EP1361136B1 - Messverfahren zum Erfassen der Nachgiebigkeit eines Gleises und Fahrzeug zur Durchführung dieses Verfahrens - Google Patents

Messverfahren zum Erfassen der Nachgiebigkeit eines Gleises und Fahrzeug zur Durchführung dieses Verfahrens Download PDF

Info

Publication number
EP1361136B1
EP1361136B1 EP03000489A EP03000489A EP1361136B1 EP 1361136 B1 EP1361136 B1 EP 1361136B1 EP 03000489 A EP03000489 A EP 03000489A EP 03000489 A EP03000489 A EP 03000489A EP 1361136 B1 EP1361136 B1 EP 1361136B1
Authority
EP
European Patent Office
Prior art keywords
measuring
vehicle
track
rails
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03000489A
Other languages
English (en)
French (fr)
Other versions
EP1361136A1 (de
Inventor
Martin Rechel
Hans-Jörg Dr. Höhberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DB Netz AG
Original Assignee
DB Netz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DB Netz AG filed Critical DB Netz AG
Publication of EP1361136A1 publication Critical patent/EP1361136A1/de
Application granted granted Critical
Publication of EP1361136B1 publication Critical patent/EP1361136B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way

Definitions

  • the invention relates to a measuring method and an arrangement for detecting the Compliance of a track. It is used for track diagnosis in Framework of track inspection or track measurement runs and creates in addition to an assessment of the geometrical track condition, also the requirements for a qualitative and quantitative assessment of the flexibility of the Track.
  • the flexibility of a track is made up of the flexibility of everyone Components of the track construction together. This affects the upper and lower structure just like the underground. In addition to the rails, the Rail fastenings, intermediate layers, sleepers, the bedding and the level Proportions to compliance.
  • the compliance may increase change over time. Slow and fast changes occur on. Slow changes can be caused in particular by aging processes caused on the components of the track construction, while rapid changes mainly due to changing climatic influences or arise from structural changes. There are also variations in the flexibility along the track, for example due to different Track construction technologies, or if different in the course of the route geological subsurface conditions occur. There are also inhomogeneities in compliance by local disturbances. This includes transitions, partial threshold hollow layers or a change from newly worked through to aged track sections and vice versa.
  • a rail vehicle moving in the track is always two different types Subject to excitation mechanisms for the occurrence of dynamic forces between the wheels of the rail vehicle and the Track are responsible. On the one hand, there are suggestions from the course the track geometry itself including any track position errors. On the other hand these are suggestions due to the flexibility of the tracks and in particular the dynamic effects from different successive Resilience in the course of the track, which is considerable when there are major changes can even take on threatening proportions. In the course of measures to Track maintenance therefore depends on the detection of geometric track position errors also the course of the track compliance To determine measurements in order to take appropriate measures in a given To be able to guarantee or restore the tolerance range.
  • the measuring chain consists of vector distance measuring systems which are the distance vectors from the platform to the mounting points of so-called measuring heads, which in turn record the vertical and horizontal distances to the rails close to the wheel contact point measure ..
  • the measuring chain consists of vector distance measuring systems which are the distance vectors from the platform to the mounting points of so-called measuring heads, which in turn record the vertical and horizontal distances to the rails close to the wheel contact point measure ..
  • DE 195 31 336 C2 comes for measurements in the vertical and the horizontal plane to apply the method of optical triangulation.
  • To errors in the scanning measurements on the naturally curved and inclined surfaces of the rail heads due to translational movements to compensate for the rail vehicle also becomes an orthogonal optical one Tracking of the vertical as well as the horizontal measuring arrangement intended.
  • a beam of light is used for vertical probing Rail in the horizontal direction depending on the output signal of the horizontal Measuring system and vice versa a light beam for horizontal probing in the vertical direction with the output signal of the vertical measuring system driven. This ensures that
  • a Measuring frame used as a reference base to determine its position and a combination of its angle in an absolute coordinate system the differential working positioning system DGPS with an inertial navigation system INS uses. This results in accuracies in the millimeter range reached.
  • Relative measurements of the rail heads in relation to the measuring platform are carried out by ultrasonic measuring heads. Orthogonal tracking the measuring heads to ensure straight-line probing traces Not.
  • measuring vehicles with specially prepared axes. These are running axles under the measuring vehicle are usually arranged in the middle and are only guided in such a way, that they transmit very little loads to the rails. On the barrel axles there are measuring arrangements that those on the wheels of the correspond to the loaded wheel set. A disadvantage of this type of measuring vehicle however, that these require a greater manufacturing effort and due to their special design are also classified as special vehicles, whereby they are subject to special operational restrictions.
  • the invention is therefore based on the object of a measuring method and an arrangement to create the flexibility of a track with which to create a complete continuous recording of the flexibility of tracks in common with measurements on the geometric track position with high measuring speed up to Maximum line speed can be carried out, with the necessary measuring systems are installed on measuring vehicles according to the standard design.
  • This object is achieved in connection with the preamble of the main claim solved by measuring the vertical position from a first measuring system and the horizontal position of both rails of a track in the immediate vicinity of the Wheel contact points of a wheelset belonging to a measuring vehicle under load take place, for which measuring heads are used in vertical and horizontal arrangement, which are located on a measuring frame that is quasi-rigidly connected to the axle bearings is.
  • a second measuring system preferably used in the middle of the measuring vehicle is located on a system carrier, which has mechanical compensation devices which has the vertically and horizontally arranged measuring heads installed there Translational and rotational movements of the vehicle frame while driving as well when moving the rails in arches in the opposite sense, always shifted so that a sufficiently constant distance to the rails is guaranteed.
  • the vertical position and the horizontal position of the rails are on the second measuring system measured when the measuring vehicle continuously by half Length has moved, and the measuring heads then on the previously under load certain measuring point if the rails are lowered due to the Wandering and thus easing the load has declined locally.
  • the object is further achieved according to the invention by using as a reference a gyro-stabilized inertial system in an absolute coordinate system is used, and the vertical and horizontal positions of the rails as a reference base using vectorial distance measurement and optical triangulation can be determined on the vertically and horizontally arranged measuring heads.
  • the method enables the vertical position to be independent of each other and the horizontal position of the rails with and without load for the same
  • the load settles in the vertical direction from a static part, which corresponds to the wheel load, as well as from a dynamic part.
  • the load consists of one static component that corresponds to the form-fit of the wheel-rail contact surface and from a dynamic part of the horizontal force.
  • Optical tracking devices are particularly useful for the application of the invention of the known type for the vertical and horizontal measuring heads provided. This is how the light beam is used for vertical probing of the rails in the horizontal direction depending on the output signal of the horizontal Measuring system and the light beam for horizontal probing of the rails in the vertical direction with the output signal of the vertical measuring system driven. As a result, the contact traces run for the vertical and for the horizontal measurements always straight.
  • the invention further provides that the compensation devices on second measuring system, which is used to measure the rail positions without load, about mechanical devices for horizontal compensation and about mechanical Devices for vertical compensation on the measuring heads for measurement the vertical position and on the measuring heads for measuring the horizontal position and also have facilities for roll angle compensation.
  • the particular advantage of the invention is that with its application the track compliance in the course of track inspection runs without gaps and is continuously recordable, and immediately with the assessment of the geometric Track position can go hand in hand.
  • a high measuring speed up to Maximum line speed can be driven.
  • a measuring vehicle 3 has a first measuring system 1 and a second measuring system 2.
  • the vertical position z and the horizontal position y of rails 5 are measured from an inertial reference base 4 with the first measuring system 1 for each measuring point x 0 directly next to the wheel contact points of the two wheels of a wheel set 6.
  • the first measuring system 1 is equipped with measuring heads 7 for measuring the vertical position z and the horizontal position y of the rails 5 of a track, which determine the real position of the rails 5 relative to the inertial reference base 4.
  • the rails 5 Under the load introduced via the wheels 6, the rails 5 have vertical displacements in the form of depressions and horizontal displacements as a result of the form-locking engagement of the wheel-rail contact surface with respect to the unloaded sections of the track.
  • the unloaded section In addition to the areas in front of and behind the measuring vehicle 3, the unloaded section also includes the area of the rails 5 approximately in the middle of the measuring vehicle 3.
  • the second measuring system 2 which also has measuring heads 7 for measuring the vertical position z and the horizontal position y Rails 5 is provided, which determine the real position relative to the inertial reference base 4.
  • the measurements of the vertical positions z and the horizontal positions y of the rails 5 are repeated when the measuring vehicle 3 has moved forward by half a vehicle length, as a result of which the second measuring system 2 in turn has reached the measuring point x 0 .
  • the measurements for both rails 5 of the track give the size of the vertical position z load of the top edge of the rail below the wheel contact point. This wheel contact point corresponds to the measuring point x 0.
  • the length difference ⁇ z is also related to the size of the load Q , which can be determined using known measuring methods, for example using a measuring wheel set. This results in a measure of the flexibility of the track N v - or its two rails 5 - in the vertical plane.
  • N v ⁇ z Q
  • the load Q is composed of a static wheel load Q 0 and a dynamic part Q dyn .
  • Q Q 0 + Q dyn
  • the load Q is always greater than zero and the quotient for the flexibility of the track N v is always defined.
  • a corresponding analogous procedure is used for the detection and assessment of the horizontal compliance of the track, or of the rails 5.
  • the size for the horizontal position y load of the rail flanks below the wheel contact point is obtained from the measurements for both rails 5 of the track and then the size for the horizontal position y no load for the same measurement point x 0 when the load has subsided again ,
  • the difference between the two variables leads to a value for the length difference ⁇ z in the horizontal plane.
  • ⁇ y y load - y no load
  • the length difference ⁇ y is related to the size of the transverse load Y , which can also be determined with a known measuring wheel set, and thus gives a measure of the flexibility of the track N H - or its two rails 5 - in the horizontal plane.
  • N H ⁇ y Y
  • the shear load Y set in the horizontal plane is composed of a static component, the positive locking force Y F , and a dynamic component Y dyn .
  • Y Y F + Y dyn
  • FIG. 2 shows the arrangement of a first and a second measuring system 1 and 2 on a measuring vehicle 3.
  • the measuring vehicle 3 has two bogies, each with two 6 wheelsets.
  • Measuring heads 7 are assigned to the first measuring system 1 in such a way that that measurements of the vertical position z and the horizontal position y of the rails 5 in immediate Proximity to the wheels of the wheelset 6 are possible.
  • the measuring heads 7 are according to of Figure 3 arranged on a measuring frame 14 which is with axle bearings 15 of the Wheelset 6 is in a quasi-rigid connection.
  • the in a horizontal and in Measuring heads 7 arranged in a vertical plane are provided with distance sensors the measuring method of optical triangulation, with which in connection with the vector distance measuring systems 9 measurements of the relative positions of the rails 5 compared to the inertial reference base 4.
  • the measuring system 1 also has tracking devices in the vertical and in the horizontal plane arranged measuring heads 7.
  • the vertical measuring head 7 is always on a freely selectable but then a fixed contact line - for example the middle of the rail - the vertical Distance of the measuring head 7 detected from the rail 5, while the horizontal measuring measuring head 7 also on a freely selectable but then fixed Probe line - for example 14 mm below the top edge of the rail - the horizontal one Distance between the rail 5 and the measuring head 7 determined.
  • the measuring heads 7 are shaped such that the measuring head 7 provided for measuring the vertical position z is always above the top edge of the rail 5 remains in position while the measuring head 7 for measuring the horizontal position y always in the wheel flange shadow running.
  • the for measuring the vertical position z and the horizontal position y of the rail 5 relevant sizes are determined from the superposition of the Distance measurement values of the measuring heads 7 to the top edge of the rail respectively obtained to the rail flank with the length values by which the tracking devices 13 during the measurements from their neutral positions be deflected.
  • the first measuring system 1 and the second measuring system 2 also have via light sources 8 and vector distance measuring systems 9, the Vector distance measuring systems 9 together with the inertial reference base 4 are located on a common measuring platform 10.
  • Monitor displacement sensor 12 the distance between the measuring platform 10 and the vehicle frame 11, which determined, for example, as a result of vibrations of the measuring vehicle 3 Variations are subject.
  • the second measuring system 2 is arranged approximately in the middle of the measuring vehicle 3. According to FIG. 4, it also has measuring heads 7 for the measurement the vertical position z and the horizontal position y of the rails 5.
  • the essential The difference to the first measuring system 1 is now that the measuring heads 7 of the second measuring system 2 are not in the immediate vicinity a wheel set 6 are arranged, but freely along the rails 5 slide.
  • the measuring heads 7 of the second measuring system 2 are not in the immediate vicinity a wheel set 6 are arranged, but freely along the rails 5 slide.
  • reference base 4 in the vertical and horizontal planes these measuring heads 7 via distance sensors according to the optical measuring method Triangulation.
  • the measuring heads 7 of the second measuring system 2 are not on a quasi-rigidly connected measuring frame 14 to the axle bearings 15 attached, but are located on a system carrier 16, which is movable is attached to the vehicle frame 11 with a cross member 19.
  • This has Compensation devices 17 for those in the vertical and in the horizontal plane arranged measuring heads 7.
  • the compensation devices 17 With the compensation devices 17 the translational movements of the vehicle frame 11 while driving and movements when migrating the rails 5 in arches and switches in opposite Sense always balanced so that a sufficiently constant distance in the vertical and horizontal plane arranged measuring heads 7 to the rails 5 guaranteed is.
  • the compensation devices 17 are of the vertically measuring Measuring head 7 in the horizontal direction and from the horizontally measuring Measuring head 7 controlled in the vertical direction.
  • the system carrier 16 also has a roll angle compensator 18, the rotational movements of the vehicle frame 11 compensates.
  • the for the measurements of the vertical positions z and the horizontal positions y the Rails 5 relevant sizes are from the superposition of the determined measured distance values of the measuring heads 7 to the rail top edge or to the rail flank and those length values to the compensating devices 17 were moved out of their neutral position, in order to keep the contact tracks on the rail 5 constant.

Description

Die Erfindung betrifft ein Messverfahren und eine Anordnung zum Erfassen der Nachgiebigkeit eines Gleises. Sie findet Anwendung zur Gleisdiagnose im Rahmen von Gleisinspektions- beziehungsweise Gleismessfahrten und schafft neben einer Beurteilung des geometrischen Gleiszustandes zugleich auch die Voraussetzungen für eine qualitative und quantitative Bewertung der Nachgiebigkeit des Gleises.
Eisenbahngleise sind keine starren Gebilde. Aufgrund ihrer Nachgiebigkeit erfahren sie unter vertikalen wie auch horizontalen Krafteinwirkungen der auf diesen verkehrenden Schienenfahrzeuge elastische Verformungen in vertikaler und horizontaler Richtung. Diese Nachgiebigkeit der Gleise ist eine wichtige Eigenschaft desjenigen Systems, das Schienenfahrzeuge und Gleise miteinander eingehen. Ein starres System würde gegenüber einem elastischen zu unzulässig hohen dynamischen Beanspruchungen sowohl am Gleis wie auch an den Schienenfahrzeugen führen. Schienenfahrzeuge und Gleise müssen daher hinsichtlich ihrer elastischen Eigenschaften und Dämpfungen eng aufeinander abgestimmt sein.
Die Nachgiebigkeit eines Gleises setzt sich aus den Nachgiebigkeiten aller Komponenten des Gleisbaus zusammen. Das betrifft den Ober- und Unterbau ebenso wie den Untergrund. Neben den Schienen liefern insbesondere die Schienenbefestigungen, Zwischenlagen, Schwellen, die Bettung und das Planum Anteile zur Gleisnachgiebigkeit.
An bestimmten Orten oder Abschnitten des Gleises kann sich die Nachgiebigkeit im Laufe der Zeit verändern. Dabei treten langsame und schnelle Änderungen auf. Langsame Änderungen können insbesondere durch Alterungsprozesse an den Komponenten des Gleisbaus verursacht werden, während schnelle Änderungen vorwiegend durch wechselnde klimatische Einwirkungen oder durch bauliche Änderungen entstehen. Weiterhin existieren Variationen in der Nachgiebigkeit entlang des Gleisverlaufes, beispielsweise infolge unterschiedlicher Gleisbautechnologien, oder wenn im Streckenverlauf unterschiedliche geologische Untergrundverhältnisse auftreten. Hinzu kommen Inhomogenitäten in der Nachgiebigkeit durch örtliche Störungen. Hierzu zählen Übergänge, partielle Schwellen-Hohllagen oder auch ein Wechsel von neu durchgearbeiteten zu gealterten Gleislage-Abschnitten und umgekehrt.
Ein sich im Gleis fortbewegendes Schienenfahrzeug ist immer zwei verschiedenartigen Anregungsmechanismen unterworfen, die für das Auftreten von dynamischen Kräfte zwischen den Rädern des Schienenfahrzeuges und dem Gleis verantwortlich sind. Das sind zum einen Anregungen durch den Verlauf der Gleisgeometrie selbst einschließlich vorhandener Gleislagefehler. Zum anderen sind dies Anregungen durch die Nachgiebigkeit der Gleise und im Besonderen die dynamischen Effekte durch unterschiedliche aufeinanderfolgende Nachgiebigkeiten im Gleisverlauf, die bei starken Änderungen beträchtliche und sogar bedrohliche Ausmaße annehmen können. Im Zuge von Maßnahmen zur Gleisinstandhaltung kommt es demnach darauf an, neben dem Erkennen von geometrischen Gleislagefehlern auch den Verlauf der Gleisnachgiebigkeit durch Messungen zu ermitteln, um diesen durch geeignete Maßnahmen in einem vorgegebenen Toleranzbereich gewährleisten oder wiederherstellen zu können.
Zur Lösung dieser Aufgabenstellung ist es nach dem Stand der Technik bekannt, insbesondere auf dem Wege von Messfahrten kontinuierlich und berührungslos die Lage der Schienen über deren Profilverlauf beidseitig des Gleises zu ermitteln und aufzuzeichnen. Anschaulich werden Messvorrichtungen und Verfahren hierfür in den Schriften DE 34 41 092 C2 sowie DE 195 31 336 C2 beschrieben. Als Bezugssystem kommt dabei eine kreiselstabilisierte inertiale Plattform auf dem Messfahrzeug zum Einsatz, deren Lage in einem absoluten Koordinatensystem bestimmbar ist. Gleichzeitig mit der Lage der inertialen Plattform wird die vertikale und horizontale Position der Schienen relativ zu dieser über eine Messkette bestimmt. Die Messkette besteht aus Vektor-Abstandsmesssystemen welche die Abstandsvektoren von der Plattform bis zu den Montagepunkten so genannter Messköpfe erfassen, die ihrerseits die vertikalen und horizontalen Abstände zu den Schienen nahe am Radaufstandspunkt messen.. Nach der DE 195 31 336 C2 kommt für Messungen in der vertikalen und horizontalen Ebene das Verfahren der optischen Triangulation zur Anwendung. Um Fehler bei den Abtastmessungen an den naturgemäß gewölbten und geneigten Oberflächen der Schienenköpfe infolge von Translationsbewegungen des Schienenfahrzeuges auszugleichen, wird außerdem eine orthogonale optische Nachführung sowohl der vertikalen als auch der horizontalen Messanordnung vorgesehen. Dabei wird ein Lichtstrahl für die vertikale Antastung der Schiene in horizontaler Richtung in Abhängigkeit vom Ausgangssignal des horizontalen Messsystems und umgekehrt ein Lichtstrahl für die horizontale Antastung in vertikaler Richtung mit dem Ausgangssignal des vertikalen Messsystems angesteuert. Hierdurch wird erreicht, dass die Antastspuren für die vertikalen und für die horizontalen Messungen stets geradlinig und beispielsweise in der Mitte des Schienenkopfes verlaufen.
Nach einer anderen Lösung, die in DE 200 21 678 beschrieben ist, wird ein Messrahmen als Bezugsbasis verwendet, der zur Bestimmung seiner Lage und seines Winkels in einem absoluten Koordinatensystem eine Kombination aus dem differentiell arbeitendem Ortungssystem DGPS mit einem inertialen Navigationssystem INS nutzt. Es werden damit Genauigkeiten im Millimeterbereich erreicht. Relativmessungen der Schienenköpfe in Bezug zu der Messplattform werden durch Ultraschallmessköpfe vorgenommen. Ein orthogonales Nachführen der Messköpfe zur Gewährleistung geradliniger Antastspuren erfolgt dabei nicht.
Mit den beschriebenen Verfahren und Messanordnungen ist es bekannt, die Lage der Schienen in unmittelbarer Nähe zum Radaufstandspunkt und somit unter der Last eines in bestimmungsgemäßer Weise beaufschlagten Radsatzes zu messen. Verfahrenslösungen zur Bestimmung der Nachgiebigkeit des Gleises machen es indessen erforderlich, dass ein weiteres Mal am selben Messpunkt und unter Verwendung vergleichbarer Messanordnungen die Lage der Schienen dann gemessen wird, wenn diese nicht durch eine Last beaufschlagt werden. Erst so wird es möglich, über die Längendifferenz der Einsenkungen aus den Messungen mit und ohne Last und unter Bezugnahme auf die Größe derselben die Gleisnachgiebigkeit wertmäßig zu beschreiben. Zur Messung der dabei jeweils einwirkenden Last wird zweckmäßigerweise auf die Verwendung von bekannten Messradsätzen nach dem Stand der Technik zurückgegriffen.
Um zusätzlich zur Lage der Schienen unmittelbar am Radaufstandspunkt und somit unter Last auch die Lage der Schienen ohne Last ermitteln zu können, ist es bekannt, Messfahrzeuge mit dafür speziell hergerichteten Laufachsen einzusetzen. Dabei handelt es sich um Laufachsen, die unter dem Messfahrzeug zumeist mittig angeordnet sind und in solcher Weise lediglich geführt werden, dass sie nur sehr geringe Lasten auf die Schienen übermitteln. An den Laufachsen befinden sich Messanordnungen, die denjenigen an den Rädern des belasteten Radsatzes entsprechen. Nachteilig an Messfahrzeugen dieser Art ist indessen, dass diese einen größeren Herstellungsaufwand bedingen und aufgrund ihrer speziellen Bauform zudem als Sonderfahrzeuge eingestuft sind, wodurch sie besonderen betrieblichen Einschränkungen unterliegen.
Zur Lösung der Messaufgabe ist es weiterhin bekannt, zwei Messfahrzeuge für das Ausführen von Messfahrten miteinander zu verbinden. Von diesen beiden Messfahrzeugen weist das erstere eine hinreichend hohe, zumindest aber eisenbahntypische Masse auf, während im zweiten Messfahrzeug spezielle Maßnahmen getroffen werden, um dessen Masse soweit wie möglich zu reduzieren. Von dem ersten Messfahrzeug werden nun die Funktionen zur Messung der Gleislage unter belasteten Radsätzen wahrgenommen. Das zweite Messfahrzeug dagegen nimmt die Gleislage unter weitgehend entlasteten Radsätzen auf. Beide Messfahrzeug weisen dazu Messanordnungen nach dem bekannten Stand der Technik auf. Nachteilig an dieser Technologie ist dagegen, dass weiterhin spezielle Messfahrzeuge außerhalb der Regelbauart benötigt werden. Die Masse des als leicht eingesetzten Messfahrzeuges lässt sich darüber hinaus nur bis zu einem Mindestmaß reduzieren. Die entsprechenden Messungen können somit nicht gänzlich ohne Last durchgeführt werden.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Messverfahren und eine Anordnung zum Erfassen der Nachgiebigkeit eines Gleises zu schaffen, mit denen eine lückenlose kontinuierliche Erfassung der Nachgiebigkeit von Gleisen in Gemeinsamkeit mit Messungen zur geometrischen Gleislage mit hoher Messgeschwindigkeit bis hin zur Streckenhöchstgeschwindigkeit ausführbar sind, wobei die dafür erforderlichen Messsysteme auf Messfahrzeugen nach Regelbauart installiert sind.
Diese Aufgabe wird in Verbindung mit dem Oberbegriff des Hauptanspruches erfindungsgemäß gelöst, indem von einem ersten Messsystem Messungen der Vertikallage sowie der Horizontallage beider Schienen eines Gleises in unmittelbarer Nähe der Radaufstandspunkte eines zu einem Messfahrzeug gehörenden Radsatzes unter Last erfolgen, wozu Messköpfe in vertikaler und horizontaler Anordnung verwendet werden, die sich an einem Messrahmen befinden, der quasistarr mit den Achslagern verbunden ist. Für die Messungen der Vertikallage und der Horizontallage ohne eine Last wird ein zweites Messsystem vorzugsweise in der Mitte des Messfahrzeuges verwendet, das sich an einem Systemträger befindet, der über mechanische Ausgleichseinrichtungen verfügt, welche die dort installierten vertikal und horizontal angeordneten Messköpfe bei Translations- und Rotationsbewegungen des Fahrzeugrahmens während der Fahrt sowie beim Auswandern der Schienen in Bögen in entgegengesetztem Sinn stets so verschiebt, dass ein hinreichend konstanter Abstand zu den Schienen gewährleistet bleibt. Die Vertikallage und die Horizontallage der Schienen werden an dem zweiten Messsystem gemessen, wenn sich das Messfahrzeug kontinuierlich jeweils um eine halbe Länge fortbewegt hat, und die Messköpfe sich somit dann an dem vorher unter Last bestimmten Messpunkt befinden, wenn eine Einsenkung der Schienen infolge des Weiterwanderns und somit Nachlassens der Last örtlich abgeklungen ist.
Die Aufgabe wird erfindungsgemäß weiterhin gelöst, indem als Bezugsbasis ein kreiselstabilisiertes Inertialsystem in einem absoluten Koordinatensystem verwendet wird, und die vertikalen sowie horizontalen Positionen der Schienen zur Bezugsbasis mittels vektorieller Abstandmessung und optischer Triangulation an den vertikal und horizontal angeordneten Messköpfen bestimmt werden.
Mit der gefundenen erfindungsgemäßen Anordnung und dem erfindungsgemäßen Verfahren wird es ermöglicht, unabhängig voneinander die Vertikallage und die Horizontallage der Schienen mit Last und ohne Last für jeweils denselben Messpunkt zu ermitteln, daraus Längendifferenzen der Vertikallagen und der Horizontallagen mit und ohne Last zu bestimmen und aus dem Verhältnis dieser Längendifferenzen zu der Größe der Last einen Wert über die Nachgiebigkeit des Gleises abzuleiten. Die Last setzt sich dabei in der Vertikalrichtung aus einem statischen Anteil, der der Radlast entspricht, zusammen sowie aus einem dynamischen Anteil. In der Horizontalrichtung besteht die Last aus einem statischen Anteil, der dem Formschluss der Rad-Schiene-Kontaktfläche entspricht und aus einem dynamischen Anteil der Horizontalkraft.
Nach einer vorteilhaften Ausgestaltungsform der Anordnung befinden sich die an beiden Messsystemen jeweils für die Messung der Vertikallage angeordneten Messköpfe stets oberhalb der Schienenoberkante der Schienen, während die Messköpfe für die Messung der Horizontallage so angeordnet sind, dass diese immer im Spurkranzschatten eines Rades bleiben. Die Messköpfe befinden sich dadurch immer nahe genug an den Schienen und können andererseits nicht durch Anlaufen an Hindernisse zerstört werden.
Besonders nützlich für die Anwendung der Erfindung ist es, optische Nachführeinrichtungen der bekannten Art für die vertikalen und horizontalen Messköpfe vorzusehen. So wird der Lichtstrahl für die vertikale Antastung der Schienen in horizontaler Richtung in Abhängigkeit vom Ausgangssignal des horizontalen Messsystems und der Lichtstrahl für die horizontale Antastung der Schienen in vertikaler Richtung mit dem Ausgangssignal des vertikalen Messsystems angesteuert. Dadurch verlaufen die Antastspuren für die vertikalen und für die horizontalen Messungen immer geradlinig.
Die Erfindung sieht weiterhin vor, dass die Ausgleichseinrichtungen am zweiten Messsystem, welches zur Messung der Schienenlagen ohne Last dient, über mechanische Einrichtungen zum horizontalen Ausgleich und über mechanische Einrichtungen zum vertikalen Ausgleich an den Messköpfen zur Messung der Vertikallage und an den Messköpfen zur Messung der Horizontallage und außerdem über Einrichtungen zum Rollwinkelausgleich verfügen.
Der besondere Vorteil der Erfindung besteht darin, dass mit ihrer Anwendung die Gleisnachgiebigkeit im Rahmen von Gleisinspektionsfahrten lückenlos und kontinuierlich erfassbar ist, und unmittelbar mit der Beurteilung der geometrischen Gleislage einhergehen kann. Durch eine Verwendung von Messfahrzeugen nach Regelbauart kann dabei eine hohe Messgeschwindigkeit bis hin zur Streckenhöchstgeschwindigkeit gefahren werden.
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im folgenden näher erläutert. Es zeigen
Fig. 1
das Messprinzip zur Messung der Nachgiebigkeit eines Gleises,
Fig. 2
eine schematische Anordnung des ersten und zweiten Messsystems auf einem Messfahrzeug in der Längsansicht,
Fig. 3
eine schematische Darstellung des ersten Messsystems zur Messung der Gleislage unter Last im Querschnitt und
Fig. 4
eine schematische Darstellung des zweiten Messsystems zur Messung der Gleislage ohne Last im Querschnitt.
Gemäß der Fig. 1 und Fig. 2 weist ein Messfahrzeug 3 ein erstes Messsystem 1 sowie ein zweites Messsystem 2 auf. Nach bekannten inertialen Messverfahren wird von einer inertialen Bezugsbasis 4 aus mit dem ersten Messsystem 1 für jeden Messpunkt x0 die Vertikallage z und die Horizontallage y von Schienen 5 unmittelbar neben den Radaufstandspunkten der beiden Räder eines Radsatzes 6 gemessen. Das erste Messsystem 1 ist dazu mit Messköpfen 7 zur Messung der Vertikallage z und der Horizontallage y der Schienen 5 eines Gleises ausgestattet, die die reale Lage der Schienen 5 gegenüber der inertialen Bezugsbasis 4 ermitteln. Unter der über die Räder 6 eingeleiteten Last weisen die Schienen 5 dabei vertikale Verschiebungen in Form von Einsenkungen sowie horizontale Verschiebungen infolge des kraftbelasteten Formschlusses der Rad-Schiene-Kontaktfläche gegenüber den unbelasteten Abschnitten des Gleises auf. Als unbelasteter Abschnitt gilt neben den Bereichen vor und hinter dem Messfahrzeug 3 auch der Bereich der Schienen 5 etwa in der Mitte des Messfahrzeuges 3. Dort befindet sich das zweite Messsystem 2, welches ebenfalls mit Messköpfen 7 zur Messung der Vertikallage z und der Horizontallage y der Schienen 5 versehen ist, die die reale Lage gegenüber der inertialen Bezugsbasis 4 ermitteln. Mit dem zweiten Messsystem 2 werden die Messungen der Vertikallagen z und der Horizontallagen y der Schienen 5 wiederholt, wenn sich das Messfahrzeug 3 um eine halbe Fahrzeuglänge vorwärts bewegt hat, wodurch das zweite Messsystem 2 seinerseits an dem Messpunkt x0 angelangt ist.
Zur Erfassung der vertikalen Nachgiebigkeit des Gleises wird wie folgt vorgegangen: Man erhält zunächst aus den Messungen jeweils für beide Schienen 5 des Gleises die Größe der Vertikallage zLast der Schienenoberkante unter dem Radaufstandspunkt. Dieser Radaufstandspunkt entspricht dem Messpunkt x0. Die Größe der Vertikallage zkeineLast für denselben Messpunkt x0 wird ermittelt, wenn sich das Fahrzeug um eine halbe Länge weiter bewegt hat.. Die Differenzbildung der beiden Größen führt zu einem Wert für die Längendifferenz Δz in der vertikalen Ebene. Δz = zLast - zkeineLast
Die Längendifferenz Δz wird weiterhin in Bezug gesetzt zu der Größe der Last Q, die nach bekannten Messverfahren beispielsweise mit einem Messradsatz bestimmbar ist. Es ergibt sich somit ein Maß für die Nachgiebigkeit des Gleises Nv - respektive seiner beiden Schienen 5 - in der vertikalen Ebene. Nv = Δz Q
Es wird dabei berücksichtigt, dass sich die Last Q zusammensetzt aus einer statischen Radlast Q 0 und einem dynamischen Anteil Qdyn . Q = Q 0 + Qdyn
Weil der dynamische Anteil Qdyn stets kleiner bleibt als die statische Radlast Q 0, ist die Last Q immer größer als Null, und der Quotient für die Nachgiebigkeit des Gleises Nv ist immer definiert.
In entsprechender Weise analog wird bei der Erfassung und Beurteilung der horizontalen Nachgiebigkeit des Gleises, beziehungsweise der Schienen 5, verfahren. Man erhält am Messpunkt x0 zunächst aus den Messungen jeweils für beide Schienen 5 des Gleises die Größe für die Horizontallage yLast der Schienenflanken unter dem Radaufstandspunkt und sodann die Größe für die Horizontallage ykeineLast für denselben Messpunkt x0, wenn die Last wieder abgeklungen ist. Die Differenzbildung der beiden Größen führt zu einem Wert für die Längendifferenz Δz in der horizontalen Ebene. Δy = yLast - ykeineLast
Die Längendifferenz Δy wird in Bezug gesetzt zur Größe der Querlast Y , die ebenfalls mit einem bekannten Messradsatz bestimmbar ist, und ergibt somit ein Maß für die Nachgiebigkeit des Gleises NH - respektive seiner beiden Schienen 5 - in der horizontalen Ebene. NH = Δy Y
Dabei wird berücksichtigt, dass sich die in der horizontalen Ebene einstellende Querlast Y zusammensetzt aus einem statischen Anteil, der Formschlusskraft Y F , und einem dynamischen Anteil Y dyn . Y = YF + Ydyn Die Formschlusskraft Y F wirkt dabei wie eine Vorlast, sie muss eine endliche Größe haben, damit der Zustand Y = 0 nicht auftreten kann.
Figur 2 zeigt die Anordnung eines ersten und eines zweiten Messsystems 1 und 2 auf einem Messfahrzeug 3. Das Messfahrzeug 3 weist zwei Drehgestelle mit je zwei Radsätzen 6 auf. Dem ersten Messsystem 1 sind Messköpfe 7 solcherart zugeordnet, dass Messungen der Vertikallage z und der Horizontallage y der Schienen 5 in unmittelbarer Nähe zu den Rädern des Radsatzes 6 möglich sind. Die Messköpfe 7 sind gemäß der Figur 3 an einem Messrahmen 14 angeordnet, der sich mit Achslagern 15 des Radsatzes 6 in einer quasistarren Verbindung befindet. Die in einer horizontalen und in einer vertikalen Ebene angeordneten Messköpfe 7 sind mit Abstandssensoren nach dem Messverfahren der optischen Triangulation ausgestattet, womit in Verbindung mit den Vektor-Abstandsmesssystemen 9 Messungen der relativen Lagen der Schienen 5 gegenüber der inertialen Bezugsbasis 4 ermöglicht werden. Das Messsystem 1 verfügt außerdem über Nachführeinrichtungen in den in der vertikalen und in der horizontalen Ebene angeordneten Messköpfen 7. Durch die Nachführeinrichtungen werden Lichtstrahlen zur Antastung der Schiene 5 in dem horizontal messenden Messkopf 7 und in dem vertikal messenden Messkopf 7 so nachgeregelt, dass der vertikal messende Messkopf 7 stets auf einer frei wählbaren aber dann festen Antastlinie - beispielsweise der Schienenmitte - den vertikalen Abstand des Messkopfes 7 von der Schiene 5 erfasst, während der horizontal messende Messkopf 7 ebenfalls auf einer frei wählbaren aber dann festen Antastlinie - beispielsweise 14 mm unter der Schienenoberkante - den horizontalen Abstand zwischen der Schiene 5 und dem Messkopf 7 bestimmt. Hierzu wird eine Stellgröße zur Nachregelung des vertikal messenden Messkopfes 7 vom zugeordneten horizontal messenden Messkopf 7 und die Stellgröße zur Nachregelung des horizontal messenden Messkopfes 7 vom zugeordneten vertikal messenden Messkopf 7 ermittelt. Die Messköpfe 7 sind so geformt, dass der für die Messung der Vertikallage z vorgesehene Messkopf 7 stets oberhalb der Schienenoberkante der Schiene 5 in Position bleibt, während der Messkopf 7 für die Messung der Horizontallage y immer im Spurkranzschatten des Rades läuft.
Die für die Messungen der Vertikallage z und der Horizontallage y der Schiene 5 jeweils maßgebenden Größen werden aus Superposition der ermittelten Abstandsmesswerte der Messköpfe 7 zur Schienenoberkante beziehungsweise zur Schienenflanke mit denjenigen Längenwerten gewonnen, um die die Nachführeinrichtungen 13 während der Messungen aus ihren Neutrallagen heraus ausgelenkt werden.
Das erste Messsystem 1 und das zweite Messsystem 2 verfügen außerdem über Lichtquellen 8 sowie Vektor-Abstandsmesssysteme 9, wobei sich die Vektor-Abstandsmesssysteme 9 zusammen mit der inertialen Bezugsbasis 4 auf einer gemeinsamen Messplattform 10 befinden. Wegaufnehmer 12 überwachen dabei den Abstand der Messplattform 10 gegenüber dem Fahrzeugrahmen 11, der beispielsweise infolge von Schwingungen des Messfahrzeuges 3 bestimmten Variationen unterliegt.
Das zweite Messsystem 2 ist etwa in der Mitte des Messfahrzeuges 3 angeordnet. Gemäß der Figur 4 verfügt es ebenfalls über Messköpfe 7 für die Messung der Vertikallage z und der Horizontallage y der Schienen 5. Der wesentliche Unterschied gegenüber dem ersten Messsystem 1 besteht nun darin, dass die Messköpfe 7 des zweiten Messsystems 2 nicht in der unmittelbaren Nähe eines Radsatzes 6 angeordnet sind, sondern frei an den Schienen 5 entlang gleiten. Für Messungen der relativen Lage der Schienen 5 gegenüber der inertialen Bezugsbasis 4 in der vertikalen und in der horizontalen Ebene verfügen auch diese Messköpfe 7 über Abstandssensoren nach dem Messverfahren der optischen Triangulation. Die Messköpfe 7 des zweiten Messsystems 2 sind jedoch nicht an einem quasistarr mit den Achslagern 15 verbundenen Messrahmen 14 befestigt, sondern befinden sich an einem Systemträger 16, welcher beweglich mit einer Traverse 19 am Fahrzeugrahmen 11 befestigt ist. Dieser verfügt über Ausgleichseinrichtungen 17 für die in der vertikalen und in der horizontalen Ebene angeordneten Messköpfe 7. Mit den Ausgleichseinrichtungen 17 werden die Translationsbewegungen des Fahrzeugrahmens 11 während der Fahrt sowie Bewegungen beim Auswandern der Schienen 5 in Bögen und Weichen in entgegengesetztem Sinn stets so ausgeglichen, dass ein hinreichend konstanter Abstand der in der vertikalen und horizontalen Ebene angeordneten Messköpfe 7 zu den Schienen 5 gewährleistet ist. Die Ausgleichseinrichtungen 17 werden von dem vertikal messenden Messkopf 7 in horizontaler Richtung und von dem horizontal messenden Messkopf 7 in vertikaler Richtung gesteuert. Der Systemträger 16 weist außerdem einen Rollwinkelausgleicher 18 auf, der Rotationsbewegungen des Fahrzeugrahmens 11 ausgleicht.
Die für die Messungen der Vertikallagen z und der Horizontallagen y der Schienen 5 jeweils maßgebenden Größen werden aus der Superposition der ermittelten Abstandsmesswerte der Messköpfe 7 zur Schienenoberkante beziehungsweise zur Schienenflanke und denjenigen Längenwerten gewonnen, um die die Ausgleichseinrichtungen 17 aus ihrer Neutrallage heraus verfahren wurden, um die Antastspuren auf der Schiene 5 konstant beizubehalten.
Bezugszeichen
1
erstes Messsystem
2
zweites Messsystem
3
Messfahrzeug
4
inertiale Bezugsbasis
5
Schiene
6
Radsatz
7
Messkopf
8
Lichtquellen
9
Kamera
10
Messplattform
11
Fahrzeugrahmen
12
Wegaufnehmer
13
Nachführeinrichtung
14
Messrahmen
15
Achslager
16
Systemträger
17
Ausgleichseinrichtung
18
Rollwinkelausgleicher
19
Traverse
x0
Messpunkt
zLast
Vertikallage der Schienenoberkante unter Last
zkeineLast
Vertikallage der Schienenoberkante ohne Last
Δz
Längendifferenz in der vertikalen Ebene
Q
Last
Q 0
Radlast statisch
Qdyn
dynamischen Anteil der Radlast
Nv
Nachgiebigkeit des Gleises in der vertikalen Ebene
yLast
Horizontallage der Schienenflanken mit Querlast
ykeineLast
Horizontallage der Schienenflanken ohne Querlast
Δz
Längendifferenz in der horizontalen Ebene
Y
Querlast
YF
Formschlusskraft
Ydyn
dynamischer Anteil der Querlast
NH
Nachgiebigkeit des Gleises in der horizontalen Ebene

Claims (8)

  1. Messverfahren zum Erfassen der Nachgiebigkeit eines Gleises mit einem Messfahrzeug zum Ausführen kontinuierlicher Messungen unter Verwendung eines inertialen Messverfahrens zur Bestimmung der vertikalen und horizontalen Lage der Schienen des Gleises, dadurch gekennzeichnet, dass von einem ersten Messsystem (1) auf dem Messfahrzeug (3) an einem Messpunkt (x0) Messungen der Vertikallage sowie der Horizontallage der Schienen (5) beidseitig eines Gleises in unmittelbarer Nähe zu den Radaufstandspunkten eines zu dem Messfahrzeug (3) gehörenden Radsatzes (6) unter Last erfolgen, und dass für Messungen der Vertikallage und der Horizontallage der Schienen (5) ohne eine Last ein zweites Messsystem (2) vorzugsweise in der Mitte des Messfahrzeuges (3) verwendet wird, wobei die Messungen an dem Messpunkt (x0) mit dem zweiten Messsystem (2) dann erfolgen, wenn sich das Messfahrzeug (3) um eine halbe Länge vorwärts bewegt hat, und das zweite Messsystem (2) dann an dem vorher unter Last bestimmten Messpunkt (x0) angelangt ist, wenn dieser infolge des Abstandes zu den Radaufstandspunkten des Radsatzes (6) als lastfrei gilt.
  2. Messverfahren zum Erfassen der Nachgiebigkeit eines Gleises nach Anspruch 1, dadurch gekennzeichnet, dass das erste Messsystem (1) und das zweite Messsystem (2) eine gemeinsame inertiale Bezugsbasis (4) benutzen.
  3. Messverfahren zum Erfassen der Nachgiebigkeit eines Gleises nach Anspruch 1 und 2, dadurch gekennzeichnet, dass über Ausgleichseinrichtungen (17) an dem zweiten Messsystem (2) Translationsbewegungen eines Fahrzeugrahmens (11) während der Messfahrt sowie beim Auswandern der Schienen (5) in Bögen und Weichen in entgegengesetztem Sinn stets so ausgeglichen werden, dass ein für die Messung optimaler Abstand der Messköpfe (7) zu den Schienen (5) gewährleistet bleibt.
  4. Messverfahren zum Erfassen der Nachgiebigkeit eines Gleises nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass über einen Rollwinkelausgleicher (18) Übertragungen von Rollbewegungen des Fahrzeugrahmens (11) auf einen Systemträger (16) während der Messfahrt in entgegengesetztem Sinn ausgeglichen werden.
  5. Meßfahrzeug mit einer Anordnung zum Erfassen der Nachgiebigkeit eines Gleises zum Ausführen kontinuierlicher Messungen mit einer inertialen Bezugsbasis sowie mit Messköpfen in der Nähe der Schienen des Gleises zur Bestimmung der realen vertikalen und horizontalen Lage der Schienen gegenüber der inertialen Bezugsbasis, dadurch gekennzeichnet, dass auf dem Messfahrzeug (3) ein erstes Messsystem (1) für Messungen der Vertikallage sowie der Horizontallage der Schienen (5) unmittelbar an den Radaufstandspunkten eines zu dem Messfahrzeug (3) gehörenden Radsatzes (6) angeordnet ist, dass an diesem ersten Messsystem (1) Messköpfe (7) für eine vertikale Messebene zur Schienenoberkante und für eine horizontale Messebene zur Schienenflanke angeordnet sind, wobei diese Messköpfe (7) optische Nachführeinrichtungen (13) für die horizontale und für die vertikale Ebene aufweisen, und diese Anordnung an einem Messrahmen (14) befestigt ist, der quasistarr mit Achslagern (15) des Radsatzes (6) verbunden ist, und dass ein zweites Messsystem (2) vorzugsweise in der Mitte des Messfahrzeuges (3) für Messungen der Vertikallage sowie der Horizontallage der Schienen (5) angeordnet ist mit Messköpfen (7) für eine vertikale Messebene zur Schienenoberkante und für eine horizontale Messebene zur Schienenflanke, welche sich an einem Systemträger (16) befinden, der über mechanische Ausgleichseinrichtungen (17) für die horizontale und für die vertikale Ebene verfügt.
  6. Fahrzeug nach Anspruch 5, dadurch gekennzeichnet, dass der Systemträger (16) am zweiten Messsystem (2) einen Rollwinkelausgleicher (18) aufweist.
  7. Fahrzeug nach den Ansprüchen 5 und 6, dadurch gekennzeichnet, dass die jeweils für die Messungen der Vertikallage der Schienen (5) angeordneten Messköpfe (7) so geformt und geführt sind, dass sie sich stets berührungslos oberhalb der Schienenoberkante befinden, während die Messköpfe (7) für die Messung der Horizontallage so geformt und angeordnet sind, dass diese immer berührungslos im Spurkranzschatten eines Rades des Radsatzes (6) liegen.
  8. Fahrzeug nach den Ansprüchen 5 bis 7, dadurch gekennzeichnet, dass der Radsatz (6) zum Messen der Last ein Messradsatz ist.
EP03000489A 2002-05-06 2003-01-11 Messverfahren zum Erfassen der Nachgiebigkeit eines Gleises und Fahrzeug zur Durchführung dieses Verfahrens Expired - Lifetime EP1361136B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10220175A DE10220175C1 (de) 2002-05-06 2002-05-06 Messverfahren und Anordnung zum Erfassen der Nachgiebigkeit eines Gleises
DE10220175 2002-05-06

Publications (2)

Publication Number Publication Date
EP1361136A1 EP1361136A1 (de) 2003-11-12
EP1361136B1 true EP1361136B1 (de) 2004-10-20

Family

ID=7714493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03000489A Expired - Lifetime EP1361136B1 (de) 2002-05-06 2003-01-11 Messverfahren zum Erfassen der Nachgiebigkeit eines Gleises und Fahrzeug zur Durchführung dieses Verfahrens

Country Status (4)

Country Link
EP (1) EP1361136B1 (de)
AT (1) ATE280065T1 (de)
DE (2) DE10220175C1 (de)
ES (1) ES2225800T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754235A (zh) * 2013-12-24 2014-04-30 湖北三江航天红峰控制有限公司 一种高铁测量用惯性定位定向装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0410328D0 (en) * 2004-05-08 2004-06-09 Aea Technology Plc Track monitoring
DE102008062143B3 (de) * 2008-12-16 2010-05-12 Db Netz Ag Verfahren zur Bestimmung der vertikalen Gleislage des schienengebundenen Eisenbahnverkehrs
AT518579B1 (de) * 2016-04-15 2019-03-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und Messsystem zum Erfassen eines Festpunktes neben einem Gleis
AT519575B1 (de) * 2017-02-15 2018-08-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Gleismessfahrzeug und Verfahren zur Erfassung einer vertikalen Gleislage
AT520526B1 (de) 2018-02-02 2019-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Schienenfahrzeug und Verfahren zum Vermessen einer Gleisstrecke
CN109910948B (zh) * 2019-03-22 2020-05-05 北京锦鸿希电信息技术股份有限公司 轨道高低的检测方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH653297A5 (en) * 1981-05-25 1985-12-31 Canron Inc Crissier Track recording car
DE3441092A1 (de) * 1984-11-09 1986-05-22 Hans-Jörg Dr. 8011 Zorneding Höhberger Verfahren und vorrichtung zur kontinuierlichen messung von profilkurven und insbesondere von unebenheitskurven
HU200432B (en) * 1986-08-01 1990-06-28 Magyar Allamvasutak Measuring method and apparatus for qualifying the condition of railway tracks
DE19531336C2 (de) * 1994-09-17 1997-10-16 Deutsche Bahn Ag Meßvorrichtung zur berührungslosen Erfassung des Vertikal- und Horizontalabstands zwischen Fahrzeug und Schiene
DE20021678U1 (de) * 2000-12-21 2001-05-17 Peter Meinke Comp Und Kommunik Gleislagemeßsystem

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754235A (zh) * 2013-12-24 2014-04-30 湖北三江航天红峰控制有限公司 一种高铁测量用惯性定位定向装置及方法
CN103754235B (zh) * 2013-12-24 2016-04-13 湖北三江航天红峰控制有限公司 一种高铁测量用惯性定位定向装置及方法

Also Published As

Publication number Publication date
EP1361136A1 (de) 2003-11-12
ES2225800T3 (es) 2005-03-16
DE50300116D1 (de) 2004-11-25
ATE280065T1 (de) 2004-11-15
DE10220175C1 (de) 2003-04-17

Similar Documents

Publication Publication Date Title
DE10260816B4 (de) Messeinrichtung zum Messen der Rundheit eines Eisenbahnrades
DE60015268T2 (de) Fahrzeug zur Vermessung des geometrischen Zustandes eines Gleises
EP3746346B1 (de) Schienenfahrzeug und verfahren zum vermessen einer gleisstrecke
AT517345B1 (de) Gleisbaumaschine zur Durchführung von Gleislagekorrekturen
AT402519B (de) Kontinuierlich verfahrbare gleisbaumaschine zum verdichten der schotterbettung eines gleises
EP3580393B1 (de) Verfahren und schienenfahrzeug zur berührungslosen erfassung einer gleisgeometrie
DE4238034C1 (de) Verfahren und Vorrichtung zum inspektierenden, berührungslosen Abtasten der unmittelbaren Umgebung einer Gleisstrecke hinsichtlich bestimmter Meßkriterien
EP3535456B1 (de) Gleisbaumaschine mit gleislagemesssystem
DE202010006811U1 (de) Schienenprüfvorrichtung
EP1270814B1 (de) Gleisbaumaschine und Verfahren zur Erfassung einer Gleislage
EP3583012A1 (de) Gleismessfahrzeug und verfahren zur erfassung einer vertikalen gleislage
EP1361136B1 (de) Messverfahren zum Erfassen der Nachgiebigkeit eines Gleises und Fahrzeug zur Durchführung dieses Verfahrens
DE102008062143B3 (de) Verfahren zur Bestimmung der vertikalen Gleislage des schienengebundenen Eisenbahnverkehrs
DE10347812B4 (de) Kraftmessvorrichtung zur Erfassung der Schienenbelastung
DE1919775B2 (de) Verfahren und Vorrichtung zur Feststellung der Beschaffenheit der Lage eines Gleises
DE10114482B4 (de) Vorrichtung und Verfahren zur dynamischen Messung der Achslast oder des Gewichts von Schienenfahrzeugen
EP1612551B1 (de) Verfahren zur Ermittlung der Rauheit von frisch geschliffenen Schienen und/oder Schienenbereichen
DE10114481B4 (de) Verfahren und Vorrichtung zur dynamischen Messung der Achslast oder des Gewichts von Fahrzeugen
DE2831916A1 (de) Verfahren und anordnung zum ermitteln der lage eines gleises
DE925236C (de) Vorrichtung zur Messung lotrechter Koordinaten eines Eisenbahngleises
EP2284317A2 (de) Vorrichtung zum Prüfen von Bahnschienen oder bahntechnischen Fahrbahnkomponenten durch Verwendung eines Linearprüfstandes
DE102004027218A1 (de) Meßeinrichtung mit Linearführung
WO2022232860A1 (de) Verfahren und vorrichtung zum ermitteln der oberflächenbeschaffenheit an zumindest einem schienenkopf
AT333826B (de) Fahrbare einrichtung zum messtechnischen erfassen der unebenheiten von fahrbahnoberflachen
DE19925891A1 (de) Verfahren und Vorrichtung zum Eichen einer Überfahrwaage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20040301

RTI1 Title (correction)

Free format text: MEASURING METHOD FOR DETECTING THE COMPLIANCE OF A TRACK AND VEHICLE FOR CARRYING OUT SAID METHOD

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AXX Extension fees paid

Extension state: MK

Payment date: 20040301

Extension state: RO

Payment date: 20040301

Extension state: AL

Payment date: 20040301

Extension state: LT

Payment date: 20040301

Extension state: LV

Payment date: 20040301

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041020

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50300116

Country of ref document: DE

Date of ref document: 20041125

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050111

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2225800

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20041020

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
BERE Be: lapsed

Owner name: DB NETZ A.G.

Effective date: 20050131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070125

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: *DB NETZ A.G.

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070118

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080111

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080111

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190124

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50300116

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801