 of the diving body 40 into the first cylinder chamber 511 of the cylinder 51 is generated, while the third check valve path 55 is closed, Seawater in the storage space 41 of the diving body 40 is taken in all the amount that the first cylinder chamber 511 is expanded.
  • 7C is at a position where the space of the first cylinder chamber 511 is maximized by the piston 52 and the second cylinder chamber 512 is minimized (the leftmost side in the cylinder 51 in the drawing). .
  • the seawater intake phase 2 is a phase in which seawater in the first cylinder chamber 511 of the cylinder 51 is taken into the second cylinder chamber 512 through the water channel 521 in synchronization with the piston movement of the piston 52. Seawater in the storage space 41 of the diving body 40 is taken into the second cylinder chamber 512 of the cylinder 51 through the two phases of the seawater intake phase 1 and the seawater intake phase 2.
  • FIG. 8A to FIG. 8C show the movement of the seawater uptake phase 2.
  • FIG. 8A shows the state at the start of seawater uptake phase 2.
  • FIG. The space of the first cylinder chamber 511 is maximized by the piston 52, and the second cylinder chamber 512 is at the position where it is minimized (the leftmost side in the cylinder 51 in the figure).
  • the state shown in FIG. 8C is at a position where the space of the first cylinder chamber 511 is minimized by the piston 52 and the second cylinder chamber 512 is maximized (the rightmost side in the cylinder 51 in the figure). .
  • the discharge phase is a phase in which the seawater in the second cylinder chamber 512 of the cylinder 51 is discharged from the discharge port 57 into the sea outside the diving body 40 in synchronization with the piston movement of the piston 52.
  • FIG. 9A to FIG. 9C show the movement of the seawater discharge phase.
  • FIG. 9A shows the state at the start of the seawater discharge phase, and also shows the state at the start of the seawater intake phase 1 shown in FIG. 7A.
  • the space of the second cylinder chamber 512 is maximized by the piston 52, and the first cylinder chamber 511 is at the minimized position (the rightmost side in the cylinder 51 in the figure).
  • the opening and closing of the second check valve passage 54 is determined by the water pressure in the sea outside the diving body 40 and the water pressure of the seawater in the second cylinder chamber 512.
  • the force of the seawater in the second cylinder chamber 512 is applied by the power transmission mechanism 56, the pressure received by the end face of the piston 52 from the sea through the power transmission mechanism 56 and the propeller body 561. Is determined by the magnitude of the pressure received from the ocean current and current.
  • the effective area of the propeller body 561 is larger than the area of the end face of the piston 52, the following expression is established. (Water pressure in the sea outside the diving body 40) ⁇ (water pressure of seawater in the second cylinder chamber 512)
  • the second check valve passage 54 is opened, and the seawater in the second cylinder chamber 512 having a high pressure is discharged to the sea side having a low pressure.
  • seawater in the storage space 41 of the diving body 40 is simultaneously taken into the first cylinder chamber 511 at the same time.
  • the above is the outline of the seawater discharge piston cycle of the discharge unit 50 equipped with the piston cylinder type seawater discharge mechanism.
  • each piston cylinder type seawater discharge mechanism takes in the seawater from the storage space 41 of the diving body 40 in each piston cycle and enters the sea. It is also possible to discharge, and the discharge capacity of the entire discharge unit 50 is increased.
  • the marine power generation system 100 uses a resource that can obtain enormous power although it is a relatively low speed ocean current.
  • the propeller body 561 captures a relatively low speed ocean current. It is converted into piston motion through the power transmission mechanism 56. By adjusting the transmission rotation ratio, cam rotation / reciprocation conversion ratio, etc., it is several times faster than the ocean current due to the relatively low current. It is also possible to convert to a reciprocating piston motion.
  • the cross-sectional area D of the cylinder chamber 51 is 3 m 2 (radius of about 1 m), the maximum width L 1 of the first cylinder chamber 511 is 9 m, the maximum width L 2 of the second cylinder chamber 512 is 9 m, and the ocean current speed is 12 km per hour in the Dover Strait Assuming that the conversion ratio of the piston reciprocating speed by the power transmission mechanism 56 is 1: 3 in terms of 3 m / sec, the discharge capacity per second can be calculated as follows.
  • the volume of the second cylinder chamber 512 is the sectional area D of the cylinder chamber 51? 27 m3 from the maximum width L2 of the second cylinder chamber 512. That is, the discharge capacity is 27 m3 (27 tons) per second.
  • the discharge part 50 equipped with one piston cylinder type seawater discharge mechanism can theoretically obtain a discharge capacity of 27 tons per second.
  • the current speed of 3m / s is the maximum speed of the current in the Dover Strait, and the maximum speed is not always obtained. Therefore, when the Kuroshio current is calculated, it is said that the Kuroshio is about 6-7km / h. It is about 1.5m / s, which is half of the above process.
  • the discharge section 50 equipped with one piston cylinder type seawater discharge mechanism can theoretically obtain a discharge capacity of about 14 tons per second. Since a discharge capacity of 14 tons per second can be obtained in the discharge section 50, 14 tons of seawater per second can be introduced from the water conduit 20 and used for power generation by the generator 30.
  • the Kurobe No. 4 dam in Japan is said to generate electricity by discharging 10 tons of water per second, and in the above process, the present invention is the discharge section 50 equipped with one piston cylinder type seawater discharge mechanism.
  • the ocean power generation system 100 can be calculated to have a power generation capacity comparable to that of the Kurobe No. 4 Dam in Japan.
  • the marine power generation system 100 of the present invention can parallelize the piston-cylinder type seawater discharge mechanism, and when four units are paralleled, the ability to discharge about 500,000 tons of water per second can be obtained. Since the ocean power generation system 100 of the present invention can newly take in the seawater from the water intake structure 10 toward the water conduit 20 by the volume of the space obtained by discharging the seawater from the drainage part 50, 500,000 tons per second. A certain amount of water can be dropped and used for power generation.
  • the power generation of Kurobe No.4 Dam is said to be 300,000 kw (300 megaW) with a discharge of 10 tons per second, so if the discharge is 500,000 tons per second, it is calculated as 1.5 million kw (1.5 gigawatts). it can.
  • Such large-scale power generation is possible even at low speeds called “ocean currents”, but it uses a flow with a large fluid pressure to convert it to piston motion to ensure the discharge capacity and ensure the volume that has been successfully discharged. This is because the seawater can be converted into the form of “water discharge” with a water pressure similar to that of the hydroelectric dam in the conduit 20.
  • the structure which paralleled either the intake structure 10, the water conduit 20, the generator 30, the diving body 40, the discharge part 50, or any combination thereof may be sufficient.
  • Example 2 demonstrates the structural example of the ocean power generation system 100a by the forced drainage which employ
  • the marine power generation system 100a according to the second embodiment of the present invention performs forced drainage of wastewater in the drainage section 50a by a pump 58.
  • the other intake structure 10, the water conduit 20, the generator 30, the diving body 40, and other components that are not particularly described in the following description of the second embodiment may be the same as those in the first embodiment. Is omitted, and illustration is also omitted.
  • FIG. 10 is a diagram illustrating the structure of the discharge unit 50a including the pump mechanism according to the second embodiment so as to be easily understood. The principle of operation is shown in an easy-to-understand manner, and detailed mechanical structures and shapes are omitted. As shown in FIG. 10, the discharge part 50a provided with the pump mechanism is provided with a pump 58 and a power supply device 59.
  • the pump 58 needs to be capable of draining seawater into the sea against the water pressure at the depth where the diving body 40 is located.
  • the power supply device 59 supplies power for operating the pump 58, and the method for obtaining power to supply power to the power supply device 59 is not particularly limited.
  • the electric power obtained by the power generation using the deep ocean current around the diving body 40 may be supplied, or the electric power obtained by the power generation of the marine power generation system 100a of the present invention in the generator 30 provided in the water conduit 20 may be supplied. It may be supplied or a combination of both.
  • a propeller body attached around the diving body 40 is placed in the ocean current to obtain rotational torque and rotate the generator to generate electric power. There are things to get. If electric power is obtained by the electric power supply device 59 attached around the diving body 40, the pump 58 is driven by the electric power, and seawater can be discharged into the sea at the depth where the diving part 40 is located.
  • the discharge capacity of the pump 58 is obtained by an amount corresponding to the electric power obtained by the power supply device 59 attached around the diving body 40, and the seawater corresponding to the volume of the seawater discharged by the pump 58 is obtained from near the sea surface.
  • the amount of seawater introduced by the seawater flow rate control unit 14 is controlled so as to be guided to the water conduit 20.
  • the electric power obtained by the power supply device 59 attached around the diving body 40 can be expected to improve due to the progress of the power generation capability of the so-called deep ocean current tidal power generation.
  • the power generator 30 provided in the water conduit 20 may use a part of the power obtained by the power generation of the marine power generation system 100 of the present invention. .
  • the power supply devices 59 may be arranged in parallel, and power may be supplied to the pump 58 by the plurality of power supply devices 59.
  • seawater may be drained by arranging a set of the pump 58 and the power supply device 59 in parallel and providing a plurality of discharge portions 50a.
  • the structure which parallelized either the intake structure 10, the water conduit 20, the generator 30, the diving body 40, the discharge part 50a, or any combination thereof may be sufficient. Further, it is possible to obtain a large scale power by operating a plurality of marine power generation systems 100a of the present invention side by side.
  • drain by the underwater piston drive shown in Example 1 and the forced drainage by the pump drive shown in Example 2 as a discharge part is also possible.
  • the ocean power generation system of the present invention is a power generation system by floating the intake structure 10 and submerging the submerged body 40 in the sea and installing the conduit pipe 20 in a sea area where the ocean current is flowing fast and stably. Can be widely applied.

Abstract

 【課題】 流速が十分ではない海流であってもその大きなエネルギーを利用し、水力発電に理想的な、あたかもダムからの放水のような水流を作り出し、高効率で安定的に発電を行えるように工夫した海洋発電システムを提供する。 【解決手段】 海上には取水構造体10の一例として浮力で浮いた海上浮体物があり、その内部に海水を取り込む開口部12がある。海中には導水管20があり、海中に空間を確保せしめている。導水管20の一端は海上浮体物10に接続されており、取水構造体10である海上浮体物から取り込んだ海水が海面下の下方に向けて導入される。導水管20には海水の落下運動または水圧により発電する発電機30があり、発電を行う。海中には潜水体40があり、導水管20の他端から排出される海水を取り込む貯留空間41が提供される。この潜水体40に貯留空間41に取り込まれた海水を排出部50により潜水体40外へ排出する。

Description

海洋発電システムおよび海洋発電方法
 本発明は、海水を利用した海洋発電システムおよび海洋発電方法に関する。
 近年、世界規模でのエネルギー需要の急速な増大に伴い、これまでもっぱら依存していた石油やLNG等の化石燃料や原子力等のエネルギー源の代替あるいは新たに加えるエネルギー源として、枯渇や公害の虞のない自然エネルギーを利用しようとする様々な研究開発が積極的に進められている。
 自然現象を利用して発電を行う方法として、風を利用した風力発電、海水の流れを利用した海流発電などが研究されている。風力発電に用いられる風は吹いていない状態も多く、その発電量が安定していないのに対して、海流は比較的安定して流れており、その発電量が安定している。従って、海流発電は、風力発電等と比べてより安定的に発電を行うことができるものとして期待が大きい。
 本発明の発明者である西岡俊久は、米国ジョージア工科大学および神戸大学大学院海事科学研究科マリンエンジニアリング講座にて教授として教鞭を取る中、海洋での発電の研究を進め、流速が十分ではない海流であってもその大きなエネルギーを利用し、高効率で安定的に発電を行えるように工夫した海洋発電システムの可能性を探り研究を進めた。
 一般に、大型の発電タービンを回転させて電力を発生させるためには、発電タービンで捉える媒体の速度と圧力が一定以上必要となってくるが、現実に海洋で生じる潮流・海流の速度は十分なものではない。
 世界中の海洋において、潮流・海流の速度が比較的大きい場所として挙げられるのはドーバー海峡(英仏海峡)である。ドーバー海峡の潮の流れは最大で6ノット、時速12キロ程度とされている。
 ドーバー海峡(英仏海峡)での海流発電を想定した技術として、英仏海峡海流発電システム(特許文献1:特開2009-270491号公報)が知られている。この英仏海峡海流発電システムは、英仏海峡トンネルに付随する形で専用の発電用トンネル空間を数箇所掘削して発電設備を設置し、この設備の真上に当る海底部分に水車を設置して連結し、海流の流動エネルギーを水車のブレードで回転エネルギーに変換して発電機を稼動するものである。英仏海峡は60m程度の深さしかないため、大型艦船(喫水線35m程度)の航行に支障のない水深40メートル以下の海中に発電装置を設置するとしている。
 現在、水力発電では、水流や水圧を利用して発電機用の大型のプロペラやタービンを高速に回転させることで起電力を得ている。例えば、ペルトン型水車を利用した発電機であれば落水をペルトン型水車に当てて高速回転させるため水流の速度が必要であるし、フランシス型水車を利用した発電機であれば圧力差を利用して回転させるためフランシス型水車に高水圧をかけつつ、水車通過後は大気圧下に放出することで高速回転させている。
 一方、海流のエネルギーは総量としては膨大であるが、その媒体の流れとしての速度が遅く、また、海流中におくプロペラやタービンの前後で生じる圧力差も大きくないため、発電機用の大型のプロペラやタービンを高速に回転させるほどの圧力差を直接得ることはできない。図11は従来の海流発電システムにおける問題点を説明する図である。図11に示すように、海流は流れが比較的遅く、その流れをもって直接、発電機内に導いて内部の水車やタービンを回転させるには回転速度が十分には得られず、発電には向いていない。
 そこで、海流を利用して発電機内の水車やタービン自体を所望の速度で回転するためには、発電機内の水車やタービン自体に工夫、改良が必要となってくる。
 従来の発電機向けには流速が十分ではない海流であっても高い効率で安定的に発電を行えるように工夫したプロペラ機構を備えた発電を備えた海流発電システムとして、以下のものが知られている。
 例えば、特許文献2(特開2011-208531号公報)に開示された海流発電システムは、潮流・海流によって同一方向に回転する第1のプロペラ及び第2のプロペラを組み合わせ、増速機構を介して接続するものであり、増速機構は、例えば、遊星歯車機構、すなわち、内歯車、遊星歯車、太陽歯車の組み合わせからなる機構であると開示されている。増速機構を介することで回転速度を高めようとするものである。図12は、特許文献2において提案されている海流発電システムを示すものである。
 また、例えば、特許文献3(特開平7-259064号公報)に開示された海流発電システムは、流速と流向が安定している海流に海流発電潜水船を海中に係留するものである。図13は、特許文献3において提案されている海流発電潜水船を示すものである。流速と流向が安定している海流に、その流れに直面するように、船首から係留索9と錨10によって導管Aと発電機Cを持つ浮体Bを所定の深さに係留したものであり、導管Aに流れる海流エネルギーをプロペラ6と発電機Cによって電気エネルギーに変換し、海底送電線7で陸地に送電するようにしたものである。導管Aの両端部において、プロペラ6が設置されている箇所において海流が加速されるように、中央付近がくびれ、流入口または流出口に向けて漸次内法寸法が大きくなるテーパーが形成されている。
 また、例えば、特許文献4(特開2007-9833号公報)に開示された海流発電システムも、特許文献3と同様、流速と流向が安定している海流に海流発電潜水船を海中に係留するものである。図14は、特許文献4において提案されている海流発電潜水船を示すものである。図14に示すように、海流発電潜水船は、両端に海流の流入口と流出口が形成された筒状の第1の海流導管と、この第1の海流導管内中央付近に設けられた筒状の第2の海流導管と、この第2の海流導管内に回転自在に設けられたプロペラと、このプロペラの回転によって発電する発電装置とを備えたものである。ここで、第1の海流導管、第2の海流導管の両端部において海流を加速しやすいように、中央付近がくびれ、流入口または流出口に向けて漸次内法寸法が大きくなるテーパーが形成されている。
 つまり、第1の海流導管内に第2の海流導管を設けた2重管構造とし、流入口から第1の海流導管内に導かれた海流は、第2の海流導管内への流れ(内側流)と、その外方の第1の海流導管と第2の海流導管との間の流れ(外側流)とに分流され、両者が第2の海流導管の出口付近で合流するが、その際に外側流により内側流が引き出されるというエジェクター効果があるとされている。
特開2009-270491号公報 特開2011-208531号公報 特開平7-259064号公報 特開2007-9833号公報
 しかし、上記した従来技術には以下のように問題がある。
 特許文献1の特開2009-270491号公報では、海流発電に適した場所がドーバー海峡(英仏海峡)であることを開示しているものの、上記したように、
海流のエネルギーは総量としては膨大であるが、流れの速度が遅く、また、発電機用の大型のプロペラやタービンを高速に回転させるほどの圧力差を直接得ることはできないために、発電機用のプロペラやタービン自体に工夫が必要であるが、同公報には通常のプロペラ体した開示されておらず、このままでは、十分効率的に大型の発電機を回転させ、所望の起電力を得られる技術が開示されているとは言えない。
 次に、特許文献2の特開2011-208531号公報によれば、海流によって同一方向に回転する第1のプロペラ及び第2のプロペラを組み合わせ、増速機構を介して接続することでプロペラの回転速度を高める技術であるが、海流で得られる第1のプロペラ及び第2のプロペラの速度はかなり低速であり、それを通常の大型の発電機の所望の速度で回転させるためには回転ギア比が大きくなりすぎ、機構的に困難である。また、海流から得られるトルクと通常の大型の発電機を高速回転させるために必要なトルクを伝達するため、事実上、ギアの機械的強度に無理が生じやすく、破損しやすいという問題がある。
 次に、特許文献3の特開平7-259064号公報によれば、導管Aの中央における断面積を、取水口1の断面積より小さくしているために、理論上は水車6の取付部における海流の速度が加速されることになるが、実際には、発電機Cによるプロペラ6の回転負荷抵抗や、導管A内における流路抵抗によって、導管A内における海流の流量が浮体Bの周囲よりも遙かに小さくなってしまう。この結果、両者間の海水流量の差に起因して、浮体Bには、海流方向にその断面積に比例する大きな押圧力が作用し、係留索9によって浮体6を定位置に保持しておくことが困難になるという問題点がある。
 また、発電機を所望の速度で回転させるほどに海流の流速を大きく加速するためには、導管Aの中央における断面積と取水口1の断面積との差を大きくしなければならず、実働するプロペラの大きさの割には浮体の大きさが巨大となってしまうという問題がある。
 また、浮体Bを係留索9によって所定の深さに浮遊状態で係留しているために、その姿勢を安定的に保持させることが難しいという問題点もある。
 次に、特許文献4の特開2007-9833号公報によれば、第1の海流導管の中央における断面積を、取水口1の断面積より小さくしているために、理論上はプロペラの取付部における海流の速度が加速されることになる一方、特許文献3に比べて、第2の海流導管を流れる内側流に対する外側流との合流によるエジェクター効果により、内側流と外側流の両者間の海水流量の差を小さくして、浮体を安定させ、係留索によって浮体を定位置に保持しておく工夫はされているものの、やはり、浮体Bを係留索9によって所定の深さに浮遊状態で係留しているため、その姿勢を安定的に保持させることが難しいという問題点は特許文献3と同様である。
 また、特許文献4でも、特許文献3と同様、発電機を所望の速度で回転させるほどに海流の流速を大きく加速するためには、導管Aの中央における断面積と取水口1の断面積との差を大きくしなければならず、実働するプロペラの大きさの割には浮体の大きさが巨大となってしまうという問題があり、さらには、特許文献4では、導管を、第1の海流導管と第2の海流導管の二重化し、内側の第2の海流導管に比べて第1の海流導管はさらにその径が巨大なこともあり、海中に没する躯体がさらに巨大化してしまうという問題がある。
 つまり、特許文献3、特許文献4のテーパー形状を伴う浮体を用いる技術では、事実上、利用可能な浮体の大きさと発電機のプロペラの大きさから考えると、海流を十分加速することはできるものではない。
 本発明は、流速が十分ではない海流であってもその大きなエネルギーを利用し、水力発電に理想的な、あたかもダムからの放水のような水流を作り出し、高効率で安定的に発電を行えるように工夫した海洋発電システムを提供することを目的とする。
 上記課題を解決するために、本発明の発明者である西岡俊久は、米国ジョージア工科大学および神戸大学大学院海事科学研究科マリンエンジニアリング講座にて教授として教鞭を取る中、海洋での発電の研究を進め、流速が十分ではない海流であってもその大きなエネルギーを利用し、高効率で安定的に発電を行えるように工夫した海洋発電システムについて研究を進め、以下の発明を行った。
 本発明の海洋発電システムは、海水を取り込む構造体であって、内部に海水を取り込む開口部と、前記開口部を介して取り込んだ海水を内部に流し込む上部導水部とを備えた取水構造体と、一端が前記取水構造体の前記上部導水部に接続され、前記上部導水部から取り込んだ海水を海面下の下方に向けて導入するための空間を海中に確保せしめる導水管と、前記導水管に対して取り付けられ、前記導水管中の空間に導入された海水の落下運動または水圧により発電する発電機と、前記導水管の他端に接続され、前記導水管の他端から排出される海水を取り込む貯留空間を提供する潜水体と、前記潜水体に取り込まれた海水を前記潜水体外へ排出する排出部を備えたものである。
 上記構成により、導水管の空間は海中に立てられたものであり、海面付近から海中の潜水体までの高さに相当するダムの如き落差を持った空間を得ることができる。このダムの如き落差を持った空間を利用して、通常の水力発電ダムで適用している発電装置を用いて発電することが可能となる。
 なお、前記取水構造体は、海水を取り込める開口を備えたものであれば、陸上の海岸沿いに設けた構造物であっても良いし、海岸から離れた海上に浮力によって浮く海上浮体物であっても良い。いずれであっても開口部を介して取り込んだ海水を内部に流し込む上部導水部を通り、海中に設けた導水菅に導くことができる。なお、導水菅は海中に落差を持った空間を確保せしめるために立設させる必要があるため、陸上の海岸沿いに取水構造体を設ける場合、海岸線がいわゆる切り立った断崖のような地形が望ましい。
 次に、上記構成において、潜水体に搭載する“排出部”として、2つの構成例を挙げることができる。
 第1の排出部の構成は、シリンダーと、当該シリンダー内をピストン運動するピストン体と、シリンダーと潜水体の貯留空間とを逆流を防止しつつ接続する第1の逆止弁路と、シリンダーと潜水体外の海中とを逆流を防止しつつ接続する第2の逆止弁路と、潜水体の付近を流れる海流の力を受けてピストン体にピストン運動をさせる動力を伝導する動力伝導機構を備え、ピストン体のピストン運動に同期して貯留空間内の海水をシリンダー内に取り込む取り込みフェーズと、シリンダー内に取り込まれた海水を潜水体外の海中に排出する排出フェーズを備えた海水排出ピストンサイクルで稼働するピストンシリンダー式海水排出機構とするものである。
 つまり、ピストンシリンダー式海水排出機構は、海水をシリンダーに取り込んでピストン運動によりシリンダーから潜水体外へ排出する海水排出ピストンサイクルで作動する“水中ピストン機構”とも言えるものであり、海流を利用したいわゆる“自然排水”を行うものとなる。
 このように、ピストンシリンダー式海水排出機構は、水圧の小さな潜水体の貯留空間内から、水圧の大きな潜水体外の海中へ海水を放出するものであるが、ピストンの駆動は海流の強い流れの圧力があれば行うことができ、かならずしも海流の流速は重要ではない。
 なお、上記したピストンシリンダー式海水排出機構は並列化することが可能である。ピストンシリンダー式海水排出機構を潜水体の周囲に配置し、各々のピストンシリンダー式海水排出機構が、海水排出ピストンサイクルにて、潜水体の貯留空間から海水を取り込んで海中へ排出するものとすることができる。このようにピストンシリンダー式海水排出機構を並列化することにより、海水排出量を増大せしめることができる。潜水体の貯留空間は制限があるため、潜水体の貯留空間からピストンシリンダー式海水排出機構を介して海中へ排出される海水量相当分しか、新たに上部導水部から取り込んで導水管を通過させることができず、導水管で発電に供することができる海水量にも制限が生じてしまう。
 そこで、上部導水部から導水管に導入する海水量を、ピストンシリンダー式海水排出機構の海水排出量に見合う量に制御する海水流量制御部を備えた構成とすることが好ましい。海水流量制御部を備えることにより、潜水体のピストンシリンダー式海水排出機構による海水の潜水体外の海中への放出が追い付けるように上部導水部から導水管に取り込んで発電に供する海水量を制御することができ、システム内が海水で溢れて駆動不能に陥るのを防止することができる。
 次に、第2の排出部の構成は、潜水体の貯留空間に貯留された海水を潜水体外の海中へ汲み上げて放出するポンプ機構と、潜水体の付近を流れる海流の力を受けてポンプ機構を駆動する電力を得る潜水体外発電機を備えた、ポンプ式海水排出機構とするものである。
 つまり、ポンプ式海水排出機構は、海水を潜水体外の発電機により得た電力を用いてポンプ機構で潜水体外の海中へ強制排水するものである。
 なお、このポンプ式海水排出機構を用いた第2の排出部の構成においても、ピストンシリンダー式海水排出機構を用いた第1の排出部の構成と同様、並列化することが可能である。ポンプ式海水排出機構を潜水体の周囲に配置し、各々のポンプ式海水排出機構が、ポンプ駆動にて、潜水体の貯留空間から海水を取り込んで海中へ排出するものとすることができる。このようにポンプ式海水排出機構を並列化することにより、海水排出量を増大せしめることができ、導水管で発電に供することができる海水量を増大することができる。
 なお、上記と同様、上部導水部から導水管に導入する海水量を、ポンプ式海水排出機構の海水排出量に見合う量に制御する海水流量制御部を備えた構成とすることが好ましい。海水流量制御部を備えることにより、潜水体のポンプ式海水排出機構による海水の潜水体外の海中への放出が追い付けるように上部導水部から導水管に取り込んで発電に供する海水量を制御することができ、システム内が海水で溢れて駆動不能に陥るのを防止することができる。
 さらに、システム内が海水で溢れて駆動不能に陥るのを防止するため、導水管内の少なくとも一部の空間に対する通気、および、潜水体の貯留空間に対する通気を確保するため、外気に通じる通気管を設けることが好ましい。特に、導水管の経路のうち発電機が組み合わされている箇所より下方の空間に対する通気、潜水部の貯留空間に対する通気を行えば、システム内が海水で溢れて駆動不能に陥るのを防止することができる。
 ここで、導水管中に設ける発電機のタイプは発電機に用いるものであれば適用することができる。
 発電機には多様な種類が有り得る。大きく大別すると、衝動水車を用いたものと反動水車を用いたものがある。
 衝動水車は、圧力水頭を速度水頭に変えて水車に作用させるものである。つまり、水流の運動エネルギーを水車で受け、水車の運動エネルギーに変換するものである。ペルトン水車、開放周流形水車などが知られている。ペルトン水車などの衝動水車を備えた発電機であれば、導水管中に導入して落下してくる海水を発電機の水車に当てることにより発電することができる。
 反動水車は、圧力水頭を水車に作用させるものである。つまり、水圧を反動水車に印加し、印加した水圧により水車の運動エネルギーに変換するものである。フランシス水車、プロペラ水車、カプラン水車などがある。フランシス型水車などの反動水車を利用した発電機であれば、導水管中を導入した海水の水圧を発電機に印加することにより発電することができる。
 次に、本発明にかかる海洋発電方法は、海中において海水を落下させるための空間を確保せしめる導水管を立設し、開口部を介して前記導水管中の空間に導入された海水の落下運動または水圧により発電する発電機を取り付けておき、前記導水管の下端に接続され、前記導水管から排出される海水を取り込む貯留空間を提供する潜水体を設けておき、前記潜水体の前記貯留空間にある海水を海中へ放出する排出部を設けておき、前記開口部から海水を取り込み、前記海水を前記導水管の内部に流し込んで落下させ、前記発電機により発電し、前記導水管から排出され前記潜水体に取り込まれた海水を前記排出部により前記潜水体外へ排出する海洋発電方法である。
 本発明の海洋発電システムおよび海洋発電方法は、導水管の空間は海中に中空の筒体を立てるように確保されるものであり、海面付近から海中の潜水体までの高さに相当するダムの如き落差を持った空間を得ることができる。このダムの如き落差を持った空間を利用して、通常の水力発電ダムで適用している発電装置を用いて発電することが可能となる。
 なお、潜水体に落下してきた海水の潜水体外への排出は、第1の逆止弁路および第2の逆止弁路を介した逆流を防止しつつ、ピストンシリンダー式海水排出機構を駆動させることにより海水を排出する構成とすれば、いわゆる海流を用いた“自然排水”が可能となる。また、ポンプ式海水排出機構を駆動させることにより海水を排出する構成とすれば、いわゆる海流を用いて得た電力を利用した“強制排水”が可能となる。
 つまり、ピストンシリンダー式海水排出機構は、水圧の小さな潜水体の貯留空間内から、水圧の大きな潜水体外の海中へ海水を放出するものであるが、ピストンの駆動は海流の強い流れの圧力があれば行うことができ、かならずしも海流の流速は重要ではない。その一方、ピストンシリンダー式海水排出機構により排出されて得られた潜水体の貯留空間のボリュームの分だけ、導水管を落下する海水量とすることができ、この落下する海水は水力発電に適した流速、流圧を持った水流として得られる。
 同様に、ポンプ式海水排出機構は、水圧の小さな潜水体の貯留空間内から、水圧の大きな潜水体外の海中へ海水を放出するものであるが、ポンプ機構を駆動する電力を潜水体外の発電機により得てポンプ機構を用いて強制排水させ、得られた潜水体の貯留空間のボリュームの分だけ、導水管を落下する海水量とすることができ、この落下する海水は水力発電に適した流速、流圧を持った水流として得られる。
 このように、本発明の海洋発電システムを用いれば、比較的流速が遅い海中の海流の作用を変換して、水力発電に適した流速、流圧を持った水流の形で利用することができる。
本発明の海洋発電システム100の構成例を示す図である。 本発明の海洋発電システム100の海水の動きを示す図である。 ペルトン水車を用いた発電機30の導水管20中に設けた構成例を示す図である。 フランシス水車を用いた発電機30の導水管20中に設けた構成例を示す図である。 導水管20、潜水体40に対して通気管42を設けた構成例である。 実施例1にかかるピストンシリンダー式海水排出機構を備えた排出部50の構造が分かりやすいように示した図である。 海水取り込みフェーズ1の動きを示す図である。 海水取り込みフェーズ2の動きを示す図である。 排出フェーズの動きを示す図である。 実施例2にかかるポンプ機構を備えた排出部50aの構造が分かりやすいように示した図である。 従来技術における海流発電の問題点を説明する図である。 従来技術の特許文献2において提案されている海流発電システムを示した図である。 従来技術の特許文献3において提案されている海流発電潜水船を示す図である。 従来技術の特許文献4において提案されている海流発電潜水船を示す図である。
 以下、図面を参照しつつ、本発明の海洋発電システムの実施例を説明する。ただし、本発明の範囲は以下の実施例に示した具体的な用途、形状、本数、個数などには限定されないことは言うまでもない。
 実施例1にかかる本発明の海洋発電システムの例を示す。
 図1は、本発明の海洋発電システムの基本原理を示す図である。
 図2は、本発明の海洋発電システムおよびその周囲の海水の流れを簡単に示す図である。
 図1に示すように、海洋発電システム100は、取水構造体10、導水管20、発電機30、潜水体40、排出部50を備えたものとなっている。図2に示すように、これらの構成部材の内部またはその周囲には海水の流れがある。本発明の海洋発電システム100は、構成部材の内部に導かれた海水の流れ、および、周囲を流れる海流の働きを用いて発電するものである。
 以下、各構成要素の説明を行い、その後に海洋発電システム100の働きについてまとめることとする。
 まずは、各構成要素の説明を行う。
 取水構造体10は、海水を取り込める開口を備えたものであれば、陸上の海岸沿いに設けた構造物であっても良いし、海岸から離れた海上に浮力によって浮く海上浮体物であっても良い。
 取水構造体10は、陸上の海岸沿いに設けた構造物の場合でも、海上浮体物の場合でもいずれであっても開口部12を介して取り込んだ海水を内部に流し込む構造となっている。この開口部12は少なくとも一部が喫水線の下に位置するように設けられており、内部に海水を取り込む口となっている。さらに、開口部12から取り込んだ海水を内部に流し込むための上部導水部13を備えている。上部導水部13の径や長さなどは特に限定されないが、後述するように導水管20に必要量の海水を導くために適したものであれば良い。
 この実施例では、図1に示すように、取水構造体10は船舶型となっており、海上浮体物11の浮力により海上に浮かぶものとなっている。図1の例では、いわゆる玄武船の形状を持ったものが描かれている。なお、通常の船舶などの浮体物では海水を取り込んで海面下に海水を落下させるために導くという考え方はないが、本発明の海洋発電システム100では、後述するように、海面近くの海水を内部に取り込んで発電に利用するため、海上浮体物10であっても開口部12を備え、さらに、開口部12から取り込んだ海水を内部に流し込むための上部導水部13を備えている。
 取水構造体10が陸上の海岸沿いに設けた構造物の場合であれば、導水菅20は海中に落差を持った空間を確保せしめるために立設させる必要があるため、取水構造体10を陸上の海岸沿いに設ける場合、海岸線がいわゆる切り立った断崖のような地形が望ましい。
 また、この構成例では、取水構造体10には、内部に取り込む海水の量を制御するための海水流量制御部14を備えたものとなっている。後述するように、本発明の海洋発電システム100は、導水管20内に海水を導入することで発電機30を稼働して発電するが、導水管20内すべてが海水で満たされてしまうと発電機30の稼働が停止する。そのため、後述するように、海水の取り込み量を排出部50の排出能力に見合う量に制御する必要がある。そこで、海水流量制御部14を設けておき、過剰に海水が導水管20内に取り込まれないように制御する工夫を行う。
 導水管20は、この構成例では筒状の管体であり、図1に示すように、一端が取水構造体10に接続され、他端が潜水体40に接続されており、取水構造体10と潜水体40の間に設けられた構造物となっている。
 導水管20は、上部導水部13から取り込んだ海水を海面下の下方に向けて導入するための空間を海中に確保せしめるものとなっている。つまり、海中に略縦方向に、海面近くから潜水体40がある海中までの落差がある空間が確保されることとなる。
 構造強度は海中で受ける水圧に耐えうるように頑強なものとなっている。例えば、素材として、ステンレスワイヤーフレーム内蔵スペクトラ頒布配管を使うことができる。ステンレスワイヤーフレーム内蔵スペクトラ頒布配管は、軽量で柔軟性がある上、鉄の約十倍の強度がある。また、金属疲労が起きず、錆びにくいという利点がある。海上および海中に適用する上では錆びないという利点も大きい。
 このように、導水管20を設けることにより、海面近くから潜水体40がある海中までの落差がある空間が確保され、あたかも、海水を下方に放水できる“ダム”のように見立てることもできる。つまり、導水管20の一端より上にある海面は、あたかも“ダム湖に貯えられた水”と見立てることができ、導水管20の壁面は、あたかも“ダムの壁面”と見立てることができる。導水管20の内部に導かれた海水は、あたかもダムの水力発電に供される水塊と見立てることができる。
 発電機30は、導水管20に対して取り付けられ、導水管20中の空間に導入された海水の落下運動または水圧により発電する発電機である。水力発電に用いられている発電機であれば本発明の海洋発電システム100に適用することが可能である。
 発電機30には多様な種類が有り得る。大きく大別すると、衝動水車を用いたものと反動水車を用いたものがある。
 衝動水車は、圧力水頭を速度水頭に変えて水車に作用させるものである。つまり、水流の運動エネルギーを水車で受け、水車の運動エネルギーに変換するものである。ペルトン水車、開放周流形水車などが知られている。
 ペルトン水車は、衝動水車の一つであり、水流をランナー周囲のバケットに当てて回転させる水車である。ここでは、一般のペルトン水車はノズルからジェット水流を噴き出してバケットに当てているが、本発明の海洋発電システム100の場合、導水管20に対してペルトン水車を組み合わせ、導水管20を流れ落ちる水流をバケットに当てて衝動させる。
 開放周流形水車は、いわゆる古来から用いられている普通の水車であり、水流をランナー周囲のプレートに当てて回転させる水車である。
 図3は、衝動水車のペルトン水車を用いる場合の導水管20内の海水の流れと発電機30の様子を簡単に描いたものである。海水が導かれる導水管20に対してペルトン水車のバケットが当たる位置に設けられており、導水管20に導かれた海水が勢いよくペルトン水車のバケットに衝突し。ペルトン水車を勢いよく回す。このようにペルトン水車の取り付けられているランナーを衝動回転させ、発電機のジェネレーター(図示せず)を回転させて起電力を得る。
 次に、反動水車は、圧力水頭を水車に作用させるものである。つまり、水圧を反動水車に印加し、印加した水圧により水車の運動エネルギーに変換するものである。フランシス水車、プロペラ水車、カプラン水車などがある。
 フランシス水車は、導かれた流水が、渦巻き型ランナーの外周部に半径方向から流入し軸方向に流出する水車である。構造が簡単で保守が容易であるとされており、水力発電用の水車として広く利用されている。
 プロペラ水車は、軸方向から流入した流水が、軸方向に流出するものであり、回転軸に複数のランナー羽根が所定角度で設けられている。
 カプラン水車は、プロペラ水車の一種であり、落差や水量の変化によってランナー羽根の角度を変えるものをカプラン水車と呼ばれる。
 クロスフロー水車は、流水がランナー(羽根車)に対して交差して流れるものである。
 図4は、反動水車のフランシス水車を用いる場合の導水管20内の海水の流れと発電機30の様子を簡単に描いたものである。海水が導かれる導水管20に対してフランシス水車の周辺部分が位置しており、導水管20に導かれた海水はフランシス水車を用いた発電機30の上部の導水管20に充填され、フランシス水車の周辺にある羽根に対して水圧が印加されている状態である。フランシス水車には大きな水圧がかかっており、その水圧で羽根を反動回転させる。羽根はねじられてランナーに取り付けられており、海水はフランシス水車の周辺から中央の奥側へねじられるように方向を変え、図4の構成例では再び曲げられて導水管20を下方に流れてゆく構成となっている。フランシス水車の取り付けられたランナーが回転し、発電機のジェネレーター(図示せず)を回転させて起電力を得る。
 次に、潜水体40は、導水管20の下端側に接続され、導水管20の下端から排出される海水を取り込む貯留空間41を提供する構造物となっている。潜水体40は海中に没した状態で稼働するものであり、海中の水圧に耐えうる構造的強度が必要である。内部の貯留空間41には導水管20の下端から排出される海水を取り込む空間であるが、後述する排出部50で排出するため、一時的な海水の貯留空間である。
 潜水体40が海水で満水状態となると、本発明の海洋発電システム100の稼働が限界に近づいており、そのまま導水管20から海水を受け入れるとシステム全体が海水で満たされて稼働不能に陥る恐れがある。そこで、海水流量制御部14を備えたものとなっているが、さらなる工夫として、通気管42を設ける工夫も可能である。
 図5(a)は、潜水体40に対して導水管20の一部に通気管42を設けた構成例である。図5(b)は、潜水体40に対して導水管20とは別に通気管42を設けた構成例である。
 上記したように、導水管20内に海水が導入されるが、潜水部40に対して外気と通じる通気路がない場合、通気も導水管20を介して行わねばならない。しかし、想定よりも海水の比率が大きく通気が確保されていない場合、徐々に潜水部40および導水管20に海水が満たされてゆく。そこで、海水流量制御部14による導入される海水量の制御とともに、通気管42で通気を確保する。
 通気管42による通気は、例えば、導水管20内のうち少なくとも発電機30が設けられている箇所よりも下側の空間、さらには、潜水体40の貯留空間に通気が確保されるように通気管42を設けることが好ましい。
 排出部50は、潜水体40に取り込まれた海水を潜水体40の外へ排出する機能を備えたものである。排出部50は、潜水体40に取り込まれた海水を潜水体40の外へ排出するものであれば特に限定されない。
 排出部50の構成例として、ピストンシリンダー式海水排出機構を採用したもの、ポンプ機構を採用したものなどがあるが、以下、実施例1にかかる本発明の海洋発電システム100は、排出部50として、ピストンシリンダー式海水排出機構を採用したものとして説明する。ポンプ機構を採用した排出部50を適用した構成例は実施例2において説明する。
 図6は、実施例1にかかるピストンシリンダー式海水排出機構を備えた排出部50の構造が分かりやすいように示した図である。動作原理を分かりやすく示したものであり、細かい機械的な構造や形状は省略している。
 図6に示すように、ピストンシリンダー式海水排出機構を備えた排出部50は、シリンダー51と、ピストン体52と、第1の逆止弁路53、第2の逆止弁路54、第3の逆止弁路55、動力伝導機構56、排出口57を備えたものとなっている。
 シリンダー51は、潜水体40外の海中へ放出する海水を一時的に取り込むキャビティであり、後述するように高圧に耐えうる機械的構造強度を備えた筒体となっている。シリンダー51の内径は後述するようにピストン体52の外径と略同一のものであり、ここではDとする。
 シリンダー51の設置場所は、潜水体40内外のいずれの箇所でも良いが、この構成例では、潜水体40の最後尾の部分に設けられている。
 シリンダー51は、後述する第1の逆止弁路53を介して、潜水体40の貯留空間と通じており、また、後述する第2の逆止弁路54を介して、潜水体40外の海中と通じており、潜水体40の貯留空間から海水を取り込み、潜水体40外へ放出することができる。
 なお、図6に示した構成例では、シリンダー51内は、ピストン52により2つのシリンダー室に分けられ、ここでは、潜水体40の貯留空間41に近い方を第1のシリンダー室511、潜水体40外の海中に近い方を第2のシリンダー室512とする。
 ピストン体52は、シリンダー51の内部をいわゆるピストン運動するように動作する円筒体であり、その外径はシリンダー51の内径と対応するものとなっており、ここではDとする。
 図6に示した構成例では、ピストン52の上面側と下面側を結ぶ水路521があり、後述するように、ピストン運動のサイクルの中で、第1のシリンダー室511に導入された海水を第2のシリンダー室512に移動させる際にピストン52内の水路521を通過するようになっている。
 なお、シリンダー51およびピストン体52には、いわゆるピストン機関に用いられる様々な技術を適用することが可能であり、例えば、ピストンリングなどの部材を取り付けて後述する海水の圧送排出などにおいて十分昇圧できるように工夫しておくことが好ましい。
 第1の逆止弁路53は、シリンダー51と潜水体40の貯留空間とを逆流を防止しつつ接続する逆止弁路となっている。図6に示した例では逆止弁路であることが簡単に分かるように蝶番式の逆止弁路として示しているが、蝶番式の逆止弁路に限定されない。
 後述するように、第1の逆止弁路53は、ピストン運動のサイクルの中で、潜水体40の貯留空間から海水を第1のシリンダー室511に導入する際には開くが、第1のシリンダー室511に導入された海水を第2のシリンダー室512に移動させる際には逆流しないように制止する働きをする。
 第2の逆止弁路54は、シリンダー51と潜水体40外の海中とを逆流を防止しつつ接続する逆止弁路となっている。図6に示した例では、第1の逆止弁路53と同様、逆止弁路であることが簡単に分かるように蝶番式の逆止弁路として示しているが、蝶番式の逆止弁路に限定されない。図6に示した構成例では、第2の逆止弁路54は、潜水体40の排出口57に設けられている。
 後述するように、第2の逆止弁路54は、ピストン運動のサイクルの中で、第2のシリンダー室512の海水を排出口57から排出する際には開くが、第1のシリンダー室511に導入された海水を第2のシリンダー室512に移動させる際には逆流しないように制止する働きをする。
 第3の逆止弁路55は、ピストン52の上面側と下面側を結ぶ水路521の開閉を制御するための逆止弁路である。
 後述するように、第3の逆止弁路55は、ピストン運動のサイクルの中で、第1のシリンダー室511に導入された海水を第2のシリンダー室512に移動させる際にピストン52内の水路521を通過する方向には開くが、第2のシリンダー室512の海水を排出口57から排出する際には逆流しないように制止する働きをする。
 動力伝導機構56は、潜水体40の付近を流れる海流の力を受けてピストン52にピストン運動をさせる動力を伝導する機構である。動力伝導機構56は海流の力をピストン動作に変換できる機構であればその構造は特に限定されないが、この構成例では、潜水体40の付近を流れる海流の力を受けて回転するプロペラ体561、プロペラ体の回転軸562、回転軸562で得られる回転動力をピストン動作に変換する変換機構563を備えたものとなっている。
 排出口57は海中に開いた開口であり、第2のシリンダー室512と海中をつなぐ部分である。
 後述するように、排出口57は、ピストン運動のサイクルの中で、第2のシリンダー室512から海水を放出する際には開放されるが、第1のシリンダー室511に導入された海水を第2のシリンダー室512に移動させる際には第3の逆止弁55により閉鎖される。
 ピストンシリンダー式海水排出機構を備えた排出部50のピストンサイクルについて実際の動きと参照しつつ説明する。
 [海水取り込みフェーズ1]
 海水取り込みフェーズ1は、ピストン52のピストン運動に同期して潜水体40の貯留空間41内の海水をシリンダー51の第1のシリンダー室511内に取り込むフェーズである。
 図7(a)から図7(c)は、海水取り込みフェーズ1の動きを示している。
 図7(a)は海水取り込みフェーズ1の開始時点の状態であるとともに、後述の海水排出フェーズの開始時点の状態でもある。ピストン52は第1のシリンダー室511の空間を最小化させ、第2のシリンダー室512を最大化させる位置(図中、シリンダー51内の最右側)にある。
 図7(a)から図7(b)への動きのように、ピストン52が第1のシリンダー室511の空間を拡張させ、第2のシリンダー室512を圧縮する方向に移動を始めると、第1の逆止弁路53は開き、潜水体40の貯留空間41内の海水をシリンダー51の第1のシリンダー室511内に取り込む流れが生じる一方、第3の逆止弁路55は閉鎖され、第1のシリンダー室511が拡張した分はすべて潜水体40の貯留空間41内の海水が取り込まれることとなる。
 図7(c)の状態は、ピストン52により第1のシリンダー室511の空間が最大化され、第2のシリンダー室512が最小化された位置(図中、シリンダー51内の最左側)にある。
 [海水取り込みフェーズ2]
 海水取り込みフェーズ2は、ピストン52のピストン運動に同期して、水路521を通じてシリンダー51の第1のシリンダー室511内の海水を第2のシリンダー室512内に取り込むフェーズである。
 この、海水取り込みフェーズ1と海水取り込みフェーズ2の2段階のフェーズを通じて、潜水体40の貯留空間41内の海水がシリンダー51の第2のシリンダー室512内に取り込まれる。
 図8(a)から図8(c)は、海水取り込みフェーズ2の動きを示している。
 図8(a)は海水取り込みフェーズ2の開始時点の状態である。ピストン52により第1のシリンダー室511の空間が最大化され、第2のシリンダー室512が最小化された位置(図中、シリンダー51内の最左側)にある。
 図8(a)から図8(b)への動きのように、ピストン52が第1のシリンダー室511の空間を圧縮させ、第2のシリンダー室512を拡張する方向に移動を始めると、第1の逆止弁路53は閉鎖し、第1のシリンダー室511内の海水が潜水体40の貯留空間41側へ逆流するのが防止される一方、第3の逆止弁55が開放されるため、第1のシリンダー室511内の海水が水路521を通じて第2のシリンダー室512内に取り込まれてゆく。なお、第2の逆止弁路54は閉鎖されているため、潜水体40外の海中から第2のシリンダー室512内へ海水が逆流することはない。
 図8(c)の状態は、ピストン52により第1のシリンダー室511の空間が最小化され、第2のシリンダー室512が最大化された位置(図中、シリンダー51内の最右側)にある。
 [海水排出フェーズ]
 排出フェーズは、ピストン52のピストン運動に同期して、シリンダー51の第2のシリンダー室512内の海水を排出口57から潜水体40外の海中へ排出するフェーズである。
 図9(a)から図9(c)は、海水排出フェーズの動きを示している。
 図9(a)は海水排出フェーズの開始時点の状態であり、前述した図7(a)に示した海水取り込みフェーズ1の開始時点の状態でもある。ピストン52により第2のシリンダー室512の空間が最大化され、第1のシリンダー室511が最小化された位置(図中、シリンダー51内の最右側)にある。
 図9(a)から図9(b)への動きのように、ピストン52が第2のシリンダー室512の空間を圧縮させ、第1のシリンダー室511を拡張する方向に移動を始めると、第1の逆止弁路53は開放され、第3の逆止弁路55は閉鎖され、第2のシリンダー室512内の海水が水路521を介して第1のシリンダー室511内へ逆流することはない。
 ここで、第2の逆止弁路54は、潜水体40外の海中の水圧と、第2のシリンダー室512内の海水の水圧の大小によりその開閉が決まる。ここで、第2のシリンダー室512内の海水の水圧は、動力伝導機構56により力が印加されるため、動力伝導機構56を介して、ピストン52の端面が海中から受ける圧力と、プロペラ体561が海中かつ海流の流れから受ける圧力の大小で決まる。
 ここで、プロペラ体561の実効面積がピストン52の端面の面積よりも大きいものであれば、以下の式が成り立つ。
 (潜水体40外の海中の水圧)<(第2のシリンダー室512内の海水の水圧)
 上記の式に示すように、第2の逆止弁路54が開放され、圧力の高い第2のシリンダー室512内の海水が圧力の低い海中側に排出されることとなる。
 なお、上記したように、第1のシリンダー室511側では、同時に潜水体40の貯留空間41内の海水が第1のシリンダー室511内に取り込まれる動作が同時に行われている。
 以上が、ピストンシリンダー式海水排出機構を備えた排出部50の海水排出ピストンサイクルの概要である。
 なお、排出部50において、ピストンシリンダー式海水排出機構を並列化することも可能である。つまり、潜水体の周囲にピストンシリンダー式海水排出機構を複数セット配置し、各々のピストンシリンダー式海水排出機構が、それぞれのピストンサイクルにて、潜水体40の貯留空間41から海水を取り込んで海中へ排出することも可能であり、排出部50全体の排出能力が大きくなる。
 ここで、本発明の海洋発電システム100全体の発電能力を説明する。
 潜水体40の貯留空間41は、導水管20の発電に供される水流を一時的に貯めておく一種の“バッファ”であるため、このバッファである潜水体40の貯留空間41に対する排出部50による排水能力に依存する。
 実施例1にかかる本発明の海洋発電システム100は、海流という比較的低速であるが、膨大な力を得ることができる資源を利用するものであり、プロペラ体561により比較的低速の海流を捉えて動力伝導機構56を介してピストン運動に変換するものであり、伝達する回転比やカムの回転/往復運動変換比などを調整すれば、比較的低速の海流によって、海流の数倍の速さで往復するピストン運動に変換することも十分に可能である。
 一例を算出してみる。
 シリンダー室51の断面積Dが3m2(半径1m程度)、第1のシリンダー室511の最大幅L1が9m、第2のシリンダー室512の最大幅L2が9m、海流の速度がドーバー海峡の時速12kmから換算して秒速3m、動力伝導機構56によるピストン往復速度の変換比を1:3とすると、1秒当たりの排出能力は、以下のように計算できる。
 海流の秒速3mと動力伝導機構56によるピストン往復速度の変換比を1:3より、1秒間でピストン52は9m移動することとなり、第1のシリンダー室511の最大幅L1および第2のシリンダー室512の最大幅L2が9mであるため、結局2秒で海水排出ピストンサイクル1回を行うことができる。
 第2のシリンダー室512の容積が、シリンダー室51の断面積D?第2のシリンダー室512の最大幅L2から27m3である。つまり、排出能力は、毎秒27m3(27トン)である。ピストンシリンダー式海水排出機構を1基搭載した排出部50でも理論上、毎秒27トンの排出能力が得られる。
 なお、上記計算では、海流の秒速3mは、ドーバー海峡の海流の最大速度であり、常に最高速度が得られる訳ではないため、黒潮の場合を計算すると、黒潮は時速6~7kmと程度と言われており、秒速1.5m程度であり、上記過程の半分である。つまり、海流として黒潮を用いた場合、ピストンシリンダー式海水排出機構を1基搭載した排出部50でも理論上、毎秒14トン程度の排出能力が得られる。
 排出部50において毎秒14トンの排出能力が得られることより、毎秒14トンの海水を導水管20より導入して発電機30の発電に供することができる。
 ちなみに、日本の黒部第四ダムは毎秒10tの水を放水して発電していると言われており、上記の過程で、ピストンシリンダー式海水排出機構を1基搭載した排出部50とした本発明の海洋発電システム100は、日本の黒部第四ダムに匹敵する発電能力があると計算できる。
 本発明の海洋発電システム100は、ピストンシリンダー式海水排出機構を並列化することができ、4基並列化すると毎秒50万トン程度の水量を排出する能力が得られる。本発明の海洋発電システム100は排水部50より海水を排出して得られた空間の容積分、新たに取水構造体10から導水管20に向けて海水を取り込むことができるため、毎秒50万トン程度の水量を落水させ、発電に供することができる。黒部第四ダムの発電は毎秒10トンの放水で30万kw(300メガW)と言われていることから、毎秒50万トンの放水であれば150万kw(1.5ギガW)と計算できる。
 このような大規模な発電が可能となるのも、“海流”という低速ではあるものの、流圧の大きい流れを利用してピストン運動に変換して排出能力を確保し、排出に成功した容積分の海水を、導水管20において水力発電ダム同様の水圧の“放水”という形に変換できるからである。
 なお、上記構成において、取水構造体10、導水管20、発電機30、潜水体40、排出部50のいずれか、または、それらいずれかの組み合わせなどを並列化した構成であっても良い。
 さらに、本発明の海洋発電システム100を複数個並べて稼働して大規模に電力を得ることも可能である。
 実施例2は、排出部の構成例として、ポンプ機構を採用した強制排水による海洋発電システム100aの構成例を説明する。
 実施例2にかかる本発明の海洋発電システム100aは、排水部50aにおける廃水をポンプ58によって強制排水を行うものである。
 なお、その他の取水構造体10、導水管20、発電機30、潜水体40、その他、以下の実施例2の説明において特に説明しない構成物については実施例1と同様で良く、ここでの説明は省略し、図示も省略する。
 図10は、実施例2にかかるポンプ機構を備えた排出部50aの構造が分かりやすいように示した図である。動作原理を分かりやすく示したものであり、細かい機械的な構造や形状は省略している。
 図10に示すように、ポンプ機構を備えた排出部50aは、ポンプ58、電力供給装置59を備えたものとなっている。
 ポンプ58は潜水体40が位置する水深における水圧に抗して海水を海中へ排水できる能力が必要である。
 電力供給装置59はポンプ58を稼働させる電力を供給するものであり、電力供給装置59への電力供給にあてる電力を得る方法は特に限定されない。潜水体40の周囲の深層海流を利用した発電で得られた電力を供給しても良いし、導水管20に設けた発電機30において本発明の海洋発電システム100aの発電で得られた電力を供給しても良いし、両者を組み合わせるものであっても良い。
 例えば、潜水体40の周囲の深層海流を利用した発電の構成例としては、潜水体40の周囲に取り付けたプロペラ体を海流中におくことで回転トルクを得て発電機を回転させて電力を得るものなどがある。
 潜水体40の周囲に取り付けた電力供給装置59により電力が得られれば、その電力によりポンプ58を駆動し、潜水部40の位置する水深の海中に海水を放出することができる。
 このように、潜水体40の周囲に取り付けた電力供給装置59により得られる電力に見合う分だけ、ポンプ58の排出能力が得られ、このポンプ58が排出した海水の容積分の海水を海面付近から導水管20に導かれるように海水流量制御部14によって導入される海水量を制御する。
 なお、潜水体40の周囲に取り付けた電力供給装置59により得られる電力は、いわゆる深層海流の潮流発電の発電能力の進歩により向上が期待できる。
 さらに、潜水体40の周囲に取り付けた電力供給装置59に加え、導水管20に設けた発電機30において本発明の海洋発電システム100の発電で得られた一部の電力を利用する構成でも良い。
 なお、上記構成において、電力供給装置59を並列化して複数個の電力供給装置59によりポンプ58へ電力を供給しても良い。
 また、上記構成において、ポンプ58と電力供給装置59のセットを並列化して複数個の排出部50aを設けて海水を排水しても良い。
 なお、上記構成において、取水構造体10、導水管20、発電機30、潜水体40、排出部50aのいずれか、または、それらいずれかの組み合わせなどを並列化した構成であっても良い。
 さらに、本発明の海洋発電システム100aを複数個並べて稼働して大規模に電力を得ることも可能である。
 また、排出部として、実施例1で示した海中ピストン駆動による排水と、実施例2で示したポンプ駆動による強制排水を組み合わせたものとする構成も可能である。
 以上、本発明の海洋発電システムの好ましい実施形態を図示して説明してきたが、本発明の技術的範囲を逸脱することなく種々の変更が可能であることは理解されるであろう。
 本発明の海洋発電システムは、海流が速くかつ安定して流れている海域であれば、取水構造体10を浮かべるとともに潜水体40を海中に沈め、導水管20を設置することにより、発電システムとして広く適用することができる。
 100 海洋発電システム
 10 取水構造体
 11 浮体部
 12 開口部
 13 上部導水部
 14 海水流量制御部
 20 導水管
 30 発電機
 40 潜水体
 41 貯留空間
 42 通気管
 50 排出部
 51 シリンダー
 511 第1のシリンダー室
 512 第2のシリンダー室
 52 ピストン体
 521 水路
 53 第1の逆止弁路
 54 第2の逆止弁路
 55 第3の逆止弁路
 56 動力伝導機構
 561 プロペラ体
 562 プロペラ体の回転軸
 563 変換機構
 57 排出口
 58 ポンプ
 59 電力供給装置

Claims (13)

  1.  海水を取り込む構造体であって、内部に海水を取り込む開口部と、前記開口部を介して取り込んだ海水を内部に流し込む上部導水部とを備えた取水構造体と、
     一端が前記取水構造体の前記上部導水部に接続され、前記上部導水部から取り込んだ海水を海面下の下方に向けて導入するための空間を海中に確保せしめる導水管と、
     前記導水管に対して取り付けられ、前記導水管中の空間に導入された海水の落下運動または水圧により発電する発電機と、
     前記導水管の他端に接続され、前記導水管の他端から排出される海水を取り込む貯留空間を提供する潜水体と、
     前記潜水体に取り込まれた海水を前記潜水体外へ排出する排出部を備えた海洋発電システム。
  2.  前記取水構造体が、浮力により海上に浮いた海上浮体物である請求項1に記載の海洋発電システム。
  3.  前記排出部が、シリンダーと、前記シリンダー内をピストン運動するピストン体と、前記シリンダーと前記潜水体の前記貯留空間とを逆流を防止しつつ接続する第1の逆止弁路と、前記シリンダーと前記潜水体外の海中とを逆流を防止しつつ接続する第2の逆止弁路と、前記潜水体の付近を流れる海流の力を受けて前記ピストン体にピストン運動をさせる動力を伝導する動力伝導機構を備え、
     前記ピストン体のピストン運動に同期して前記貯留空間内の前記海水を前記シリンダー内に取り込む取り込みフェーズと、前記シリンダー内に取り込まれた前記海水を前記潜水体外の海中に排出する排出フェーズを備えた海水排出ピストンサイクルで稼働するピストンシリンダー式海水排出機構である請求項1に記載の海洋発電システム。
  4.  前記ピストンシリンダー式海水排出機構が並列化されて前記潜水体の周囲に配置され、各々の前記ピストンシリンダー式海水排出機構が、前記ピストンサイクルにて、前記潜水体の貯留空間から前記海水を取り込んで海中へ排出するものである請求項3に記載の海洋発電システム。
  5.  前記上部導水部から前記導水管に落下させる海水量を、前記ピストンシリンダー式海水排出機構の海水排出量に見合う量に制御する海水流量制御部を備えたことを特徴とする請求項3に記載の海洋発電システム。
  6.  前記排出部が、前記潜水体の前記貯留空間に貯留された海水を前記潜水体外の海中へ汲み上げて放出するポンプ機構と、前記潜水体の付近を流れる海流の力を受けて前記ポンプ機構を駆動する電力を得る潜水体外発電機を備えた、ポンプ式海水排出機構である請求項1に記載の海洋発電システム。
  7.  前記導水管に取り付けられている前記発電機により得られた電力の一部を前記ポンプ式海水排出機構の前記ポンプ機構を駆動する電力として利用する請求項6に記載の海洋発電システム。
  8.  前記ポンプ式海水排出機構が並列化されて前記潜水体の周囲に配置され、各々の前記ポンプ式海水排出機構が、前記潜水体の貯留空間から前記海水を汲み出して潜水体外へ排出するものである請求項6に記載の海洋発電システム。
  9.  前記上部導水部から前記導水管に落下させる海水量を、前記ポンプ式海水排出機構の海水排出量に見合う量に制御する海水流量制御部を備えたことを特徴とする請求項6に記載の海洋発電システム。
  10.  前記導水管内のうち少なくとも前記発電機が設けられている箇所よりも下側の空間および前記潜水体の貯留空間の双方または少なくとも一方に導通する通気管を設け、システム全体が海水で満たされることを防止せしめることを特徴とする請求項1から9のいずれか1項に記載の海洋発電システム。
  11.  前記発電機が、ペルトン型水車またはフランシス型水車を備えた発電機であり、前記導水管中に導入して落下してくる海水を前記発電機に当てることにより発電するものである請求項1から9のいずれか1項に記載の海洋発電システム。
  12.  前記導水管の素材としてステンレスワイヤーフレーム内蔵スペクトラ頒布配管を用いたものである請求項1から9のいずれか1項に記載の海洋発電システム。
  13.  海中において海水を落下させるための空間を確保せしめる導水管を立設し、
     開口部を介して前記導水管中の空間に導入された海水の落下運動または水圧により発電する発電機を取り付けておき、
     前記導水管の下端に接続され、前記導水管から排出される海水を取り込む貯留空間を提供する潜水体を設けておき、
     前記潜水体の前記貯留空間にある海水を海中へ放出する排出部を設けておき、
     前記開口部から海水を取り込み、前記海水を前記導水管の内部に流し込んで落下させ、前記発電機により発電し、前記導水管から排出され前記潜水体に取り込まれた海水を前記排出部により前記潜水体外へ排出する海洋発電方法。
PCT/JP2012/051538 2012-01-17 2012-01-25 海洋発電システムおよび海洋発電方法 WO2013108412A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012512165A JP5102407B1 (ja) 2012-01-17 2012-01-25 海洋発電システムおよび海洋発電方法
US14/372,875 US20150014995A1 (en) 2012-01-17 2012-01-25 Marine power generating system and marine power generating method
EP12865701.2A EP2808538A1 (en) 2012-01-17 2012-01-25 Marine power generating system and marine power generating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012007521 2012-01-17
JP2012-007521 2012-01-17

Publications (1)

Publication Number Publication Date
WO2013108412A1 true WO2013108412A1 (ja) 2013-07-25

Family

ID=48798856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051538 WO2013108412A1 (ja) 2012-01-17 2012-01-25 海洋発電システムおよび海洋発電方法

Country Status (4)

Country Link
US (1) US20150014995A1 (ja)
EP (1) EP2808538A1 (ja)
JP (1) JP5781052B2 (ja)
WO (1) WO2013108412A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117687A (ja) * 2013-12-17 2015-06-25 明子 佐賀 海水等の水流を利用したコマ型水車による発電の方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013205176B2 (en) * 2012-04-10 2016-12-08 Gregory A.M. Brown Apparatuses, systems, and methods for extraction and/or storage of energy from moving fluids
US20140191509A1 (en) * 2013-01-06 2014-07-10 David William Stauffer Stauffer submerged electricity generator
US11018554B2 (en) * 2016-09-19 2021-05-25 Frederick Forbes Vannan, Jr. Method of generating hydro electric energy in rivers and streams without dams and/or locks
DE102017116968B3 (de) * 2017-07-27 2018-10-31 Voith Patent Gmbh Wasserkraftanlage mit einem elektrischen Antrieb zur Betätigung des Einlaufventils
CN110011516B (zh) * 2019-05-10 2023-10-31 重庆理工大学 空气储能永磁浮微水发电机
CN110594075A (zh) * 2019-10-23 2019-12-20 上海海洋大学 一种海上压力能与太阳能耦合发电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303520A (en) * 1980-06-27 1981-12-01 Lockheed Corporation Surface extraction apparatus
JPS60169683A (ja) * 1984-02-10 1985-09-03 Katsumasa Kawahito 海水発電
JPS6220390B2 (ja) * 1978-02-21 1987-05-07 Lockheed Corp
JPH07259064A (ja) 1994-12-12 1995-10-09 Atsushi Iwamoto 海流発電潜水船
JP2007009833A (ja) 2005-07-01 2007-01-18 Masaharu Uchida 海流発電装置および海底設置型海流発電設備
JP2009270491A (ja) 2008-05-08 2009-11-19 Yoshiyasu Muraoka 英仏海峡海流発電システム
JP2011208531A (ja) 2010-03-29 2011-10-20 National Maritime Research Institute 潮流・海流発電システム
JP2011208530A (ja) 2010-03-29 2011-10-20 Keihin Corp 電磁式燃料噴射弁及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499839A (en) * 1978-01-24 1979-08-07 Otake Toushirou Dynamo
JPH05141340A (ja) * 1991-07-10 1993-06-08 Toshitaka Yasuda 小流速大量流水中の水力発電方法
US5753978A (en) * 1996-07-08 1998-05-19 Lee; Chih-Chiang Floater energy generator having a rotatable blade wheel
FR2813925B1 (fr) * 2000-08-31 2002-10-31 Emanuel Jose Fernandes Systeme maremoteur d'elevation d'eau douce pour la production d'energie electrique
CA2586244A1 (en) * 2007-04-19 2008-10-19 Gary J. Robichaud Electrical generation from water power
US8685254B2 (en) * 2008-01-03 2014-04-01 The Invention Science Fund I Llc Water alteration structure applications and methods
US7915750B1 (en) * 2010-06-03 2011-03-29 William Rovinsky Methods and apparatus for generating electrical energy with a submerged tank
US8164209B2 (en) * 2010-04-21 2012-04-24 William Rovinsky Method and apparatus for creating internal directional underwater falls and generating electrical energy therefrom

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220390B2 (ja) * 1978-02-21 1987-05-07 Lockheed Corp
US4303520A (en) * 1980-06-27 1981-12-01 Lockheed Corporation Surface extraction apparatus
JPS60169683A (ja) * 1984-02-10 1985-09-03 Katsumasa Kawahito 海水発電
JPH07259064A (ja) 1994-12-12 1995-10-09 Atsushi Iwamoto 海流発電潜水船
JP2007009833A (ja) 2005-07-01 2007-01-18 Masaharu Uchida 海流発電装置および海底設置型海流発電設備
JP2009270491A (ja) 2008-05-08 2009-11-19 Yoshiyasu Muraoka 英仏海峡海流発電システム
JP2011208531A (ja) 2010-03-29 2011-10-20 National Maritime Research Institute 潮流・海流発電システム
JP2011208530A (ja) 2010-03-29 2011-10-20 Keihin Corp 電磁式燃料噴射弁及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117687A (ja) * 2013-12-17 2015-06-25 明子 佐賀 海水等の水流を利用したコマ型水車による発電の方法

Also Published As

Publication number Publication date
US20150014995A1 (en) 2015-01-15
EP2808538A1 (en) 2014-12-03
JP5781052B2 (ja) 2015-09-16
JP2013167244A (ja) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5781052B2 (ja) 海洋発電システム
EP1915528B1 (en) Free floating wave energy converter
EP2888472B1 (en) Wave energy conversion
US20070292259A1 (en) Floating power plant for extracting energy from flowing water
CN101956641B (zh) 一种水平轴潮流发电水轮机的导流装置
EP2318698A1 (en) Water elevation type wave energy converter and method of conversion of wave energy
JP2013504714A (ja) 水中水力発電装置及び方法
US8310078B2 (en) Apparatus for receiving and transferring kinetic energy from water flow
EP2331811B1 (en) Device for extracting energy from a liquid flow
JP2016517923A (ja) 潜水式水力発電機装置およびかかる装置から水を排出する方法
WO2014087702A1 (ja) 海洋発電システム
JP5102407B1 (ja) 海洋発電システムおよび海洋発電方法
RU2347935C2 (ru) Русловая гидроэлектростанция
GB2512562A (en) Dynamic valvular helix turbine
AU2018202718A1 (en) Wave Energy Converter
CA3188714A1 (en) An improved apparatus and method for extracting energy from a fluid
KR100858586B1 (ko) 유수로부터 에너지를 얻기 위한 부유전력발전장치
RU2374483C2 (ru) Способ и устройство системы волкова для производства гидроэнергии методом "парусного" захвата речных, приливных и океанических течений, а также морских волн
JP4902800B1 (ja) 船舶
KR101958615B1 (ko) 파력발전시스템
RU2380479C2 (ru) Русловая гидроэлектростанция
KR20230163314A (ko) 조류발전용 다단 나선형 돛 가변익 터빈
NO329006B1 (no) Generering av energi ved hydrofoilkraft
KR20160065588A (ko) 수력수조장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012512165

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012865701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14372875

Country of ref document: US