WO1994011705A1 - Verfahren und vorrichtung zum gewinnen von profil- und gleisdaten - Google Patents

Verfahren und vorrichtung zum gewinnen von profil- und gleisdaten Download PDF

Info

Publication number
WO1994011705A1
WO1994011705A1 PCT/DE1993/001080 DE9301080W WO9411705A1 WO 1994011705 A1 WO1994011705 A1 WO 1994011705A1 DE 9301080 W DE9301080 W DE 9301080W WO 9411705 A1 WO9411705 A1 WO 9411705A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
track
transmitter
receiver unit
measured
Prior art date
Application number
PCT/DE1993/001080
Other languages
English (en)
French (fr)
Inventor
Michael Sartori
Original Assignee
Michael Sartori
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michael Sartori filed Critical Michael Sartori
Priority to EP94900040A priority Critical patent/EP0668988A1/de
Priority to DE4395721T priority patent/DE4395721D2/de
Priority to AU54614/94A priority patent/AU5461494A/en
Publication of WO1994011705A1 publication Critical patent/WO1994011705A1/de

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/06Tracing profiles of cavities, e.g. tunnels
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/16Guiding or measuring means, e.g. for alignment, canting, stepwise propagation

Definitions

  • the invention relates to a method for inspecting, contactless scanning of the un immediate environment of a track with respect to certain measurement criteria, for example se optical image, 3-dimensional profiling, thermography, etc., in which during a continuous measurement run of a measuring vehicle along the track perpendicular to it ei radially rotating Measuring beam is emitted and the reflected signals of this measuring beam in the area of the transmitter and / or signals emitted by the environment are processed and stored.
  • the invention further relates to a device for performing the method with a measuring vehicle, which has a scanner for contactless scanning of the immediate vicinity of the track by means of a measuring beam running radially here, the transmitter and the associated receiver a structural transmitter / receiver. Define unit.
  • the corresponding measurement data for example profile data and in particular tunnel profile data, are already obtained contactlessly today, a distance measurement being carried out using a laser to obtain the profile data.
  • accurate measurements are only possible when the vehicle is at a standstill. There is basically the possibility
  • REPLACEMENT LEAF ability to carry out the corresponding measurements with a moving measuring vehicle are disadvantageously either too imprecise or not comprehensive.
  • the measurement is only possible with a large measuring field grid, so that the solution is correspondingly low.
  • the measurement data are obtained by a measuring vehicle running along the track.
  • a circumferential measuring beam is emitted perpendicular to the direction of travel in the radial direction by means of a 360 ° scanner.
  • the refl ted signals of this measuring beam are received again by the same unit and the measuring signals are stored, the transmitter and the receiver forming a structural and measuring unit.
  • Such a measuring vehicle for the continuous measurement of the profile course of railway tunnel tubes is known for example from DE-PS 28 18 5.
  • this measuring vehicle it is not possible to measure track data with regard to location and position.
  • the use of a pendulum that aligns itself with the vertical of the earth is intended to compensate for bank slopes.
  • thermography measurement no measuring beam is emitted, but signals emitted by the surroundings are received.
  • the track data are also of particular interest. This means the track width, the curve radius, the cant, the torsion, the slope and the space curve of the track axis, whereby this track data must also be displayed in a track-related coordinate system.
  • the track data are obtained by mechanical contact with the rails, including the measurement of reference points.
  • the recording of the track data is carried out with measuring tools, whereby the measuring methods have problems when moving over soft and have low resulting accuracies. A high level of accuracy is possible with a large amount of personnel.
  • Another disadvantage is that the data is obtained by mechanical contact with the rail and that the associated measurement is relatively heavy.
  • the invention is based on the task of further developing the method of the type specified at the outset in such a way that, in addition to the environmental data, in particular profile data, the track data can also be determined, wob in addition, the accuracy of, for example, professional measurement is to be improved, and furthermore an apparatus for carrying out the method is to be created.
  • the invention proposes that, in addition, the and the position of the transmitter / receiver unit is measured synchronously with a navigation system arranged on the measuring vehicle with respect to an earth-fixed coordinate system or reference point and the track data are determined therefrom.
  • the basic idea is to use the transmitter / receiver unit to coordinate the exact location for determining the location of the transmitter / receiver unit, as well as spatial orientation, i.e. Alignment of the transmitter / receiver unit in the sense of measuring an orientation.
  • the spatial orientation of the transmitter / receiver unit a at the respective location allows conclusions to be drawn about the track data there. it is assumed that the transmitter / receiver unit is arranged on the measuring vehicle in such a way that the measuring vehicle "participates" in every track position change immediately and without delay.
  • the orientation of the transmitter / receiver unit changes when the track goes through a curve or an incline, or when one rail of the track is too high with respect to the other rail and thus the test tool and thus the transmitter / receiver unit Tilting sideways out of the vertical
  • the particular advantage of the method according to the invention thus lies in the simultaneous acquisition of both the profile and the casting data.
  • This data acquisition is possible with the measuring vehicle which is moving at high speed, i.e. can drive between 3 and 120 km / h.
  • the measurement is carried out with high accuracy, the error being less than 0.5 cm.
  • the data is obtained in the lower speed range across the board and in the upper speed range in a 10 cm to 20 cm wide grid, while the data acquisition in the glide measurement is advantageously continuous.
  • the whole requires only a minimal use of personnel, and the inspection method according to the invention can additionally be extended to a contactless contact wire and busbar measurement.
  • the method according to the invention can be used to calculate the space curve d track axis.
  • the data is advantageously obtained b without contact (apart from a possible gauge measurement).
  • the transmitter / receiver Unit identifies the position elements, measures their location relative to the transmitter / receiver unit or to the track coordinate system, and a comparison of the exact location data of the respective position element with the measured location data is carried out, in the event of a deviation the measured location data also in the respective area between two position elements are corrected.
  • This connection of the track-related coordinate system to the superordinate coordinate system by recording the already measured orbit measuring points further increases the accuracy of the method according to the invention z location and position determination, the location coordinates d being recorded and identified by the measuring system and lying next to the track during the measuring run we compared with the stored location coordinates of these measuring points.
  • the accuracy is periodically corrected in this way, the correction between the position elements being able to be carried out by means of an appropriate interpolation method.
  • the correction can be carried out immediately during the measurement run, but also after the measurement run, if the reference values are only available at a later time.
  • the location d position elements is then measured relative to the transmitter / receiver unit if the measuring system, in particular the transmitter / receiver unit, is absolutely unsprung with respect to the track.
  • the position elements are measured relative to the track coordinate system.
  • a position difference measurement is also carried out in this spring-loaded version, as will be explained in more detail below.
  • a further development of the method according to the invention proposes that the position changes of the transmitter / receiver unit and of the navigation system with respect to the track or the moving track coordinate system be measured continuously.
  • This training takes into account the fact that the measuring vehicle is not absolutely rigid in itself, but that a vehicle suspension between the measuring chassis and the wheels is present.
  • the system is subject to certain fluctuations, with the consequence that the transmitter / receiver unit is located at an undetermined location with respect to the track, which leads to inaccuracies overall.
  • these position deviations of the transmitter / receiver unit can be determined and compensated for accordingly. This enables objects and position elements to be measured precisely.
  • a preferred technical process implementation of this suggests that a location difference measurement is carried out.
  • a position difference measurement it is possible to measure the changes in position of the transmitter / receiver unit and of the navigation system with respect to the track or with respect to a moving coordinate system in 6 degrees of freedom, so that the changes in position can be determined very precisely.
  • the vertical distances to the two rails of the track be measured on the basis of predetermined measuring points on the measuring vehicle which are fixed with respect to the transmitter / receiver unit and the navigation system.
  • This distance measurement can be carried out contactlessly, for example using a laser. This enables a technically simple determination of the distance.
  • a further development of the inspection method according to the invention suggests that the track width of the track is also continuously measured.
  • the track gauge is measured by scanning the distance between the two rail edges, this distance between the rail edges defining the center of the track.
  • the measurement of the track width is preferably carried out by mechanical scanning, that is to say not without contact.
  • the inspection method according to the invention comprises, on the one hand, the acquisition of correct environmental data, in particular profile data, and, on the other hand, the determination of track data.
  • correct environmental data in particular profile data
  • determination of track data it is also conceivable in the sense of the invention to measure only d track data without the additional acquisition of the surrounding data, in particular re profile data.
  • the transmitter / receiver unit is then either put out of operation or it is used to identify the position elements already mentioned in the sense of a correction of the location data.
  • the method described above related to the determination of the track data for a track section is not restricted to this field of application.
  • the inventive concept is equally applicable to the determination of the location un the location of a measuring vehicle for inspecting, contactless scanning of the immediate environment of a road section.
  • the basic idea in this inventive embodiment is that a measuring vehicle, which is designed as a normal road vehicle and equipped with the appropriate measuring instruments, travels along the road and scans the surroundings of the road route in a contactless manner with regard to the previously determined measurement criteria.
  • the measuring vehicle does not drive on the Idealwe, for example, due to driving inaccuracies or due to uneven roads.
  • the measuring vehicle also includes the measuring devices, for example the 360 ° scanner for image, profile and thermographic measurement.
  • the locally fixed assignment between the transmitter / receiver unit on the one hand and the reference system unit on the other hand is to be understood because these two units are immovable relative to one another, so that the location and position coordinates measured with the reference system unit simultaneously also Location and location coordinates of the transmitter / receiver unit are relative to a predetermined starting position.
  • the reference system unit can be the navigation system already mentioned.
  • the reference system unit is a course-location-reference system, for example a gyro system.
  • This system thus measures the changing accelerations, and the respective location and position coordinate can be calculated by double integration from the measured acceleration values.
  • the transmitter / receiver unit and the reference system unit are arranged fixedly on a common measuring chassis of the measuring vehicle.
  • the two units are thus firmly mounted on the measuring travel gesture, so that they are immovable relative to one another and form a measuring platform.
  • the measuring chassis of the measuring vehicle can be, for example, a bogie as is known from railway construction.
  • the measuring chassis is mounted exclusively on the wheels of the measuring vehicle.
  • This has the advantage that the measuring chassis for receiving the measuring devices is subject to as few fluctuations as possible, which are nevertheless necessary so that the measuring vehicle can travel safely on the rails without, for example, jumping.
  • the measuring devices are arranged on the measuring chassis, these fluctuations are limited to a minimum, since they are independent, for example se from the fluctuations of the measuring vehicle superstructure.
  • a preferred development of the device according to the invention for carrying out the method proposes a position difference measuring device for determining the position of the transmitter / receiver unit and the reference unit with respect to the track.
  • This training takes into account the fact already mentioned that the measuring vehicle is not absolutely rigid on sic, but that a certain vehicle suspension is present between the measuring chassis and the wheels.
  • the system is subject to certain fluctuations, with the consequence that the transmitter / receiver unit is located together with the reference system unit with respect to the track or - more precisely with regard to the moving track coordinate system - at an undetermined location, which leads overall to measurement inaccuracies.
  • a position difference measuring device is provided according to the further development, the corresponding position differences and thus the corresponding position deviations can be determined and correspondingly compensated for by computer.
  • the position difference measuring device is able to measure a total of six degrees of freedom.
  • a distance measuring device for preferably contactless measurement of the respective distance from the top of the rails is arranged vertically above the two rails of the track, these distance measuring devices with respect to the transmitter / receiver unit and the reference system unit these are permanently assigned locally.
  • These distance measuring devices equally take into account the previously mentioned fact that the measuring vehicle m are subject to certain fluctuations in the units arranged thereon, even if the corresponding measuring devices are permanently mounted on the measuring platform of the measuring chassis.
  • the distance measuring devices are also like the previously mentioned location di ferent measuring device on the measuring chassis firmly arranged. The distance measurements allow conclusions to be drawn about the fluctuations of the measuring devices and thus a track-related profile measurement can be achieved.
  • Two laser distance measuring devices can be used as distance measuring devices, by means of which the distances between the upper rail edges and the measuring platform are measured.
  • the determination of the correct location and position coordinate of the test bogie is provided in its most optimal and precise form by the track / bogie position difference measuring device mounted on the test bogie in connection with the reference system.
  • the measuring vehicle has a track gauge. This gauge measurement is done by mechanical scanning of the distance between the two inner edges of the rails. D measuring device is installed in the chassis and is decoupled from it by the Radfederu.
  • the measuring vehicle has a displacement sensor for measuring the distance covered by the measuring vehicle, starting from an exit point.
  • the travel sensor is also in contact with the rail and is decoupled from the measuring platform by the wheel suspension.
  • test vehicle is self-propelled.
  • the measuring vehicle it is also conceivable for the measuring vehicle to be pulled or pushed by a motor vehicle without a drive.
  • Figure 1 is a perspective view of a railroad tunnel with a measuring vehicle located therein;
  • FIG. 2 shows a side view of the measuring vehicle according to the invention
  • Fig. 3 is a side view of the measuring chassis of the measuring vehicle
  • Fig. 4 is a front view of the chassis in Fig. 3;
  • Fig. 5 is a schematic side view of a non-driven measuring vehicle which must be pulled or pushed by a corresponding locomotive;
  • Fig. 6 is a functional diagram of the 360 ° ⁇ scanner.
  • Fig. 1 the interior of a railway tunnel 1 can be seen with a track 2, wherein d track 2 has the two rails 3.
  • a measuring vehicle 4 runs on the track 2 and h the purpose of inspecting the railway tunnel 1, for example to obtain profile data or a conventional optical image or a thermographic image to investigate.
  • a so-called scanner is arranged at the front end of the measuring vehicle 4, the functional principle of which is shown in FIG. 6.
  • the basic principle is to have a measuring beam 6 in the form of a laser beam circulate in the radial direction perpendicular to the direction of movement of the measuring vehicle 4.
  • the inner contour of the railway tunnel 1 is swept in a helical shape, as is indicated in FIG. 1.
  • the laser beam is reflected from the inner wall of the railway tunnel 1, and the reflected signals are received in the area of the transmitter and sent to an evaluation, which is indicated schematically in FIG. 6.
  • the image acquisition and profile measurement is represented by a laser in FIG. 6.
  • the transmitter and the receiver form a structural transmitter / receiver unit 7.
  • the device as shown in Fig., Represents the state of the art, i. the transmitter / receiver unit 7 scans the inner contour of the railway tunnel 1 by means of the measuring beam 6, so that profile data can be continuously obtained therewith, for example.
  • the scanner 5 with the transmitter / receiver unit 7 is firmly mounted on a corresponding measuring platform of a measuring chassis 8 of the measuring vehicle 4.
  • the measuring vehicle 4 also has a second chassis 8 '. Since the measuring chassis 8 rests with the interposition of damping elements on wheels while on the measuring chassis 8 and on the chassis 8 'the actual housing 10 of the measuring vehicle 4 rests, which also accommodates an operating console 11. 3 and 4, the measuring chassis 8 is shown again with the wheels 9 alone without the housing 10.
  • a reference system unit 12 is also permanently mounted on the measuring chassis 8. It is a gyro system that measures accelerations. The measured value, like the values from the transmitter / receiver unit 7, is processed and stored in the operating console 11.
  • a distance measuring device 13 is arranged on both sides of the measuring chassis 8 above the two rails 3, which are two laser distance measuring devices, by means of which the respective distance between the upper edge of the rail and the measuring platform of the measuring chassis 8 is measured without contact.
  • the Meßfah frame 8 further includes a track / chassis position difference measuring device 16th
  • the measuring chassis 8 is a track gauge 14 under Dept. Stung the distance between the two rail inner edges and a displacement sensor assigned, by means of which the distance traveled by the measuring vehicle 4 is measured.
  • FIG. 2 While a self-propelled measuring vehicle 4 is shown in FIG. 2, an M vehicle 4 is shown in FIG. 5 using only a single measuring undercarriage 8, which is either pulled or pushed by a corresponding traction vehicle.
  • the measuring vehicle 4 works as follows:
  • the measuring vehicle 4 travels along the track 2 at a speed between 3 and 120 km / h.
  • the 360 ° scanner 5 measures the profile with the e speaking profile data relative to the measuring platform of the measuring chassis 8 and records the corresponding image data with a recording angle of 360 °.
  • reference system unit 12 with the gyro system serves to measure the location and position of the measuring platform of the measuring chassis 8 relative to the location and position coordinates of a defini th starting position.
  • the distances between the upper edges of the rails 3 and the measuring platform of the measuring chassis 8 are also measured chronologically.
  • the track / chassis position difference measuring device 16 also installed in the measuring chassis 8, the position measurement of the reference stem unit 12 is corrected.
  • the track width, d the distance between the two rail inner edges, is measured by means of the track width measuring device 14.
  • the path encoder 15 carries out an additional path measurement of the path covered by the measuring vehicle 4.
  • the metric profile and track data can be calculated from the measurement data obtained in this way.
  • the 360 ° scanner 5 per grained image and profile data are continuously recorded during the measurement run and recorded on magnetic tape.
  • the location and position data of the measuring platform of the measuring chassis, picked up and corrected by the reference system unit 12 are continuously processed or recorded on magnetic tape.
  • surveying bolts are identified that lie next to the track 2 and define exactly measured position points, which can also be available as reference values and are stored on a data carrier.
  • the 360 ° scanner 5 identifies a surveying boizen with his image and profile data, including the track / chassis position difference measuring device 16 and / or the data from the distance measuring devices 13 and the data from the displacement sensor 15, a correction of the by the reference stem unit 12 generated location and location data by comparison and an interpol on with the precisely specified coordinates of the surveying bolt.
  • This correction is carried out in the area of two successive surveying bolts during the measurement run. If there are no reference values for the measurement bene for a test run, the exact test drive data can only be calculated after the test drive after the presence of the reference values.
  • the metrized profile and track data can then be obtained from the location and position data of the measuring platform of the measuring chassis 8 corrected in this way.
  • the metric profile data can be from the corrected location and position data d measuring platform of the measuring chassis 8, from the data of the track / chassis position difference measuring device 16 and / or the distance measurements by the two distance measuring devices 13 between the measuring platform of the measuring chassis 8 and the upper rails ten, from the track gauge measurement and from the profile data recorded with the 360 ° scanner 5.
  • the track / chassis position difference measurement carries with its six degrees of freedom and / or the measurement of the distance between the measuring platform and the top edges of the rails by means of the distance measuring devices 13 of the fact that the measuring chassis 8 with its measuring platform with the wheels 9 is not rigidly connected , but that due to the interposed damping elements, the Me chassis 8 with the transmitter / receiver unit 7 and the reference system unit 1 can tilt sideways and thus in comparison to the theoretically desired rigid connec tion between the measuring chassis 8 and wheels 9 specifies an incorrect position.
  • the metrized track data can be obtained from the corrected location and position data of the measuring platform of the measuring chassis 8 and from the gauge measurement.
  • the decisive advantage of the measuring method according to the invention is that the necessary track and profile data can be obtained simultaneously with high accuracy with a moving measuring vehicle 4 in a technically simple manner.
  • the method can also be extended to a contactless contact wire position and conductor rail measurement.
  • the method according to the invention was described on the basis of the inspecting, contactless scanning of the immediate vicinity of a track section with regard to certain measurement criteria with additional determination of the location and position of the transmitter / receiver unit, in order to be able to additionally determine the track data.
  • the inventive concept is not limited to this application. It is much more than that conceivable to use the idea of the invention for the inspection of the surroundings of road sections, for example for the exact image or thermographic recording of the houses running along the street section.
  • the measuring vehicle is not a rail vehicle, but a completely normal road vehicle, which is equipped with the appropriate measuring devices.
  • the scanner 5 and the displacement sensor 15 it is possible to determine the exact location and the position of the vehicle.
  • the distance traveled by the vehicle can thus be calculated and an exact image of the surroundings can thus be obtained as a geometric basis for further measurements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

Die Erfindung schlägt ein Verfahren sowie eine Vorrichtung zum kontinuierlichen und simultanen Gewinnen von geometrisch genauen Profil-, Bild- und Gleisdaten während einer Meßfahrt mittels eines Meßfahrzeuges vor. Für die Gewinnung der Profil-, Bild- und Gleisdaten dient ein 360°-Scanner sowie ein Kurs-Lage-Referenzsystem, wobei der Ort und die Lage dieser beiden Geräte relativ zum Gleis oder zu anderen Bezugspunkten gemessen wird.

Description

VERFAHREN UND VORRICHTUNG ZUM GEWINNEN VON PROFIL- UND GLEISDATEN
Die Erfindung betrifft ein Verfahren zum inspektierenden, berührungslosen Abtasten der un mittelbaren Umgebung einer Gleisstrecke hinsichtlich bestimmter Meßkriterien, beispielswei se optisches Bild, 3-dimensionale Profilierung, Thermographie etc., bei dem während eine kontinuierlichen Meßfahrt eines Meßfahrzeuges längs der Gleisstrecke senkrecht hierzu ei radial umlaufender Meßstrahl ausgesendet wird und die reflektierten Signale dieses Meß strahls im Bereich des Senders und/oder von der Umgebung emittierte Signale empfangen verarbeitet und gespeichert werden. - Die Erfindung betrifft ferner eine Vorrichtung zu Durchführung des Verfahrens mit einem Meßfahrzeug, das einen Scanner zum berührungs losen Abtasten der unmittelbaren Umgebung der Gleisstrecke mittels eines senkrecht hierz radial verlaufenden Meßstrahls aufweist, wobei der Sender sowie der zugeordnete Empfän ger eine bauliche Sender/Empfänger-Einheit definieren.
In zunehmendem Maße wird es immer wichtiger, Gieisstrecken regelmäßig zu inspizieren Darunter fällt beispielsweise, ein herkömmliches optisches Bild von der unmittelbaren Um gebung der Gleisstrecke zu gewinnen, wobei unter der "unmittelbaren Umgebung" beispiels weise der Gleiskörper oder - wenn die Gleisstrecke innerhalb eines Tunnels verläuft - di Tunnelleibung gemeint ist. Außerdem ist es wichtig, 3-dimensionale Profildaten von de Bauwerksoberflächen, d.h. der Tunnelleibung, den Stützmauern, den Bahnsteigkonture etc. zu gewinnen, wobei diese Profildaten im gleisbezogenen Koordinatensystem darzustel len sind. Die Gleisachse bildet dabei die Streckenkoordinate dieses gleisbezogenen Koordi natensystems. Die Gleisachse liegt dabei auf der Verbindungslinie zwischen den beide Schienenoberkanten in der Gleismitte, die durch den Abstand zwischen den Schieneninnen kanten definiert ist. Weiterhin ist im Rahmen der Inspektion die Thermographie von Interes se, aus der beispielsweise Rückschlüsse über den Zustand eines Tunnels gezogen werde können. Weitere Inspektionsmöglichkeiten sind denkbar, beispielsweise auch die Inspektio des Eisenbahnoberbaus und des Fahrdrahtverlaufs.
Die entsprechenden Meßdaten, beispielsweise Profildaten und dabei insbesondere Tunnel profildaten, werden heutzutage bereits berührungslos gewonnen, wobei zur Gewinnung de Profildaten eine Entfernungsmessung mittels Laser durchgeführt wird. Genaue Messunge sind jedoch nur bei Fahrzeugstillstand möglich. Es besteht zwar grundsätzlich die Möglich
ERSATZBLATT keit, mit einem fahrenden Meßfahrzeug die entsprechenden Messungen durchzuführen, doch sind diese in nachteiliger Weise entweder zu ungenau oder nicht flächendeckend. rüber hinaus ist die Messung nur mit einem großen Meßfeldraster möglich, so daß die Au sung entsprechend gering ist. Gewonnen werden die Meßdaten dadurch, daß längs Gleisstrecke ein Meßfahrzeug fährt. Senkrecht zur Fortbewegungsrichtung wird in radia Richtung mittels eines 360°-Scanners ein umlaufender Meßstrahl ausgesendet. Die refl tierten Signale dieses Meßstrahls werden von der gleichen Einheit wieder empfangen u die Meßsignale gespeichert, wobei der Sender und der Empfänger eine bauliche so meßtechnische Einheit bilden. Ein derartiges Meßfahrzeug zum kontinuierlichen Vermess des Profil Verlaufs von Eisenbahntunnelröhren ist beispielsweise aus der DE-PS 28 18 5 bekannt. Allerdings ist es mittels dieses Meßfahrzeugs nicht möglich, Gleisdaten hinsichtli Ort und Lage zu messen. Ganz im Gegenteil, durch die Verwendung eines Pendels, w ches sich bezüglich der Erdvertikalen ausrichtet, sollen Querneigungen des Gleises aus glichen werden.
Bei der Thermographiemessung wird kein Meßstrahl ausgesendet, sondern es werden von der Umgebung emittierten Signale empfangen.
Neben den zuvor beschriebenen Meßdaten sind auch die Gleisdaten von besonderem Int esse. Darunter werden die Spurweite, der Kurvenradius, die Überhöhung, die Verwindu die Steigung sowie die Raumkurve der Gleisachse verstanden, wobei diese Gleisdat ebenfalls in einem gleisbezogenen Koordinatensystem darzustellen sind. Die Gleisdat werden dabei durch mechanischen Kontakt mit den Schienen unter Einbeziehung der V messung von Bezugspunkten gewonnen. Die Aufnahme der Gleisdaten wird mit Meßfa zeugen durchgeführt, wobei die Meßmethoden Probleme bei der Befahrung von Weich haben und geringe resultierende Genauigkeiten aufweisen. Eine hohe Genauigkeit ist n mit großem Personalaufwand möglich. Nachteilig ist weiterhin, daß die Datengewinnu durch mechanische Berührung mit der Schiene erfolgt und daß das dazu gehörige Meßge relativ schwer ist.
Insgesamt ist bei den bekannten Inspektionsverfahren nachteilig, daß eine Kombination d gleichzeitigen, d.h. simultanen und genauen Gewinnung von Umgebungsmeßdaten, b spielsweise Profildaten, und Gleisdaten nicht erfolgreich ist.
Davon ausgehend liegt der Erfindung die A u f g a b e zugrunde, das Verfahren der ei gangs angegebenen Art derart weiterzuentwickeln, daß zusätzlich zu den Umgebungsme daten, insbesondere Profildaten, auch noch die Gleisdaten ermittelt werden können, wob darüber hinaus die Genauigkeit beispielsweise der Profiimessung verbessert werden so ferner soll eine Vorrichtung zur Durchführung des Verfahrens geschaffen werden.
Als technische L ö s u n g wird mit der Erfindung verfahrensmäßig vorgeschlagen, daß z sätzlich noch mittels eines auf dem Meßfahrzeug angeordneten Navigationssystems der und die Lage der Sender/Empfänger-Einheit bezüglich eines erdfesten Koordinatensyste oder Bezugspunktes synchron gemessen wird und daraus die Gleisdaten ermittelt werden.
Dadurch ist ein universelles 360°-lnspektionssystem für die kontinuierliche und simulta Gewinnung von Umgebungsmeßdaten, insbesondere Profildaten, und Gleisdaten gescha fen. Die Grundidee besteht dabei darin, mit der Sender/Empfänger-Einheit die exakten Ort koordinaten für die Ortsbestimmung der Sender/Empfänger-Einheit sowie darüber hina die räumliche Orientierung, d.h. Ausrichtung der Sender/Empfänger-Einheit im Sinne ein Lagebestimmung zu messen. Die räumliche Ausrichtung der Sender/Empfänger-Einheit a dem jeweiligen Ort läßt dabei Rückschlüsse auf die dort herrschenden Gleisdaten zu. wird dabei davon ausgegangen, daß die Sender/Empfänger-Einheit derart am Meßfahrze angeordnet ist, daß das Meßfahrzeug jede Gleislageänderung unmittelbar und ohne Verz gerung "mitmacht". So ändert sich beispielsweise die Orientierung der Sender/Empfänge Einheit, wenn das Gleis eine Kurve oder eine Steigung durchläuft, oder aber wenn die ein Schiene des Gleises bezüglich der anderen Schiene überhöht ist und somit das Meßfah zeug und damit auch die Sender/Empfänger-Einheit seitlich aus der Vertikalen herauskipp Der besondere Vorteil des erfindungsgemäßen Verfahrens liegt somit in der simultanen G winnung sowohl der Profil- als auch der Gieisdaten. Diese Datengewinnung ist mit dem fa renden Meßfahrzeug möglich, wobei dieses mit hoher Geschwindigkeit, d.h. zwischen 3 un 120 km/h fahren kann. Dabei erfolgt die Messung mit hoher Genauigkeit, wobei der Fehl kleiner als 0,5 cm liegt. Hinsichtlich beispielsweise der Profilmessung erfolgt die Dateng winnung im unteren Geschwindigkeitsbereich flächendeckend und im oberen Geschwindi keitsbereich im 10 cm bis 20 cm breiten Raster, während die Datengewinnung bei der Glei messung in vorteilhafter Weise kontinuierlich ist. Das Ganze erfordert nur einen minimale Personaleinsatz, wobei das erfindungsgemäße Inspektionsverfahren zusätzlich noch auf e ne berührungslose Fahrdrahtiage- und Stromschienenmessung ausgedehnt werden kan Weiterhin ist es mittels des erfindungsgemäßen Verfahrens möglich, die Raumkurve d Gleisachse zu berechnen. Schließlich erfolgt die Datengewinnung in vorteilhafter Weise b rührungslos (abgesehen von einer eventuellen Spurweitenmessung).
In einer Weiterbildung des erfindungsgemäßen Verfahrens wird vorgeschlagen, daß ausg hend von einem erdfesten Ausgangspunkt die während der Meßfahrt auf die Sender/Em fänger-Einheit wirkenden Beschleunigungen gemessen und synchron mit den Signalen d Sender/Empfänger-Einheit verarbeitet werden. Ein derartiges Verfahren läßt sich beispiel weise unter Verwendung eines Kreiselsystems bzw. eines Kurs-Lage-Referenzsyste technisch einfach realisieren. Durch zweifache Integration der gemessenen Beschleu gungswerte läßt sich dann der jeweils erreichte Ort und/oder Lage der Sender/Empfäng Einheit berechnen.
Ausgehend von dem erfindungsgemäßen Verfahren, wobei längs der Gieisstrecke in b stimmten Abständen diese mit Positionselementen (Vermessungspunkte) versehen ist, d hinsichtlich ihrer Örter bezüglich des erdfesten Koordinatensystems exakt vermessen sow gespeichert sind, wird in einer weiteren Weiterbildung vorgeschlagen, daß die Sender/Em fänger-Einheit die Positionselemente identifiziert, ihren Ort relativ zur Sender/Empfänge Einheit bzw. zum Gleiskoordinatensystem mißt und dabei ein Vergleich der exakten Ortsd ten des jeweiligen Positionselements mit den gemessenen Ortsdaten durchgeführt wird, w bei bei einer Abweichung die gemessenen Ortsdaten auch im jeweiligen Bereich zwisch zwei Positionselementen korrigiert werden. Diese Verbindung des gleisbezogenen Koord natensystems mit dem übergeordneten Koordinatensystem durch Aufnahme der bereits ve messenen Bahnmeßpunkte erhöht die Genauigkeit des erfindungsgemäßen Verfahrens z Ort- und Lagebestimmung weiter, wobei während der Meßfahrt die Ortskoordinaten d durch das Meßsystem aufgenommenen und identifizierten, neben dem Gleis liegenden Ve messungspunkte mit den gespeicherten Ortskoordinaten dieser Meßpunkte verglichen we den. Bei der Bestimmung der Lage- und Ortsdaten werden somit auf diesem Wege die U genauigkeiten periodisch korrigiert, wobei die Korrektur zwischen den Positionselemente mittels eines entsprechenden Interpolationsverfahrens durchgeführt werden kann. Die Ko rektur kann dabei gleich während der Meßfahrt, aber auch nach der Meßfahrt durchgefüh werden, wenn erst zu einem späteren Zeitpunkt die Referenzwerte vorliegen. Der Ort d Positionselemente wird dann relativ zur Sender/Empfänger-Einheit gemessen, wenn da Meßsystem, also insbesondere die Sender/Empfänger-Einheit bezüglich des Gleises abs lut ungefedert ist. Im gefederten Fall - was die Regel sein dürfte - wird eine Messung der P sitionselemente relativ zum Gleiskoordinatensystem durchgeführt. In diesem Fall wird b dieser gefederten Version zusätzlich noch eine Lagedifferenzmessung durchgeführt, wi nachfolgend noch näher erläutert werden wird.
Eine weitere Weiterbildung des erfindungsgemäßen Verfahrens schlägt vor, daß zusätzlic noch die Lageveränderungen der Sender/Empfänger-Einheit sowie des Navigationssystem bezüglich des Gleises bzw. des mitbewegten Gleiskoordinatensystems kontinuierlich g messen werden. Diese Weiterbildung trägt der Tatsache Rechnung, daß das Meßfahrzeu in sich nicht absolut starr ausgebildet ist, sondern daß eine Fahrzeugfederung zwische dem Meßfahrgestell und den Rädern vorhanden ist. Durch diese Federungen unterliegt ab das System gewissen Schwankungen mit der Konsequenz, daß sich die Sender/Empfänge Einheit bezüglich des Gleises an einem unbestimmten Ort befindet, was insgesamt zu Me ungenauigkeiten führt. Da aber die entsprechenden Lageunterschiede zwischen der Se der/Empfänger-Einheit und dem Gleis gemessen werden, können diese Positionsabwe chungen der Sender/Empfänger-Einheit ermittelt und entsprechend rechnerisc kompensiert werden. Dadurch kann die Vermessung von Objekten und Positionselemente exakt durchgeführt werden.
Eine bevorzugte technische Verfahrensdurchführung hiervon schlägt vor, daß eine Lagedi ferenzmessung durchgeführt wird. Durch eine derartige Lagedifferenzmessung ist es mö lich, die Lageveränderungen der Sender/Empfänger-Einheit sowie des Navigationssystem bezüglich des Gleises bzw. bezüglich eines mitbewegten Gleiskoordinatensystems in 6 Fre heitsgraden zu messen, so daß dadurch die Lageveränderungen überaus exakt bestim werden können.
In einer alternativen Verfahrensdurchführung zum Messen der Lageveränderungen wir vorgeschlagen, daß ausgehend von vorgegebenen sowie bezüglich der Sender/Empfänge Einheit sowie des Navigationssystems festen Meßstellen am Meßfahrzeug die senkrechte Abstände zu den beiden Schienen des Gleises gemessen werden. Diese Abstandsmessun kann berührungslos beispielsweise unter Verwendung eines Lasers durchgeführt werde Dadurch ist eine technisch einfache Entfernungsbestimmung möglich.
Eine Weiterbildung hiervon schlägt vor, daß die Abstände in unmittelbarer Nähe zu den R dern des Fahrgestells des Meßfahrzeugs gemessen werden. Dadurch wird die Meßgenaui keit, insbesondere Profilmeßgenauigkeit weiter erhöht, da die Effekte der Meßfahrzeu schwankungen auf ein Minimum reduziert werden, weil die meßbare Schienenoberkant immer im Visier des Entfernungsmessers bleibt.
Eine weitere Weiterbildung des erfindungsgemäßen Inspektionsverfahrens schlägt vor, da zusätzlich noch die Spurweite des Gleises kontinuierlich gemessen wird. Die Spurweite messung erfolgt dabei durch Abtastung des Abstandes zwischen den beiden Schieneni nenkanten, wobei dieser Abstand zwischen den Schieneninnenkanten die Gleismitte def niert. Die Messung der Spurweite erfolgt dabei vorzugsweise durch eine mechanisch Abtastung, also nicht berührungslos. Schließlich wird in einer Weiterbildung des erfindungsgemäßen Verfahrens vorgeschlage daß ausgehend von einem fest vorgegebenen Ausgangspunkt zusätzlich noch die vo Meßfahrzeug abgeleitete, zurückgelegte Wegstrecke gemessen wird.
Das erfindungsgemäße Inspektionsverfahren umfaßt einerseits die Gewinnung von b stimmten Umgebungsdaten, insbesondere Profildaten, sowie andererseits die Bestimmu von Gleisdaten. Selbstverständlich ist es auch denkbar, im Sinne der Erfindung nur d Gleisdaten zu messen ohne die zusätzliche Gewinnung der Umgebungsdaten, insbesond re Profildaten. Die Sender/Empfänger-Einheit ist dann entweder außer Betrieb gesetzt od aber sie dient zum Identifizieren der bereits erwähnten Positionselementen im Sinne ein Korrektur der Ortsdaten.
Das zuvor beschriebene Verfahren bezog sich bei einer Gleisstrecke auf die Ermittlung d Gleisdaten. Die Grundidee der Erfindung ist jedoch auf dieses Anwendungsgebiet nicht b schränkt. Das erfinderische Konzept ist gleichermaßen auf die Bestimmung des Orts un der Lage eines Meßfahrzeugs zum inspektierenden, berührungslosen Abtasten der unmitte baren Umgebung einer Straßenstrecke anwendbar. Die Grundidee bei dieser erfinderische Ausführungsform besteht dabei darin, daß ein Meßfahrzeug, welches als normales Straße fahrzeug ausgebildet und mit den entsprechenden Meßinstrumenten bestückt ist, längs d Straße fährt und dabei die Umgebung der Straßenstrecke hinsichtlich der zuvor bestimmte Meßkriterien berührungslos abtastet. Das Meßfahrzeug fährt dabei nicht auf dem Idealwe beispielsweise aufgrund von Fahrungenauigkeiten oder aufgrund von Straßenunebenheite Dieser Idealweg wäre aber notwendig, damit während der Meßfahrt die Umgebung bezü lich eines idealen Straßenkoordinatensystems, welches durch den Streckenverlauf vorgeg ben ist, abgebildet wird. An diesem Punkt setzt die Erfindungsidee an. Da erfindungsgemä zusätzlich noch der Ort und die Lage des Meßfahrzeugs während der Fahrt längs der Str ßenstrecke bezüglich eines erdfesten Koordinatensystems oder Bezugspunktes synchro bestimmt und gemessen wird, lassen sich die hinsichtlich der bestimmten Meßkriterien g wonnenen Umgebungsbilder auf den Idealverlauf ("wie auf Schienen") des Meßfahrzeug korrigieren, um so ein unverfälschtes Umgebungsabbild zu erhalten. Diese Verwendung de erfindungsgemäßen Verfahrens zur Inspektion der unmittelbaren Umgebung einer Straße strecke unter Verwendung eines Straßenmeßfahrzeuges, welches nicht auf Gleisen fäh und bei dem der jeweilige Ort und die Lage bestimmt wird, stellt für sich eine selbständig Erfindung dar, wobei das erfindungsgemäße Konzept, wie es zuvor beschrieben wurde un nachfolgend noch weiter beschrieben werden wird für dieses Anwendungsbedürfnis gle chermaßen anwendbar ist. Ausgehend von der Vorrichtung der eingangs angegebenen Art wird zur Durchführung de Verfahrens vorgeschlagen, daß der Sender/Empfänger-Einheit eine Referenzsystem-Einhe zur Messung des Ortes und/oder Lage der Sender/Empfänger-Einheit bezüglich eines er festen Koordinatensystems oder Bezugspunktes örtlich fest zugeordnet ist.
Dies stellt eine technisch einfache Vorrichtung für die kontinuierliche und simultane Gewi nung von Umgebungsdaten, insbesondere Profildaten, und Gleisdaten dar. Dabei nim das Meßfahrzeug die Meßgeräte auf, beispielsweise den 360°-Scanner zur Bild-, Profil- so wie Thermographiemessung. Unter der örtlich festen Zuordnung zwischen der Sender/Emp fänger-Einheit einerseits und der Referenzsystem-Einheit andererseits ist zu verstehen, da diese beiden Einheiten relativ zueinander unbeweglich sind, so daß die mit der Referenzsy stem-Einheit gemessenen Orts- und Lagekoordinaten gleichzeitig auch die Orts- und Lage koordinaten der Sender/Empfänger-Einheit relativ zu einer vorgegebenen Ausgangspositio sind. Bei der Referenzsystem-Einheit kann es sich um das bereits erwähnte Navigationssy stem handeln.
Eine Weiterbildung hiervon schlägt vor, daß die Referenzsystem-Einheit ein Kurs-Lage-Re ferenzsystem, beispielsweise ein Kreiselsystem ist. Durch dieses System werden somit di sich ändernden Beschleunigungen gemessen, wobei durch eine doppelte Intergration au den gemessenen Beschleunigungswerten die jeweilige Orts- und Lagekoordinate berechne werden kann.
In einer bevorzugten Weiterbildung wird vorgeschlagen, daß die Sender/Empfänger-Einhei sowie die Referenzsystem-Einheit fest auf einem gemeinsamen Meßfahrgestell des Meß fahrzeugs angeordnet sind. Die beiden Einheiten sind somit fest auf dem Meßfahrgeste montiert, so daß sie relativ zueinander unbeweglich sind und eine Meßplattform bilden. Die stellt eine technisch einfache Möglichkeit dar, die Meßgeräte im Meßfahrzeug so zu integrie ren, daß die Meßungenauigkeiten auf ein Minimum begrenzt sind. Bei dem Meßfahrgestel des Meßfahrzeuges kann es sich beispielsweise um ein Drehgestell handeln, wie es au dem Eisenbahnbau her bekannt ist.
Eine Weiterbildung hiervon schlägt vor, daß das Meßfahrgestell ausschließlich auf den Rä dern des Meßfahrzeugs gelagert ist. Dies bringt den Vorteil mit sich, daß das Meßfahrgestel zur Aufnahme der Meßgeräte so wenig wie möglich Schwankungen unterworfen ist, die je doch notwendig sind, damit das Meßfahrzeug sicher auf den Schienen fahren kann, ohn beispielsweise Hüpfer zu machen. Da aber die Meßgeräte am Meßfahrgestell angeordne sind, sind diese Schwankungen auf ein Minimum begrenzt, da sie unabhängig beispielswei se von den Schwankungen des Meßfahrzeugoberbaus sind.
Eine bevorzugte Weiterbildung der erfindungsgemäßen Vorrichtung zur Durchführung d Verfahrens schlägt eine Lagedifferenzmeßeinrichtung zum Bestimmen der Lage d Sender/Empfänger-Einheit sowie der Referenz-Einheit bezüglich zum Gleis vor. Diese W terbildung trägt der bereits erwähnten Tatsache Rechnung, daß das Meßfahrzeug an sic nicht absolut starr ausgebildet ist, sondern daß eine gewisse Fahrzeugfederung zwische dem Meßfahrgestell und den Rädern vorhanden ist. Durch diese Federungen unterliegt ab das System gewissen Schwankungen mit der Konsequenz, daß sich die Sender/Empfänge Einheit zusammen mit der Referenzsystem-Einheit bezüglich des Gleises oder - exakter bezüglich des mitbewegten Gleiskoordinatensystems an einem unbestimmten Ort befinde was insgesamt zu Meßungenauigkeiten führt. Da aber gemäß der Weiterbildung eine Lag differenzmeßeinrichtung vorgesehen ist, können die entsprechenden Lageunterschiede un damit die entsprechenden Positionsabweichungen ermittelt und entsprechend rechnerisc kompensiert werden. Die Lagedifferenzmeßeinrichtung ist dabei in der Lage, insgesa sechs Freiheitsgrade zu messen.
Ein alternativer Vorschlag hiervon besteht darin, daß senkrecht oberhalb der beiden Schi nen des Gleises jeweils eine Abstandsmeßeinrichtung zum vorzugsweise berührungslose Messen des jeweiligen Abstandes von der Oberseite der Schienen angeordnet ist, wob diese Abstandsmeßeinrichtungen bezüglich der Sender/Empfänger-Einheit sowie der Ref renzsystem-Einheit diesen örtlich fest zugeordnet sind. Diese Abstandsmeßeinrichtunge tragen gleichermaßen der zuvor erwähnten Tatsache Rechnung, daß das Meßfahrzeug m den daran angeordneten Einheiten gewissen Schwankungen unterworfen sind, auch wen die entsprechenden Meßgeräte fest auf der Meßplattform des Meßfahrgestells montiert sin Die Abstandsmeßeinrichtungen sind dabei ebenfalls wie die zuvor bereits erwähnte Lagedi ferenzmeßeinrichtung am Meßfahrgestell fest angeordnet. Durch die Abstandsmessunge kann auf die Schwankungen der Meßgeräte rückgeschlossen und damit eine gleisbezogen Profilmessung erreicht werden. Als Abstandsmeßeinrichtungen können zwei Laser-Distan meßgeräte dienen, mittels denen die Entfernungen zwischen den Schienenoberkanten un der Meßplattform gemessen werden. Die Ermittlung der richtigen Orts- und Lagekoordinate des Meßfahrgestells wird in ihrer optimalsten und genauesten Form durch die auf dem Meß fahrgestell montierte Gleis/Meßfahrgestell-Lagedifferenzmeßeinrichtung in Verbindung m dem Referenzsystem besorgt.
Eine weitere Weiterbildung der erfindungsgemäßen Vorrichtung schlägt vor, daß das Meß fahrzeug eine Spurweitenmeßeinrichtung aufweist. Diese Spurweitenmessung erfolgt durc mechanische Abtastung des Abstandes zwischen den beiden Schieneninnenkanten. D Meßeinrichtung ist dabei im Fahrgestell installiert und ist von dieser durch die Radfederu entkoppelt.
Eine weitere Weiterbildung schlägt vor, daß das Meßfahrzeug einen Weggeber zur Messu der mit dem Meßfahrzeug zurückgelegten Strecke ausgehend von einem Ausgangspun aufweist. Auch der Weggeber hat Kontakt zur Schiene und ist von der Meßplattform dur die Radfederung entkoppelt.
Eine weitere Weiterbildung schlägt in einer ersten Alternative vor, daß das Meßfahrze selbstfahrend ist.
Alternativ ist es auch denkbar, daß das Meßfahrzeug antriebslos von einem Triebfahrze gezogen oder geschoben wird.
Die Erfindung wird nachfolgend anhand der Zeichnungen beschrieben. In diesen zeigt:
Fig. 1 eine perspektivische Ansicht eines Eisenbahntunnels mit nem darin befindlichen Meßfahrzeug;
Fig. 2 eine Seitenansicht des erfindungsgemäßen Meßfahrzeuges;
Fig. 3 eine Seitenansicht des Meßfahrgestells des Meßfahrzeugs
Fig. 2;
Fig. 4 eine Vorderansicht des Fahrgestells in Fig. 3;
Fig. 5 eine schematische Seitenansicht eines antriebslosen Meßfah zeugs, welches von einem entsprechenden Triebfahrzeug g zogen oder geschoben werden muß;
Fig. 6 ein Funktionsschema des 360°~Scanners.
In Fig. 1 ist das Innere eines Eisenbahntunnels 1 mit einem Gleis 2 zu erkennen, wobei d Gleis 2 die beiden Schienen 3 aufweist. Auf dem Gleis 2 fährt ein Meßfahrzeug 4 und h dabei den Zweck, den Eisenbahntunnel 1 zu inspizieren, beispielsweise Profildaten zu g winnen oder aber auch ein herkömmliches optisches Bild oder ein thermographisches Bi zu ermitteln.
Zu diesem Zweck ist am vorderen Ende des Meßfahrzeugs 4 ein sogenannter Scanner angeordnet, dessen Funktionsprinzip in Fig. 6 dargestellt ist. Das Grundprinzip besteht d bei darin, einen Meßstrahl 6 in Form eines Laserstrahls senkrecht zur Bewegungsrichtu des Meßfahrzeugs 4 in radialer Richtung umlaufen zu lassen. Dadurch wird die Innenkont des Eisenbahntunnels 1 wendeiförmig überstrichen, wie dies in Fig. 1 angedeutet ist. D Laserstrahl wird von der Innenwand des Eisenbahntunnels 1 reflektiert, und die reflektiert Signale werden im Bereich des Senders empfangen und einer Auswertung zugeführt, w dies in Fig. 6 schematisch angedeutet ist. In vereinfachter Form wird in Fig. 6 die Bildau nahme und Profilmessung durch einen Laser dargestellt. Der Sender und der Empfäng bilden dabei eine bauliche Sender/Empfänger-Einheit 7. Die Vorrichtung, wie sie in Fig. dargestellt ist, stellt den Stand der Technik dar, d.h. die Sender/Empfänger-Einheit 7 tast mittels des Meßstrahls 6 die Innenkontur des Eisenbahntunnels 1 ab, so daß damit be spielsweise kontinuierlich Profildaten gewonnen werden können.
Die Weiterentwicklung ist in Fig. 2 dargestellt. Der Scanner 5 mit der Sender/Empfänge Einheit 7 ist auf einer entsprechenden Meßplattform eines Meßfahrgestells 8 des Meßfah zeugs 4 fest montiert. Das Meßfahrzeug 4 weist noch ein zweites Fahrgestell 8' auf. Da Meßfahrgestell 8 ruht unter Zwischenanordnung von Dämpfungselementen auf Rädern während auf dem Meßfahrgestell 8 sowie auf dem Fahrgestell 8' das eigentliche Gehäus 10 des Meßfahrzeugs 4 ruht, welches auch eine Bedienungskonsole 11 aufnimmt. In de Fig. 3 und 4 ist das Meßfahrgestell 8 mit den Rädern 9 nochmals alleine ohne das Gehäus 10 dargestellt.
Am Meßfahrgestell 8 ist weiterhin eine Referenzsystem-Einheit 12 fest montiert. Es hande sich dabei um ein Kreiselsystem, welches Beschleunigungen mißt. Die gemessenen Wert werden ebenso wie die Werte aus der Sender/Empfänger-Einheit 7 in der Bedienungsko sole 11 verarbeitet und gespeichert.
Weiterhin ist am Meßfahrgestell 8 beidseitig oberhalb der beiden Schienen 3 jeweils ein Abstandsmeßeinrichtung 13 angeordnet, bei denen es sich um zwei Laser-Distanzmeßger te handelt, mittels denen die jeweiligen Entfernung zwischen der Oberkante der Schiene und der Meßplattform des Meßfahrgestells 8 berührungslos gemessen wird. Das Meßfah gestell 8 enthält weiterhin eine Gleis/Fahrgestell-Lagedifferenzmeßeinrichtung 16.
Schließlich ist dem Meßfahrgestell 8 noch eine Spurweitenmeßeinrichtung 14 unter Abt stung des Abstandes zwischen den beiden Schieneninnenkanten sowie ein Weggeber zugeordnet, mittels dem die vom Meßfahrzeug 4 zurückgelegte Strecke gemessen wird.
Während in Fig. 2 ein selbstfahrendes Meßfahrzeug 4 dargestellt ist, ist in Fig. 5 ein M fahrzeug 4 unter Verwendung nur eines einzigen Meßfahrgestells 8 dargestellt, welches tels eines entsprechenden Triebfahrzeuges entweder gezogen oder geschoben wird.
Das Meßfahrzeug 4 funktioniert wie folgt:
Während des Meßvorganges fährt das Meßfahrzeug 4 längs des Gleises 2 mit einer schwindigkeit zwischen 3 und 120 km/h. Der 360°-Scanner 5 mißt das Profil mit den e sprechenden Profildaten relativ zur Meßplattform des Meßfahrgestells 8 und nimmt mit nem Aufnahmewinkel von 360° die entsprechenden Bilddaten auf. Synchron hierzu dient Referenzsystem-Einheit 12 mit dem Kreiselsystem der Messung des Orts und der Lage Meßplattform des Meßfahrgestells 8 relativ zu den Orts- und Lagekoordinaten einer defini ten Ausgangsposition. Mit den beiden Abstandsmeßeinrichtungen 13 werden ebenfalls s chron die Entfernungen zwischen den Oberkanten der Schienen 3 und der Meßplattfo des Meßfahrgestells 8 gemessen. Mit der ebenfalls im Meßfahrgestell 8 eingebaut Gleis/Fahrgestell-Lagedifferenzmeßeinrichtung 16 wird die Lagemessung der Referenz stemeinheit 12 korrigiert. Mittels der Spurweitenmeßeinrichtung 14 wird die Spurweite, d der Abstand zwischen den beiden Schieneninnenkanten gemessen. Schließlich erfolgt tels des Weggebers 15 eine zusätzliche Wegmessung des vom Meßfahrzeug 4 zurück legten Weges.
Aus den so gewonnenen Meßdaten können die metrierten Profil- und Gleisdaten errech werden. Grundsätzlich werden dabei während der Meßfahrt die vom 360°-Scanner 5 pro zierten Bild- und Profildaten kontinuierlich aufgenommen und auf Magnetband aufgezei net. Synchron hierzu werden kontinuierlich die von der Referenzsystem-Einheit 12 auf nommenen und korrigierten Orts- und Lagedaten der Meßplattform des Meßfahrgestell weiterverarbeitet bzw. auf Magnetband aufgezeichnet. Mittels der Sender/Empfänger-E heit 7 werden Vermessungsbolzen identifiziert, die neben dem Gleis 2 liegen und exakt v messene Positionspunkte definieren, die darüber hinaus als Referenzwerte vorliegen k nen und auf einem Datenträger abgespeichert sind. Sobald der 360°-Scanner 5 mit sein Bild- und Profildaten einen Vermessungsboizen identifiziert, wird unter Einbeziehung Gleis/Fahrgestell-Lagedifferenzmeßeinrichtung 16 und/oder der Daten der Abstandsmeße richtungen 13 sowie der Daten des Weggebers 15 eine Korrektur der durch die Referenz stem-Einheit 12 erzeugten Orts- und Lagedaten durch einen Vergleich und eine Interpol on mit den exakt vorgegebenen Koordinaten des Vermessungsbolzens vorgenommen. Di se Korrektur erfolgt jeweils im Bereich zweier aufeinanderfolgender Vermessungsbolz während der Meßfahrt. Liegen für eine Meßfahrt keine Referenzwerte der Vermessungsb zen vor, so können die exakten Meßfahrtdaten erst nach der Meßfahrt nach Vorliegen d Referenzwerte berechnet werden.
Aus den so korrigierten Orts- und Lagedaten der Meßplattform des Meßfahrgestells 8 kö nen dann die metrierten Profil- sowie Gleisdaten gewonnen werden.
Die metrierten Profildaten lassen sich dabei aus den korrigierten Orts- und Lagedaten d Meßplattform des Meßfahrgestells 8, aus den Daten der Gleis/Fahrgestell-Lagedifferen meßeinrichtung 16 und/oder der Abstandsmessungen durch die beiden Abstandsmeßei richtungen 13 zwischen der Meßplattform des Meßfahrgestells 8 und den Schienenoberka ten, aus der Spurweitenmessung sowie aus den mit dem 360°-Scanner 5 aufgenommene Profildaten ermitteln. Dabei trägt die Gleis/Fahrgestell-Lagedifferenzmessung mit ihre sechs Freiheitsgraden und/oder die Messung des Abstandes zwischen der Meßplattfor und den Schienenoberkanten mittels der Abstandsmeßeinrichtungen 13 der Tatsache Rec nung, daß das Meßfahrgestell 8 mit seiner Meßplattform mit den Rädern 9 nicht starr ve bunden ist, sondern daß aufgrund der zwischengelagerten Dämpfungselemente das Me fahrgestell 8 mit der Sender/Empfänger-Einheit 7 sowie der Referenzsystem-Einheit 1 seitlich kippen kann und somit im Vergleich zu der theoretisch gewünschten starren Verbi dung zwischen Meßfahrgestell 8 und Räder 9 eine falsche Position vorgibt.
Die metrierten Gleisdaten können aus den korrigierten Orts- und Lagedaten der Meßplat form des Meßfahrgestells 8 sowie aus der Spurweitenmessung gewonnen werden.
Der entscheidende Vorteil des erfindungsgemäßen Meßverfahrens liegt darin, daß auf tech nisch einfache Weise simultan die notwendigen Gleis- und Profildaten bei hoher Genauig keit mit einem fahrenden Meßfahrzeug 4 gewonnen werden können. Zusätzlich kann da Verfahren noch auf eine berührungslose Fahrdrahtlage- und Stromschienenmessung aus gedehnt werden.
Das erfindungsgemäße Verfahren wurde anhand der inspektierenden, berührungslosen Ab tastung der unmittelbaren Umgebung einer Gleisstrecke hinsichtlich bestimmter Meßkriteri en unter zusätzlicher Bestimmung des Orts und der Lage der Sender/Empfänger-Einheit beschrieben, um damit zusätzlich noch die Gleisdaten bestimmen zu können. Das erfinderi sche Konzept ist jedoch auf diesen Anwendungsfall nicht beschränkt. Viel mehr ist es auc denkbar, die Erfindungsidee für die Inspektion der Umgebung von Straßenstrecken einzu setzen, beispielsweise zur genauen Bild- oder Thermographieaufnahme der längs der Stra ßenstrecke verlaufenden Häuser. Zu diesem Zweck handelt es sich bei dem Meßfahrzeu nicht um ein Schienenfahrzeug, sondern um ein ganz normales Straßenfahrzeug, welche mit den entsprechenden Meßeinrichtungen ausgestattet ist. Durch die Referenzsystem-Ein heit 12, dem Scanner 5 und dem Weggeber 15 ist es dabei möglich, den exakten Ort sowi die Lage des Fahrzeugs zu bestimmen. Mittels der Referenzsystem-Einheit 12 kann somi der zurückgelegte Weg des Fahrzeugs berechnet und so ein exaktes Abbild der Umgebun als geometrische Grundlage für weitere Messungen erhalten werden.
Bezugszeichenliste
Figure imgf000016_0001

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zum inspektierenden, berührungslosen Abtasten der unmittelbaren Umge bung einer Gleisstrecke hinsichtlich bestimmter Meßkriterien, beispielsweise optische Bild, 3-dimensionale Profilierung, Thermographie etc., bei dem während einer kontinuierlichen Meßfahrt eines Meßfahrzeugs längs der Gleis strecke senkrecht hierzu ein radial umlaufender Meßstrahl ausgesendet wird und die re flektierten Signale dieses Meßstrahls im Bereich des Senders und/oder von der Umge bung emittierte Signale empfangen, verarbeitet und gespeichert werden, d a d u r c h g e k e n n z e i c h n e t , daß zusätzlich noch mittels eines auf dem Meßfahrzeug angeordneten Navigationssy stems der Ort und die Lage der Sender/Empfänger-Einheit bezüglich eines erdfeste Koordinatensystems oder Bezugspunktes synchron gemessen wird und daraus di Gleisdaten ermittelt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß ausgehend von einem erdfe sten Ausgangspunkt die während der Meßfahrt auf die Sender/Empfänger-Einheit wir kenden Beschleunigungen gemessen und synchron mit den Signalen der Sender/Emp fänger-Einheit verarbeitet werden.
3. Verfahren nach Anspruch 1 oder 2, wobei längs der Gleisstrecke in bestimmten Abstän den diese mit Positionselementen versehen ist, die hinsichtlich ihrer Örter bezüglich de erdfesten Koordinatensystems exakt vermessen sowie gespeichert sind, dadurch ge kennzeichnet, daß die Sender/Empfänger-Einheit die Positionselemente identifiziert, ih ren Ort relativ zur Sender/Empfänger-Einheit bzw. zum Gleiskoordinatensystem miß und dabei ein Vergleich der exakten Ortsdaten des jeweiligen Positionselements mi den gemessenen Ortsdaten durchgeführt wird, wobei bei einer Abweichung die gemes senen Ortsdaten auch im jeweiligen Bereich zwischen zwei Positionselementen korri giert werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zusätzlic noch die Lageveränderungen der Sender/Empfänger-Einheit sowie des Navigationssy stems bezüglich des Gleises bzw. des mitbewegten Gleiskoordinatensystems kontinu ierlich gemessen werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß eine Lagedifferenzmessu durchgeführt wird.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß ausgehend von v gegebenen sowie bezüglich der Sender/Empfänger-Einheit sowie des Navigationss stems festen Meßstellen am Meßfahrzeug die senkrechten Abstände zu den beid Schienen des Gleises gemessen werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Abstände in unmittelb rer Nähe zu den Rädern des Fahrgestells des Meßfahrzeugs gemessen werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zusätzli noch die Spurweite des Gleises kontinuierlich gemessen wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß ausgehe von einem fest vorgegebenen Ausgangspunkt zusätzlich noch die vom Meßfahrze abgeleitete, zurückgelegte Wegstrecke gemessen wird.
10. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 9 nur zum Bestimme der Gleisdaten, der Oberbaudaten, der Tunneldaten und/oder der der Gleisstrecke b nachbarten Bauwerke.
11. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 9 zur Bestimmung d Orts und der Lage eines Meßfahrzeugs zum inspektierenden, berührungslosen Abt sten der unmittelbaren Umgebung einer Straßenstrecke.
12. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9 sowi der Verwendungen des Verfahrens nach Anspruch 10 oder 1 1 , mit einem Meßfahrzeug (4), das einen Scanner (5) zum berührungslosen Abtasten d unmittelbaren Umgebung der Gleisstrecke mittels eines senkrecht hierzu radial verla fenden Meßstrahls (6) aufweist, wobei der Sender sowie der zugeordnete Empfäng eine bauliche Sender/Empfänger-Einheit (7) definieren, d a d u r c h g e k e n n z e i c h n e t , daß der Sender/Empfänger-Einheit (7) eine Referenzsystem-Einheit (12) zur Messun des Ortes und/oder Lage der Sender/Empfänger-Einheit (7) bezüglich eines erdfeste Koordinatensystems oder Bezugspunktes örtlich fest zugeordnet ist.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Referenzsystem-Ei heit (12) ein Kurs-Lage-Referenzsystem, beispielsweise ein Kreiselsystem ist.
14. Vorrichtung nach Anspurch 12 oder 13, dadurch gekennzeichnet, daß die Sender/Em fänger-Einheit (7) sowie die Referenzsystem-Einheit (12) fest auf einem gemeinsam Meßfahrgestell (8) des Meßfahrzeugs (4) angeordnet sind.
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß das Meßfahrgestell ( ausschließlich auf den Rädern (9) des Meßfahrzeugs (4) gelagert ist.
16. Vorrichtung nach einem der Ansprüche 12 bis 14, gekennzeichnet durch eine Lagediff renzmeßeinrichtung (16) zum Bestimmen der Lage der Sender/Empfänger-Einheit ( sowie der Referenzsystem-Einheit (12) bezüglich zum Gleis (2).
17. Vorrichtung nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, daß sen recht oberhalb der beiden Schienen (3) des Gleises (2) jeweils ei Abstandsmeßeinrichtung (13) zum vorzugsweise berührungslosen Messen des jewei gen Abstandes von der Oberseite der Schienen (3) angeordnet ist, wobei die Abstand meßeinrichtungen (13) bezüglich der Sender/Empfänger-Einheit (7) sowie der Ref renzsystem-Einheit (12) diesen örtlich fest zugeordnet sind.
18. Vorrichtung nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, daß d Meßfahrzeug (4) eine Spurweitenmeßeinrichtung (14) aufweist.
19. Vorrichtung nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, daß d Meßfahrzeug (4) einen Weggeber (15) zur Messung der vom Meßfahrzeug (4) zurüc gelegten Strecke ausgehend von einem Ausgangspunkt aufweist.
20. Vorrichtung nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, daß d Meßfahrzeug (4) selbstfahrend ist.
21. Vorrichtung nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, daß d Meßfahrzeug (4) antriebslos von einem Triebfahrzeug gezogen oder geschoben wird.
PCT/DE1993/001080 1992-11-11 1993-11-11 Verfahren und vorrichtung zum gewinnen von profil- und gleisdaten WO1994011705A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94900040A EP0668988A1 (de) 1992-11-11 1993-11-11 Verfahren und vorrichtung zum gewinnen von profil- und gleisdaten
DE4395721T DE4395721D2 (de) 1992-11-11 1993-11-11 Verfahren und Vorrichtung zum Gewinnen von Profil- und Gleisdaten
AU54614/94A AU5461494A (en) 1992-11-11 1993-11-11 Process and device for acquiring profile and railway data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19924238034 DE4238034C1 (de) 1992-11-11 1992-11-11 Verfahren und Vorrichtung zum inspektierenden, berührungslosen Abtasten der unmittelbaren Umgebung einer Gleisstrecke hinsichtlich bestimmter Meßkriterien
DEP4238034.0 1992-11-11

Publications (1)

Publication Number Publication Date
WO1994011705A1 true WO1994011705A1 (de) 1994-05-26

Family

ID=6472605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/001080 WO1994011705A1 (de) 1992-11-11 1993-11-11 Verfahren und vorrichtung zum gewinnen von profil- und gleisdaten

Country Status (4)

Country Link
EP (1) EP0668988A1 (de)
AU (1) AU5461494A (de)
DE (2) DE4238034C1 (de)
WO (1) WO1994011705A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2305796A (en) * 1995-09-26 1997-04-16 London Underground Ltd Monitoring track condition

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426501C2 (de) * 1994-07-27 1998-03-12 Socon Sonar Control Kavernenve Sensoriksystem zur geometrischen Vermessung unzugänglicher unterirdischer Hohlräume
DE19506167A1 (de) * 1995-02-22 1996-08-29 Siemens Ag Verfahren und Einrichtung zum Bestimmen der Innengeometrie eines Bauteiles
DE29606346U1 (de) * 1996-03-27 1996-06-20 Deutzer Tech Kohle Gmbh Vorrichtung zur Bestimmung der Seitenlage von Fahrleitungen
DE19617326A1 (de) * 1996-04-30 1997-11-06 Sel Alcatel Ag Verfahren und Einrichtung zur Erfassung der Beschleunigung eines mehrgliedrigen Schienenfahrzeuges
DE19628124C2 (de) * 1996-07-12 2003-04-10 Daimler Chrysler Ag Verfahren und Anordnung zur Zuglängenmessung
DE19629390B4 (de) * 1996-07-20 2007-09-06 Socon Sonar Control Kavernenvermessung Gmbh Sensoriksystem zur geometrischen Vermessung unterirdischer Hohlräume und Vermessungsverfahren
IT1305737B1 (it) * 1998-07-30 2001-05-16 Demetrio Federico Struttura composta da:strumento emittente-ricevente di raggio laser,girevole con assetto verticale stabile in un contenitore fissato alla
DE10116945C1 (de) * 2001-04-05 2002-11-07 Montan Tech Gmbh Verfahren zur dauerstandssicheren Teilverfüllung von Schächten
DE10247602B4 (de) * 2002-10-11 2006-04-20 Bilfinger Berger Ag Vorrichtung zur Untersuchung der Beschaffenheit von Tunnel-Innenwandungen
GB2419759B (en) * 2003-07-11 2007-02-14 Omnicom Engineering Ltd A system of surveying and measurement
DE10359540A1 (de) * 2003-12-17 2005-07-14 Tlt-Turbo Gmbh Vorrichtung und Verfahren zur Bestimmung der Strömungsgeschwindigkeit
DE10359710A1 (de) * 2003-12-18 2005-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zum berührungslosen Erfassen von Abständen zu Gegenständen
GB2412261A (en) * 2004-03-17 2005-09-21 Laser Rail Ltd Apparatus for determining the profile of structures alongside railway tracks
DE102005012107B4 (de) * 2005-03-09 2010-04-29 Angermeier Ingenieure Gmbh Meßsystem und Verfahren zur geodätischen Vermessung von Objekten
DE102006027852B4 (de) * 2006-06-16 2009-02-26 Geo Information Consult Gmbh Gleismeßfahrzeug
DE102012202068B3 (de) * 2012-02-10 2013-05-16 Bombardier Transportation Gmbh Vermessung von Abständen eines Schienenfahrzeugs zu seitlich des Schienenfahrzeugs angeordneten Gegenständen
DE102014212233A1 (de) 2014-06-25 2015-12-31 Bombardier Transportation Gmbh Vorrichtung und Verfahren zur Erfassung einer Fahrzeugumgebung eines Schienenfahrzeugs sowie Schienenfahrzeug
DE102014212232A1 (de) 2014-06-25 2015-12-31 Bombardier Transportation Gmbh Vorrichtung und Verfahren zur Bestimmung mindestens einer Eigenschaft eines Gleises für ein Schienenfahrzeug sowie Schienenfahrzeug
AT518692B1 (de) * 2016-06-13 2019-02-15 Plasser & Theurer Exp Von Bahnbaumaschinen G M B H Verfahren und System zur Instandhaltung eines Fahrwegs für Schienenfahrzeuge
CN208868062U (zh) * 2018-07-23 2019-05-17 中国安全生产科学研究院 一种城市轨道交通自动巡检系统
DE102020211117A1 (de) * 2020-09-03 2022-03-03 Bombardier Transportation Gmbh Verfahren zur Detektion einer Tunneleinfahrt oder einer Tunnelausfahrt eines Schienenfahrzeugs, Betriebsverfahren sowie Schienenfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2602479A1 (fr) * 1986-08-01 1988-02-12 Magyar Allamvasutak Procede et dispositif de mesure des reactions des vehicules ferroviaires au cours de leur roulement, en particulier pour evaluer l'etat des voies ferrees
FR2610100A1 (fr) * 1987-01-23 1988-07-29 Syminex Systemes Expl Minerale Procedes et dispositifs pour determiner les deformations et le trajet d'une canalisation
DE2818531C2 (de) * 1977-05-31 1988-08-04 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H., Wien, At

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3120010A1 (de) * 1981-05-20 1982-12-09 Ed. Züblin AG, 7000 Stuttgart Verfahren zur positionsbestimmung eines vorgepressten hohlprofilstrangs und vorrichtung zur durchfuehrung des verfahrens
US4920655A (en) * 1984-07-30 1990-05-01 Applied Technologies Associates High speed well surveying and land navigation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2818531C2 (de) * 1977-05-31 1988-08-04 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H., Wien, At
FR2602479A1 (fr) * 1986-08-01 1988-02-12 Magyar Allamvasutak Procede et dispositif de mesure des reactions des vehicules ferroviaires au cours de leur roulement, en particulier pour evaluer l'etat des voies ferrees
FR2610100A1 (fr) * 1987-01-23 1988-07-29 Syminex Systemes Expl Minerale Procedes et dispositifs pour determiner les deformations et le trajet d'une canalisation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E.DESTAING: "Relevé photographique des profils de tunnels ferroviaires et traitement informatique des études de gabarit", REVUE GENERALE DES CHEMINS DE FER, January 1983 (1983-01-01), PARIS FR, pages 1 - 14 *
Proceedings of the 1992 International Con- ference on Industrial Electronics, Control , Instrumentation, and Automation, San Diego, VStA, 9-13 November 1992, *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2305796A (en) * 1995-09-26 1997-04-16 London Underground Ltd Monitoring track condition

Also Published As

Publication number Publication date
AU5461494A (en) 1994-06-08
DE4395721D2 (de) 1995-11-23
EP0668988A1 (de) 1995-08-30
DE4238034C1 (de) 1994-03-31

Similar Documents

Publication Publication Date Title
WO1994011705A1 (de) Verfahren und vorrichtung zum gewinnen von profil- und gleisdaten
EP0520342B1 (de) Messfahrzeug
AT403066B (de) Verfahren zum ermitteln der abweichungen der ist-lage eines gleisabschnittes
DE3137194C2 (de)
DE10260816B4 (de) Messeinrichtung zum Messen der Rundheit eines Eisenbahnrades
EP0986732B1 (de) Riffel- und langwellenmessung mit längslichtstrich, für schienen
EP3746346B1 (de) Schienenfahrzeug und verfahren zum vermessen einer gleisstrecke
EP0213253B1 (de) Gleisfahrbare Maschine zum Messen bzw. Registrieren oder Korrigieren der Gleislage mit Laser-Strahlen bzw. -Ebenen
DE60003677T2 (de) Gleisüberwachungseinrichtung
EP3535456B1 (de) Gleisbaumaschine mit gleislagemesssystem
EP3580393B1 (de) Verfahren und schienenfahrzeug zur berührungslosen erfassung einer gleisgeometrie
WO2018114233A1 (de) Gleismessfahrzeug und verfahren zum erfassen einer gleisgeometrie
EP3442849A1 (de) Verfahren und messsystem zum erfassen eines festpunktes neben einem gleis
EP1270814B1 (de) Gleisbaumaschine und Verfahren zur Erfassung einer Gleislage
WO2008122319A1 (de) Messanordnung zur berührungslosen und kontinuierlichen bestimmung von trassierung und gleislage von bahnschienen
WO2015197206A1 (de) Vorrichtung und verfahren zur bestimmung mindestens einer eigenschaft eines gleises für ein schienenfahrzeug sowie schienenfahrzeug
EP3160819B1 (de) Vorrichtung und verfahren zur erfassung einer fahrzeugumgebung eines schienenfahrzeugs sowie schienenfahrzeug
EP4251491A1 (de) Verfahren und system zur ermittlung von korrekturwerten für eine lagekorrektur eines gleises
DE102006027852B4 (de) Gleismeßfahrzeug
DE3444723A1 (de) Vorrichtung zum erfassen der gleisgeometrie mit einem laser
EP1361136B1 (de) Messverfahren zum Erfassen der Nachgiebigkeit eines Gleises und Fahrzeug zur Durchführung dieses Verfahrens
DE102015103054B3 (de) System zur kinematischen Schienenvermessung
DE2831916A1 (de) Verfahren und anordnung zum ermitteln der lage eines gleises
EP4130379A1 (de) Verfahren zur berichtigung des seitenabstandes und des höhenabstandes einer bahnsteigkante eines bahnsteiges zur gleisachse
AT333826B (de) Fahrbare einrichtung zum messtechnischen erfassen der unebenheiten von fahrbahnoberflachen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU LV MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

WR Later publication of a revised version of an international search report
121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1994900040

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994900040

Country of ref document: EP

REF Corresponds to

Ref document number: 4395721

Country of ref document: DE

Date of ref document: 19951123

WWE Wipo information: entry into national phase

Ref document number: 4395721

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1994900040

Country of ref document: EP