WO1994013712A1 - Monomere presentant au moins une fonction isocyanate et une insaturation, son procede de synthese et (co)polymeres en decoulant - Google Patents

Monomere presentant au moins une fonction isocyanate et une insaturation, son procede de synthese et (co)polymeres en decoulant Download PDF

Info

Publication number
WO1994013712A1
WO1994013712A1 PCT/FR1993/001254 FR9301254W WO9413712A1 WO 1994013712 A1 WO1994013712 A1 WO 1994013712A1 FR 9301254 W FR9301254 W FR 9301254W WO 9413712 A1 WO9413712 A1 WO 9413712A1
Authority
WO
WIPO (PCT)
Prior art keywords
advantageously
monomer
monomers
meth
formula
Prior art date
Application number
PCT/FR1993/001254
Other languages
English (en)
Inventor
Michel Desbois
Roland Reeb
Joël Richard
Françoise Truchet
Original Assignee
Rhone-Poulenc Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone-Poulenc Chimie filed Critical Rhone-Poulenc Chimie
Priority to CA002151728A priority Critical patent/CA2151728C/fr
Priority to EP94902820A priority patent/EP0674667B1/fr
Priority to BR9307652-5A priority patent/BR9307652A/pt
Priority to DK94902820T priority patent/DK0674667T3/da
Priority to JP6513890A priority patent/JPH08504462A/ja
Priority to KR1019950702456A priority patent/KR100293586B1/ko
Priority to DE69324040T priority patent/DE69324040T2/de
Priority to AU57028/94A priority patent/AU694099B2/en
Priority to US08/454,293 priority patent/US5908907A/en
Publication of WO1994013712A1 publication Critical patent/WO1994013712A1/fr
Priority to GR990400934T priority patent/GR3029846T3/el

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/46Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen
    • C08G18/4676Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/36Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by a ketonic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/42Nitriles
    • C08F20/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/728Polymerisation products of compounds having carbon-to-carbon unsaturated bonds and having isocyanate or isothiocyanate groups or groups forming isocyanate or isothiocyanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • C08G18/8077Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen

Definitions

  • the subject of the present invention is a monomer having at least one isocyanate function and an unsaturation, a process for synthesis and the (co) polymers which result therefrom. It relates more particularly to compositions useful for coatings.
  • diisocyanates are used in particular alkylene diisocyanates (Tolonate) and their derivatives of biuret type or their trimers.
  • one of the aims of the present invention is to provide a process which makes it possible to obtain a (co) polymer or rather a pre (co) polymer which, when dispersed in water, can be stable.
  • Another object of the present invention is to provide a monomer which allows formulations of these products (Tolonate) in the aqueous phase, with a view to responding to the evolution of techniques and regulations tending to remove organic solvents.
  • Another object of the present invention is to provide a monomer (co) polymers make it possible to obtain aqueous emulsions having a mass concentration of approximately 40%.
  • Another object of the present invention is to provide a monomer whose (co-polymers make it possible to obtain aqueous emulsions having good stability (chemical and colloidal) over time.
  • Another object of the present invention is to provide a monomer whose (co) polymers make it possible to obtain aqueous emulsions which give layers coating having good adhesion to the supports (such as resistant to standardized peeling on checkered coating).
  • Another object of the present invention is to provide a monomer whose (co) polymers make it possible to obtain aqueous emulsions which give coating layers having good impact resistance (rapid deformation: ASTM and AFNOR tests, sufficient flexibility for folding (conical mandrel) and stamping (Erichsen stamped test), high surface hardness (Persoz)
  • Another object of the present invention is to provide a monomer whose (co) polymers allow the production of aqueous emulsions which give layers coating having good optical properties (gloss).
  • Another object of the present invention is to provide a monomer whose (co) polymers make it possible to obtain aqueous emulsions which give coating layers having good resistance to solvents (ketone, etc.).
  • , R 2 and R 3 which are similar or different, represent a hydrogen or a group chosen from:
  • hydrocarbon chains of 1 to 12 carbon atoms in particular alkyls, including aralkyls, aryls, alkoxyls and silyls;
  • - electron-withdrawing functions advantageously comprising the carbonyl group, such as alkoxycarbonyl, hydroxy carbonyl (carboxylic acid), amino carbonyl (amide);
  • L similar or different, represent a divalent hydrocarbon radical (advantageously in omega omega prime) of 2 to 12 carbon atoms, advantageously of formula:
  • Y and Y ' similar or different, represent: . either a single bond
  • R 5 (R 5 ) C (R 6 ) -; - NR 4 -; O or-S-; with R5, RQ and R4 representing a hydrogen or a group chosen from:
  • hydrocarbon radicals from 1 to 12 (advantageously from 1 to 4) carbon atoms, in particular alkyls, aryls, aralkyls and silyls;
  • L ' represents a hydrocarbon chain, in particular the alkylenes, the arylenes, the aralkylenes and the silylenes [chain which can be interrupted by one or more atoms of chalcogens, preferably light, sulfur or advantageously oxygen, each atom of chalcogen preferably being separated by at least two carbon atoms as in the glymes; advantageously an alkylene radical (such as - [Cl- ⁇ m -) preferably little branched preferably with the free valences in en, ⁇ '
  • A represents an organic skeleton having n free valences, n being between 2 and 7 (closed interval) advantageously between 2 (not including this value and 4; and n being equal to p + q;
  • NCObloc represents a protected isocyanate function
  • p is between 1 and 6, advantageously between 1 and 3, preferably between 1, 5 and 2.5 (closed intervals);
  • q is between 1 and 6 (closed interval), advantageously greater than 1 and at most equal to 3 (semi-open, semi-closed interval), preferably at most equal to 2 (semi-open, semi-closed interval ).
  • q is advantageously between 1 (not included) and 1, 5, preferably 1, 01 and 1, 2, more preferably 1, 1 plus or minus 0.05.
  • n is generally chosen from 3, 4 or 5, preferably 3.
  • the hydrocarbon chains and radicals can be interrupted by one or more chalcogen atoms, preferably light, sulfur or advantageously oxygen, each chalcogen atom being preferably separated by at least two carbon atoms as in glymes (instead of chalcogen, groups of the type -NR4 can be used, with the possible drawback that the amines can catalyze the release of certain protective groups, such as pyrazoles)]. They can also carry any non-reactive function under the conditions of synthesis and polymerization. It should be mentioned that the total number of carbons of said monomer is advantageously between 10 and 100, preferably between 20 and 100, more preferably between 25 and 75.
  • Skeleton A can be made from a polyamine (including anilines) heavy, for example having a carbon number at least equal to 6 advantageously to 10. preferably to 15 [which is converted into isocyanate by action of phosgene in a manner known per se].
  • Skeleton A can be made from a polyamine (including polyanilines) which has been reacted with polyisocyanates (most often diisocyanates) from which a fraction of the isocyanate functions has been previously blocked, or is subsequently blocked.
  • Skeleton A can be made from a polyol (including polyphenols and equivalent compounds such as thiol), which we have reacted with polyisocyanates (most often diisocyanates) which we have previously blocked, or will block later, a fraction of the isocyanate functions.
  • Skeleton A can be made from a polyfunctional compound comprising mobile hydrogen functions, in general alcohol (s) and amine (s), polyfunctional compound which will have been reacted with polyisocyanates (most often diisocyanate) which we will have blocked previously, or will block later, a fraction of the isocyanate functions.
  • the protective groups are released more easily if the nitrogen of the protected isocyanate function is linked to an unsaturated carbon, in particular an aromatic carbon, which can sometimes be a drawback.
  • the nitrogen of the protected isocyanate function is linked to a saturated carbon (SP3 hybridization).
  • Skeleton A can also be that of trimers and biurets [cf. respectively Figure 1 (trimer) and Figure 2 (biuret); in the case of these figures, m varies from 3 to 12 and the skeletons represented are trivalent].
  • the values of n, p and q are mean values.
  • Y and Y ' are advantageously oxygen;
  • L ' is a radical (-CH2-) ⁇ with ⁇ between 2 and 10 and m + ⁇ advantageously between 4 and 12.
  • the monomers according to the present invention can be produced easily from the corresponding isocyanates by implementing the sequence of steps in themselves known, as follows:
  • Controlling compliance with said portion is obtained by simply respecting stoichiometry. [Progress in Organic Coatings (1975), vol. 3, p. 73] -the release temperature is advantageously greater than 90 ° C.
  • a polymerization inhibitor for example of the quinone type, such as hydroquinone this inhibitor and in particular hydroquinone being advantageously present at the level of 100 to 10,000 ppm (mass) of the compound with mobile hydrogen carrying ethylenic unsaturation
  • the monomers (alone or in the form of a mixture) according to the present invention have been found to be particularly easily polymerizable with acrylic or vinyl mono- or oligo ⁇ mothers.
  • the protective groups are chosen from those which, under the conditions of the polymerization and during its duration, only release at most 10%, advantageously at most 5%, preferably at most 1%. It is in particular possible to produce acrylovinyl latexes which have the possibility of formulations in aqueous phase, without organic solvent and with a rheology of the formulations obtained which authorizes easy processing. These latex-Tolonate3 (in particular of HDB and HDT type) confer in particular optical (absence of yellowing), mechanical (impact resistance, surface hardness, flexibility for bending and stamping) and high adhesion to paints and varnishes of high range formulated.
  • the present invention also relates to (co) polymers. They result from the copolymerization of the monomers of formula 1 with (co) monomers chosen from vinyls and acrylics.
  • the latex particles containing said isocyanate functions conventionally consist of polymers obtained by polymerization of ethylenically unsaturated monomers. It is a homopolymer or copolymer containing units derived from vinylaromatic, ethylenic monomers, alkenoic or ethylenic acids or esters, optionally functionalized.
  • This type of polymer can be easily obtained from (co) monomers accessible to any person skilled in the art and it will be sufficient to cite a few (co) monomers below, without limitation of the invention.
  • polymers which can constitute said particles mention may be made of homopolymers or copolymers containing units derived from vinyl monomers. acrylic, vinylaromatic, vinyl esters, alkyl esters and unsaturated ⁇ and ⁇ acids, esters of unsaturated carboxylic acids, vinyl chloride, vinylidene chloride and / or dienes.
  • vinyl and acrylic monomers suitable for the invention of those derived from styrene, acrylic acid, acrylic esters, methacrylic acid, monobenzyl maleate, 2vinylpyridine, methylsulfonate. styrene, chloromethylstyrene, hydroxypropylmethacrylate, hydroxybutylacrylate, hydroxyethylacrylate. acrylonitrile and / or acrolein. These monomers are used alone or as a mixture with each other in any proportion, or alternatively as a mixture with another copolymerizable monomer chosen from those mentioned above.
  • the polymer particles can be obtained by the implementation of any polymerization technique such as conventional emulsion polymerization, microemulsion or, where appropriate, by polymerization in an organic medium. These techniques familiar to those skilled in the art will not be recalled here.
  • the particles constituting the latex carrying an isocyanate function (s) according to the invention are hydrophobic and advantageously have a size (dgr j ) generally between 0.01 micrometer and 20 micrometers and preferably at most equal to 5 micrometers or even 3 micrometers. They are calibrated, monodispersed and present in the latex in an amount varying between 0.2 to 65% by weight of the total weight of the latex.
  • a value of 0.1 functions per kilogram corresponds approximately to an incorporation of 5% by mass of the monomer of formula I in the latex.
  • the present invention also relates to a process for preparing latexes bearing isocyanate function (s) according to the following techniques:
  • a latex seed is overpolymerized by the (co) monomer (s) in the presence of initiator and a surfactant.
  • the monomer according to the invention in suspension in a fraction of (co) monomer (s), is introduced at the end of polymerization so as to obtain latex beads, of a precise and tight particle size in which the monomer according to invention is grafted at a greater or lesser distance from the core of the particles.
  • the polymerization temperature is between 30 and 90 ° C, advantageously between 40 and 80 ° C.
  • the duration is between 1 and 10, advantageously between 4 and 8 ° hours.
  • the latex is treated by adding a redox system and by distillation, optionally under vacuum, in order to remove any trace of residual monomers therefrom, then purified.
  • the polymer constituting the latex contains from 1 to 50% by weight, advantageously 3 to 25% by weight, of the monomer according to the invention.
  • the present invention also relates to compositions useful for paints comprising in emulsions in water at least one (co) polymer according to the invention.
  • the composition also comprises a catalyst for unblocking the isocyanate functions.
  • a catalyst for unblocking the isocyanate functions cf. Journal of Applied Polymer Science "Catalysis of the Isocyanate - Hydroxyl Reaction” vol. IV, issue N ° 11, p. 207,
  • catalysts are in themselves known and are advantageously chosen from those which induce a release temperature of the isocyanate functions at most equal to the usual temperature of the final operations for setting the varnish or the paint or the equivalents.
  • the release temperature induced by the catalysts is advantageously at least equal to approximately 100 ° C.
  • composition of the paintings can also include a colored base. consisting of a pigment and titanium oxide.
  • the mass concentration of copolymer in water is advantageously between 20 ° and 45%.
  • the aqueous phase contains soluble oligomers of polyol type, or polyol- (poly) amine or polyester-polyol condensate in an amount sufficient to allow the final polycondensation.
  • Tolonate HDT (known as NCO 0.52 equivalent) 100 g
  • the material used is as follows: . 250 ml reactor under a double jacket nitrogen atmosphere. Ink agitator (300rpm). Refrigerant. Pouring bulb
  • Tolonate HDT (trimer of hexamethylene diisocyanate) is introduced into the reactor, surmounted by the condenser.
  • the medium is heated to 60-70 ° C and methyl ethyl ketoxime (MEKO) is introduced via the dropping funnel so that the temperature does not exceed 80-90 ° C.
  • MEKO methyl ethyl ketoxime
  • the temperature of the medium is maintained for approximately 1 hour at 80 ⁇ 5 ° C.
  • hydroxyethyl acrylate (HEA) is added dropwise and the temperature of the medium is maintained at 80-90 ° C.
  • the medium is maintained at 80 ⁇ 5 ° C for one hour.
  • the NCO index of the medium is 0.00 NCO groups / 100 9.
  • the medium is then cooled to 60-65 ° C and poured over butyl acrylate.
  • the latent NCO of the resulting solution is 0.207 NCO / 100 g of solution or 8.7%.
  • an HDT tolonate blocked methyl ethyl ketoxime (MEKO) and hydroxyethylacrylate (HEA) is prepared.
  • the material used is as follows:
  • Methyl ethyl ketoxime (MEKO) and hydroxyethyl acrylate (HEA) (preparation) are introduced into a beaker.
  • the HDT tolonate is introduced into the reactor, surmounted by the condenser.
  • the medium is heated to 60-70 ° C, the preparation is introduced via a dropping funnel so that the temperature does not exceed 80-90 c C.
  • the temperature of the medium is maintained for approximately one hour at 80 ° C ⁇ 5 ° C.
  • the NCO index of the medium is 0.00 NCO groups / 100 9.
  • the medium is then cooled to 60-65 ° C and poured over butyl acrylate. A solution of Tolonate HDT blocked in butyl acrylate is thus obtained.
  • Emulsion copolymerization with acrylic and vinyl monomers of the functional monomer (called AEHDB), obtained according to Example 1 by condensation in butyl acrylate (ABu), of hydroxyethylacrylate with the HDT trimer partially blocked with methyl ethyl ketoxime.
  • AEHDB functional monomer
  • ABu butyl acrylate
  • the reaction mixture is heated to 75 ° C. with stirring, and this temperature is maintained for the duration of the reaction, ie 9 hours.
  • the conversion rate is then 98%.
  • the latex obtained contains a mass fraction of particles (dry extract) of 49%.
  • the particles have a diameter of 0.120 micrometer, and a composition substantially equivalent to that of the products (co-monomers, initiator, emulsifiers) used.
  • Emulsion copolymerization of the functional monomer obtained according to Example I (condensation in ABu (butyl acrylate), of hydroxyethyl acrylate (HEA) with the HDT trimer partially blocked with methyl ethyl ketoxime), in a seed consisting of an acrylovinyl copolymer latex.
  • the reaction mixture is heated to 80 ° C. with stirring, and this temperature is maintained for the duration of the reaction, ie 10 hours.
  • the conversion rate is then 99%.
  • the latex obtained contains a mass fraction of particles (dry extract) of 49.5%.
  • the particles have a diameter of about 0.070 microns and a composition substantially equivalent to that of the products (co-monomers, initiator, emulsifiers) used.
  • This latex will be used as seed to polymerize the AEHDB monomer. 2.
  • reaction medium The temperature of the reaction medium is brought to 75 ° C. and 10 grams of potassium persulfate dissolved in 1.5 l of deionized water are introduced into the autoclave. This temperature is maintained for 5 hours, then the temperature is brought to 85 ° C. and it is maintained for 3 hours. Then cooled to room temperature. A stable latex is thus obtained functionalized with blocked isocyanate groups, the dry solids content of which is 46.5% and the size of which is 0.072 micrometers.
  • Stable aqueous dispersion containing a functionalized latex with blocked isocyanate functions and a water-soluble poyolpolyamine condensate.
  • 1 l of the functionalized latex prepared according to Example 3 is introduced into a container with stirring, into which the reaction product of 240 g of polycaprolactone glycol, 48.75 g of propane sulfone and 13 is added, 05 g of hexamethylenediamine, with 10 g of sulfosuccinic acid as an emulsifier.
  • An aqueous dispersion is thus obtained which has good stability over a period of more than 6 months.
  • a metallic or plastic support (PVC) By dehydration on a metallic or plastic support (PVC), and drying for 5 hours at 130 ° C., the dispersion forms a film of continuous and crosslinked polymer c.
  • PVC metallic or plastic support
  • AEHDB functional monomer
  • an organic phase is prepared by mixing the following constituents:
  • an aqueous phase is also prepared by dissolving in 12 l of demineralized water, 60 g sodium lauryl sulphate and 60 g of ethoxylated nonylphenol (30 ethylene oxide units per molecule ). 5 kg of the previously prepared phase are then added and dispersed in the aqueous phase. The mixture obtained is homogenized at room temperature, so as to obtain droplets of organic phase dispersed in water of size 0.6 micrometer. The mixture is introduced into a 25 liter stainless steel reactor, fitted with a stirrer, where it is polymerized at 70 C. After 12 hours, the reaction medium is cooled and the residual monomer is removed by steam stripping. 4.9 kg of a stable latex functionalized with blocked isocyanate groups are thus obtained, the dry extract of which is 28.8% and the average particle diameter of 0.8 micrometer.
  • the mixture obtained is emulsified using an ULTRATURAX homogenizer (marketed by PROLABO) for 5 minutes at 20,000 revolutions / minute.
  • the pre-emulsion of the acrylic monomers containing the functional monomer AEHDB is thus obtained.
  • a latex is thus obtained which has the following characteristics:
  • Emulsion copolymerization of a mixture of acrylic and styrene monomers containing 7% by weight of the functional monomer AEHDB according to a process based on a preemulsion of the comonomers.
  • the mixture obtained is emulsified using an ULTRATURAX homogenizer (marketed by PROLABO) for 5 minutes at 20,000 revolutions / minute.
  • the preemulsion is thus obtained of a mixture of acrylic monomers and styrene, containing the functional monomer AEHDB.
  • a latex is thus obtained which has the following characteristics:
  • the exothermic reaction increases the temperature from 20 to 50 ° C. After maintaining 30 'at this temperature, the HEA is poured in 5 minutes, the exotherm causes the temperature to rise to 70 ° C.
  • reaction mass After maintaining at 70 ° C for 1 h the reaction mass is cooled to 20 ° C.
  • composition 52 MMA / 45BA / 47 M MA 45 BA 43 MMA / 45BA / 40 MMA / 45 BA /
  • MMA methylmethacrylate
  • BA butylacrylate
  • AA acrylic acid
  • Each of these 4 products is neutralized by one of the following 3 solutions: NH4OH, NaOH, Na 2 CO 3 .
  • a varnish formulation (latex graft Tolonate + polyol resin) allowed to know the products of better performance.
  • the mixture is applied in film on glass plates (100 ⁇ m wet) then characterized by the PERSOZ hardness (expressed in seconds) and the resistance to methyl ethyl ketone (MEK) scale of the O: No degradation of the film resistance to 1 Light methyl ethyl ketone attack 2 The film is suspicious (value from 0 to 4) 3 The film is pleated
  • Products C and D are applied to a steel plate after the following formulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Dental Preparations (AREA)

Abstract

La présente invention a pour objet un monomère présentant au moins une fonction isocyanate et une insaturation, un procédé de synthèse et les (co)polymères qui en sont issus. Ce monomère est caractérisé par le fait qu'il répond à la formule (1) suivante: [(R1)(R2)C = C(R3)-CO-L-]q A(-NCObloc)p, où les R1, R2 et R3 semblables ou différents représentent un hydrogène ou un groupe choisi parmi: les chaînes hydrocarbonées de 1 à 12 atomes de carbone; les atomes d'halogènes non réactifs (fluor, voir chlore); où les L, semblables ou différents, représentent un radical hdyrocarboné divalent (avantageusement en φ φ') de 2 à 12 atomes de carbone; où A représente un squelette oragnique présentant n valences libres, n étant compris entre 2 et 7 (intervalle fermé) avantageusement entre 2 (non compris cette valeur et 4) et n étant égal à p+q; où NCObloc représente une fonction isocyanate protégée; où p est compris entre 1 et 6 de préférence entre 1 et 2 (intervalle fermé); où q est compris entre 1 et 6 de préférence entre 1 et 2 (intervalle fermé). Application à la synthèse organique.

Description

MONOMERE PRESENTANT AU MOINS UNE FONCTION ISOCYANATE ET UNE INSATURATION. SON PROCEDE DE SYNTHESE ET (CO)POLYMERES EN
DECOULANT
La présente invention a pour objet un monomère présentant au moins une fonction isocyanate et une insaturation, un procédé de synthèse et les (co)polymères qui en sont issus. Elle concerne plus particulièrement des compositions utiles pour les revêtements. Dans l'activité des peintures et des vernis, on utilise largement les diisocyanates notamment alcoylène diisocyanates (Tolonate) et leurs dérivés de type biuret ou leurs trimères. Toutefois, deux problèmes restent à ce jour non résolus, à savoir :
- l'utilisation de solvant organique, dont la présence est réputée toxique et néfaste pour l'environnement ;
- la nécessité de mettre sur le marché des produits non volatils qui a conduit à alourdir les molécules et ce en oligomérisant les diisocyanates; cette solution n'est pas satisfaisante car elle utilise une fonction élaborée, donc chère, pour résoudre le problème.
C'est pourquoi un des buts de la présente invention est de fournir un procédé qui permette l'obtention d'un (co)polymère ou plutôt d'un pré(co)polymère qui, mis en dispersion dans l'eau, puisse être stable.
Un autre but de la présente invention est de fournir un monomère qui permette des formulations de ces produits (Tolonate) en phase aqueuse, en vue de répondre à l'évolution des techniques et des réglementations tendant à faire disparaître les solvants organiques. Un autre but de la présente invention est de fournir un monomère les (co)polymères permettent l'obtention d'émulsions aqueuses présentant une concentration massique d'environ 40 %.
Un autre but de la présente invention est de fournir un monomère dont les (co polymères permettent l'obtention d'émulsions aqueuses présentant une bonne stabilité (chimique et colloïdale) dans le temps.
Un autre but de la présente invention est de fournir un monomère dont les (co)polymères permettent l'obtention d'émulsions aqueuses qui donnent des couches de revêtement présentant une bonne adhésion sur les supports (tels que résistant au pelage normalisé sur revêtement quadrillé).
Un autre but de la présente invention est de fournir un monomère dont les (co)polymères permettent l'obtention d'émulsions aqueuses qui donnent des couches de revêtement présentant une bonne résistance aux chocs (déformation rapide: tests ASTM et AFNOR , flexibilité suffisante pour pliage (mandrin conique) et emboutissage (test embouti Erichsen), dureté superficielle élevée (Persoz). Un autre but de la présente invention est de fournir un monomère dont les (co)polymères permettent l'obtention d'émulsions aqueuses qui donnent des couches de revêtement présentant de bonnes propriétés optiques (brillance).
Un autre but de la présente invention est de fournir un monomère dont les (co)polymères permettent l'obtention d'émulsions aqueuses qui donnent des couches de revêtement présentant une bonne résistance aux solvants (cétone....). Ces buts et d'autres qui apparaîtront par la suite sont atteints au moyen d'un monomère qui répond à la formule suivante:
[(R1)(R )C=C(R3)-CO-L-]q A(-NCObloc)p (Formule 1)
- où les R-| , R2 et R3 semblables ou différents représentent un hydrogène ou un groupe choisi parmi :
- les chaînes hydrocarbonées de 1 à 12 atomes de carbone notamment les alcoyles, y compris les aralcoyles, les aryles, les alcoxyles et les silyles ;
- les atomes d'halogènes non réactifs ( fluor, voire chlore) ;
- des fonctions électroattractrices comportant avantageusement le groupe carbonyle, tel que alcoxycarbonyle, hydroxy carbonyle (acide carboxylique), amino carbonyle (amide) ;
- où les L, semblables ou différents, représentent un radical hydrocarboné divalent (avantageusement en oméga oméga prime) de 2 à 12 atomes de carbone, avantageusement de formule :
-Y-L'-Y'-(NH-CO)z- (Formule 2)
où Y et Y', semblables ou différents, représentent : . soit une liaison simple ;
. soit un groupement choisi parmi les groupes suivants :
-(R5)C(R6)-;-NR4-; O ou-S- ; avec R5, RQ et R4 représentant un hydrogène ou un groupe choisi parmi :
- les radicaux hydrocarbonées de 1 à 12 (avantageusement de 1 à 4) atomes de carbone notamment les alcoyles, les aryles, les aralcoyles et les silyles ;
-les atomes d'halogènes non réactifs (fluor, voire chlore) ;
. où L' représente une chaîne hydrocarbonée, notamment les alcoylènes, les arylènes, les aralcoylènes et les silylènes [chaîne qui peut être interrompue par un ou plusieurs atomes de chalcogènes, de préférence légers, soufre ou avantageusement oxygène, chaque atome de chalcogène étant de préférence séparé par au moins deux atomes de carbones comme dans les glymes ; avantageusement un radical alcoylène (tel que - [Cl-^m -) de préférence peu ramifié de préférence avec les valences libres en ω, ω'
. où z est égal à 0 ou, de préférence, à 1 ;
- où A représente un squelette organique présentant n valences libres, n étant compris entre 2 et 7 (intervalle fermé) avantageusement entre 2 (non compris cette valeur et 4 ; et n étant égal à p+q ;
- où NCObloc représente une fonction isocyanate protégée;
- où p est compris entre 1 et 6, avantageusement entre 1 et 3 de préférence entre 1 ,5 et 2,5 (intervalles fermés) ;
- où q est compris entre 1 et 6 (intervalle fermé), avantageusement supérieur à 1et au plus égal à 3 (intervalle semi-ouvert, semi-fermé), de préférence au plus égal à 2 (intervalle semi-ouvert, semi-fermé).
Les agents bloquants le plus couramment utilisés sont ceux cités par M. WICKS dans son article "blocked isocyanates".
En général, et pour des raisons pratiques manifestes, les valeurs de p et de q sont des valeurs moyennes, ou statistiques, et dans ce cas, elles peuvent prendre des valeurs fractionnaires, ainsi q est avantageusement compris entre 1 (non compris) et 1 ,5 , de préférence 1 ,01 et 1 ,2, plus préférentiellement 1 ,1 plus ou moins 0,05. n est en général choisi parmi 3, 4 ou 5, de préférence 3.
Comme on l'a vu ci-dessus, les chaînes et radicaux hydrocarbonées peuvent être interrompus par un ou plusieurs atomes de chalcogènes, de préférence légers, soufre ou avantageusement oxygène, chaque atome de chalcogène étant de préférence séparé par au moins deux atomes de carbones comme dans les glymes (on peut en lieu et place de chalcogène utiliser des groupements de type -NR4-avec l'inconvénient possible que les aminés peuvent catalyser la libération de certains groupes protecteurs, comme les pyrazoles)]. Ils peuvent également porter toute fonction non réactive dans les conditions de la synthèse et de la polymérisation. Il convient de mentionner que le nombre total de carbones du dit monomère est avantageusement compris entre 10 et 100, préférentiellement compris entre 20 et 100, plus préférentiellement entre 25 et 75. Le squelette A peut être constitué à partir d'une polyamine (y compris les anilines) lourde, par exemple présentant un nombre de carbone au moins égale à 6 avantageusement à 10. de préférence à 15 [que l'on transforme en isocyanate par action du phosgène de manière en soi connue]. Le squelette A peut être constitué à partir d'une polyamine (y compris les polyanilines) que l'on aura fait réagir avec des polyisocyanates (le plus souvent diisocyanates) dont on aura bloqué antérieurement, ou bloquera postérieurement, une fraction des fonctions isocyanates.
Le squelette A peut être constitué à partir d'un polyol (y compris les polyphénols et les composé équivalents tels que thiol), que l'on aura fait réagir avec des polyisocyanates (le plus souvent diisocyanates) dont on aura bloqué antérieurement, ou bloquera postérieurement, une fraction des fonctions isocyanates. Le squelette A peut être constitué à partir d'un composé polyfonctionel comportant des fonctions à hydrogène mobile, en général alcool(s) et amine(s), composé polyfonctionel que l'on aura fait réagir avec des polyisocyanates (le plus souvent diisocyanate) dont on aura bloqué antérieurement, ou bloquera postérieurement, une fraction des fonctions isocyanates. dans les cas ci-dessus : soit le composé polyfonctionel (qui comporte avantageusement plus de deux et au plus 4 fonctions, de préférence trois) comportera initialement au moins un groupe [(R1)(R2)C=C(R3)-CO-Y-L'Y'- soit on fera réagir ultérieurement sur les fonctions isocyanates un composé du type [(R-l )(R2)C=C(R3)-CO-Y-LΥ'-H. Il convient de signaler que les groupes protecteurs se libère plus facilement si l'azote de la fonction isocyanate protégée est liée à un carbone insaturé notamment aromatique, ce qui peut être parfois un inconvénients.
Dans l'application revêtement il est préférable que l'azote de la fonction isocyanate protégée soit liée à un carbone saturé (hybridation SP3).
Le squelette A peut également être celui des trimères et des biurets [cf. respectivement figure 1 (trimère) et figure 2 (biuret); dans le cas de ces figures, m varie de 3 à 12 et les squelettes figurés sont trivalents]. Dans ce cas, les valeurs de n, p et q sont des valeurs moyennes. Dans ce cas, Y et Y' sont avantageusement oxygène; L' est un radical (-CH2-)ζ avec ζ compris entre 2 et 10 et m+ ζ avantageusement compris entre 4 et 12.
Ce squelette A peut être avantageusement choisi parmi les Tolonates (m = 6) (marque déposée), trimère et biuret. Les monomères selon la présente invention peuvent être réalisés aisément à partir des isocyanates correspondants en mettant en oeuvre la séquence d'étapes en elles- mêmes connues, suivante :
A) protection d'une portion (dans le rapport p/n) des fonctions isocyanates,
B) réaction du reste des isocyanates avec un réactif dit " à H mobile" de formule
(Ri )(R2)C=C(R3)-CO-Y-L'-Y'-H.
ou en inversant "mutatis mutandis", les deux étapes :
Al) réaction d'une portion ( dans le rapport q/n) des fonctions isocyanates avec un réactif dit " à H mobile" de formule (R1)(R2)C=C(R )-CO-L-H
B") protection du reste des fonctions isocyanates.
Ou bien, enfin, en réalisant une "préparante", c'est à dire un mélange des deux réactifs dans le rapport (p/q) que l'on fait réagir avec le dérivé comportant plusieurs fonction isocyanate.
La maîtrise du respect de ladite portion est obtenue par le simple respect de la stoechiométrie. [Progress in Organic Coatings (1975), vol. 3, p. 73]-leur température de déblocage sont avantageusement supérieure à 90°C.
Il est préférable de réaliser les synthèse du monomère en présence d'un inhibiteur de polymérisation, par exemple de type quinonique, tel que l'hydroquinone cette inhibiteur et notamment l'hydroquinone étant avantageusement présente à hauteur de 100 à 10000 ppm (masse ) du composé à hydrogène mobile portant une insaturation éthylénique
Les monomères (seuls ou sous forme de mélange) selon la présente invention se sont révélés particulièrement facilement polymérisables avec les mono- ou oligo¬ mères acrylique ou vinylique.
Les groupes protecteurs sont choisis parmi ceux qui, dans les conditions de la polymérisation et pendant sa durée, ne libèrent qu'au plus 10%, avantageusement qu'au plus 5%, de préférence qu'au plus 1%. II est notamment possible de réaliser des latex acrylovinyliques qui présentent la possibilité de formulations en phase aqueuse, sans solvant organique et avec une rhéologie des formulations obtenues qui autorise une mise en oeuvre aisée. Ces latex-Tolonate3 (notamment de type HDB et HDT) confèrent notamment des caractéristiques optiques (absence de jaunissement), mécaniques (résistance au choc, dureté superficielle, flexibilité pour pliage et emboutissage) et d'adhérence élevées à des peintures et vernis haut de gamme formulés.
Ainsi la présente invention vise aussi des (co)polymères. Ils sont issus de la copolymérisation des monomères de formule 1 avec des (co)monomères choisis parmi les vinyliques et les acryliques. Les particules de latex contenant lesdites fonctions isocyanates sont classiquement constituées de polymères obtenus par polymérisation de monomères éthyléniquement insaturés. Il s'agit d'un homopolymère ou copolymère contenant des motifs dérivés de monomères vinylaromatiques, éthyléniques, d'acides ou d'esters alcenoïques ou éthyléniques, éventuellement fonctionnalisés. Ce type de polymère peuvent être facilement obtenu à partir de (co)monomères accessible à tout homme de l'art et on se contentera de citer quelques (co)monomères ci-après, à titre non limitatif de l'invention.
Il peut s'agir de
- monomères éthyléniques de type isoprène, 1 ,3-butadiène, chlorure de vinylidène, acrylonitrile,
- monomères vinylaromatiques comme le styrène, le bromostyrène, l'alphaméthylstyrène, l'éthyl styrène, le vinyltoluène, le chlorostyrène ou le vinylnaphtalène, - acides, esters ou anhydrides alcanoïques comme les acides acrylique. méthacrylique, acrylates et méthacrylates d'alcoyle dont le groupe alcoyle possède
3 à 10 atomes de carbone, hydroxyalcoylacrylates, les esters d'acides éthyléniques à 4 ou 5 atomes de carbone.
Parmi les polymères pouvant constituer lesdites particules, on peut citer les homopolymères ou les copolymères contenant des motifs dérivés des monomères vinyliques. acryliques, vinylaromatiques, d'esters vinyliques, d'esters d'alcoyle et d'acides α et β insaturés, d'esters d'acides carboxyliques insaturés, de chlorure de vinyle, de chlorure de vinylidène et/ou de diènes.
A titre illustratif (ou plus précisément de paradigme), on peut plus particulièrement mentionner les (co)monomères suivants :
A titre de monomères vinyliques et acryliques convenant à l'invention, on peut plus particulièrement citer ceux dérivant du styrène, de l'acide acrylique, d'ester acryliques, l'acide méthacrylique, le maléate de monobenzyle, la 2vinylpyridine, le méthylsulfonate de styrène, le chlorométhylstyrène, l'hydroxypropylméthacrylate, l'hydroxybutylacrylate, l'hydroxyéthylacrylate. l'acrylonitrile et/ou l'acroléine. Ces monomères sont utilisés seuls ou en mélange entre eux en toute proportion, ou encore en mélange avec un autre monomère copolyméhsable choisi parmi ceux précités.
Les particules de polymères peuvent être obtenues par la mise en oeuvre d'une quelconque technique de polymérisation comme la polymérisation en émulsion classique, en micro émulsion ou le cas échéant, par polymérisation en milieu organique. Ces techniques familières à l'homme de l'art ne seront pas rappelées ici. Les particules, constituant le latex porteur de fonction(s) isocyanate(s) selon l'invention, sont hydrophobes et possèdent avantageusement une taille (dgrj) généralement comprise entre 0,01 micromètre et 20 micromètres et de préférence au plus égale à 5 micromètres voire à 3 micromètres. Elles sont calibrées, monodispers(é)es et présentes dans le latex à raison d'une quantité variant entre 0,2 à 65 % en poids du poids total du latex. selon la présente invention pour obtenir des résultats satisfaisants, il est souhaitable que la teneur du (co)polymère (latex ou épicouche dans le cas d'une épipolymérisation) en fonction. s) isocyanate(s) bloquée(s) soit au moins égale 5.10"^ avantageusement à 0,1 de préférence à 0,2 fonction plus préférentiellement 0,3 fonction par kilogramme (équivalents gramme par kilogramme), il n'y a pas de limite supérieur sinon économique, il est quand même souhaitable que le pourcentage masse du, ou du mélange de, monomère(s) selon l'invention ne dépasse pas 75 % du poids masse de latex il n'y a de limite supérieure qu'économique, dans le cas ou l'on utilise un trimère de tolonate (figure 1 avec m = 6) avec environ deux fonctions isocyanates masquées par une protection méthyléthylcétoxime et une branche acrylate d'hydroxyéthyle greffée sur la dernière fonction isocyanate.
Une valeur de 0,1 fonction par kilogramme correspond environ à une incorporation de 5 % en masse du monomère de formule I dans le latex.
La présente invention se rapporte également à un procédé de préparation de latex porteurs de fonction(s) isocyanate(s) selon les techniques suivantes :
- l'introduction, en cours de polymérisation du ou des monomères(s) constituant les particules du latex, d'un monomère selon l'invention en suspension dans une fraction du ou d'un des monomères et
- surpolymérisation (dans le sens d'une épipolyméristion) qui consiste en une synthèse du type parfois désignée sous le terme anglo-saxon "core-shell": une semence de latex est surpolymérisée par le(s) (co)monomère(s) en présence d'initiateur et d'un tensioactif. Le monomère selon l'invention, en suspension dans une fraction de (co)monomère(s), est introduit en fin de polymérisation de façon à obtenir des billes de latex, d'une granulométrie précise et resserrée dans lesquelles le monomère selon l'invention est greffé à une distance plus ou moins grande du coeur des particules.
En général, la température de polymérisation est comprise entre 30 et 90°C, avantageusement entre 40 et 80°C. En général, la durée est comprise entre 1 et 10, avantageusement entre 4 et 8°heures.
Après polymérisation, le latex est traité par adjonction d'un système rédox et par distillation, éventuellement sous vide, afin d'en éliminer toute trace de monomères résiduels, puis purifié.
Avantageusement, le polymère constituant le latex contient de 1 à 50 % en poids, avantageusement 3 à 25 % en poids, du monomère selon l'invention. La présente invention a également pour objet des compositions utiles pour peintures comportant en émulsions dans l'eau au moins un (co)polymère selon l'invention.
Selon un mode de réalisation de l'invention la composition comporte en outre un catalyseur de déblocage des fonctions isocyanates. (cf. Journal of Applied Polymer Science "Catalysis of the Isocyanate - Hydroxyl Reaction" vol. IV, issue N°11 , p. 207,
(1960), J. W. BRITAIN).
Ces catalyseurs sont en eux-mêmes connus et sont avantageusement choisis parmi ceux qui induisent une température de libération des fonctions isocyanates au plus égale à la température usuelle des opérations ultimes de prise du vernis ou de la peinture ou d'équivalents.
La température de libération induite par les catalyseurs est avantageusement au moins égale à 100'C environ.
La composition des peintures peuvent comprendre aussi une base colorée. constituée d'un pigment et d'oxyde de titane.
La taille des particules de l'émulsion est avantageusement comprise entre
0,01 micromètre et 20 micromètres, de préférence entre 0,05 micromètre et
10 micromètres.
La concentration massique de copolymère dans l'eau est avantageusement comprise entre 20 ° O et 45 %.
Avantageusement, la phase aqueuse contient des oligomères solubles de type polyol, ou condensât polyol-(poly)amine ou polyester-polyol en quantité suffisante pour permettre la polycondensation finale.
Ce sont les polyols utilisés usuellement lors des condensations avec les isocyanates courants.
La stabilité au stockage des dispersions ainsi obtenues est bonne. Les exemples non limitatifs suivants illustrent l'invention.
EXEMPLE 1
Préparation d'un monomère acrylique fonctionnalisé avec un Tolonate HDT bloqué méthyléthylcétoxime ci-après désignée par l'acronyme MEKO) et condensé avec l'hydroxyéthylacrylate (HEA).
± On met en oeuvre les matières premières suivantes :
Tolonate HDT (dit NCO 0,52 équivalent) 100 g
MEKO 0,346 mol (M=87) 30,2 g
HEA 0,174 mol (M=1 16) 20,2 g
Acrylate de butyle (solvant) 100,2 9
Le matériel utilisé est le suivant : . Réacteur de 250 ml sous atmosphère d'azote double enveloppe . Agitateur à encre (300tr/min) . Réfrigérant . Ampoule de coulée
On suit le mode opératoire défini ci-après :
Dans le réacteur, surmonté du réfrigérant, on introduit le Tolonate HDT (trimère de l'hexaméthylène diisocyanate). Le milieu est chauffé à 60-70°C et la méthyléthylcétoxime (MEKO) est introduite par l'intermédiaire de l'ampoule de coulée de sorte que la température ne dépasse pas 80-90'C.
Après la fin de l'addition, la température du milieu est maintenue durant I heure environ à 80 ± 5°C.
A l'issue de cette période, on ajoute goutte à goutte l'acrylate d'hydroxyéthyle (HEA) et la température du milieu est maintenue à 80-90°C.
En fin d'addition, le milieu est maintenu à 80 ± 5°C durant une heure.
En fin de réaction, l'indice NCO du milieu est de 0,00 groupes NCO/100 9.
Le milieu est refroidi alors à 60-65°C et coulé sur l'acrylate de butyle.
On obtient ainsi une solution de monomère acrylique fonctionnalisé par le Tolonate HDT bloqué dans l'acrylate de butyle dont l'extrait sec est de 60%.
Le NCO latent de la solution résultante est de 0,207 NCO/100 g de solution ou 8,7 %.
EXEM LE 2
Dans l'exemple suivant, on prépare un tolonate HDT bloqué méthyl éthyl cétoxime (MEKO) et hydroxyéthylacrylate (HEA).
On met en oeuvre les matières premières suivantes:
Tolonate HDT (Concentration en NCO = 0,52 équivalent) 100 g MEKO 0,346 mol (M=87) 30,2 g HEA 0,174 mol (M=1 16) 20,2 g Acrylate de butyle (solvant) 100,2 9
Le matériel utilisé est le suivant :
. Réacteur de 250 ml sous atmosphère d'azote double enveloppe . Agitateur à ancre (300tr/min) .Réfrigérant
. Ampoule de coulée
On suit le mode opératoire défini ci-après:
Dans un bêcher on introduit la méthyléthylcétoxime (MEKO) et l'acrylate d'hydroxyéthyle (HEA) (préparante). Dans le réacteur, surmonté du réfrigérant, on introduit le tolonate HDT. Le milieu est chauffé à 60-70°C, la préparante est introduite par l'intermédiaire d'une ampoule de coulée de sorte que la température ne dépasse pas 80-90cC. En fin d'addition, la température du milieu est maintenue une heure environ à 80°C ± 5°C.
En fin de réaction, l'indice NCO du milieu est de 0,00 groupes NCO/100 9. Le milieu est refroidi alors à 60-65°C et coulé sur l'acrylate de butyle. On obtient ainsi une solution de Tolonate HDT bloqué dans l'acrylate de butyle.
EXEMPLE 3
Copolymérisation en émulsion avec des monomères acryliques et vinyliques, du monomère fonctionnel (dénommé AEHDB), obtenu suivant l'exemple 1 par condensation dans l'acrylate de butyle (ABu), de l'hydroxyéthylacrylate avec le trimère HDT partiellement bloqué avec la méthyléthylcétoxime.
Dans un autoclave de 25 litres en acier inoxydable muni d'un agitateur, on introduit :
- 1 00 parties d'eau désionisée,
- 48 parties de styrène,
- 48 parties du mélange AEHDB/ABu préparé dans l'exemple 1 , préalablement dilué avec de l'ABu pour contenir 20 % en poids de AEHDB,
- 2,4 parties d'acide acrylique,
- 0,7 partie de lauryl sulfate de sodium, -0,9 partie de persulfate d'ammonium.
On chauffe le mélange réactionnel à 75 C sous agitation, et maintient cette température pendant la durée de réaction, soit 9 heures. Le taux de conversion est alors de 98 %. Le latex obtenu contient une fraction massique de particules (extrait sec) de 49 %. Les particules présentent un diamètre de 0,120 micromètre, et une composition sensiblement équivalente à celle des produits (co-monomères, initiateur, émulsifiants) mis en oeuvre.
EXEMPLE 4
Copolymérisation en émulsion du monomère fonctionnel (dénommé AEHDB), obtenu suivant l'exemple I (condensation dans l'ABu (acrylate de butyle), de acrylate d'hydroxyélhyle (HEA) avec le trimère HDT partiellement bloqué avec la méthyléthylcétoxime), dans une semence constituée d'un latex de copolymère acrylovinylique.
I. Préparation de la semence :
Dans un autoclave de 25 litres en acier inoxydable muni d'un agitateur, on introduit
- 1 00 parties d'eau désionisée.
- 32 parties de styrène, -1 partie de divinylbenzène.
- 55 parties d'ABu,
- 7 parties de monométhacrylate d'éthylèneglycol,
- 2,6 parties d'acide acrylique,
- 1 ,6 parties de dodécylsulfonate de sodium, - 0,8 partie de persulfate d'ammonium.
On chauffe le mélange réactionnel à 80 C sous agitation, et maintient cette température pendant la durée de réaction, soit 10 heures. Le taux de conversion est alors de 99 %. Le latex obtenu contient une fraction massique de particules (extrait sec) de 49,5 %. Les particules présentent un diamètre d'environ 0,070 micromètre et une composition sensiblement équivalente à celle des produits (co-monomères, initiateur, émulsifiants) mis en oeuvre. Ce latex va être utilisé comme semence pour polymériser le monomère AEHDB. 2. Copolymérisation de l'AEHBD dans la semence préparée :
On introduit dans un autoclave de 25 litres en acier inoxydable, muni d'un agitateur :
- 15 litres du latex semence (extrait sec massique = 49,5 %),
- 400 g du mélange AEHDB/ABu préparé dans l'exemple 1 , qui contient 60 % en poids de AEHDB,
- 100 g de styrène,
- 5 grammes de potasse.
On porte la température du milieu réactionnel à 75°C et on introduit dans l'autoclave 10 grammes de persulfate de potassium dissous dans 1 ,5 I d'eau désionisée. On maintient cette température pendant 5 heures, puis on porte la température à 85°C et on la maintient pendant 3 heures. On refroidit alors à la température ambiante. On obtient ainsi un latex stable fonctionnalisé avec les groupements isocyanates bloqués, dont l'extrait sec massique est de 46,5 % et dont la taille est 0.072 micromètre.
EXEMPLE 5
Dispersion aqueuse stable, contenant un latex fonctionnalisé avec des fonctions isocyanates bloquées et un condensât hydrosoluble de poyolpolyamine. Dans un récipient muni d'une agitation, on introduit 1 I du latex fonctionnalisé préparé selon l'exemple 3, dans lequel on ajoute ensuite le produit de réaction de 240 g de polycaprolactoneglycol, de 48,75 g de propane sulfone, et 13,05 g d'hexaméthylènediamine, avec 10 g d'acide sulfosuccinique comme émulsifiant. On obtient ainsi une dispersion aqueuse qui présente une bonne stabilité sur une période supérieure à 6 mois. Par déshydratation sur un support métallique ou plastique (PVC), et séchage pendant 5 heures à 130-C, la dispersion forme un film de polymère c continu et réticulé. EXEMPLE 6
Copolymérisation en microsuspension du monomère fonctionnel (dénommé AEHDB), obtenu suivant l'exemple I (condensation dans l'ABu, du HEA avec le trimère HDT partiellement bloqué avec la méthyléthylcétoxime).
Dans un premier récipient muni d'une agitation, une phase organique est préparée par mélange des constituants suivants :
- 55 parties de styrène,
- 3,5 parties de peroxyde de lauroyle,
- 41 ,5 parties du mélange AEHDB/ABu préparé dans l'exemple 1.préalablement dilué avec l'ABu pour contenir 30 % en poids de AEHDB.
Dans un second récipient muni d'une agitation, est également préparée une phase aqueuse par dissolution dans 12 I d'eau déminéralisée, de 60 g laurylsulfate de sodium et de 60 g de nonylphénol éthoxylé (30 motifs d'oxyde d'éthylène par molécule). 5 kg de la phase précédemment préparée sont alors ajoutés et dispersés dans la phase aqueuse. Le mélange obtenu est homogénéisé à température ambiante, de façon à obtenir des gouttelettes de phase organique dispersée dans l'eau de taille 0,6 micromètre. Le mélange est introduit dans un réacteur de 25 litres en acier inoxydable, muni d'un agitateur, où il est polymérisé à 70 C. Après 12 heures, le milieu réactionnel est refroidi et le monomère résiduel est éliminé par entraînement à la vapeur. On obtient ainsi 4,9 kg d'un latex stable fonctionnalisé par des groupements isocyanates bloqués, dont l'extrait sec est 28,8 % et le diamètre moyen des particules de 0,8 micromètre.
EXEMPLE 7
BUT
Synthèse d'un acryluréthane bloqué, par condensation d'hydroxyéthylacrylate (1/3) avec le HDT bloqué Méko 2/3 en solution dans l'acrylate de butyle (ES = 60 %). Mise en oeuyre :
HDT (NCO = 0,525) = 100 g
MEKO (Servoxim Y250 > 99,5 %) 0,35 mole x87 = 30,45 g. Hydroxyéthylacrylate (ATOCHEM) 0,175 mole x 116 = 20,3 g stabilisé avec : hydroquinone (qualité photo) 0,1 % par rapport à HEA, catalysé avec DBTL (100 %) 0,2 % par rapport à HEA, Acrylate de butyle (ATOCHEM) pour ES = 60 % = 100,5 g Appareil :
Ballon 500 ml avec agitation, réfrigérant, chauffe-ballon régulé "Vertex", ampoule de coulée, bullage argon.
Mode opératoire :
Dans ballon 500 ml sous argon, on introduit 100 g d'HDT, 100,5 g d'acrylate de butyle, puis on coule 30,45 g de MECO à θ ambiante en 4 mn, Il y a exothermie (θ«* 55°C), on suit la teneur en NCO libre tout en laissant redescendre la température à l'ambiante (T = 20mn, NCO = 0,077 ; T = 40 mn.NCO = 0,077). On ajoute alors 20,3 g d'hydroxyéthylacrylate en - 1mn, à θ = 28°C; il n'y a pas d'exothermie notable, on chauffe à θ = 50°C puis on suit les NCO en maintenant θ = 50°C. à T = 15' NCO = 0,013
T = 30' NCO = 0,009
T = 1 h NCO = 0,005
T = 1 h 30 NCO = 0,004 + 2 % excès HEA ≈ 0,4 g exothermie θ = 60°C T = 1 h 45 NCO = 0,0025
T = 2 h 00 NCO = 0,0007 arrêt pour la nuit
chauffer le milieu réactionnel à 50°C + 2 % excès HEA = 0,4 g pas d'exothermie notable
à T = 2 h 30 NCO = 0,000
Dans le produit obtenu q est supérieur à 1 (entre 1 ,02 et 1 , 04). Viscosité du produit final : 139 cp EXEMPLE 8
Copolymérisation en émulsion d'un mélange de monomères acryliques contenant 5 % en poids du monomère fonctionnel AEHDB, selon un procédé basé sur une préémulsion des comonomères.
Préémulsion
Dans une cuve de 25 I, onmélange 4,5 kg d'eau désionisée avec 244 g d'une solution aqueuse de dodécylbenzènesulfonate de sodium (DBS-Na) de concentration 23 % en poids. On introduit dans cette solution et sous agitation le mélange de comonomères acryliques suivants :
- 5,29 kg de méthacrylate de méthyle (MAM), - 5,06 kg d'acrylate de butyle (ABu),
- 337 g d'acide acrylique (AA),
- 938 g d'un mélange AEHDB/ABu contenant 60 % en poids de monomère fonctionnel AEHDB.
Le mélange obtenu est émulsifié à l'aide d'un homogénéiseur ULTRATURAX (commercialisé par PROLABO) pendant 5 minutes à 20 000 tours/minute. On obtient ainsi la préémulsion des monomères acryliques contenant le monomère fonctionnel AEHDB.
Polymérisation
Dans un réacteur de 25 litres en acier inoxydable muni d'un agitateur, on introduit 9,87 kg d'eau désionisée que l'on porte à 80°C sous agitation.
On ajoute ensuite :
- 500 g de la préémulsion préparée ci-dessus,
- 500 g d'une solution aqueuse contenant 33,75 d'initiateur persulfate d'ammonium.
On attend 15 minutes pour que l'amorçage de la réaction s'effectue, puis on ajoute sur une durée de 4 heures, le reste de la préémulsion, soit 15,87 kg. On ajoute ensuite 750 g d'eau et on laisse cuire à 81 °C pendant 1 heure.
Puis on refroidit à 60°C et on ajoute 11 ,25 g d'hydroperoxyde de tertiobutyle et 6,75 g de Na2S2θ5. On maintient la température à 60°C pendant 30 minutes, puis on refroidit à température ambiante. On neutralise avec une solution d'ammoniaque diluée à 20 %. On obtient ainsi un latex qui présente les caractéristiques suivantes :
- 40,5 % d'extrait sec massique,
- pH = 7,5 - viscosité Brookfield RTV-DV 11 (50t/min) : 29 centipoises,
- taille des particules : 0,9 micromètres,
- taux de grains : 170 ppm.
EXEMPLE 9
Copolymérisation en émulsion d'un mélange de monomères acryliques contenant 7 % en poids du monomère fonctionnel AEHDB, selon un procédé basé sur une préémulsion des comonomères.
Préémulsion
Dans une cuve de 25 I, on mélange 4,5 kg d'eau désionisée avec 244 g d'une solution aqueuse de dodécylbenzènesulfonate de sodium (DBS-Na) de concentration 23 % enpoids. On introduit dans cette solution et sous agitation le mélange de comonomères acryliques suivants :
- 4,84 kg de méthacrylate de méthyle (MAM),
- 5,06 kg d'acrylate de butyle (ABu),
- 563 g d'acide acrylique (AA),
- 1 ,31 kg d'un mélange AEHDB/ABu contenant 60 % en poids de monomère fonctionnel AEHDB. Le mélange obtenu est émulsifié à l'aide d'un homogénéiseur ULTRATURAX (commercialisé par PROLABO) pendant 5 minutes à 20 000 tours/minute. On obtient ainsi la préémulsion des monomères acryliques contenant le monomère fonctionnel AEHDB.
Polymérisation
Dans un réacteur de 25 litres en acier inoxydable muni d'un agitateur, on introduit 9,22 kg d'eau désionisée que l'on porte à 80°C sous agitation ; on ajoute ensuite :
- 500 g de la préémulsion préparée ci-dessus,
- 500 g d'une solution aqueuse contenant 33,75 g d'initiateur persulfate d'ammonium.
On attend 15 minutes pour que l'amorçage de la réaction s'eftectue, puis on ajoute sur une durée de 4 heures, le reste de la préémulsion, soit 16,02 kg.
On ajoute ensuite 750 g d'eau et on laisse cuire à 81 °C pendant 1 heure. Puis on refroidit à 60°C et on ajoute 11 ,25 g d'hydroperoxyde de tertiobutyle et 6,75 g de Na2S2θ5- On maintient la température à 60°C pendant 30 minutes, puis on refroidit à température ambiante. On neutralise avec une solution de soude diluée à 10 %. On obtient ainsi un latex qui présente les caractéristiques suivantes :
- extrait sec massique : 39,4 %,
- pH = 7,5,
- viscosité Brookfield RTV-DV 11 (501/ min) : 52 centipoises,
- taille des particules : 1 ,5 micromètres,
- taux de grains : 26 ppm.
EXEMPLE 10
Copolymérisation en émulsion d'un mélange de monomères acryliques et se styrène contenant 7 % en poids du monomère fonctionnel AEHDB, selon un procédé basé sur une préémulsion des comonomères.
Préémulsion Dans une cuve de 25 I, on mélange 4,5 kg d'eau désionisée avec 245 g d'une solution aqueuse de dodécylbenzènesulfonate de sodium (DBS-Na) de concentration 23 % en poids. On introduit dans cette solution et sous agitation le mélange de comonomères acryliques suivants :
- 5,10 kg de styrène (S),
- 4,80 kg d'acrylate de butyle (ABu),
- 565 g d'acide acrylique (AA), - 1 ,30 kg du mélange AEHDB/ABu contenant 60 % en poids de monomère fonctionnel AEHDB.
Le mélange obtenu est émulsifié à l'aide d'un homogénéiseur ULTRATURAX (commercialisé par PROLABO) pendant 5 minutes à 20 000 tours/minute. On obtient ainsi la préémulsion d'un mélange de monomères acryliques et du styrène, contenant lemonomère fonctionnel AEHDB.
Polymérisation
Dans un réacteur de 25 litres en acier inoxydable muni d'un agitateur, on introduit 9,22 kg d'eau désionisée que l'on porte à 80°C sous agitation.
On ajoute ensuite :
- 500 g de la préémulsion préparée ci-dessus,
- 500 g d'une solution aqueuse contenant 33,75 g d'initiateur persulfate d'ammonium.
On attend 15 minutes pour que l'amorçage de la réaction s'effectue, puis on ajoute sur une durée de 4 heures, le reste de la préémulsion, soit 16,01 kg.
On ajoute ensuite 750 g d'eau et on laisse cuire à 81 °C pendant 1 heure.
Puis on refroidit à 60°C et on ajoute 11 ,25 g d'hydroperoxyde de tertiobutyle et 6,75 g de Na2S2θ5. On maintient la température à 60°C pendant 30 minutes, puis on refroidit à température ambiante. On neutralise avec une solution de soude diluée à 10 %. On obtient ainsi un latex qui présente les caractéristiques suivantes : - extrait sec massique : 39,6 %,
- pH = 7,5,
- viscosité Brookfield RTV-DV 11 (50 t/min) : 58 centipoises, - taille des particules : 1 ,2 micromètres,
- taux de grains : 220 ppm.
EXEMPLE 11
Copolymérisation en émulsion d'un mélange de monomères acryliques contenant 10 % en poids du monomère fonctionnel AEHDB, selon un procédé basé sur une préémulsion des comonomères.
Préémulsion
Dans une cuve de 25 I, on mélange 4,5 kg d'eau désionisée avec 244 g d'une solution aqueuse de dodécylbenzènesulfonate de sodium (DBS-Na) de concentration 23 % en poids. On introduit dans cette solution, sous agitation, le mélange de comonomères acryliques suivants :
- 4,5 kg de méthacrylate de méthyle (MAM),
- 5,06 kg d'acrylate de butyle (ABu),
- 563 g d'acide acrylique (AA), - 1 ,88 kg du mélange AEHDB/ABu contenant 60 % en poids demonomère fonctionnel AEHDB. Le mélange obtenu est émulsifié à l'aide d'un homogénéiseur ULTRATURAX (commercialisé par PROLABO) pendant 5 Minutes à 20 000 tours/minute. On obtient ainsi la préémulsion des monomères acryliques contenant lemonomère fonctionnel AEHDB.
Polymérisation
Dans un réacteur de 25 litres en acier inoxydable muni d'un agitateur, on introduit 9,22 kg d'eau désionisée quel'on porte à 80°C sous agitation.
On ajoute ensuite : - 500 g de la préémulsion préparée ci-dessus,
- 500 g d'une solution aqueuse contenant 33,75 g d'initiateur persulfate d'ammonium.
On attend 15 minutes pour que l'amorçage de la réaction s'eftectue, puis on ajoute sur une durée de 4 heures, le reste de la préémulsion, soit 16,25 kg.
On ajoute ensuite 750 g d'eau et on laisse cuire à 81 °C pendant 1 heure.
Puis on refroidit à 60°C et on ajoute 11 ,25 g d'hydroperoxyde de tertiobutyle et 6,75 g de Na2S2θ5- On maintient la température à 60°C pendant 30 Minutes, puis on refroidit à température ambiante. On neutralise avec une solution de soude diluée à 10 %. On obtient ainsi un latex qui présente les caractéristiques suivantes :
- extrait sec massique : 40,5 %,
- pH = 7,5,
- viscosité Brookfield RTV-DV 11 (50 t/min) : 78 centipoises,
- taille des particules : 0,84 micromètres, - taux de grains : 315 ppm.
EXEMPLE 12
Fabrication du produit bloqué 1/3 HEA 2/3 Meko
- tolonate HDT = 500 g (indice NCO = 22,05 %)
- Meko (méthyl éthyl etoxime) = 152,3 g (1 ,75 mole)
- HEA (hydroxy éthyl acrylate) = 101 ,5 g (0,875 mole)
Dans un réacteur de 1 I introduire le tolonate HDT (500 g) puis à température ambiante, couler la meko (152,3 g) en 10 Minutes.
La réaction exothermique fait passer la température de 20 à 50°C. Après maintien de 30' à cette température, la HEA est coulée en 5 minutes, l'exothermie fait passer la température à 70°C.
Après maintien à 70°C pendant 1 h la masse réactionnelle est refroidie à 20°C.
EXEMPLE 13 Formulation des 4 produits obtenus
LATEX LATEX LATEX
PROPRIETES TEMOINS GREFFE GREFFE GREFFE
Tolonate 5 % Tolonate 7 % Tolonate 10 %
(Exemple 8) (Exemple 9) (Exemple 11)
Référence n° A B C D
Composition 52MMA/45BA/ 47 M MA 45 BA 43 MMA/45BA/ 40 MMA/45 BA/
(%) 3AA 3AA + 5 % AUB 5 AA + 7 % 5AA + 10 % AUB AUB
E.S. (%) avant neut. 39,6 40,7 40,9 40,9
. avec NH OH 39,3 40,5 40,7 40,6
. avec NaOH 38,9 40,0 39,4 40,6
. avec Na2CO3 38,7 39,8 39,0 40,5
Viscosité (cps) 25 29 21
. avec NH4OH 25 29 540 680
. avec NaOH 23 25 52 708
. avec Na2CO3 24 25 42 72
Ph (avant neutr.) 2,4 2,85 3,10 3,25
. avec NH4OH 8,1 8,50 8,00 8,20
. avec NaOH 7,5 7,50 7,50 9,00
. avec Na2CO3 7,5 7,50 7,50 7,50
Taille des 730 910 > 1500 840 particules (nm) MMA = méthylméthacrylate BA = butylacrylate AUB : Acrylméthane bloqué AA = acide acrylique
Chacun de ces 4 produits est neutralisé par l'une des 3 solutions suivantes : NH4OH, NaOH, Na2CO3.
EXEMPLE 14
ESSAI EN FORMULATION VERNIS
Une formulation vernis (latex greffe Tolonate + Résine polyol) a permis de connaitre les produits de meilleurs performance.
Caractéristiques du mélange de formulation
. Tolonate greffé Latex (A, B, C ou D)
. SYNAQUA 3510 WL (Cray Valley)
Polyol polyester à 50 % dans eau/Proglyde DMM
Rapport NCO bloqué / OH = 1 Film 100 μ humide ( _ 50 μ sec)
Séchage à l'air 18 h puis cuisson 30' à 1 h à 160°C.
Le mélange est appliqué en film sur plaques de verre (100 μm humide) puis caractérisé par la dureté PERSOZ (exprimée en secondes) et la résistance à la méthyléthylcétone (MEK) échelle de la O : Pas de dégradation du film résistance à la 1 Légère attaque méthyléthylcétone 2 Le film est louche (valeur de 0 à 4) 3 Le film est plissé
4 Le film est dissous
Les 4 produits obtenus en A (témoin), B, C ou D sont formulés avec le polyol (ainsi que A seul) puis appliqué en film et mesurés.
Les produits C et D traités NaOH permettent d'obtenir des propriétés de dureté et de résistance aux solvants acceptables. LATEX GREFFES TOLONATE BLOQUE APRES NEUTRALISATION NH4OH
Réf. Caract. Avant Cuisson Après 160°C/30' Aprés 160°C/ 1h
Dureté Test Dureté Test Dureté Test MEK MEK MEK
A Latex seul 290 4 288 2 299 2
Latex
A + 170 4 212 4 237 4 Polyol
LtX + Toi
B 5 % + 183 4 218 1 211 1 polyol
LtX + Toi
C 7 % + 235 4 270 1 276 1 polyol
Ltx + Toi
D 10 % + 119 1 175 1 210 0 Polyol
EXEMPLE 15 : ESSAI EN FORMULATION PEINTURE
Les produits C et D sont appliqués sur plaque acier après formulation suivante
- Latex greffé Tolonate 7 % ou 10 %
- Polyol SYNAQUA 3510 WL (CRAY - VALLEY)
- Tio2 (THANN et MULHOUSE)
avec [NCO]/ [OH] = 1 et [Pigment (Tiθ2) Liant] = 0,7
- épaisseur du fenil = 50 μ environ
Figure imgf000027_0001
les produits C et D présentent une résistance chimique satisfaisante.

Claims

REVENDICATIONS
1- Monomère caractérisé par le fait qu'il répond à la formule suivante :
[(R1)(R2)C=C(R3)-CO-L-]q A(-NCObloc)p (Formule 1)
- où les R-|, R2 et R3 semblables ou différents représentent un hydrogène ou un groupe choisi parmi :
- les chaînes hydrocarbonées de 1 à 12 atomes de carbone notamment les alcoyles. les aryles. les aralcoyles, les alcoxyles et les silyles ;
- les atomes d'halogènes non réactifs ( fluor, voire chlore) ;
- des fonctions électroattractrices comportant avantageusement le groupe carbonyle, tel que alcoxycarbonyle, hydroxy carbonyle (acide carboxylique), amino carbonyle (amide) ;
- où les L, semblables ou différents, représentent un radical hydrocarboné divalent
(avantageusement en oméga oméga prime) de 2 à 12 atomes de carbone, avantageusement de formule :
-Y-L'-Y'-(NH-CO)z- (Formule 2)
où Y et Y', semblables ou différents, représentent :
. soit une liaison simple ;
. soit un groupement choisi parmi les groupes suivants :
-(R5)C(R6)-;-NR4-; O ou-S-; avec R5, RQ et R représentant un hydrogène ou un groupe choisi parmi :
- les radicaux hydrocarbonées de 1 à 12 (avantageusement de 1 à 4) atomes de carbone notamment les alcoyles, Les aryles, les aralcoyles et les silyles;
- les atomes d'halogènes non réactifs (fluor, voire chlore); . où L' représente une chaîne hydrocarbonée, notamment les alcoylènes, les arylènes, les aralcoylènes et les silylènes [chaîne qui peut être interrompue par un ou plusieurs atomes de chalcogènes, de préférence légers, soufre ou avantageusement oxygène, chaque atome de chalcogène étant de préférence séparé par au moins deux atomes de carbones comme dans les glymes ; avantageusement un radical alcoylène de préférence peu ramifié de préférence avec les valences libres en ω, ω' (tel que - [CH2]m -)
. où z est égal à 0 ou, de préférence, à 1 ;
- où A représente un squelette organique présentant n valences libres, n étant compris entre 2 et 7 (intervalle fermé) avantageusement entre 2 (non compris cette valeur et 4 et n étant égal à p+q;
- où NCObloc représente une fonction isocyanate protégée;
- où p est compris entre 1 et 6, avantageusement entre 1 et 3 de préférence entre 1 ,5 et 2,5 (intervalles fermés) ;
- où q est compris entre 1 et 6 (intervalle fermé), avantageusement supérieur à 1 et au plus égal à 3 (intervalle semi-ouvert, semi-fermé), de préférence au plus égal à 2 (intervalle semi-ouvert, semi-fermé).
2- Monomère selon la revendication 1 , caractérisé par le fait que le nombre total de carbones du dit monomère est avantageusement compris entre 10 et 100, préférentiellement compris entre 20 et 100, plus préférentiellement entre 25 et 75.
3- (Co)polymères caractérisés par le fait qu'ils peuvent être obtenus par copolymérisation des monomères de formule 1 avec des (co)monomères choisis parmi les vinyliques et les acryliques.
4- (Co)polymères selon la revendication 3, caractérisés par le fait que les dits (co)monomères sont choisis parmi :
- le styrène et ses dérivés (vinyltoluène, éthylvinylbenzène); - les esters, hydroxyesters et amides de l'acide (méth)-acrylique tels que le méthacrylate de méthyle, l'acrylate de butyle, (méth)acrylamide;
- les esters vinyliques (acétate de vinyle, propionate de vinyle) ;
- les chlorures de vinyle et vinylidène;
- les vinyipyridines (2-vinylpyridine, 4-vinylpyridine, 2-méthyl 5-vinylpyridine);
-les dis (éthyl) amino-alcoyl (méth)-acrylates;
- les dis (éthyl) amino-alcoyl (méth)-acrylamides... ;
- l'allylamine;
- l'éthylène imine;
- le (méth)-acrylonithle;
- le N-vinylimidazole;
- les dialcoylaminométhyl-styrènes;
- la vinylpyrrolidone;
- le divinylbenzène et ses dérivés;
- les diènes conjugués (butadiène...);
- les dérivés polyallyliques (tétraallyléthylène...);
- les (méth) acrylates de polyols (diméthacrylate d'éthylène glycol...);
- le méthylène-bis (acrylamide);
- l'acide-bis (acrylamido) acétique. 5- Composition caractérisée par le fait qu'elle comporte en émulsion dans l'eau au moins un (co)polymère selon l'invention.
6- Composition selon la revendication 5, caractérisée par le fait que la composition comporte en outre un catalyseur de déblocage des fonctions isocyanates.
7- Composition selon l'une des revendications 5 et 6, caractérisée par le fait qu' elle contient des oligomères solubles de type polyol, ou condensât polyol(poly)amine ou polyester-polyol en quantité suffisante pour permettre la polycondensation finale.
8- Procédé de préparation de polymère selon la revendication 3 caractérisé par le fait que l'on introduit, en cours de polymérisation du ou des (co)monomères(s) constituant les particules dudit polymère, d'au moins un des monomères selon la revendication I, en suspension dans une fraction du ou d'un des monomères.
9- Procédé de synthèse d'un monomère selon la revendication 1 , à partir d'isocyanate correspondant, caractérisé par le fait qu" il comporte les étapes, en elles-mêmes connues, suivantes :
A) protection d'une portion (dans le rapport p/n) des fonctions isocyanates,
B) réaction du reste des isocyanates avec un réactif dit "à H mobile" de formule (R1)(R2)C=C( 3)-CO-L-H.
PCT/FR1993/001254 1992-12-15 1993-12-15 Monomere presentant au moins une fonction isocyanate et une insaturation, son procede de synthese et (co)polymeres en decoulant WO1994013712A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA002151728A CA2151728C (fr) 1992-12-15 1993-12-15 Monomere presentant au moins une fonction isocyanate et une insaturation, son procede de synthese et (co)polymeres en decoulant
EP94902820A EP0674667B1 (fr) 1992-12-15 1993-12-15 Monomere presentant au moins une fonction isocyanate et une insaturation, son procede de synthese et (co)polymeres en decoulant
BR9307652-5A BR9307652A (pt) 1992-12-15 1993-12-15 MonÈmero, (co)polìmeros, composição, processo de preparação de polìmero, e, processo de sìntese de um monÈmero
DK94902820T DK0674667T3 (da) 1992-12-15 1993-12-15 Monomer med mindst en isocyanatgruppe og en umætning, fremgangsmåde til syntese deraf og deraf afledte (co)polymerer
JP6513890A JPH08504462A (ja) 1992-12-15 1993-12-15 少なくとも1つのイソシアネート官能基及び不飽和結合を有するモノマー、その合成方法及びこのモノマーより得られる(コ)ポリマー
KR1019950702456A KR100293586B1 (ko) 1992-12-15 1993-12-15 하나이상의이소시아네이트작용기및하나의불포화기를포함하는단량체,그의합성방법및그로부터수득된(공)중합체
DE69324040T DE69324040T2 (de) 1992-12-15 1993-12-15 Mindestens eine isocyanat-gruppe und eine ungesättigkeit aufweisendes monomer, verfahren zu dessen herstellung, sowie daraus hergestellte (co)polymere
AU57028/94A AU694099B2 (en) 1992-12-15 1993-12-15 Monomer presenting at least one isocyanate function and an insaturation, synthesis process and (CO)polymers derived therefrom
US08/454,293 US5908907A (en) 1992-12-15 1993-12-15 Aqueous emulsion of (co)polymer made from monomer containing isocyanate group and olefinic double bond
GR990400934T GR3029846T3 (en) 1992-12-15 1999-04-05 Monomer presenting at least one isocyanate function and an insaturation, synthesis process and (co)polymers derived therefrom.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9215117A FR2699182B1 (fr) 1992-12-15 1992-12-15 Monomere presentant au moins une fonction isocyanate et une insuturation son procede de synthese et (co)polymeres en decoulant.
FR92/15117 1992-12-15

Publications (1)

Publication Number Publication Date
WO1994013712A1 true WO1994013712A1 (fr) 1994-06-23

Family

ID=9436626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/001254 WO1994013712A1 (fr) 1992-12-15 1993-12-15 Monomere presentant au moins une fonction isocyanate et une insaturation, son procede de synthese et (co)polymeres en decoulant

Country Status (14)

Country Link
US (2) US5908907A (fr)
EP (1) EP0674667B1 (fr)
JP (1) JPH08504462A (fr)
KR (1) KR100293586B1 (fr)
AT (1) ATE177762T1 (fr)
AU (1) AU694099B2 (fr)
BR (1) BR9307652A (fr)
CA (1) CA2151728C (fr)
DE (1) DE69324040T2 (fr)
DK (1) DK0674667T3 (fr)
ES (1) ES2128547T3 (fr)
FR (1) FR2699182B1 (fr)
GR (1) GR3029846T3 (fr)
WO (1) WO1994013712A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2898905A1 (fr) * 2006-03-24 2007-09-28 Rhodia Recherches & Tech Composition polyisocyanate a proprietes anti-chocs ameliorees

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144955B2 (en) * 2003-10-27 2006-12-05 Bayer Materialscience Llc Acrylate-functional blocked polyisocyanate resin for UV/thermally curable coatings
PL3548522T3 (pl) * 2016-12-05 2023-01-16 Covestro Deutschland Ag Sposób wytwarzania obiektu z prekursora i zastosowanie żywicy sieciowalnej rodnikowo w sposobie wytwarzania addytywnego
CN110903459B (zh) * 2019-11-25 2022-06-07 重庆沥智路桥工程有限公司 一种羟基封端聚氨酯甲基丙烯酸树脂、制备方法及其应用
WO2022008456A1 (fr) * 2020-07-06 2022-01-13 Covestro (Netherlands) B.V. Particules de polymère
CN112279971A (zh) * 2020-11-04 2021-01-29 湖南中泰特种装备有限责任公司 一种羟基功能化水性聚氨酯乳液及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1487766A (en) * 1974-11-20 1977-10-05 Goodrich Co B F Aromatic diisocyanates and polymers thereof
EP0126359A2 (fr) * 1983-05-18 1984-11-28 Bayer Ag Procédé de préparation de composés contenant des groupes isocyanurate et des doubles liaisons oléfiniques, composés obtenus par ce procédé et leur utilisation comme liants ou composants de liant dans des compositions de revêtement
DE3501493A1 (de) * 1985-01-18 1986-07-24 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von pulverlackvernetzern
US4816597A (en) * 1983-10-02 1989-03-28 New Jersey Institute Of Technology Dental restorative materials based upon blocked isocyanates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1487766A (en) * 1974-11-20 1977-10-05 Goodrich Co B F Aromatic diisocyanates and polymers thereof
EP0126359A2 (fr) * 1983-05-18 1984-11-28 Bayer Ag Procédé de préparation de composés contenant des groupes isocyanurate et des doubles liaisons oléfiniques, composés obtenus par ce procédé et leur utilisation comme liants ou composants de liant dans des compositions de revêtement
US4816597A (en) * 1983-10-02 1989-03-28 New Jersey Institute Of Technology Dental restorative materials based upon blocked isocyanates
DE3501493A1 (de) * 1985-01-18 1986-07-24 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von pulverlackvernetzern

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2898905A1 (fr) * 2006-03-24 2007-09-28 Rhodia Recherches & Tech Composition polyisocyanate a proprietes anti-chocs ameliorees
WO2007122309A1 (fr) * 2006-03-24 2007-11-01 Rhodia Recherches Et Technologies Composition polyisocyanate a proprietes anti-chocs améliorées
US8318310B2 (en) 2006-03-24 2012-11-27 Perstorp France Polyisocyanate coating compositions cross-linkable into enhanced anti-shock coatings
KR101428603B1 (ko) * 2006-03-24 2014-08-12 벤코렉스 프랑스 향상된 충격방지 특성을 가진 폴리이소시아네이트 조성물

Also Published As

Publication number Publication date
US6124416A (en) 2000-09-26
DE69324040D1 (de) 1999-04-22
FR2699182A1 (fr) 1994-06-17
DK0674667T3 (da) 1999-10-11
BR9307652A (pt) 1999-08-31
JPH08504462A (ja) 1996-05-14
FR2699182B1 (fr) 1995-07-13
CA2151728A1 (fr) 1994-06-23
US5908907A (en) 1999-06-01
EP0674667B1 (fr) 1999-03-17
AU694099B2 (en) 1998-07-16
DE69324040T2 (de) 1999-09-09
GR3029846T3 (en) 1999-07-30
ATE177762T1 (de) 1999-04-15
AU5702894A (en) 1994-07-04
ES2128547T3 (es) 1999-05-16
EP0674667A1 (fr) 1995-10-04
KR950704373A (ko) 1995-11-20
CA2151728C (fr) 2002-07-30
KR100293586B1 (ko) 2001-09-17

Similar Documents

Publication Publication Date Title
FR2485556A1 (fr) Diluants reactifs alcooliques organiques pour compositions de revetement et compositions de revetement les contenant
JPH0347876A (ja) 自己架橋性水性塗料組成物
AU733823B2 (en) Cross-linkable surface coatings and process of preparation
JPS60206813A (ja) グラフト重合体または共重合体の水性分散液およびその製法
EP0674667B1 (fr) Monomere presentant au moins une fonction isocyanate et une insaturation, son procede de synthese et (co)polymeres en decoulant
EP0690882B1 (fr) Latex pour peintures sans solvant possedant une lessivabilite amelioree
EP0860454B1 (fr) Dispersions de latex à fonction hydroxyle et à fonction carboxylique
CA1224599A (fr) Preparation de compositions a base de polymeres
WO2001072897A1 (fr) Compositions pour le traitement du cuir contenant des dispersions aqueuses de polymere, filmogenes en l'absence de solvant organique
US5064922A (en) Copolymers containing amino groups and a process for their production
JPH06329984A (ja) 物理的迅速乾燥結合剤混合物および木材支持体を塗布するためのそれらの使用
US5728789A (en) Powder coating compositions containing copolymers having hydroxyl and carboxylic acid anhydride groups as binders
JPH10158410A (ja) エネルギー線硬化性樹脂組成物の製造方法
US6013725A (en) Low temperature crosslinkable latexes formed by in-situ generation of a crosslinkable functionality
JPH06199968A (ja) 水性樹脂およびその製造方法とそれを含む樹脂組成物
JP3072432B2 (ja) 湿気硬化型非水分散型塗料
EP0251921A1 (fr) Polymère acrylique partiellement estérifié et ses applications notamment pour la préparation de revêtements
WO2000073354A1 (fr) Dispersions aqueuses de polymeres
TW201114856A (en) Coating material, method of producing a coating and coated article
JPS62283108A (ja) 塗料用樹脂の製造法
JPS6055534B2 (ja) 硬化性組成物の製造方法
JPS6063232A (ja) ポリカ−ボネ−ト樹脂用コ−テイング剤
FR2658198A1 (fr) Nouveaux copolymeres acryliques et leur application comme revetements.
MXPA99011054A (es) Revestimientos de superficies entrelazados y procesos de preparacion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CZ HU JP KP KR KZ LK MG MN MW NO NZ PL RO RU SD SK UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994902820

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2151728

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08454293

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994902820

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994902820

Country of ref document: EP